
FIGHT WITH LINUX

Firmy@XDSEC

https://github.com/firmianay

firmianay@gmail.com

1

https://github.com/firmianay


OVERVIEW

 Linux

 Reverse Engineering

 Reverse Engineering on Linux

2

What? Why? How?



OVERVIEW

 Linux

 Reverse Engineering

 Reverse Engineering on Linux

3

What? Why? How?



WHAT IS GNU/LINUX?

 Hello, this is Linus Torvalds, and I 
pronounce Linux as Linux!

 Inspired by the UNIX OS, the Linux 
kernel was developed as a clone of 
UNIX

 GNU was started in 1984 with a mission 
to develop a free UNIX-like OS

 Linux was the best fit as the kernel for 
the GNU Project

 Linux kernel was passed onto many 
interested developers throughout the 
Internet

4

https://upload.wikimedia.org/wikipedia/commons/0/03/Linus-linux.ogg


DISTRIBUTIONS

 Linux is basically a kernel, it was 
combined with the various software 
and compilers from GNU Project form 
an OS, called GNU/Linux

 Linux is a full-fledged OS available in 
the form of various Linux Distributions

 Archlinux, Ubuntu, Debian, RedHat, 
Fedora are examples of Linux distros

 Linux is supported by big names as IBM, 
Google, Sun, Oracle and many more

 http://distrowatch.com/

5

http://distrowatch.com/


OVERVIEW

 Linux

 Reverse Engineering

 Reverse Engineering on Linux

6

What? Why? How?



WHY USE LINUX?

 Powerful
 Runs on multiple hardware platforms

 Users like its speed and stability

 No requirement for latest hardware

 Convenience
 A consistent software environments that is completely machine 

independent

 Every system will have a GNU toolchain to compile code for the 
resident platform!

 It’s “free”
 Licensed under GPL

7



JUST FOR FUN

8



OVERVIEW

 Linux

 Reverse Engineering

 Reverse Engineering on Linux

9

What? Why? How?



SETUP YOUR VM

 What is a virtual machine?
 Simply, a computer in your computer

 Really, a (usually) segregated virtual environment that emulates real 
hardware

 Virtual Box, VMware Workstation Pro/Player, QEMU

 Why we need a virtual machine?
 Safety, reliability, consistency, it’s easy

 Keep the binary in a contained environment

 Snapshots

 What’s in a virtual machine?
 Lots of tools: debuggers, disassemblers, analyzers, unpackers, 

compilers…

 迅雷，百度云，QQ 10



HOW TO USE LINUX?

 Environments
 Arch Linux

 GNU bash 4.4.12(1)

 Resources
 鸟哥的 Linux 私房菜

 http://linux.vbird.org/

 man bash

11



BASIC COMMAND LINE

 ls [path]
 list directory contents

 “ls -al /”

 /bin, /boot, /dev, /etc, /home, /lib, /mnt, /proc, /root, /tmp, /usr

 cd [path]
 change the working directory

 pwd
 print the path of current/working directory

 cat [file]
 concatenate files and print on the standard output

 “less”, “more”

12



BASIC COMMAND LINE

 cp [file] [location]
 copy the file/directory to the location

 mv [file] [location]
 move (rename) the file to the location

 rm [file]
 remove the file or directory

 never do “sudo rm -rf /”

 vim
 command line text editors

 “type :quit<Enter> to quit VIM”

13



BASIC COMMAND LINE

 grep [pattern]
 print lines matching a pattern

 find
 search for files in a directory hierarchy

 man [command]
 an interface to the on-line reference manuals

 apropos [whatever]
 search the manual page names and descriptions

 [command] --help
 display help pages

14



PIPES AND REDIRECTION

 Redirection
 /proc/[PID]/fd

 0: stdin

 1: stdout

 2: stderr

 “>”: take the standard output of the command on the left and 
redirects it to the file on the right

 “>>”: take the standard output of the command on the left and 
appends it to the file on the right

 “<”: takes the standard input from the file on the right and input 
into the program on the left

Pipes - “|”
 take the standard output of the program on the left and input into 

the program on the right 15



JUST FOR SAD

16

 :(){ :|:& };:
 Fork bomb
 https://en.wikipedia.org/wiki/Fork_bomb



LINUX FILE PERMISSIONS

 Owner, group

 Permissions set by owner/root

 Resolving permissions:
 If user=owner, then owner privileges

 If user in group, then group privileges

 Otherwise, all privileges

17

1 2 3 4 5 6 7 8 9 10

File Type
User Permission Group Permission Other Permission

Read Write Execute Read Write Execute Read Write Execute

d/l/s/p/-/c/b r w e r w e r w e



LINUX PROCESS PERMISSIONS

 Process (normally) runs with permissions of user that 
invoked process
 “/etc/shadow” is owned by root

 Users shouldn’t be able to write to it generally

18



LINUX PROCESS PERMISSIONS

UID 0 is root
 Real user ID (RUID)
 same as UID of parent (who started process)

 Effective user ID (EUID)
 from set user ID bit of file being executed or due to sys call

 Saved user ID (SUID)
 place to save the previous UID if one temporarily changes it

Also SGID, EGID, etc…
19



EXECUTABLE FILES HAVE 3 SETUID
BITS

 Setuid bit – set EUID of process to owner’s ID

 Setgid bit – set EGID of process to group’s ID

 sticky bit:
 0 means user with write on directory can rename/remove file

 1 means only file owner, directory owner, root can do so

 So, “passwd” is a setuid program
 It runs at permission level of owner, not user that runs it

20



EXECUTABLE LINKABLE FORMAT 
(ELF)

 Relocatable file
 holds code and data suitable for linking with other object files to 

create an executable or a shared object file

 a.o

 Executable File
 holds a program suitable for execution

 a.out

 Shared Object File
 holds code and data suitable for linking in two contexts. First, the 

linker process it with other relocatable and shared files to create 
another object file. Second, the dynamic linker combines it with an 
executable file and other shared objects to create a process image

 libc-2.25.so
21



EXECUTABLE LINKABLE FORMAT 
(ELF)

22



OVERVIEW

 Linux

 Reverse Engineering

 Reverse Engineering on Linux

23

What? Why? How?



FROM C CODE TO BINARY FILE

24

gcc -save-temps hello.c



WHAT IS REVERSE ENGINEERING?

 The process of analyzing a subject system to
 (i) identify the system’s components and their inter-relationships 

and

 (ii) create representations of the system in another form or at a 
higher level of abstraction

• From New Frontiers of Reverse Engineering 
http://cipressosjsu.info/CS266/pdf/new_frontiers_of_reverse_engine
ering.pdf

25

http://cipressosjsu.info/CS266/pdf/new_frontiers_of_reverse_engineering.pdf


TERMINOLOGY

 Machine
 A computer, server, sometimes refers to the actual CPU

 Binary
 An executable such as an .EXE, ELF, Mach-O or other code 

containers that run on a machine

 Malware
 A malicious binary meant to persist on a machine such as a Rootkit 

or Remote Access Tool (RAT)

26



TERMINOLOGY

 Vulnerability
 A bug in a binary that can be leveraged by an exploit

 Exploit
 Specially crafted data that utilizes vulnerabilities to force the binary 

into doing something unintended

 0day
 A previously unknown or unpatched vulnerability that can be used 

by an exploit

 An 0day can also be an exploit using the unpatched vulnerability

 Pwn/Pwning
 In security, pwning commonly refers to vulnerability research, 

exploit development and sometimes luckily found a 0day
27



APPLICATIONS

 Military or commercial espionage

 Software security analysis

 Bug digging and fixing

 Game external plugins

 Algorithm copy

 Saving money

 …

28



OVERVIEW

 Linux

 Reverse Engineering

 Reverse Engineering on Linux

29

What? Why? How?



WHY LEARN REVERSE ENGINEERING?

 Understanding of how programs really work

 It’s a big challenge

 Almost non-existent in academia

 Few people have mastered

 Satisfy your curiosity

 Gain a sense of accomplishment

 Just for fun

 …

30



OVERVIEW

 Linux

 Reverse Engineering

 Reverse Engineering on Linux

31

What? Why? How?



WHY DOES SOFTWARE HAVE 
VULNERABILITIES?

 Programmers are humans
 Use tools

 Programmers often aren’t security-aware
 learn about common types of security flaws

 Programmers languages aren’t designed well for security
 Use better languages (Java, Python, …)

32



HOW TO DO REVERSE 
ENGINEERING?

Static Analysis
 Disassembly, Decompile, Unpack, Deobfuscate

 Analyzing a binary without executing any code

 Can provide complementary insights to guide dynamic 
and advanced analysis

 Potential for more comprehensive assessment

 Lots of tools involved

 Safer

33



HOW TO DO REVERSE 
ENGINEERING?

Dynamic Analysis
 Debugging, Tracing, Memory dumping

 Analyze what happens when the binary is executed

 Are files made, processes created, websites contacted, 
files downloaded/executed, etc

 Show you the effect the binary has on the 
system/network

 Run binaries in a sandbox for safe

34



EVASIONS AND OBFUSCATIONS

 To Defeat Static Analysis
 Encryption (packing)

 API and control-flow obfuscations

 Anti-disassembly

 To Defeat Dynamic Analysis
 Anti-debugging, anti-tracing, anti-memory dumping

 VM detection, emulator detection

The main purpose of obfuscation is to 
slow down the security community

35



REVERSE ENGINEERING PHASES

 Unpacking
 The image of a running binary is often considered damaged: No 

known OEP. Imported APIs are invoked dynamically and the original 
import table is destroyed. Arbitrary section names and r/w/e 
permissions.

 Disassembly
 Identification of code and data segments

 Relies on the unpacker to capture all code and data segments

36



REVERSE ENGINEERING PHASES

 Decompilation
 Reconstruction of the code segment into a C-like higher level 

representation

 Relies on the disassembler to recognize function boundaries, targets 
of call sites, imports, and OEP

 Program understanding
 Relies on the decompiler to produce readable C code, by 

recognizing the compiler, calling conventions, stack frames 
manipulation, functions prologs and epilogs, user-defined data 
structures

37



OVERVIEW

 Linux

 Reverse Engineering

 Reverse Engineering on Linux

38

What? Why? How?



WHAT WE CAN/WILL DO?

attack
 Integer overflows

 Buffer overflows

 Format string vulnerabilities

 Heap overflows

 Return-Oriented Programming 
(ROP)
 Sigreturn-Oriented 

Programming (SROP)

 Return-into-libc exploits

protect
 Stack canary

 Non-eXecutable memory 
pages (NX)
 Data Execution Prevention (DEP)

 W xor X (W^X)

 Position Independent 
Executable (PIE)

 Address Space Layout 
Randomization (ASLR)
 Position Independent 

Executables (PIE)

39



OVERVIEW

 Linux

 Reverse Engineering

 Reverse Engineering on Linux

40

What? Why? How?



WHY REVERSE ENGINEERING ON 
LINUX IS NEEDED?

41http://www.cvedetails.com/vendor/33/Linux.html



WHY REVERSE ENGINEERING ON 
LINUX IS NEEDED?

42

http://www.sic.gov.cn/archiver/SIC/UpFile/Files/Default/20170807115920801889.pdf



OVERVIEW

 Linux

 Reverse Engineering

 Reverse Engineering on Linux

43

What? Why? How?



LINUX TOOLS

Hex editors / viewers
 wxHexEditor (GUI)

 xxd
 “-i”: output in C include file style

 “-g”: number of octets per group in normal output

 “-l len”: stop after <len> octets

 “-u”: use upper case hex letters

 “xxd -g1”

44



LINUX TOOLS

ASCII readable hex
 strings
 print the strings of printable characters in files

 “-a --all”: scan the entire file, not just the data section [default]

 “-t --radix={o, d, x}”: print the location of the string in base 8, 10 or 16

 “-e –encoding={s, S, b, l, B, L}”: select size and endianess

 s = 7-bit, S = 8-bit, {b, l} = 16-bit, {B, L} = 32-bit

 “strings -t x /lib32/libc-2.24.so | grep /bin/sh”

 “strings [executable] | grep -i upx”

45



LINUX TOOLS

File format on disk
 file
 determine file type

 “file -L [file]”: follow symlinks

 readelf
 displays information about ELF files

 “-h --file-header”: display the ELF file header

 “-l --program-headers”: display the program headers

 “-S --section-headers”: display the sections’ header

 “-e --headers”: Equivalent to: -h -l –S

 “-s --relocs”: display the relocations (if present)

 “-d --dynamic”: display the dynamic section (if present) 46



LINUX TOOLS

Display information from object files
 objdump
 “-d --disassemble”: display assembler contents of executable sections

 “-R --dynamic-reloc”: display the dynamic relocation entries in the file

 “objdump -d [executable] | grep -A 30 [function_name]”

 ldd
 print shared object dependencies

47



LINUX TOOLS

Tracing
ltrace
 trace runtime library calls in dynamically linked programs

 “-f”: trace children (fork() and clone())

 “-p pid”: attach to the process with the process id

 “-S”: trace system calls as well as library calls

 strace
 trace system calls and signals

 “-o file”: send trace output to FILE instead of stderr

 “-c”: count time, calls, and errors for each syscall and report summary

 “-p pid”: trace process with process id, may be repeated

48



LINUX TOOLS

Debugger
 edb (GUI)

 gdb
 GNU Debugger

 A debugger for several languages, including C and C++

 It allows you to inspect what the program is doing at a certain point 
during execution

 Errors like “segmentation faults” may be easier to find with the help 
of gdb

 peda / gef

 “mv special ~/.gdbinit”

49



GDB

 (b) break [file:]function
 set a breakpoint at function (or file:function)

 (i b) info breakpoints

 show information about all declared breakpoints

 (r) run [arglist]
 start your program (with arglist)

 (s) step
 execute next program line; step into any function calls in the line

 (n) next
 execute next program line; step over any function calls in the line

 (q) quit
 exit from gdb 50



GDB

 (bt) backtrace
 display the program stack

 (p) print [expr]
 print the value of an expression

 (c) continue
 continue running your program

 (fin) finish
 execute until selected stack frame returns

 (h) help [name]
 show information about gdb command

51



GDB

 x/NFU <addr>
 examine memory

 “N”: repeat count followed by a format letter and a size letter

 “F”: format letters are o(octal), x(hex), d(decimal), u(unsigned 
decimal), t(binary), f(float), a(address), i(instruction), c(char), s(string) 
and z(hex, zero padded on the left)

 “U”: size letter are b(byte), h(halfword), w(word), g(giant, 8 bytes)

52



GDB

 gcc -g hello.c
 the “-g” option will enable built-in debugging support

 list [file:]function
 list specified function or line

 edit [file:]function
 edit specified file or function

53



GNU BINUTILS

 The GNU Binutils are a collection of binary tools
 ld

 the GNU linker

 as

 the GNU assembler

 Cross compile
 i386, arm, mips, sparc, powerpc

 amd64, aarch64, mips64, sparc64, powerpc64

54



MORE TECHNIQUES AND TOOLS

 Fuzzing
 An automated software testing technique that involves providing 

invalid, unexpected, or random data as inputs to a computer program.

 AFL, LibFuzzer

 Symbolic Execution
 Analyzing a program to determine what inputs cause each part of a 

program to execute

 angr, Triton, S2E

 LLVM
 Collection of modular and reusable compiler and toolchain

technologies

 clang

 Machine Learning
55



RESOURCES

 Reverse Engineering for Beginners by Dennis Yurichev
 https://beginners.re/

 Practical Reverse Engineering by Dang, Gazet, Bachaalany

 Hacking: The Art of Exploitation, 2nd Edition by Jon 
Erickson

 The Shell coder’s Handbook: Discovering and Exploiting 
Security Holes, 2nd Edition by Chris Anley et al

 Secure Coding in C and C++, 2nd Edition by Robert C. 
Seacord

56

https://beginners.re/


CONTACTS

 Chao Yang

 Blog
 https://firmianay.github.io

 Contact with me POLITELY
 Tel: 

 QQ:

 Telegram: @firmianay

 Contact me if you have any questions, or just want to talk with me 

57

https://firmianay.github.io/


一直学习就可以了

58

-- @Icemakr



THANKS

59

2017.10.14


