
FIGHT WITH LINUX

Firmy@XDSEC

https://github.com/firmianay

firmianay@gmail.com

1

https://github.com/firmianay


OVERVIEW

 Linux

 Reverse Engineering

 Reverse Engineering on Linux

2

What? Why? How?



OVERVIEW

 Linux

 Reverse Engineering

 Reverse Engineering on Linux

3

What? Why? How?



WHAT IS GNU/LINUX?

 Hello, this is Linus Torvalds, and I 
pronounce Linux as Linux!

 Inspired by the UNIX OS, the Linux 
kernel was developed as a clone of 
UNIX

 GNU was started in 1984 with a mission 
to develop a free UNIX-like OS

 Linux was the best fit as the kernel for 
the GNU Project

 Linux kernel was passed onto many 
interested developers throughout the 
Internet

4

https://upload.wikimedia.org/wikipedia/commons/0/03/Linus-linux.ogg


DISTRIBUTIONS

 Linux is basically a kernel, it was 
combined with the various software 
and compilers from GNU Project form 
an OS, called GNU/Linux

 Linux is a full-fledged OS available in 
the form of various Linux Distributions

 Archlinux, Ubuntu, Debian, RedHat, 
Fedora are examples of Linux distros

 Linux is supported by big names as IBM, 
Google, Sun, Oracle and many more

 http://distrowatch.com/

5

http://distrowatch.com/


OVERVIEW

 Linux

 Reverse Engineering

 Reverse Engineering on Linux

6

What? Why? How?



WHY USE LINUX?

 Powerful
 Runs on multiple hardware platforms

 Users like its speed and stability

 No requirement for latest hardware

 Convenience
 A consistent software environments that is completely machine 

independent

 Every system will have a GNU toolchain to compile code for the 
resident platform!

 It’s “free”
 Licensed under GPL

7



JUST FOR FUN

8



OVERVIEW

 Linux

 Reverse Engineering

 Reverse Engineering on Linux

9

What? Why? How?



SETUP YOUR VM

 What is a virtual machine?
 Simply, a computer in your computer

 Really, a (usually) segregated virtual environment that emulates real 
hardware

 Virtual Box, VMware Workstation Pro/Player, QEMU

 Why we need a virtual machine?
 Safety, reliability, consistency, it’s easy

 Keep the binary in a contained environment

 Snapshots

 What’s in a virtual machine?
 Lots of tools: debuggers, disassemblers, analyzers, unpackers, 

compilers…

 迅雷，百度云，QQ 10



HOW TO USE LINUX?

 Environments
 Arch Linux

 GNU bash 4.4.12(1)

 Resources
 鸟哥的 Linux 私房菜

 http://linux.vbird.org/

 man bash

11



BASIC COMMAND LINE

 ls [path]
 list directory contents

 “ls -al /”

 /bin, /boot, /dev, /etc, /home, /lib, /mnt, /proc, /root, /tmp, /usr

 cd [path]
 change the working directory

 pwd
 print the path of current/working directory

 cat [file]
 concatenate files and print on the standard output

 “less”, “more”

12



BASIC COMMAND LINE

 cp [file] [location]
 copy the file/directory to the location

 mv [file] [location]
 move (rename) the file to the location

 rm [file]
 remove the file or directory

 never do “sudo rm -rf /”

 vim
 command line text editors

 “type :quit<Enter> to quit VIM”

13



BASIC COMMAND LINE

 grep [pattern]
 print lines matching a pattern

 find
 search for files in a directory hierarchy

 man [command]
 an interface to the on-line reference manuals

 apropos [whatever]
 search the manual page names and descriptions

 [command] --help
 display help pages

14



PIPES AND REDIRECTION

 Redirection
 /proc/[PID]/fd

 0: stdin

 1: stdout

 2: stderr

 “>”: take the standard output of the command on the left and 
redirects it to the file on the right

 “>>”: take the standard output of the command on the left and 
appends it to the file on the right

 “<”: takes the standard input from the file on the right and input 
into the program on the left

Pipes - “|”
 take the standard output of the program on the left and input into 

the program on the right 15



JUST FOR SAD

16

 :(){ :|:& };:
 Fork bomb
 https://en.wikipedia.org/wiki/Fork_bomb



LINUX FILE PERMISSIONS

 Owner, group

 Permissions set by owner/root

 Resolving permissions:
 If user=owner, then owner privileges

 If user in group, then group privileges

 Otherwise, all privileges

17

1 2 3 4 5 6 7 8 9 10

File Type
User Permission Group Permission Other Permission

Read Write Execute Read Write Execute Read Write Execute

d/l/s/p/-/c/b r w e r w e r w e



LINUX PROCESS PERMISSIONS

 Process (normally) runs with permissions of user that 
invoked process
 “/etc/shadow” is owned by root

 Users shouldn’t be able to write to it generally

18



LINUX PROCESS PERMISSIONS

UID 0 is root
 Real user ID (RUID)
 same as UID of parent (who started process)

 Effective user ID (EUID)
 from set user ID bit of file being executed or due to sys call

 Saved user ID (SUID)
 place to save the previous UID if one temporarily changes it

Also SGID, EGID, etc…
19



EXECUTABLE FILES HAVE 3 SETUID
BITS

 Setuid bit – set EUID of process to owner’s ID

 Setgid bit – set EGID of process to group’s ID

 sticky bit:
 0 means user with write on directory can rename/remove file

 1 means only file owner, directory owner, root can do so

 So, “passwd” is a setuid program
 It runs at permission level of owner, not user that runs it

20



EXECUTABLE LINKABLE FORMAT 
(ELF)

 Relocatable file
 holds code and data suitable for linking with other object files to 

create an executable or a shared object file

 a.o

 Executable File
 holds a program suitable for execution

 a.out

 Shared Object File
 holds code and data suitable for linking in two contexts. First, the 

linker process it with other relocatable and shared files to create 
another object file. Second, the dynamic linker combines it with an 
executable file and other shared objects to create a process image

 libc-2.25.so
21



EXECUTABLE LINKABLE FORMAT 
(ELF)

22



OVERVIEW

 Linux

 Reverse Engineering

 Reverse Engineering on Linux

23

What? Why? How?



FROM C CODE TO BINARY FILE

24

gcc -save-temps hello.c



WHAT IS REVERSE ENGINEERING?

 The process of analyzing a subject system to
 (i) identify the system’s components and their inter-relationships 

and

 (ii) create representations of the system in another form or at a 
higher level of abstraction

• From New Frontiers of Reverse Engineering 
http://cipressosjsu.info/CS266/pdf/new_frontiers_of_reverse_engine
ering.pdf

25

http://cipressosjsu.info/CS266/pdf/new_frontiers_of_reverse_engineering.pdf


TERMINOLOGY

 Machine
 A computer, server, sometimes refers to the actual CPU

 Binary
 An executable such as an .EXE, ELF, Mach-O or other code 

containers that run on a machine

 Malware
 A malicious binary meant to persist on a machine such as a Rootkit 

or Remote Access Tool (RAT)

26



TERMINOLOGY

 Vulnerability
 A bug in a binary that can be leveraged by an exploit

 Exploit
 Specially crafted data that utilizes vulnerabilities to force the binary 

into doing something unintended

 0day
 A previously unknown or unpatched vulnerability that can be used 

by an exploit

 An 0day can also be an exploit using the unpatched vulnerability

 Pwn/Pwning
 In security, pwning commonly refers to vulnerability research, 

exploit development and sometimes luckily found a 0day
27



APPLICATIONS

 Military or commercial espionage

 Software security analysis

 Bug digging and fixing

 Game external plugins

 Algorithm copy

 Saving money

 …

28



OVERVIEW

 Linux

 Reverse Engineering

 Reverse Engineering on Linux

29

What? Why? How?



WHY LEARN REVERSE ENGINEERING?

 Understanding of how programs really work

 It’s a big challenge

 Almost non-existent in academia

 Few people have mastered

 Satisfy your curiosity

 Gain a sense of accomplishment

 Just for fun

 …

30



OVERVIEW

 Linux

 Reverse Engineering

 Reverse Engineering on Linux

31

What? Why? How?



WHY DOES SOFTWARE HAVE 
VULNERABILITIES?

 Programmers are humans
 Use tools

 Programmers often aren’t security-aware
 learn about common types of security flaws

 Programmers languages aren’t designed well for security
 Use better languages (Java, Python, …)

32



HOW TO DO REVERSE 
ENGINEERING?

Static Analysis
 Disassembly, Decompile, Unpack, Deobfuscate

 Analyzing a binary without executing any code

 Can provide complementary insights to guide dynamic 
and advanced analysis

 Potential for more comprehensive assessment

 Lots of tools involved

 Safer

33



HOW TO DO REVERSE 
ENGINEERING?

Dynamic Analysis
 Debugging, Tracing, Memory dumping

 Analyze what happens when the binary is executed

 Are files made, processes created, websites contacted, 
files downloaded/executed, etc

 Show you the effect the binary has on the 
system/network

 Run binaries in a sandbox for safe

34



EVASIONS AND OBFUSCATIONS

 To Defeat Static Analysis
 Encryption (packing)

 API and control-flow obfuscations

 Anti-disassembly

 To Defeat Dynamic Analysis
 Anti-debugging, anti-tracing, anti-memory dumping

 VM detection, emulator detection

The main purpose of obfuscation is to 
slow down the security community

35



REVERSE ENGINEERING PHASES

 Unpacking
 The image of a running binary is often considered damaged: No 

known OEP. Imported APIs are invoked dynamically and the original 
import table is destroyed. Arbitrary section names and r/w/e 
permissions.

 Disassembly
 Identification of code and data segments

 Relies on the unpacker to capture all code and data segments

36



REVERSE ENGINEERING PHASES

 Decompilation
 Reconstruction of the code segment into a C-like higher level 

representation

 Relies on the disassembler to recognize function boundaries, targets 
of call sites, imports, and OEP

 Program understanding
 Relies on the decompiler to produce readable C code, by 

recognizing the compiler, calling conventions, stack frames 
manipulation, functions prologs and epilogs, user-defined data 
structures

37



OVERVIEW

 Linux

 Reverse Engineering

 Reverse Engineering on Linux

38

What? Why? How?



WHAT WE CAN/WILL DO?

attack
 Integer overflows

 Buffer overflows

 Format string vulnerabilities

 Heap overflows

 Return-Oriented Programming 
(ROP)
 Sigreturn-Oriented 

Programming (SROP)

 Return-into-libc exploits

protect
 Stack canary

 Non-eXecutable memory 
pages (NX)
 Data Execution Prevention (DEP)

 W xor X (W^X)

 Position Independent 
Executable (PIE)

 Address Space Layout 
Randomization (ASLR)
 Position Independent 

Executables (PIE)

39



OVERVIEW

 Linux

 Reverse Engineering

 Reverse Engineering on Linux

40

What? Why? How?



WHY REVERSE ENGINEERING ON 
LINUX IS NEEDED?

41http://www.cvedetails.com/vendor/33/Linux.html



WHY REVERSE ENGINEERING ON 
LINUX IS NEEDED?

42

http://www.sic.gov.cn/archiver/SIC/UpFile/Files/Default/20170807115920801889.pdf



OVERVIEW

 Linux

 Reverse Engineering

 Reverse Engineering on Linux

43

What? Why? How?



LINUX TOOLS

Hex editors / viewers
 wxHexEditor (GUI)

 xxd
 “-i”: output in C include file style

 “-g”: number of octets per group in normal output

 “-l len”: stop after <len> octets

 “-u”: use upper case hex letters

 “xxd -g1”

44



LINUX TOOLS

ASCII readable hex
 strings
 print the strings of printable characters in files

 “-a --all”: scan the entire file, not just the data section [default]

 “-t --radix={o, d, x}”: print the location of the string in base 8, 10 or 16

 “-e –encoding={s, S, b, l, B, L}”: select size and endianess

 s = 7-bit, S = 8-bit, {b, l} = 16-bit, {B, L} = 32-bit

 “strings -t x /lib32/libc-2.24.so | grep /bin/sh”

 “strings [executable] | grep -i upx”

45



LINUX TOOLS

File format on disk
 file
 determine file type

 “file -L [file]”: follow symlinks

 readelf
 displays information about ELF files

 “-h --file-header”: display the ELF file header

 “-l --program-headers”: display the program headers

 “-S --section-headers”: display the sections’ header

 “-e --headers”: Equivalent to: -h -l –S

 “-s --relocs”: display the relocations (if present)

 “-d --dynamic”: display the dynamic section (if present) 46



LINUX TOOLS

Display information from object files
 objdump
 “-d --disassemble”: display assembler contents of executable sections

 “-R --dynamic-reloc”: display the dynamic relocation entries in the file

 “objdump -d [executable] | grep -A 30 [function_name]”

 ldd
 print shared object dependencies

47



LINUX TOOLS

Tracing
ltrace
 trace runtime library calls in dynamically linked programs

 “-f”: trace children (fork() and clone())

 “-p pid”: attach to the process with the process id

 “-S”: trace system calls as well as library calls

 strace
 trace system calls and signals

 “-o file”: send trace output to FILE instead of stderr

 “-c”: count time, calls, and errors for each syscall and report summary

 “-p pid”: trace process with process id, may be repeated

48



LINUX TOOLS

Debugger
 edb (GUI)

 gdb
 GNU Debugger

 A debugger for several languages, including C and C++

 It allows you to inspect what the program is doing at a certain point 
during execution

 Errors like “segmentation faults” may be easier to find with the help 
of gdb

 peda / gef

 “mv special ~/.gdbinit”

49



GDB

 (b) break [file:]function
 set a breakpoint at function (or file:function)

 (i b) info breakpoints

 show information about all declared breakpoints

 (r) run [arglist]
 start your program (with arglist)

 (s) step
 execute next program line; step into any function calls in the line

 (n) next
 execute next program line; step over any function calls in the line

 (q) quit
 exit from gdb 50



GDB

 (bt) backtrace
 display the program stack

 (p) print [expr]
 print the value of an expression

 (c) continue
 continue running your program

 (fin) finish
 execute until selected stack frame returns

 (h) help [name]
 show information about gdb command

51



GDB

 x/NFU <addr>
 examine memory

 “N”: repeat count followed by a format letter and a size letter

 “F”: format letters are o(octal), x(hex), d(decimal), u(unsigned 
decimal), t(binary), f(float), a(address), i(instruction), c(char), s(string) 
and z(hex, zero padded on the left)

 “U”: size letter are b(byte), h(halfword), w(word), g(giant, 8 bytes)

52



GDB

 gcc -g hello.c
 the “-g” option will enable built-in debugging support

 list [file:]function
 list specified function or line

 edit [file:]function
 edit specified file or function

53



GNU BINUTILS

 The GNU Binutils are a collection of binary tools
 ld

 the GNU linker

 as

 the GNU assembler

 Cross compile
 i386, arm, mips, sparc, powerpc

 amd64, aarch64, mips64, sparc64, powerpc64

54



MORE TECHNIQUES AND TOOLS

 Fuzzing
 An automated software testing technique that involves providing 

invalid, unexpected, or random data as inputs to a computer program.

 AFL, LibFuzzer

 Symbolic Execution
 Analyzing a program to determine what inputs cause each part of a 

program to execute

 angr, Triton, S2E

 LLVM
 Collection of modular and reusable compiler and toolchain

technologies

 clang

 Machine Learning
55



RESOURCES

 Reverse Engineering for Beginners by Dennis Yurichev
 https://beginners.re/

 Practical Reverse Engineering by Dang, Gazet, Bachaalany

 Hacking: The Art of Exploitation, 2nd Edition by Jon 
Erickson

 The Shell coder’s Handbook: Discovering and Exploiting 
Security Holes, 2nd Edition by Chris Anley et al

 Secure Coding in C and C++, 2nd Edition by Robert C. 
Seacord

56

https://beginners.re/


CONTACTS

 Chao Yang

 Blog
 Old: https://firmianay.github.io

 New: https://github.com/firmianay/blog/issues

 Contact with me POLITELY
 Tel: 

 QQ:

 Telegram: @firmianay

 Contact me if you have any questions, or just want to talk with me 

57

https://firmianay.github.io/
https://github.com/firmianay/blog/issues


一直学习就可以了

58

-- @Icemakr



THANKS

59

2017.10.14


