
Analysis of a Code-Based Countermeasure
Against Side-Channel and Fault Attacks

Guillaume Barbu and Alberto Battistello(B)

Oberthur Technologies, Security Group, Cité Photonique, Batiment ELNATH,
1er étage 1, allée des Lumières, 33600 Pessac, France

{g.barbu,a.battistello}@oberthur.com

Abstract. The design of robust countermeasures against Side-Channel
Analysis or Fault Attacks is always a challenging task. At WISTP’14, a
single countermeasure designed to thwart in the same effort both kinds
of attacks was presented. This countermeasure is based on coding theory
and consists in a specific encoding of the manipulated data acting in the
same time as a random masking and an error detector. In this paper, we
prove that this countermeasure does not meet the ambitious objectives
claimed by its authors. Indeed, we exhibit a bias in the distribution of
the masked values that can be exploited to retrieve the sensitive data
from the observed side-channel leakage. Going further, we show that this
bias is inherent to the nature of the encoding and that randomizing the
code itself can be useful to reduce the bias but cannot completely fix the
scheme.

Keywords: Side-channel analysis · Fault attacks · Coding theory ·
Countermeasure · AES

1 Introduction

Since the introduction of side-channel analysis and fault attacks against cryp-
tographic implementations in the late 90s, the scientific community, both acad-
emic and industrial, has engaged a great effort in designing robust and efficient
countermeasures to counteract these attacks. Usually, each countermeasure is
designed to tackle only one of these two kinds of attacks. For instance, boolean
masking [1] of key-dependent data is meant to avoid information leakage through
a side-channel medium. On the other hand, time-redundant or data-redundant
computations are implemented to detect fault injections during the execution of
the algorithm.

Following the idea first introduced in [2] the authors of [3] proposed at
WISTP’14 a new countermeasure named ODSM (for Orthogonal Direct Sum
Masking) based on coding theory and showed how it could be applied to protect
an AES implementation. Besides the application of code-based techniques, one
of the novelty of ODSM is that the same countermeasure aims at defeating both
side-channel analysis (SCA) and fault attacks (FA) at once.

c© IFIP International Federation for Information Processing 2016
Published by Springer International Publishing Switzerland 2016. All Rights Reserved
S. Foresti and J. Lopez (Eds.): WISTP 2016, LNCS 9895, pp. 153–168, 2016.
DOI: 10.1007/978-3-319-45931-8 10

154 G. Barbu and A. Battistello

By introducing a random mask in the encoding of a sensitive data, ODSM
aims at decorrelating the side-channel leakage from the value of the sensitive
variable. At the same time, by taking advantage of the error detection capability
of the code, the scheme also allows to control the integrity of the manipulated
data and eventually to detect induced faults.

Although the proposed countermeasure is pretty elegant from a theoretic
point of view and that a proof of security is presented in the original article,
we demonstrate in the following that such a proposal fails at ensuring resistance
against SCA.

This article is organized as follows. Section 2 recalls some basic concepts of
coding theory and defines some notions regarding side-channel attacks. Section 3
introduces the ODSM countermeasure described in [3] and its application to the
AES. Section 4 gives the result of our analysis of the masking scheme with regard
to SCA. In Section 5 we provide further evidence of the insecurity of the scheme
by mounting a template attack against a real device. Section 6 proposes some
improvements of the countermeasure to achieve a better resistance against SCA
while preserving the FA resistance. Finally Sect. 7 presents concluding remarks
and future works.

2 Preliminaries

This section gives the elementary notions required to both apprehend the poten-
tial of an attacker and follow the masking scheme design of [3].

2.1 Passive Side-Channel Analysis

Previously used by several intelligence agencies, but formally introduced to the
academic community by Kocher et al. only in 1996, Side-Channel Attacks have
revolutionized the world of cryptography [4,5]. In particular it is now common
knowledge that the observation of physical interactions between a hardware exe-
cuting a cryptographic algorithm and the surrounding environment may allow
retrieving values of internally manipulated sensitive variables. Simple Power
Analysis, consists in retrieving a secret value by simple observation of the power
consumption of the device during a process depending on this secret value. As
an example, on naive RSA implementations, the execution time may leak critical
information on the value of secret key bits.

More complex attacks like Differential Power Analysis (DPA) make use of
the statistical dependency between the observed interactions and the sensi-
tive values. Concretely, in order to retrieve the secret key of an embedded
AES, an attacker asks the ciphering of several known messages and observes
the power consumption of the processor during the execution of the algorithm.
After collecting enough observations, by correlating the messages and the power
consumptions the attacker can retrieve the secret AES key on unprotected
implementations.

Analysis of a Code-Based Countermeasure 155

Finally, Higher-Order Side-Channel Analysis (HO-SCA) consists in the
higher order statistics analysis of several leakages in order to retrieve the cor-
responding key. SPA, DPA and all their variants have been used to break the
security of many algorithms [6,7], the obvious effect was the design of efficient
and effective countermeasures. While many ideas have been found [1,8,9], it
remains hard and very costly to provide efficient countermeasures that guaran-
tee security versus high-order attacks.

In the following we present the countermeasure of [3] which aims at thwarting
both faults and side-channel analysis at once. The countermeasure makes use of
results from coding theory which we recall in the next section.

2.2 Notions of Coding Theory

The following gives the few definitions and notations necessary to ease the read-
ing and understanding of the masking scheme presented in Sect. 3.

Definition 1 (Binary Linear Code). A binary linear code C of length n and
dimension k is a linear subspace of dimension k of the vector space F

n
2 .

A word of the code C is then a vector w such that w ∈ C.

Definition 2 (Supplement of vector space). The supplement of the vector
space C in F

n
2 is the set of vectors D such that C ⊕ D = F

n
2 , where ⊕ denotes the

direct sum of two vector spaces.

An element z in F
n
2 can thus be decomposed uniquely as the sum of two elements

c and d, respectively in C and D:

z = c ⊕ d (1)

Definition 3 (Generating matrix). The vectors of the basis of a linear code
C forms the generating matrix of C.

In the following we will denote respectively by G and H the generating matrices
of C and D. Then every element of C (resp. D) can be written uniquely as
xG (resp. yH) for some x (resp. y) in F

dim(C)
2 (resp. Fdim(D)

2) and (1) can be
rewritten as:

z = xG ⊕ yH (2)

Definition 4 (Dual code). The dual code of C is the linear code C⊥ = {w ∈
F
n
2 |∀c ∈ C, c · w = 0}.

Definition 5 (Parity matrix). The parity matrix of C is the generating matrix
of C⊥.

In the case where C⊥ = D, it comes straightforwardly that the dimension of
D is n − k if the dimension of C is k. Also the parity matrix of C is H.

Finally, we recall the proposition from [3] stating a necessary and sufficient
condition to have C and C⊥ supplementary in F

n
2 :

156 G. Barbu and A. Battistello

Proposition 1. Without loss of generality (a permutation of coordinates might
be necessary), we can assume that the generating matrix of C is systematic,
and thus takes the form [Ik‖M], where Ik is the k × k identity matrix. The
supplementary D of C is equal to C⊥ iff the matrix Ik ⊕ MMT is invertible.

This proposition is necessary for the construction of the masking scheme, as will
be explained in the following section.

3 Orthogonal Direct Sum Masking
and Its Application to AES

In this section, we introduce the Orthogonal Direct Sum Masking (ODSM) coun-
termeasure as it was defined in [3]. Then we detail how the authors apply it in
the case of an AES implementation.

3.1 Related Works

In [2], Bringer et al. introduced a masking scheme based on a specific encoding of
the sensitive data and the corresponding mask. Following this scheme, the mask-
ing of sensitive data x with the random quantity m is obtained by computing
z = xF ⊕ mG, where:

– G is a generator matrix of the binary linear code C of length n, dimension k
and minimum distance d

– F is a k × n matrix with k rows in {0, 1}n all linearly independent of each
other and not belonging to the binary linear code C.

Recovering x from the encoded word z can be achieved by multiplying z by the
parity matrix of C: zHT = xFHT ⊕mGHT = xFHT . The authors then describe
an application of this scheme to the AES.

However, as pointed out by Moradi in [10] certain limitations exist when
choosing the matrix F in order to retrieve the sensitive value x from xFHT .
Namely, one should ensure that the application x �→ xKHT is bijective, ie.
(KHT)−1 shall exist.

In addition, the author stresses that the application of the scheme to the
AES requires a mask correction at each round of the cipher algorithm.

Finally, the work of Azzi et al. in [11] adapts the ODSM scheme to enhance
the fault detection capability through non-linear functions. However this comes
at the cost of additional computations with regards to the side-channel resistance
property.

3.2 Orthogonal Direct Sum Masking

As previously stated, the construction of the ODSM lies on the fact that for the
considered code C, we have C⊥ ⊕C = F

n
2 . Indeed, in this case we have G ·HT = 0

Analysis of a Code-Based Countermeasure 157

and H is the parity matrix of C. Consequently, in (2) we can recover x and y
from z:

x = zGT (GGT)−1 (3)
y = zHT (HHT)−1 (4)

The principle of the masking scheme consists in representing a sensitive k-bit
data x by a n-bit data z according to (2), where y is an (n−k)-bit random mask.

The sensitive value x can be easily recovered from z by using (3). In addition,
the integrity of the manipulated data z can be verified as often as required by
checking the integrity of the mask y thanks to (4), which provides the security
against fault injection.

Based on this principle, the authors suggest to perform computation within
the encoded/masked representation. Actually they show how applying opera-
tions on the sensitive value x can be achieved by applying associated operations
on the encoded value z. To reach this goal, they split the different operations
required into three categories and show how to proceed in each one:

2-operand Operations. In this case, they focus their attention on the xor oper-
ation. Actually this case is quite straightforward since it is only necessary to
encode the operand and perform the xor. For instance, supposing we need to xor
a round key ki to x, we would have to compute z′ = z ⊕ kiG. And we can check
that x ⊕ ki is computed within the masking scheme:

z′ = z ⊕ kiG = (x ⊕ ki)G ⊕ yH (5)

Binary Linear Operations. Let L be the matrix corresponding to the desired
binary linear operation, then they suggest to construct a so-called masked binary
linear operation whose corresponding matrix L′ is constructed as follows:

L′ = GT (GGT)−1LG ⊕ HT (HHT)−1H (6)

And we can check again that xL is correctly computed within the masking
scheme when zL′ is computed.

Nonlinear Transformations. In this case, a masked version S′ of the transfor-
mation S can be computed:

∀z ∈ F
n
2 , S′(z) = S(zGT (GGT)−1)G ⊕ zHT (HHT)−1H (7)

S(x) is correctly obtained within the masking scheme when computing S′(z).
Following these guidelines, the authors claim that various computations can

be carried out within the coset C⊕d of the linear code C, with d a mask randomly
chosen in D = C⊥.

158 G. Barbu and A. Battistello

3.3 ODSM in Practice: Application to the AES

The ODSM can be applied, in particular, to an implementation of the AES.
For that purpose, the authors consider the 128-bit version of the cipher and
propose to use the binary linear code of parameters [16,8,5] (meaning n = 16
and k = 8) which has a supplementary dual in F

16
2 .1 Indeed, once the initial state

has been encoded, the different operations of the AES can be straightforwardly
constructed as previously described.

AddRoundKey. The round key bytes only need to be encoded before being added
to the encoded state: z = z ⊕ kG.

ShiftRows. The ShiftRows operation remains unchanged. It only processes 16-bit
words instead of 8-bit.

MixColumns. MixColumns can be computed by using the linear application
generated from the matrix of the xtime application by (6).

SubBytes. For the SubBytes operation, two approaches were proposed in [3].
The first one is a look-up table approach which requires to precompute the 16-
bit output S′(z) for all z as per (7). We note that this method implies a quite
heavy memory overhead as a 128 kB-table needs to be stored (216 16-bit values).
The second approach actually performs the SubBytes outside of the code and
thus involves the recomputation of a new masked S′ transformation for each
encryption to ensure a proper masking. It is then necessary to compute for all
x in F

k
2 :

S′
recomp(x) = S(x ⊕ x′) ⊕ x′′, with x′ and x′′ randomly chosen in F

k
2 (8)

The SubBytes is then performed as described in Algorithm 1. Our analysis is
actually independent on the choice of either of the two approaches.

Algorithm 1. Masked SubBytes transformation on z = xG ⊕ yH

z = z ⊕ x′G;
x = zGT (GGT)−1;
x = S′

recomp(x);
z′ = xG ⊕ yH;
z′ = z′ ⊕ x′′G;
return z′;

1 For the generating and parity matrices G and H and for L and L′ corresponding to
the standard and masked versions of the xtime linear application of this code, we
refer the reader to [3].

Analysis of a Code-Based Countermeasure 159

4 Side-Channel Analysis of the Masking Scheme

In this section we provide a deep analysis of the side-channel resistance of the
masking scheme suggested in [3]. We demonstrate that it is possible to mount a
first-order side-channel attack versus the countermeasure meant to be resistant
to high-order attacks.

4.1 Striking Differences

The authors of [3] proved the security of the ODSM scheme versus d-th order
side-channel analysis, where d + 1 is the distance of the dual code C⊥. Thus,
with respect to the parameters of [3], the code is proved to be secure versus
4-th order attacks, 5 being the minimal distance of the dual code. The proof
of security relies on the observation that the expected value of the leakage is
independent on the sensitive value x (up to the 4th order statistical moments),
after the encoding xG ⊕ yH with mask y.

(a) Boolean masking pdf. (b) ODSM masking pdf.

Fig. 1. Pdf of the Hamming weights of the Boolean masking scheme vs ODSM masking
scheme.

Figure 7 shows the expected probability density functions (pdf) of the Ham-
ming weight (HW) of masked values for both boolean masking and the ODSM
scheme. The results are obtained by collecting the distribution of the HW of
z = x ⊕ y for Boolean masking (Fig. 1a), and z = xG ⊕ yH for ODSM, where x
is fixed, and y takes all values in F

k
2 (Fig. 1b).

As expected, in the boolean masking scheme the distributions are indepen-
dent on the sensitive values, such that all distributions are superposed and only
one curve is visible. On the other hand, in the ODSM scheme the distributions
depend on the sensitive values and we can distinguish 22 different distributions,
each one related to a particular set of sensitive values. In particular the dis-
tributions of the sensitive value x = 0 and x = 46 show striking differences.

160 G. Barbu and A. Battistello

We remark that an encoded value with HW of 0 can only be produced by encod-
ing the sensitive value x = 0 with a mask y = 0. Similarly a HW of 16 can only
be obtained when the encoded sensitive value equals 46. From Fig. 1b we thus
observe that the extremum HW value 0 (resp. 16) is only present on the distri-
bution of x = 0 (resp. x = 46). We further remark that for a sensitive encoded
value equal to x = 0 (resp. x = 46), the HW of the encoded value can never be
4,3,2 or 1 (resp. 12, 13, 14, 15).

We show in the following that it is possible to exploit such striking differences
by using 1st-order statistics in order to retrieve the sensitive values.

4.2 Means-only Attack on the ODSM Distribution

We have noticed that the difference between the leakage distributions of the
ODSM masking scheme and that of classical boolean masking scheme may lead
to weaknesses that have not been taken into account in [3]. In this section we
exhibit an actual attack that exploits these very differences to retrieve the key
value by using only 1st-order statistics on carefully selected leakages.

The basic idea of our attack comes by observing the distributions of Fig. 1b.
The distributions present a left skewness (i.e.: asymmetry about the mean) for
x = 0, and a right skewness when x = 46. While such skewness do not bias the
average of all values, it does when the average is computed only on the leakages
below a given Hamming weight. In practice we exploit the fact that the skewness
preserves the mean only when computed on all values, but produces detectable
biases on subsets of them.

Observing Fig. 1b one notice that the mean of all leakage values below 9 and
those above 9 are not equals for all the 22 classes, in particular z = 0G ⊕ yH
and z = 46G ⊕ yH should present remarkable differences due to the skewness.
We thus argue that it provides a distinguisher for the values 0 and 46.

A more careful partitioning leads to even better and more accurate results.
We divide the curves into two sets:

– a first set containing leakages with Hamming weight between 4 and 11,
– a second set for the remaining leakages.

The absolute difference of the two sets on theoretical distributions is depicted
in Fig. 2, for each message, for all masks.

We further remark that this choice for the two sets allows to retrieve only
the value corresponding to 46, as the skewness on 0 is not captured by such
partitioning.

4.3 Simulations

In this section we show the results of the application of our attack described
in Sect. 4.2 to simulated leakages of the ODSM scheme. For our simulations
we computed the value z = Sbox(m ⊕ ki)G ⊕ yH, where y is in F2k freshly
regenerated at each execution. For each value z we computed the corresponding

Analysis of a Code-Based Countermeasure 161

Fig. 2. Difference of the number of leakages between 4 and 11 and the rest.

leakage � = HW (z)+B, where B is a Gaussian noise with standard deviation σ.
In order to evaluate the success rate of our attack with different noise levels,
we have performed different campaigns where σ varies from 0 to 2. For each
campaign we have simulated the leakage of 10, 000 computations for each byte
value.

We start our attack by computing the minimum and the maximum values
among all leakages. Then define the range s of all leakages as the difference
between the maximum and minimum values, divided by 16. We then use this
value to split the leakages into the two sets, the first containing those leakages
whose value falls between s ∗ 4 and s ∗ 11 and the second with the remaining

Fig. 3. Result of the attack with σ = 0 for 10, 000 leakages. (Color figure online)

Fig. 4. Result of the attack with σ = 1 for 10, 000 leakages. (Color figure online)

162 G. Barbu and A. Battistello

Fig. 5. Result of the attack with σ = 2 for 10, 000 leakages. (Color figure online)

leakages. We finally analyze the absolute difference of the two sets for each
message. As observed in Fig. 2, only the message m which gives Sbox(m⊕ki) = 46
should produce a peak on the difference of means. Thus the peak found for a
particular message m reveals Sbox(m ⊕ ki) = 46, so the attacker can retrieve
the secret key byte ki = Sbox(46)−1 ⊕ m.

The key byte value used for our simulations is 43, thus we expect to obtain
peaks for the message of value 233 = Sbox(46)−1 ⊕ 43. Figures 3, 4, 5 show
the results obtained by using 10, 000 noisy executions for each message m. The
left part corresponds to the value of the absolute differences for each message
(thus for each of the 256 values we depict the value of the difference of means).
The right part depicts the maximum value of the absolute difference for each

Algorithm 2. Means Attack on AES-128 ODSM scheme.

// Find min and max values
l max = maxm∈F

k
2 ,0≤i<�curves(leakage(m, i));

l min = minm∈F
k
2 ,0≤i<�curves(leakage(m, i));

// Derive HW boundaries
leakage size=(l max - l min) / 16;
set1 limit = leakage size × 4;
set2 limit = leakage size × 11;
// Separate curves
for m from 0 to 255 do

for i from 0 to 10, 000 do
if set1 limit ≤ leakage(m, i) ≤ set2 limit then

set2(m)+= leakage(m, i);
else

set1(m)+= leakage(m, i);
end

end

end
// Select best candidate based on difference of means
best message = maxm(abs(set2(m) − set1(m))/10, 000);
return k = Sbox(46)−1⊕ best message

Analysis of a Code-Based Countermeasure 163

key, sampled after each 100 curves. For right-side figures, the correct message
hypothesis (233) is depicted in red.

We present the pseudocode of our attack in Algorithm2.
We notice that our attack needs a huge number of curves to retrieve the

key value even for relatively low noise simulations. For example, for σ = 1, we
need about 384, 000 curves (1500 * 256) in order to retrieve the correct key
hypothesis. The need for a considerable number of curves can be interpreted as
a consequence of the masked values living in F

2
216, and thus far more samples

are required to obtain a representative sample of the underlying distribution.
However, we remark that as soon as there is no noise, very few hundred traces
are necessary to retrieve the correct key.

We want to stress the fact that despite the security proof given in [3], our
attack shows that it is possible to retrieve the secret values protected with the
ODSM scheme by using a first-order statistic on carefully selected leakages.

We finally insist on the fact that despite our attack applies here to the ODSM
scheme with the parameters of [3], most choices of the code would succumb to
such an attack.

5 Maximum Likelihood Attack

In this section we present a further attack to the countermeasure. As we have
remarked in Section 4, the leakage corresponding to an HW of 0 can only be
produced if both the sensitive value x and the mask y equal to 0. We thus
suggest that it is possible to use a maximum likelihood (template) attack to
distinguish the curves manipulating a variable z whose HW equals 0 from the
others.

Template attacks are generally divided into two phases. In the first phase
(profiling) the sensitive data is known to the attacker, for example she may
employ an open sample, while in the second phase (attack) she tries to recover
some unknown sensitive data by using new observations and the information
collected during the profiling phase.

More formally, let us assume that the attacker retrieves a set of observations
of the random variable z, where each observation has the form � = ϕ(z) + B,
where ϕ is an unknown function and B a Gaussian noise with standard devia-
tion σ. She can estimate the expectation μ0 and covariance Σ0 of � when z = 0
and μ1, Σ1 when z 	= 0.

For a Gaussian distribution of expectation μ and covariance matrix Σ, the
probability density function (pdf) of � ∈ R

t is defined as:

f(�) =
1

√
(2π)t det(Σ)

exp
(

−1
2
(� − μ)′ · Σ−1 · (� − μ)

)
. (9)

So by evaluating fl|z=0 and fl|z �=0 she obtains the likelihood that z = 0 was the
manipulated value.

Experiments. We have tested the template attack against a real device and we
provide in this section the results of our experiments.

164 G. Barbu and A. Battistello

The target of our experiment is an ATMega328P device. We have by-passed
the decoupling capacitors of the device which may filter out useful signals. We
have then connected the oscilloscope to the device and measured the difference
of potential at the ends of a resistor placed between the ground pin of the
ATMega328P and the ground of the device. We have finally pre-filtered the input
of the oscilloscope at 20 Mhz and sampled the data at 100 Mhz. Our settings allow
to obtain small curves while keeping as much information as possible.

We have then collected 250, 000 leakages where we controlled the value of
the mask. A random bit was used to select if z = 0 or z 	= 0 was used by
the implementation. Knowledge of the random bit allowed us to split the set of
acquisition between those with z = 0 and those with z 	= 0 to build templates. We
also used this knowledge to verify the confidence of the likelihood distinguisher.

We show in Fig. 6 the differences between the expectation of the two sets.
It is possible to distinguish important differences between them, in particular
around points 250 and 300.

Fig. 6. Expectation and variance of real leakages when z = 0 and z �= 0.

During attack phase we have acquired 250, 000 more curves and tried to
separate them into two sets. The knowledge of the value of the random bit
allowed us to verify the success rate of the distinguisher. We have used 80 points
to estimate the pdfs of Eq. 9. These points were chosen as those providing the
highest variance between the expectations of the two sets. In this settings we
obtained 99.84 % of correct detection rate.

Our attack thus demonstrates that even for real devices it is possible to break
the countermeasure by using only first and second order statistical attacks.

6 Possible Fix-Ups and Residual Issues

As shown in Sects. 4 and 5 the differences between the distributions of the Ham-
ming weight of masked values for different inputs can be exploited by an attacker
to recover manipulated secrets. In this section we propose a method to improve
the resistance of the scheme to the attacks that we have presented in this work
while preserving the fault detection capability.

Analysis of a Code-Based Countermeasure 165

6.1 Conservative Shuffling

In this section we suggest how to add algorithmic noise to the ODSM scheme
in order to defeat the attack introduced previously. We show that our counter-
measure preserves the fault detection capability and the possibility to perform
computation within the masking scheme.

Our method relies on shuffling the generating matrices G and H of the code C
and D, losing the systematic form of C’s generating matrix. Successively applying
permutations on the columns of these matrices allows to randomize the mappings
between elements of Fk

2 and C (resp. Fn−k
2 and D) by randomizing the codewords

of C (resp. D) itself. We can note that the properties of the associated codes
remain unchanged as we only reorder the columns of the generating matrices.
In particular the duality between C and D is preserved since we apply the same
permutation on both matrices G and H. This can be seen by recalling that any
permutation of n columns of a k ×n matrix can be realized by multiplying from
the right this matrix by a permutation matrix P . Further recalling that P is
orthogonal (PPT = I), it comes straightforwardly that:

GP (HP)T = GP (PTHT) = G(PPT)HT = GHT = 0 (10)

Such a process can be easily achieved at the cost of up to 12 bits of random
used to select two columns to permute and an amount of circular shift. For
the XOR operation, the permutation can be straightforwardly applied to the
encoding of the operand: z′ = z⊕kiGP . For the linear operation, the permutation
needs to be reflected on the L′ matrix of (6):

L′′ = (GP)T (GP (GP)T)−1LGP ⊕ (HP)T (HP (HP)T)−1HP (11)
= PT (GT (GGT)−1LG)P ⊕ PT (HT (HHT)−1H)P (12)
= PT (GT (GGT)−1LG ⊕ HT (HHT)−1H)P (13)
= PTL′P (14)

For the non-linear operation, only the table recomputation approach seems to
be achievable with reasonable overhead as the look-up table approach would
require to recompute the S′ table for all z. Algorithm 1 should then be adapted
as exposed in Algorithm 3.

Algorithm 3. Masked SubBytes transformation on z = xGP ⊕ yHP

z = z ⊕ x′GP ;
x = z(GP)T (GGT)−1;
x = S′

recomp(x);
z′ = xGP ⊕ yHP ;
z′ = z′ ⊕ x′′GP ;
return z′;

166 G. Barbu and A. Battistello

(a) Original ODSM pdf. (b) Shuffled ODSM pdf.

Fig. 7. Hamming weights’ pdf of encoded values for ODSM Vs Shuffled ODSM.

Fig. 8. Result of the attack with σ = 0 and σ = 1 for 10, 000 leakages.

Using such shuffled matrices for each encryption, we obtain the distribution
depicted in Fig. 7b. Figure 7a is recalled for comparison purpose.

We can see that the distribution gives a much less explicit hint on the manipu-
lated value compared to the original one. However we can still observe differences
in the distributions for each value, supporting a residual weakness. Nevertheless,
the attack described in Sect. 4 now fails even with a low noise level as can be
seen in Fig. 8.

6.2 Residual Issue: Encoding 0

From the observation of Figs. 7a and b we can see that one potential weakness
of the original scheme is not taken care of by our method. Indeed, we observe
that the value xG ⊕ yH = 0x0000 can only be obtained when x = 0x00.

By assuming that the attacker can detect the manipulation of the value
0x0000 then she directly knows the corresponding value 0x00 of the internal AES
state. Such a weakness is not present in traditional boolean masking, where all
masked values can be produced by all secret values.

Such an attack may not be merely theoretical since the hypothesis of retriev-
ing the Hamming weight of internal values of more than one byte by SPA has

Analysis of a Code-Based Countermeasure 167

been exploited in recent publications [12,13] in order to retrieve the operands of
a 128-bit scalar multiplication.

We further remark that a similar SPA weakness would affect the ODSM
scheme for any choice of code. Indeed, since the codes C and D are complemen-
tary duals and from the definition of C and D we know that:

∀ z ∈ F
n
2 , ∃! (x, y) ∈ F

k
2 × F

n−k
2 such that z = xG ⊕ yH

This holds in particular when z = 0, which is thus equivalent to xG = yH and to
x = y = 0. Consequently even when randomizing G and H, we can only observe
a value of null Hamming weight when the sensitive value x and the mask y are
null. Unfortunately, as we have shown in Sect. 5 such weakness may be exploited
by using template attacks. We can nevertheless stress that in case the attacker
cannot control the value of the mask she may not be able to build the templates
and consequently the attack should not work.

7 Conclusion

The definition of new countermeasures tackling in the same effort side-channel
analysis and fault attacks is definitely a challenging task. The ODSM scheme
succeeds in providing both a way to detect errors and ensuring the independency
of the mean and the variance of the Hamming weight of masked data. However
in this work we demonstrate that the distributions of Hamming weights of the
ODSM encoded data are actually dependent on the sensitive values being manip-
ulated, which renders the scheme helpless against a side-channel attack consid-
ering only 1st-order statistical moment of the observed leakage. Furthermore we
have shown that some measures can be taken in order to reduce the leakage
exposed when observing the Hamming weight distributions for a given sensi-
tive value, although it turns out that the scheme cannot be made totally SCA-
resistant. Still, countermeasures based on coding theory appear as promising
candidates to improve the resistance of cryptographic implementations against
both side-channel and fault attacks. In particular, the definition of methods
allowing to perform the complete execution of an algorithm under the protec-
tion of the code is an interesting line of research for future works.

References

1. Coron, J.-S., Goubin, L.: On boolean and arithmetic masking against differential
power analysis. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp.
231–237. Springer, Heidelberg (2000)

2. Bringer, J., Chabanne, H., Le, T.H.: Protecting aes against side-channel analysis
using wire-tap codes. J. Cryptographic Eng. 2, 129–141 (2012)

3. Bringer, J., Carlet, C., Chabanne, H., Guilley, S., Maghrebi, H.: Orthogonal direct
sum masking. In: Naccache, D., Sauveron, D. (eds.) WISTP 2014. LNCS, vol. 8501,
pp. 40–56. Springer, Heidelberg (2014)

168 G. Barbu and A. Battistello

4. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

5. Kocher, P., Jaffe, J., Jun, B.: Introduction to differential power analysis and related
attacks. Technical report, Cryptography Research Inc. (1998)

6. Messerges, T.: Poweranalysis attacks and countermeasures for cryptographic algo-
rithms. Ph.D. thesis, University of Illinois (2000)

7. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Power analysis attacks of modular
exponentiation in smartcards. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS,
vol. 1717, pp. 144–157. Springer, Heidelberg (1999)

8. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999)

9. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010)

10. Moradi, A.: Wire-tap codes as side-channel countermeasure - an FPGA-based
experiment. In: Meier, W., Mukhopadhyay, D. (eds.) INDOCRYPT 2014. LNCS,
vol. 8885, pp. 341–359. Springer, Heidelberg (2014)

11. Azzi, S., Barras, B., Christofi, M., Vigilant, D.: Using linear codes as a fault coun-
termeasure for nonlinear operations: application to AES and formal verification.
In: PROOFS: Security Proofs for Embedded Systems (2015)

12. Beläıd, S., Fouque, P.-A., Gérard, B.: Side-channel analysis of multiplications in
GF(2128). In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol.
8874, pp. 306–325. Springer, Heidelberg (2014)

13. Belad, S., Coron, J.S., Fouque, P.A., Grard, B., Kammerer, J.G., Prouff, E.:
Improved side-channel analysis of finite-field multiplication. Cryptology ePrint
Archive, Report 2015/542 (2015). http://eprint.iacr.org/

http://eprint.iacr.org/

	Analysis of a Code-Based Countermeasure Against Side-Channel and Fault Attacks
	1 Introduction
	2 Preliminaries
	2.1 Passive Side-Channel Analysis
	2.2 Notions of Coding Theory

	3 Orthogonal Direct Sum Masking and Its Application to AES
	3.1 Related Works
	3.2 Orthogonal Direct Sum Masking
	3.3 ODSM in Practice: Application to the AES

	4 Side-Channel Analysis of the Masking Scheme
	4.1 Striking Differences
	4.2 Means-only Attack on the ODSM Distribution
	4.3 Simulations

	5 Maximum Likelihood Attack
	6 Possible Fix-Ups and Residual Issues
	6.1 Conservative Shuffling
	6.2 Residual Issue: Encoding 0

	7 Conclusion
	References

