
HCMC University of Technology
Faculty of Computer Science & Engineering

MP
Micro Pascal Language

Author Dr. Nguyen Hua Phung

June 2017

Contents

1 Introduction 3

2 Program Structure 3
2.1 Variable declaration: . 4
2.2 Function declaration: . 4
2.3 Procedure declaration: . 5

3 Lexical Specification 5
3.1 Character Set . 5
3.2 Comments . 5
3.3 Token Set . 6
3.4 Separators . 7
3.5 Literals . 7

4 Types and Values 8
4.1 The boolean Type and Values . 8
4.2 The integer Type and Values . 9
4.3 The real Type and Values . 9
4.4 The string Type and Values . 9
4.5 Array Types and Their Values . 9

5 Expressions 10
5.1 Precedence and Associativity . 10
5.2 Type Coercions . 10
5.3 Index Expression . 10
5.4 Invocation Expression . 11
5.5 Evaluation Order . 12

6 Statements and Control Flow 12
6.1 Assignment Statement . 12
6.2 The if Statement . 12
6.3 The while Statement . 13
6.4 The for Statement . 13
6.5 The break Statement . 13
6.6 The continue Statement . 13
6.7 The return Statement . 14
6.8 The compound Statement . 14
6.9 The with statement . 14
6.10 Call statement . 14

1

7 Built-in Functions 14

8 Scope Rules 15

9 The main function 17

10 Change Log 17

2

MP

version 1.2

1 Introduction

MP (Mini Pascal) is a language which consists of a subset of Pascal plus some Java language
features.
The Pascal features of this language are (details will be discussed later): a few primitive
types, one-dimensional arrays, control structures, expressions, compound statements (i.e.,
blocks), functions and procedures.
The Java features of this language are as follows:

1. MP has multiple assignments, borrowed from Java.

2. In MP, like Java, the operands of an operator are guaranteed to be evaluated in a
specific evaluation order, particularly, from left to right. In Pascal, the evaluation
order is left unspecified. In the case of f() + g(), for example, MP dictates that f is
always evaluated before g.

For simplicity reason:

1. There is only one dimension array in MP.

var i : array [1 . . 2 , 3 . . 4] of integer ; // ERROR
var i : array [1 . . 5] of integer ; // CORRECT

Conventionally, the sequence ’\n’ must be used as a new line character in MP.

2 Program Structure

MP does not support separate compilation so all declarations (variable and function) must
be resided in one single file.

An MP program consists of many declarations which can be a variable or function or
procedure declaration.

3

2.1 Variable declaration:

A variable declaration starts with keyword var and then a list of declarations each of
which starts with a comma-separated list of identifiers, a colon (:), a type and ends with a
semicolon.

For example,

var a , b , c : integer ;
d : array [1 . . 5] of integer ;
e , f : real ;

2.2 Function declaration:

In MP, a function declaration specifies the name of the function, the type of the return
value and the number and types of the arguments that must be supplied in a call to the
function as well as the body of the function. A function is declared as follows:
function <function-name> ’(’ <parameter-list> ’)’ ’:’ <return type> ’;’ <variable decla-
ration> <compound-statement>
where

• function is a keyword

• <function-name> is an identifier used to represent the name of the function.

• <parameter-list> is zero or more <parameter-declaration>’s separated by ’;’. A
<parameter-declaration> is declared as follows:
<comma-separated list of identifier> ’:’ <type>

• <type> is the function return type.

• <variable declaration> is described in the previous section. The variable declaration
may be ignored.

• <compound-statement> is described in Section 6.8

For example,

f unc t i on foo (a , b : i n t e g e r ; c : r e a l) : array [1 . . 2] o f i n t e g e r ;
var x , y : r e a l ;
begin

. . .
end

4

2.3 Procedure declaration:

The procedure declaration is like a function one except that the keyword procedure is
used instead the keyword function and there is no colon and the return type after the
parameter declaration part.

For example,

procedure foo (a , b : i n t e g e r ; c : r e a l) ;
var x , y : r e a l ;
begin

. . .
end

MP does not support function/procedure overloading. Thus, a function must be defined
exactly once.

MP does not support nested function/procedure as in Pascal. For example: the follow-
ing declaration is invalid in MP

func t i on foo (i : i n t e g e r) : r e a l ;
procedure chi ld_of_foo (r e a l f)
begin
. . .
end

begin
end//ERROR

3 Lexical Specification

This section describes the character set, comment conventions and token set in the language.

3.1 Character Set

An MP program is a sequence of characters from the ASCII character set. Blank, tab,
formfeed (i.e., the ASCII FF), carriage return (i.e., the ASCII CR) and newline (i.e., the
ASCII LF) are whitespace characters. A line is a sequence of characters that ends up with
a LF. This definition of lines can be used to determine the line numbers produced by an M
compiler.

3.2 Comments

There are three kinds of comments:

5

• A traditional block comment:
(* This is
a block comment *)
All the text from (* to *) is ignored.

• A block comment:
{ This is a block comment }
All the text from { to } is ignored.

• A line comment:
//This is a line comment
All the text from // to the end of the line is ignored.
As designed in C, C++ and Java, the following rules are also enforced:

– Comments do not nest.

– (*, *), { and } have no special meaning in comments that begin with //.

– // has no special meaning in comments that begin with (* or {.

3.3 Token Set

In an MP program, there are five categories of tokens: identifiers, keywords, operators,
separators and literals.

• Identifiers: An identifier is an unlimited-length sequence of letters, digits and under-
scores, the first of which must be a letter or underscore. MP is case-insensitive,
meaning that abc and Abc are the same.

• Keywords: The following character sequences are reserved as keywords and cannot be
used as identifiers:
break continue for to downto do if then else return while begin end
function procedure var true false array of real boolean integer string
not and or div mod
Some keywords are used as operators, or literals. These keywords are also case-
insensitive.

• Operators: The following 15 operators in MP:

6

Operator Meaning Operator Meaning
+ Addition - Subtraction or negation
* Multiplication / Division
not Logical NOT mod Modulus
or Logical OR and Logical AND
<> Not equal = Equal
< Less than > Greater than
<= Less than or equal >= Greater than or equal
div Integer division

3.4 Separators

The following characters are the separators: left square bracket (’[’), right square bracket
(’]’), colon (’:’), left bracket (’(’), right bracket (’)’), semicolon (’;’), double dot (’..’) and
comma (’,’).

3.5 Literals

A literal is a source representation of a value of either an integer type, real type, boolean
type or string type.

• An integer literal is always expressed in decimal (base 10), consisting of a se-
quence of at least one digit. An integer literal is of type integer.

• A floating-point literal has the following parts: a whole-number part, a decimal point
(represented by an ASCII period character), a fractional part and an exponent. The
exponent, if present, is indicated by the ASCII letter e or E followed by an optionally
signed (-) integer. At least one digit, in either the whole number or the fraction part,
and either a decimal point or an exponent are required. All other parts are optional.
A floating-point literal is of type real.
For example: The following are valid floating literals:
1.2 1. .1 1e2 1.2E-2 1.2e-2 .1E2 9.0 12e8 0.33E-3 128e-42
The following are not considered as floating literals:
e-12 (no digit before ’e’) 143e (no digits after ’e’)

• The boolean literal has two values, represented by the literals true and false, formed
from ASCII letters.

• A string literal consists of zero or more characters enclosed in double quotes ’"’. The
quotes are not part of the string, but serve to delimit it.
It is a compile-time error for a backspace, newline, formfeed, carriage return, tab,
single quote, double quote or a backslash to appear after the opening ’"’ and before

7

the closing matching ’"’. The following escape sequences are used instead:

\b backspace
\f formfeed
\r carriage return
\n newline
\t horizontal tab
\’ single quote
\" double quote
\\ backslash

A string literal is of type string.

4 Types and Values

Types of all variables and expressions in MP must be known at compile time. Types limit
the values that a variable can hold (e.g., an identifier x has type integer cannot hold value
true. . .), the values that an expression can produce, and the operations supported on those
values (e.g., we cannot apply a plus operator to 2 boolean values. . .).
MP types are divided into two categories:

• Primitive types: boolean, integer, real, string.

• Compound type: array.

4.1 The boolean Type and Values

The boolean type represents a logical quantity with two possible values: true and false.
The following operators can act on boolean values:
not, and, and then, or, or else
A boolean expression is an expression that evaluates to true or false. Boolean expressions
determine the control flow in if, for and while. Only boolean expressions can be used in
these control flow statements.

While the first operator (not) is unary, the others are binary. The operators and and or
are evaluated normally which means their operands are calculated before these operators.
Meanwhile, the operators and then and or else are short-circuited evaluated which means
that the left operand is evaluated firstly and the right one is evaluated only when necessary.

8

4.2 The integer Type and Values

The values of type integer are 32-bit signed integers in the following ranges:
-2147483648 . . . 2147483647
The following operators can act on integer values:
+ - * div mod < <= > >= <> = /
The first five operators always produce a value of type integer. The next six operators
always result a value of type boolean. The last operator (/) will result a value of type
real when both operands are in type integer.
Here, - represents both the binary subtraction and unary negation operators.

4.3 The real Type and Values

A real value is a 32 bit single-precision number. The exact values of this type are implementation-
dependent. The following operators can act on floating-point values:

• The binary arithmetic operators +, -, * and /, which result in a value of type real.

• The unary negation operators -, which results in a value of type real.

• The relational operators =, <>, <, <=, > and >=, which result in a value of type
boolean.

4.4 The string Type and Values

Strings can only be used in an assignment or passed as a parameter of a function invocation.
For example, a string can be passed as a parameter to the built-in function putString() or
putStringLn() as described in Section 7.

4.5 Array Types and Their Values

MP supports only one-dimensional arrays. Originally, arrays in Pascal support the
following features:

• The lower bound and the upper bound of the index must be provided in an array
declaration.

• A subscript can be any integer expression, i.e., any expression of type integer.

However, for simplicity purpose, one-dimensional arrays in MP are more restrictive :

• The element type of an array can only be a primitive type such as boolean, integer,
real or string.

• An array variable itself (without the associated square brackets []) can be only used
as a actual parameter to pass to/from a function or procedure.

9

5 Expressions

An expression is a finite combination of operands and operators. An operand of an expres-
sion can be a literal, an identifier, an element of an array or a function call.

5.1 Precedence and Associativity

The rules for precedence and associativity of operators are shown as follows:
Operator Arity Notation Precedence Associativity
- not unary prefix Highest right to left
/ * div mod and binary infix left to right
+ - or binary infix left to right
= <> < <= > >= binary infix none
and then, or else binary infix Lowest left to right

The operators on the same row have the same precedence and the rows are in order of
decreasing precedence. An expression which is in ‘(‘ and ‘)’ has highest precedence.

5.2 Type Coercions

In MP, like C and Java, mixed-mode expressions whose operands have different types are
permitted.

The operands of the following operators:
+ - * / < <= > >= = <>
can have either type integer or real. If one operand is real, the compiler will implicitly
convert the other to real. Therefore, if at least one of the operands of the above binary
operators is of type real, then the operation is a floating-point operation.

The following type coercion rules for an implicit or explicit assignment are permitted:

• If the type of the LHS is real, the expression in RHS must have either the type
integer or real or a compile-time error occurs.

5.3 Index Expression

An index operator is used to reference or extract selected elements of an array. It must
take the following form:
<expression> ’[’ expression ’]’
The type of the first <expression> must be an array type. The second expression, i.e. the
one between ’[’ and ’]’, must be of integer type. The index operator returns the correspond-
ing element of the array.
For example,
foo(2)[3+x] := a[b[2]] +3;
The above assignment is valid if variables a, b and the return type of function foo are in
an array type, x is in integer type and the element type of array b is integer.

10

5.4 Invocation Expression

An invocation expression is a function call which starts with an identifier followed by “(“
and “)”. A nullable comma-separated list of expressions might be appeared between “(“ and
“)” as a list of arguments.

Like C, all arguments (including arrays) in MP are passed "by value." The called func-
tion is given its value in its parameters. Thus, the called function cannot alter the variable
in the calling function in any way.

When a function is invoked, each of its parameters is initialized with the corresponding
argument’s value passed from the caller function.

When an array variable is passed (as an argument) to/from a function/procedure, the
lower bound, upper bound and the element type of the array argument and the array
formal parameter must be the same. All members of the array argument will be copied to
the corresponding members of the array formal parameter.

The type coercion rules for assignment are applied to parameter passing where LHS’s
are formal parameters and RHS’s are arguments.

For example,

procedure f oo (a : array [1 . . 2] of real) . . .
procedure goo (x : array [1 . . 2] of real) ;

var
y : array [2 . . 3] of real ;
z : array [1 . . 2] of integer ;

begin
f oo (x) ; //CORRECT
foo (y) ; //WRONG
foo (z) ; //WRONG

end

The type coercion rules and the exception in parameter passing are also applied to return
type where LHS is the return type and RHS is the expression in the return statement.

For example,

f unc t i on foo () : r e a l ;
begin

i f (. . .) then return 2 . 3 ; //CORRECT
else return 2 ; //CORRECT

end

and,

func t i on foo (b : array [1 . . 2] o f i n t e g e r) : array [2 . . 3] o f r e a l ;

11

var
a : array [2 . . 3] o f r e a l ;

begin
i f () then return a ; //CORRECT
else return b ; //WRONG

end

5.5 Evaluation Order

MP requires the left-hand operand of a binary operator must be evaluated first before any
part of the right-hand operand is evaluated.

Similar, in a function call (called a method call in Java), the actual parameters must
be evaluated from left to right.

Every operand of an operator must be evaluated before any part of the operation is
performed. The two exceptions are the logical operators and then and or else, which are
still evaluated from left to right, but it is guaranteed that evaluation will stop as soon as
the truth and falsehood is known. This is known as the short-circuit evaluation.

6 Statements and Control Flow

MP supports these statements: assignment, if, for, while, break, continue, return,
call, compound, and with. All statements except if, for, textwhile, compound and the
with one must be followed by a semi-colon.

6.1 Assignment Statement

Like Java, the assignment statement may have many left hand sides but just one right hand
side. The assignment statement may be written as follows:

lhs1 := lhs2 := ... lhsn := <expression>
The left hand sides (lhs1,...,lhsn) can be a scalar variable or an index expression.
For example,

a := b [1 0] := foo () [3] := x := 1 ;

The <expression> is calculated first and its value is assigned to lhsn. Then the value of
lhsn is assigned to lhsn−1 and so on. The type coercion rule is applied to each assignment.

6.2 The if Statement

There are two types of if statement: if-else and if-no else. The if-else is written as follows:
if <expression> then

<statement1>

12

else
<statement2>

where <expression>, which must be of the type boolean, is first evaluated. If it is true,
<statement1> is executed. The <statement2> is otherwise executed.

The if-no else is like if-else but there is no else and <statement2>. In this type of if
statement, if the <expression> is false, the next statement will be executed.

Like C, C++ and Java, the MP language suffers from the so-called dangling-else prob-
lem. MP solve this by decreeing that an else must belong to the innermost if.

6.3 The while Statement

while <expression> do <statement>

When while statement is executed, the <expression> is evaluated first. While its value
is true, the <statement> is executed. The loop stops when the <expression> is false.

6.4 The for Statement

The for statement is written as follows:
for <identifier> := <expression1> (to|downto) <expression2> do <statement>

where <expression1> is executed first and its value is assigned to <identifier>. If the
keyword to is used and the value of the <identifier> is less than or equal to the value
of <expression2>, the <statement> is executed and then the value of <identifier> is in-
creased by one. The comparion between <identifier> and <expression2>, the execution of
<statement>, and the increase of <identifier> are repeated until the result of the compari-
son becomes false. If the keyword <downto> is used, the process happened the same except
that the relational operator is greater than or equal to and the increase of <identfier> is
replaced by the decrease.

The <identifie> must be a local integer variable.

6.5 The break Statement

This statement must appear inside a loop such as for or while. When it is executed, the
control will transfer to the statement next to the enclosed loop. This statement is written
as follows:
break ’;’

6.6 The continue Statement

This statement must appear inside a loop such as for or do while. When it is executed,
the control will jump to the end of the body of the loop. This statement is written as

13

follows:
continue ’;’

6.7 The return Statement

A return statement aims at transferring control to the caller of the function/procedure
that contains it.

A return statement with no expression must be contained within a procedure while
the return with expression must be in a function.

6.8 The compound Statement

A compound statement starts with keyword begin and ends with keyword end. Between
these two keywords, there is a nullable list of statement.

6.9 The with statement

A with statement is written in a form:
with <list of variable declaration> do <statement>

For example,

with a , b : i n t e g e r ; c : array [1 . . 2] o f r e a l ; do
d = c [a] + b ;

6.10 Call statement

A call statement starts with a <identifier>, which is a procedure name, followed by a
nullable comma-separated list of expressions enclosed by round brackets. For example,

foo (3 , a+1, m(2)) ;

7 Built-in Functions

MP has some following built-in functions:
function getInt():integer : reads and returns an integer value from the standard input
procedure putInt(i:integer): prints the value of the integer i to the standard output
procedure putIntLn(i:integer): same as putInt except that it also prints a newline
function getFloat():real : reads and returns a floating-point value from the standard input
procedure putFloat(f:real): prints the value of the real f to the standard output
procedure putFloatLn(f:real): same as putFloat except that it also prints a newline
procedure putBool(b:boolean): prints the value of the boolean b to the standard output
procedure putBoolLn(b:boolean): same as putBoolLn except that it also prints a new line

14

procedure putString(s:string): prints the value of the string to the standard output
procedure putStringLn(s:string): same as putStringLn except that it also prints a new line
procedure putLn(): prints a newline to the standard output

8 Scope Rules

Scope rules govern declarations (defining occurrences of identifiers) and their uses (i.e.,
applied occurrences of identifiers).

The scope of a declaration is the region of the program over which the declaration can
be referred to. A declaration is said to be in scope at a point in the program if its scope
includes that point.

There are three levels of scope: global, function/procedure, and block.
A global scope is the whole program which is applied to all function/procedure dec-

larations and variable declarations outside function/procedure declarations. All built-in
function/procedures are applied to this scope

A function/procedure scope is the entire corresponding function/procedure which is
applied to its parameters and variable declarations just after the parameter part.

A block scope is the statement inside the with statement. The scope is applied to the
declarations between the keywords with and do.

There are four additional rules on the scope restrictions:

1. All declarations in global scope are effective in the entire progran.

2. All declarations in local scope are effective from the place of the declaration to the
end of its scope.

3. No identifier can be defined more than once in the same scope. This implies that no
identifier represents both a global variable and a function name simultaneously.

4. Most closed nested rule: For every applied occurrence of an identifier in a block, there
must be a corresponding declaration, which is in the smallest enclosing block that
contains any declaration of that identifier.

Consider the following MP program:

1 var i : integer ;
2 function f () : integer ;
3 begin
4 re turn 200 ;
5 end
6 procedure main () ;

15

7 var
8 main : integer ;
9 begin
10 main := f () ;
11 putIntLn (main) ;
12 with
13 i : integer ;
14 main : integer ;
15 f : integer ;
16 do begin
17 main := f := i := 100 ;
18 putIntLn (i) ;
19 putIntLn (main) ;
20 putIntLn (f) ;
21 end
22 putIntLn (main) ;
23 end
24 var g : real ;

The above program will be compiled and print the following results:
200
100
100
100
200
In this program, there are three scope levels:
Declaration Level Scope
putIntLn (built-in) 1 Entire program
i (line 1) 1 Entire program
f (line 2) 1 Entire program
main (line 6) 1 Entire program
main (line 8) 2 line 9-12 and line 22-23
i (line 13) 3 line 13-21
main (line 14) 3 line 13-21
f (line 15) 3 line 13-21
g (line 24) 1 Entire program
Note that the variable g declared in line 24 has the global scope although it is declared

at the end of the program.
The variable main declared in line 8 is said to hide the procedure declaration main in

line 6. The variable main declared in line 14 hides the variable declaration main in line
8. The variable i declared in line 13 hides the global variable i in line 1. The variable f

16

declared in line 15 hides the function declaration f in line 2.
The scopes of the declarations f in line 2, i in line 1 and main in line 6 are not contiguous.

Such gaps are known as scope holes, where the corresponding declarations are hidden or
invisible. As a matter of style, it is advised not to introduce variables that conceal names
in an outer scope. This is the major reason why Java disallows a variable declaration from
hiding another variable declaration of the same name in an outer scope. Therefore, the MP
program above is a bad programming style.

9 The main function

A special procedure, i.e. main procedure, is an entry of a MP program where the program
starts:

procedure main () ; // no parameters are a l l owed
begin

. . .
end

10 Change Log

• Different from version 1.1

– Add a sentence "The variable declaration may be ignored." in Section 2.2

– Fix the reference to Section 6.8 in Section 2.2

– Add a sentence "These keywords are also case-insensitive." in the description
of Keywords in Section 3.3.

– Fix the example in Section 9

17

