# 4.14 glibc tcache 机制 - [tcache](#tcache) - [安全性分析](#安全性分析) - [CTF 实例](#ctf-实例) - [参考资料](#参考资料) ## tcache tcache 全名 thread local caching,它为每个线程创建一个缓存(cache),从而实现无锁的分配算法,有不错的性能提升。libc-2.26 正式提供了该机制,并默认开启,具体可以查看这次 [commit](https://sourceware.org/git/?p=glibc.git;a=commitdiff;h=d5c3fafc4307c9b7a4c7d5cb381fcdbfad340bcc)。 #### 数据结构 glibc 在编译时使用 `USE_TCACHE` 条件来开启 tcache 机制,并定义了下面一些东西: ```c #if USE_TCACHE /* We want 64 entries. This is an arbitrary limit, which tunables can reduce. */ # define TCACHE_MAX_BINS 64 # define MAX_TCACHE_SIZE tidx2usize (TCACHE_MAX_BINS-1) /* Only used to pre-fill the tunables. */ # define tidx2usize(idx) (((size_t) idx) * MALLOC_ALIGNMENT + MINSIZE - SIZE_SZ) /* When "x" is from chunksize(). */ # define csize2tidx(x) (((x) - MINSIZE + MALLOC_ALIGNMENT - 1) / MALLOC_ALIGNMENT) /* When "x" is a user-provided size. */ # define usize2tidx(x) csize2tidx (request2size (x)) /* With rounding and alignment, the bins are... idx 0 bytes 0..24 (64-bit) or 0..12 (32-bit) idx 1 bytes 25..40 or 13..20 idx 2 bytes 41..56 or 21..28 etc. */ /* This is another arbitrary limit, which tunables can change. Each tcache bin will hold at most this number of chunks. */ # define TCACHE_FILL_COUNT 7 #endif ``` 值得注意的比如每个线程默认使用 64 个单链表结构的 bins,每个 bins 最多存放 7 个 chunk。chunk 的大小在 64 位机器上以 16 字节递增,从 24 到 1032 字节。32 位机器上则是以 8 字节递增,从 12 到 512 字节。所以 tcache bin 只用于存放 non-large 的 chunk。 然后引入了两个新的数据结构,`tcache_entry` 和 `tcache_perthread_struct`: ```c /* We overlay this structure on the user-data portion of a chunk when the chunk is stored in the per-thread cache. */ typedef struct tcache_entry { struct tcache_entry *next; } tcache_entry; /* There is one of these for each thread, which contains the per-thread cache (hence "tcache_perthread_struct"). Keeping overall size low is mildly important. Note that COUNTS and ENTRIES are redundant (we could have just counted the linked list each time), this is for performance reasons. */ typedef struct tcache_perthread_struct { char counts[TCACHE_MAX_BINS]; tcache_entry *entries[TCACHE_MAX_BINS]; } tcache_perthread_struct; static __thread tcache_perthread_struct *tcache = NULL; ``` tcache_perthread_struct 包含一个数组 entries,用于放置 64 个 bins,数组 counts 存放每个 bins 中的 chunk 数量。每个被放入相应 bins 中的 chunk 都会在其用户数据中包含一个 tcache_entry(FD指针),指向同 bins 中的下一个 chunk,构成单链表。 tcache 初始化操作如下: ```c static void tcache_init(void) { mstate ar_ptr; void *victim = 0; const size_t bytes = sizeof (tcache_perthread_struct); if (tcache_shutting_down) return; arena_get (ar_ptr, bytes); victim = _int_malloc (ar_ptr, bytes); if (!victim && ar_ptr != NULL) { ar_ptr = arena_get_retry (ar_ptr, bytes); victim = _int_malloc (ar_ptr, bytes); } if (ar_ptr != NULL) __libc_lock_unlock (ar_ptr->mutex); /* In a low memory situation, we may not be able to allocate memory - in which case, we just keep trying later. However, we typically do this very early, so either there is sufficient memory, or there isn't enough memory to do non-trivial allocations anyway. */ if (victim) { tcache = (tcache_perthread_struct *) victim; memset (tcache, 0, sizeof (tcache_perthread_struct)); } } ``` #### 使用 触发在 tcache 中放入 chunk 的操作: - free 时:在 fastbin 的操作之前进行,如果 chunk size 符合要求,并且对应的 bins 还未装满,则将其放进去。 ```c #if USE_TCACHE { size_t tc_idx = csize2tidx (size); if (tcache && tc_idx < mp_.tcache_bins && tcache->counts[tc_idx] < mp_.tcache_count) { tcache_put (p, tc_idx); return; } } #endif ``` - malloc 时:有三个地方会触发。 - 如果从 fastbin 中成功返回了一个需要的 chunk,那么对应 fastbin 中的其他 chunk 会被放进相应的 tcache bin 中,直到上限。需要注意的是 chunks 在 tcache bin 的顺序和在 fastbin 中的顺序是反过来的。 ```c #if USE_TCACHE /* While we're here, if we see other chunks of the same size, stash them in the tcache. */ size_t tc_idx = csize2tidx (nb); if (tcache && tc_idx < mp_.tcache_bins) { mchunkptr tc_victim; /* While bin not empty and tcache not full, copy chunks. */ while (tcache->counts[tc_idx] < mp_.tcache_count && (tc_victim = *fb) != NULL) { if (SINGLE_THREAD_P) *fb = tc_victim->fd; else { REMOVE_FB (fb, pp, tc_victim); if (__glibc_unlikely (tc_victim == NULL)) break; } tcache_put (tc_victim, tc_idx); } } #endif ``` - smallbin 中的情况与 fastbin 相似,双链表中的剩余 chunk 会被填充到 tcache bin 中,直到上限。 ```c #if USE_TCACHE /* While we're here, if we see other chunks of the same size, stash them in the tcache. */ size_t tc_idx = csize2tidx (nb); if (tcache && tc_idx < mp_.tcache_bins) { mchunkptr tc_victim; /* While bin not empty and tcache not full, copy chunks over. */ while (tcache->counts[tc_idx] < mp_.tcache_count && (tc_victim = last (bin)) != bin) { if (tc_victim != 0) { bck = tc_victim->bk; set_inuse_bit_at_offset (tc_victim, nb); if (av != &main_arena) set_non_main_arena (tc_victim); bin->bk = bck; bck->fd = bin; tcache_put (tc_victim, tc_idx); } } } #endif ``` - binning code(chunk合并等其他情况)中,每一个符合要求的 chunk 都会优先被放入 tcache,而不是直接返回(除非tcache被装满)。寻找结束后,tcache 会返回其中一个。 ```c #if USE_TCACHE /* Fill cache first, return to user only if cache fills. We may return one of these chunks later. */ if (tcache_nb && tcache->counts[tc_idx] < mp_.tcache_count) { tcache_put (victim, tc_idx); return_cached = 1; continue; } else { #endif ``` 触发从 tcache 中取出 chunk 的操作: - 在 `__libc_malloc()` 调用 `_int_malloc()` 之前,如果 tcache bin 中有符合要求的 chunk,则直接将它返回。 ```c #if USE_TCACHE /* int_free also calls request2size, be careful to not pad twice. */ size_t tbytes; checked_request2size (bytes, tbytes); size_t tc_idx = csize2tidx (tbytes); MAYBE_INIT_TCACHE (); DIAG_PUSH_NEEDS_COMMENT; if (tc_idx < mp_.tcache_bins /*&& tc_idx < TCACHE_MAX_BINS*/ /* to appease gcc */ && tcache && tcache->entries[tc_idx] != NULL) { return tcache_get (tc_idx); } DIAG_POP_NEEDS_COMMENT; #endif ``` - bining code 中,如果在 tcache 中放入 chunk 达到上限,则会直接返回最后一个 chunk。 ```c #if USE_TCACHE /* If we've processed as many chunks as we're allowed while filling the cache, return one of the cached ones. */ ++tcache_unsorted_count; if (return_cached && mp_.tcache_unsorted_limit > 0 && tcache_unsorted_count > mp_.tcache_unsorted_limit) { return tcache_get (tc_idx); } #endif ``` 当然默认情况下没有限制,所以这段代码也不会执行: ```c .tcache_unsorted_limit = 0 /* No limit. */ ``` - binning code 结束后,如果没有直接返回(如上),那么如果有至少一个符合要求的 chunk 被找到,则返回最后一个。 ```c #if USE_TCACHE /* If all the small chunks we found ended up cached, return one now. */ if (return_cached) { return tcache_get (tc_idx); } #endif ``` 另外还需要注意的是 tcache 中的 chunk 不会被合并,无论是相邻 chunk,还是 chunk 和 top chunk。因为这些 chunk 会被标记为 inuse。 ## 安全性分析 `tcache_put()` 和 `tcache_get()` 分别用于从单链表中放入和取出 chunk: ```c /* Caller must ensure that we know tc_idx is valid and there's room for more chunks. */ static __always_inline void tcache_put (mchunkptr chunk, size_t tc_idx) { tcache_entry *e = (tcache_entry *) chunk2mem (chunk); assert (tc_idx < TCACHE_MAX_BINS); e->next = tcache->entries[tc_idx]; tcache->entries[tc_idx] = e; ++(tcache->counts[tc_idx]); } /* Caller must ensure that we know tc_idx is valid and there's available chunks to remove. */ static __always_inline void * tcache_get (size_t tc_idx) { tcache_entry *e = tcache->entries[tc_idx]; assert (tc_idx < TCACHE_MAX_BINS); assert (tcache->entries[tc_idx] > 0); tcache->entries[tc_idx] = e->next; --(tcache->counts[tc_idx]); return (void *) e; } ``` 可以看到注释部分,它假设调用者已经对参数进行了有效性检查,然而由于对 tcache 的操作在 free 和 malloc 中往往都处于很靠前的位置,导致原来的许多有效性检查都被无视了。这样做虽然有利于提升执行效率,但对安全性造成了负面影响。 #### tcache_house_of_spirit #### tcache_overlapping_chunks #### tcache_poisoning #### tcache_fastbin_dup 这一节的代码可以在[这里](../src/Others/4.14_glibc_tcache)找到。其他的一些情况可以参考章节 3.3.6。 ## CTF 实例 在最近的 CTF 中,已经开始尝试使用 libc-2.26,比如章节 6.1.15 中的例子。 ## 参考资料 - [thread local caching in glibc malloc](http://tukan.farm/2017/07/08/tcache/) - [MallocInternals](https://sourceware.org/glibc/wiki/MallocInternals)