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Abstract. Memory corruption vulnerabilities are still a severe threat
for software systems. To thwart the exploitation of such vulnerabilities,
many different kinds of defenses have been proposed in the past. Most
prominently, Control-Flow Integrity (CFI) has received a lot of attention
recently. Several proposals were published that apply coarse-grained poli-
cies with a low performance overhead. However, their security remains
questionable as recent attacks have shown.

To ease the assessment of a given CFI implementation, we intro-
duce a framework to discover code gadgets for code-reuse attacks
that conform to coarse-grained CFI policies. For this purpose, binary
code is extracted and transformed to a symbolic representation in an
architecture-independent manner. Additionally, code gadgets are veri-
fied to provide the needed functionality for a security researcher. We
show that our framework finds more CFI-compatible gadgets compared
to other code gadget discovery tools. Furthermore, we demonstrate that
code gadgets needed to bypass CFI solutions on the ARM architecture
can be discovered by our framework as well.

1 Introduction

Memory corruption vulnerabilities have threatened software systems for decades.
The deployment of various defense mechanisms, such as data execution preven-
tion (DEP) [15], stack smashing protection (SSP) [10], and address space layout
randomization (ASLR) [30] have raised the bar for reliable memory corrup-
tion exploitation significantly. Nevertheless, a dedicated attacker is still able
to achieve code execution [24,31]. Information leaks are utilized to counter
ASLR and reveal the layout of the address space, or to harvest code to build a
payload just-in-time [31,41]. To circumvent DEP, attackers have added code-
reuse attacks to their repertoire, such as return-oriented programming (ROP)
[5,25,37], jump-oriented programming (JOP) [3,8,13], and call-oriented program-
ming (COP) [7]. Code-reuse attacks do not inject new code but chain together
small chunks of existing code, called gadgets, to achieve arbitrary code execution.

In response to this success, the defensive research was driven to find
protection methods against code-reuse attacks. Some results of this research
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are kBouncer [29], ROPecker [9], EMET [17] including ROPGuard [18],
BinCFI [45], and CCFIR [44]. These defenses incorporate two main ideas. The
first is to enforce control-flow integrity (CFI) [1,2]. With perfect CFI, the control-
flow can neither be hijacked by code-injection nor by code-reuse [20]. However,
the overhead of perfect CFI is too high to be practical. Therefore, the pro-
posed defense methods try to strike a balance between security and tolerable
overhead. The second idea is to detect code-reuse attacks by known charac-
teristics of an attack like a certain amount of gadgets chained together. All of
those schemes defend attacks on the x86/x86-64 architecture. For other archi-
tectures the research is lacking behind [12,32]. Several generic attack vectors
have been published by the offensive side to highlight the limitations of the
proposed defense methods. Although single implementations can be bypassed
with common code-reuse attacks by exploiting a vulnerability in the imple-
mentation [4,11], generic circumventions rely on longer and more complex gad-
gets [7,14,20,21,35] or complete functions [34]. Since the gadgets loose their
simplicity by becoming longer, it also becomes harder to find specific gadgets
and chain them together. To the best of our knowledge there is no gadget dis-
covery framework available to search for CFI resistant gadgets. To be able to
assess a CFI solution, it is necessary to discover code gadgets which could exe-
cute within the boundaries of the solution’s CFI policies or detection heuristics.
We provide a framework which is able to discover CFI resistant code gadgets
or complete functions across different architectures, an increasingly important
property as CFI starts to evolve on non-x86 systems as well. Notably, no search
for CFI resistant code gadgets has been performed for ARM, while defenses
for this architecture have already been developed [12,32]. The information pro-
vided by our framework helps security researchers to quickly prototype exploit
examples to test a given CFI solution.

We opted to use an intermediate language (IL) for the analysis of extracted
code to support different architectures without the effort to adjust the algorithms
to new architectures. Because of the high architecture coverage,VEX is our choice
for the IL. VEX is part of Valgrind, an instrumentation framework intended for
dynamic use [42]. We harness VEX in static analysis manner [38,40] and utilize
the SMT solver Z3 [27] to translate code gadgets into a symbolic representation
to enable symbolic execution and path constraint analysis. Our evaluations shows
that our framework discovers 1.2 to 154.3 times more CFI-resistant gadgets across
different architectures and operating systems than other gadget discovery tools.
Additionally, we show that CFI-resistant gadgets are available in binary code for
the ARM architecture as well, which should be taken into account by future CFI
solutions.

In summary, we make the following contributions:

– We develop a framework to discover CFI and heuristic-check resistant gadgets
in an architecture-independent, offline search.

– Our framework delivers semantic definitions of extracted code gadgets and
classifies them based on these definitions for convenient search and utilization
by a security researcher.
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– To the best of our knowledge, we are the first to provide a code gadget discov-
ery framework which reveals CFI resistant gadgets across different processor
architectures, and show that CFI-compatible gadgets are also prevalent on the
ARM architecture.

2 Technical Background

We begin by briefly describing code-reuse attacks, CFI approaches, and heuris-
tic techniques proposed by recent research to defend against runtime attacks.
It is important to understand the concept of CFI and the heuristic checks, as
we focus on gadgets that are resistant against these approaches. Architecture
independence is another issue that is tackled by our framework.

2.1 Code-Reuse Attacks

The introduction of data execution prevention (DEP) [15] on modern operating
systems provided a useful protection against the injection of new code. To bypass
DEP, attackers often resort to reusing code already provided by the vulnerable
executable itself (or one of its libraries). Vulnerabilities suitable for code-reuse
attacks are memory corruptions such as stack, heap or integer overflows, or
a dangling pointer. The technique most commonly applied to reuse existing
code is return-oriented programming (ROP) [5,37]. The concept behind ROP
is to combine small sequences of code, called gadgets, that end with a return
instruction. All combined gadgets of an exploit are often referred to as a gadget
chain. To be able to combine these gadgets, either a sequence of return addresses
has to be placed on the stack where each address points to the next gadget, or
the stack pointer has to be redirected to a buffer containing these addresses. The
process of redirecting the stack pointer is called stack pivoting.

For architectures with variable opcode length like x86/x86-64, the instruc-
tions used for the gadgets do not have to be aligned as intended by the compiler.
Previous work has shown that enough gadgets for arbitrary computations can be
located [5,13,25] even without those unintended instructions. This is an interest-
ing observation that especially concerns architectures with fixed opcode length.
Automated tools that search for gadgets and chain them together have also been
developed by past research [22,28].

Over the years, research on code-reuse attacks has proposed different vari-
ations of ROP such as jump-oriented programming (JOP) [3,8,13] and call-
oriented programming (COP) [7]. JOP uses jumps instead of returns to direct
the control-flow to the next gadget, and COP uses calls. Due to their com-
plexity, code-reuse attacks are typically used to make injected code executable
thus defeating protections like DEP and redirect the control-flow to the injected
code [24,31].



Automated Multi-architectural Discovery of CFI-Resistant Code Gadgets 605

2.2 Control-Flow Integrity (CFI)

The concept of CFI was first introduced by Abadi et al. [1,2]. A program main-
tains the CFI property, if the control flow remains in a predefined control-flow
graph (CFG). This predefined CFG contains all intended execution paths of the
program. If an attacker redirects the control flow via code injection or code-reuse
attacks to an unintended execution path, the CFI property is violated and the
attack is detected. In an ideal CFG, every indirect transfer has a list of valid
unique identifiers (IDs) and every transfer target has an ID assigned to it [20].
These IDs are checked before indirect transfers occur to ensure that the target
is valid.

If CFI is applied to proprietary software, it becomes problematic to generate
such a detailed CFG. To construct the CFG, the program has to be disassem-
bled and a pointer analysis performed. Every error made during this process
may lead to false positives during runtime of the protected program. Another
issue with the classical CFI approach as proposed by Abadi et al. is performance.
Therefore, implemented CFI solutions—also called coarse-grained approaches—
typically reduce the number of IDs by assigning the same ID to the same cat-
egory of targets. Examples of coarse-grained approaches are BinCFI [45] and
CCFIR [44]. BinCFI uses two IDs to ensure the integrity of the CFG. The first
ID defines rules for targets of return (RET) instructions and indirect jumps (IJ).
The second ID combines rules for indirect control-transfers from the procedure
linkage table (PLT) and indirect calls (ICs). Each ID has its own routine which
resides inside the protected binary. Every indirect transfer is instrumented to
jump to one of the two verification routines. Similar to BinCFI, CCFIR is also
a coarse-grained CFI approach applied to binaries without source code. Each
indirect transfer is redirected through a Springboard. The Springboard contains
all valid control-flow targets and thereby prevents that the flow is redirected to
invalid targets. An initial permutation of the Springboard at program startup
additionally raises the bar for attackers.

2.3 Heuristic Approaches

In 2013 Pappas et al. [29] introduced kBouncer, an heuristic-aided approach that
leverages modern hardware features to prevent code-reuse attacks. To perform
CFI checks, kBouncer utilizes the Last Branch Record (LBR). LBR is a feature of
contemporary Intel and AMD processors which can only be enabled and disabled
in kernel mode. Therefore, kBouncer consists of a user and kernel mode compo-
nent. Like the name suggests, LBR records the last taken branches or a subset
of the last branches. Each entry in the LBR contains the source and destination
address of the taken branch. By fetching some bytes just before the destination
address, kBouncer can examine and enforce that every return address is preceded
by a call instruction. Otherwise kBouncer reports a CFI violation. Besides the
CFI enforcement, a heuristic check is performed by inspecting the last 8 indirect
branches. If all entries match kBouncers gadget definition, an attack is reported.
A gadget is considered as an entry if it contains up to 20 instructions and ends in
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an indirect control flow. The checks are invoked whenever one out of 52 critical
WinAPI functions such as VirtualProtect or WinExec is called. The user-mode
component hooks these critical functions and triggers the checks in the kernel
mode component.

Another heuristic-aided approach is ROPecker by Cheng et al. [9], which also
utilizes the LBR stack to look for gadgets in the past control flow. Additionally,
the future control flow is also examined. To check for gadgets in the future con-
trol flow, ROPecker combines online emulation of the flow, stack inspection, and
an offline gadget search. Since gadgets are already searched offline and stored to
a database, ROPecker has also the possibility to detect unaligned gadgets. To
detect gadgets, ROPecker does not apply CFI enforcements, but merely relies on
heuristics. A gadget in the context of ROPecker is a sequence of up to 6 instruc-
tions ending with an indirect control-flow transfer. Sequences containing direct
branch instructions are excluded from the definition. ROPecker inspects the past
control flow first by utilizing the LBR to record indirect branch instructions. The
first non-gadget encountered while walking the LBR backwards terminates the
search for gadgets in the past control flow. Afterwards, the future control flow
is inspected for gadgets. If the combined number of encountered gadgets from
the past and future control flow is above a predefined threshold, an attack is
reported. The research of Cheng et al. suggests that a threshold between 11 and
16 gadgets is a suitable number.

2.4 Defeating the Countermeasures

All presented defenses against code-reuse attacks have been bypassed in recent
years. While some attacks exploit vulnerabilities in a specific implementation to
disable the checks [4,11], we focus on generic bypasses to defeat the protections.
We divide the defense policies in two categories, CFI policies posing limitations
on indirect branch instructions and heuristic policies looking for typical charac-
teristics of code-reuse attack vectors.

Attacks focusing on kBouncer, ROPecker, and EMET/ROPGuard [7,21,35]
just have to bypass the call site (CS) checks. However, attacks against BinCFI
and CCFIR [14,20] also have to take into account that ICs and IJs are limited to
certain control-flow targets like function entry points (EPs). Göktaş et al. [20] cat-
egorize the gadgets by their prefix (CS or EP), their payload (IC, fixed function
call (F), other instructions), and their suffix (RET, IC, IJ). This categorization
results in 18 (2 · 3 · 3) different gadget types. They even use gadgets containing
conditional jumps. With these gadget categories, they are able to bypass CCFIR,
which they consider stricter than BinCFI. Another interesting gadget type is the
i-loop-gadget [35]. In their work, Schuster et al. use a loop containing an IC to chain
gadgets and invoke security sensitive functions.

The heuristic policies explained in Sect. 2.3 check for chains of short instruc-
tion sequences. To evade these checks, long gadgets with minimal side effects were
proposed [7,21]. If the heuristic check encounters a long instruction sequence, the
evaluation is terminated and the chain is classified as benign. Another elegant
method is to invoke a function call to an unsuspicious function like lstrcmpiW [35].
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If the unsuspicious function does not alter the global state of the program and takes
enough indirect branches, the attack cannot be discovered by the heuristic checks.

3 Design and Implementation

The process of discovering suitable code gadgets which fulfill certain CFI policies
consist of broadly two phases: first, appropriate code has to be discovered and
extracted. Second, it is translated into the symbolic representation and can then
be classified according to semantic definitions.

3.1 Gadget Discovery

Before we can describe the process of the gadget discovery, we have to define
the gadgets’ properties first. The definition of the gadgets is important as they
define the bounds and specify the content of the gadgets. After the definition of
the gadgets is given, we introduce the algorithms to locate all points of interest
for the gadget discovery and the algorithm to discover the gadgets themselves.

Gadget Categories. Except minor modifications, our gadgets conform to the
specifications defined by by Göktaş et al. [20] and Schuster et al. [35] as explained
in Sect. 2.4. Their definitions provide sufficient properties to, for example, find
complete functions for code-reuse and other CFI resistant gadgets. We used their
definitions to restrict the gadget discovery, but definitions can be extended and
added in modular fashion to our framework to support additional gadget types.
The bounds of our gadgets have to conform to legitimate control-flow targets.
Thus, they have to start at an EP or at a CS and end with an IC, IJ, or RET. The
content of a gadget is defined as either an IC, a fixed function call (F), or other
arbitrary instructions. We opted to drop IC as gadget content definition, because
we can connect a gadget ending with an IC with the gadget it follows starting
at the CS. Fixed function calls are beneficial in two ways. Instead of reading
the address of the function from the import address table (IAT) and preparing
the call, one can simply use the gadget with the fixed function call. However,
this just works if all parameters of the function can be set to the desired values.
Furthermore, defenses preventing calls to security sensitive functions [44] can be
circumvented by using gadgets containing a legitimate call to the function. As
we show in Sect. 4.1, many hardcoded function calls inside of gadgets exist.

Another useful gadget is the loop gadget. Loops can be used as a dispatch gad-
get [3,35] to invoke other gadgets. Figure 1 shows a gadget proposed by Schuster
et al. During the first iteration of the loop, RBX points to the beginning of a list
with the addresses of the to-be dispatched gadgets. RDI points to the end of this
list during all iterations of the loop. If the end of the loop is reached the gadget
returns. The difference between the proposed gadget and the gadget defined for
our search is that just the gray basic blocks in Fig. 1 belong to our loop gadget
definition. For simplicity, loop gadgets end with an IC and start either at the CS
of its IC or at an EP. Hence, the basic block beginning with the label @skip and
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Fig. 1. Instructions of an exam-
ple loop gadget. Just the gray basic
blocks belong to a loop gadget by
our definition.

Table 1. Gadget types supported by our
framework.

Prefix Content Suffix

EP Arbitrary instructions IC

EP Arbitrary instructions IJ

EP Arbitrary instructions RET

EP F IC

EP F IJ

EP F RET

CS Arbitrary instructions IC

CS Arbitrary instructions IJ

CS Arbitrary instructions RET

CS F IC

CS F IJ

CS F RET

CS Loop IC

the last basic block comprise a separate, overlapping CS-RET gadget. This has
the advantage that also loop gadgets in big functions without a tailing gadget
(CS-RET) are found. Additionally, one can query if another gadget starts at the
end of the loop gadget. This way, when searching for tailless loop gadgets, we
can query if code which overlaps, comprises a gadget containing another suffix
than RET. All supported gadget definitions are summarized in Table 1. These
definitions allow us to extract code with conditional jumps such that each single
code path represents a single gadget in a path-insensitive way. As each of them
is verified with symbolic execution later on, path-sensitive code gadgets arise
and path-insensitive gadgets are dropped (see Sect. 3.2).

Discovering Points of Interest. To locate gadgets, our search algorithm follows
the paths of the CFG. The starting points for the search algorithm are IC, IJ,
and RET instructions. The algorithm to locate these points of interest works
in two phases. In the first phase, addresses of all calls to fixed functions in all
modules of a program of interest are extracted and kept. The set of fixed func-
tions comprises critical imported functions which handle memory management,
process and thread creation, and file I/O. These are typically very valuable for
an attacker. During the second phase, the algorithm iterates over every instruc-
tion belonging to a function. If an instruction is a RET, IC, IJ, or a call, the
address of the instruction is added to the corresponding list of starting points.

Gadget Extraction with Depth-First Search. To retrieve the gadgets shown in
Table 1, we have to traverse the CFG of every function in the binary. As we
limit gadgets to single paths at first and can merge them into conditional gadgets
later on in Sect. 3.2, we walk each path separately. We start our traversal from
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the discovered gadget endpoints, namely ICs, IJs, and RETs. We walk every
possible path backwards until we discover a gadget starting point (EP and CS),
or until we exceed an adjustable maximum instruction length of the gadgets.
The algorithms we use are a modification of depth-first search (DFS).

First, the basic block is located containing the gadget endpoint. Afterwards,
we check if there are any calls or fixed function calls between the endpoint and
the basic block’s beginning. If we encounter a call, a CS gadget is created and
the path traversal stops. Before a gadget is added to the gadget list, we check
if a gadget with the same opcode sequence is already in that list to optionally
discard or keep it for later analysis. If a fixed function call is encountered, we
store the information of the fixed function call and split the current basic block.
The resulting first block starts at the beginning of the original basic block and
ends at the fixed function call. The resulting second block starts at the CS of
the fixed function call and ends with the gadget endpoint. Thus, a CS prefixed
gadget is created. Path traversal continues and on a hit of a call, the traversal
stops. We check if the current basic block contains the EP. In that case, we
create a EP prefixed gadget. To traverse all possible paths backwards, we keep
path information and iterate over all direct preceding basic blocks.

Then, for each block, we check if the basic block has been visited before. If
that is the case, a loop gadget is only added, if the traversed path starts at a CS
and ends at a IC. In any case, the traversal returns if the basic block has already
been visited. Afterwards, the checks for a call, fixed function call, and EP are
repeated. Finally, the instruction length of the gadget is checked and updated.

3.2 Gadget Analysis

Two objectives are accomplished with the gadget analysis: first, we sort out
gadgets with unsatisfiable path constraints, and second, gadgets are matched to
semantic definitions and classified accordingly. This simplifies the utilization by
a security researcher to find wanted functionality. To make a simplified search
possible, code gadgets are transformed to a symbolic representation, executed
symbolically to determine its execution contexts and clustered into semantics
due to their execution effects.

Lifting Code Gadgets with Zex3 to Raw Symbolic Representations. Code gadgets
are first translated to instructions of the VEX IL. These are mapped to Z3 expres-
sion as evaluable strings and stored offline. Thereby, most architecture-dependent
peculiarities, such as stack and flags usage, are abstracted away and implicit exe-
cution effects are made explicit. The goal of this part of the framework, which
we named Zex3, is to gather raw symbolic expression which are closely related
to the structure of VEX IL instructions. Thus, registers and memory accesses
are still architecture dependent.

Unification of Raw Symbolics with Zolver3. Unification of architecture-
dependent registers and memory handling is done by a developed Z3 wrapper
which we named Zolver3. The goal is to gather symbolic expressions for each



610 P. Wollgast et al.

gadget to be symbolically evaluable by one component only, namely Z3. There-
fore, symbolic equations created by Zex3 are transformed into a generic format,
such that register usage, memory reads and writes are adjusted. This produces
a single base usable to separate symbolic representations into semantic bins and
to verify satisfiability of each code gadget. As mentioned in Sect. 3.1, each gad-
get is a single path. Thus, symbolic execution of overlapping gadgets can yield
conditional gadgets as well.

Symbolic Analysis of Code Gadgets. It is necessary for a security researcher
during exploit development to rule out code gadgets which do not fulfill a desired
functionality. We illustrate what we name unsatisfiability on a gadget with a
fixed function call: at the time of compilation, it is unknown if a function call
during runtime will succeed. Therefore, checks for the return value are normally
inserted in the calling function by the developer. Depending on the return value,
a different path in the control flow is taken. We might encounter such checks in
gadgets containing a fixed function call. During exploitation we expect the fixed
function call to succeed, hence, a gadget depending on a failed fixed function
call poses unsatisfiable path constraints.

With the current level of information, a researcher is only able to search
through the discovered gadgets based on their boundaries. There is no knowledge
about the gadget’s effects on the state of the to-be-exploited process during
runtime. This makes an efficient search to chain gadgets cumbersome. Therefore,
the second objective is to match every register output and every memory effect
of the symbolic representation to a semantic definition. Zolver3 provides the
state of every register and every memory effect based on the symbolic variables
and input values of the registers and memory. We do not have to trace every
instruction of the gadget ourself, but we can treat the gadget as a black box.
We send symbolic input values in and get all modifications to the global state
of the process by the gadget based on these symbolic input values. This means
that all register and memory store output values are symbolic expressions of
the input values. We can use these expressions to apply our semantic definitions
to the gadgets. The process of applying the semantic definitions to the output
equations is explained as follows.

Semantic Definitions. In the following, we present our semantic definitions.
These definitions allow the researcher, combined with the search presented in
Sect. 3.3, to search gadgets with specific operations performed on a specific reg-
ister or memory address. One or more definitions are assigned to each gadget,
based on the operations the gadget performs. When a security researcher devel-
ops a code-reuse attack, the defined gadget types are the available instruction
set. Therefore, the gadget definitions must cover all necessary instructions to
perform arbitrary computations. The following gadget types are necessary to
accomplish this:

– MovReg: A gadget to move the content of one register to another.
– LoadReg: A gadget to load a specific content into a register.
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– Arithmetic: A gadget to perform arithmetic operations between registers.
– LoadMem: A gadget to load the content of a specified memory area into a

register.
– StoreMem: A gadget to store the content of a register to a specified memory

area.

We add following four semantic definitions, because they represent operations
which are commonly found in gadgets. Alternatives to extend the gadget defin-
itions are discussed in Sect. 6.

– ArithmeticLoad: A gadget that loads the value from a specified memory
address, performs an arithmetic operation on it, and stores the result to the
destination register.

– ArithmeticStore: A gadget that extends a StoreMem gadget with an arithmetic
operation

– NOP - No Operation: A gadget that keeps certain registers untouched. This is
very useful during a gadget search, because untouched registers can be marked
as static.

– Undefined: If none of the previous semantic definitions match the equation of
the register, the register gets marked as undefined.

These gadget types are enough to create functionality containing jumps and con-
ditional jumps. ROP uses the stack pointer to load the next instruction. Hence,
an addition to or subtraction from the stack pointer changes the next instruction.
This way, the developer can jump through her ROP chain. JOP and COP often
use a dispatcher gadget, like the loop gadget, to invoke the gadgets of the chain.
During the loop iteration one register holds a pointer into the buffer containing
subsequent gadgets. Instead of the stack pointer (like in ROP), the register hold-
ing the pointer to the buffer has to be modified for jumps. Conditional jumps,
however, are more complicated as they have to be accomplished by chaining sev-
eral arithmetic operations [14]. But a study of exploits [31] reveals that jumping
by manipulating the stack pointer is rarely used. Normally the chains just set
the shellcode to executable and redirect the control flow to the beginning of the
shellcode. Snow et al. [41] come to a similar conclusion regarding the gadget
definitions in their research.

Applying the Definitions. At the end of the symbolic execution, we have an
output equation for every register and memory write. These equations consists of
Z3 expression trees, which represent the AST of Z3 expressions. Our definitions
are stored as Z3 expression trees as well. Thus, we can match each symbolic
operation a gadget performs against our definition and tag the gadget with one
or more definitions.

We take the approach to apply our definitions to every register and get as many
operations for every gadget, as the architecture has registers. To apply the defini-
tions to every register, we loop over all equations belonging to classifiable registers
and perform checks if the definitions match. Classifiable registers are the general
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purpose registers of the architecture and the instruction pointer. These are the reg-
isters that are usually accessible.We try tomatch everymemorywrite to definitions
recursively, because memory accesses can be nested and every new memory store
adds a new layer consisting of Z3 store operations.

3.3 Semantic Search

In the previous steps, the gadgets have been discovered by their bounds and we
have analyzed every effect the gadgets may have on the global state of a running
process. As we want the search for the gadgets to be flexible, we perform the
search on a register and memory write basis. One can specify the type of a single
register or the types, operations, and operands of many registers. Naturally, a
search with just the type of a single register yields a lot of potential gadget
candidates. In the following section, we explain methods to order the gadget
candidates and to eliminate unsatisfiable gadgets.

Complexity Ordering. We have to present the simplest gadgets first upon a
search to speed up the process of the gadget chaining. To provide the gadgets in
a decreasing complexity order, we apply four criteria. The first criteria is that
the gadgets with the lowest instruction count are presented first. Gadgets with
a low instruction count are usually simple, as they typically do not perform
many operations. The second criterion is to sort by the least amount of memory
writes. For every unnecessary memory write, it has to be ensured that the write
address is inside a writable memory area. Then the priority comes to contain
the least amount of memory reads in the gadgets. The reason is the same as for
the memory writes. However, readable memory areas are typically encountered
more often and therefore easier to set up. Our last ordering criterion requires as
many registers as possible to contain NOP definitions, as this limits unwanted
side-effects such as overwriting a register which is set up by a previous gadget.

Gadget Verification. Our gadgets support paths containing conditional branches.
The exact analysis of the conditions can be tricky. For example, a gadget is
needed to load the value 0x12345678 from a specific memory address into a
register. The complexity ordering algorithm may return a gadget list with a
LoadMem gadget ranked first that contains a conditional jump. The pitfall is
that the jump is only taken, if the LoadMem operation loads a NULL value. This
renders the gadget useless to load the value 0x12345678. Therefore, invalid gad-
gets similar to the one described above have to be sorted out. We automatically
check the constraints of the gadget list with Zolver3 until a satisfiable gadget is
encountered. A search query is specified by a researcher in the language Python.
Thereby the start/end type and the content definition of the gadget is normally
specified, as well as the semantics and operations which the gadget has to fulfill.

4 Evaluation

In the following, we evaluate our prototype. More specifically, we analyze the
distribution of the different gadget types across different processor architectures,
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Table 2. Number of available gadgets listed by gadget start and end type, and their
corresponding discovery and analysis runtime.

ieframe.dll mshtml.dll ieframe.dll mshtml.dll libc-2.19.so

Architecture x86 x86 AMD64 AMD64 ARM

EP-IC 4255 4245 4354 3947 261

EP-IJ 59 370 172 1009 79

EP-RET 11521 16723 10950 16517 2615

CS-IC 36300 55225 38679 68791 1226

CS-IJ 67 28 76 1365 240

CS-RET 39382 71104 40831 72198 6029

Loops 348 443 335 464 55

Runtime (s) 12925.2 29058.7 16309.4 51259.8 4079.0

demonstrate that we can discover enough gadgets for successful exploitation,
and compare our framework to existing tools. We conducted all tests for our
evaluation on a 64 bit Linux system running on an Intel Xeon processor E3
with 3.3 GHz. For CFG and disassembly creation, we use IDA Pro, and VEX of
Valgrind 3.9.0 is used for Zex3’s translation process. Furthermore, we use pyvex’s
latest commit at the time of testing [39].

4.1 Gadget Type Distribution

For our evaluation, we analyzed the x86/AMD64 version of ieframe.dll and
mshtml.dll of Microsoft’s Internet Explorer (IE) 8.0.7601.17514. We selected
these libraries as they are often used during exploitation of IE [31]. To evalu-
ate our gadget finder on ARM, we analyzed Debian’s (little-endian) libc-2.19.so,
because we expect libc to always be loaded during exploitation of a Linux sys-
tem on ARM. All gadgets residing in libc-2.19.so are in ARM mode. The gadget
numbers presented in this section are the total number of gadgets, including
gadgets with and without conditional branches.

Table 2 summarizes the gadget start and end type distribution. Note that
the combination with the highest number of gadgets is CS-RET. With CS-RET
gadgets, one can execute common ROP exploits without triggering CFI checks.
Due to the high proportion of CS-RET gadgets, the highest possibility to find
suitable gadgets for a gadget chain is searching for a ROP chain. Our loop
counts, also presented in Table 2, are based on our loop definition. This means
that all listed loops end with an IC and start at the CS of the IC. The number
of discovered loops can still be further increased by implementing loops for JOP
or allowing relaxed loop definitions.

It is worth noting that all functions typically used by attackers for malicious
behavior are available, such as VirtualProtect to set memory to executable or
writable, LoadLibrary to load a library into the address space, and CreateProcess
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to create a process. Gadgets containing fixed function calls are not restricted to
some gadget start and end types, but are interspersed throughout all start and
end type combinations. For the x86 and AMD64 DLLs mentioned in Table 2,
we found 982 gadgets with hardcoded calls to functions which allocate memory,
change memory permissions, load DLLs, or perform file I/O operations.

4.2 Exploiting ARM with One CFI-Resistant Gadget

To evaluate our gadget finder on ARM, we exploit an artificial use-after-free
vulnerability. The instruction initiating our chain is an IC in ARM mode and
the first argument, stored in R0, contains a pointer to our prepared buffer. The
protection in place is similar to CCFIR. This means, IC and IJ can just transfer
the control flow to EPs, and RETs are only allowed to return to legitimate
CS. We assume that an information leak is available, which is usually the case
for real-world exploits. Our gadget pool is derived from Debian’s libc-2.19.so.
All discovered gadgets are in ARM mode. The goal of the exploit is to execute
system("/bin/sh"). On ARM, the first argument to a function is not passed
on the stack, but in the register R0. Therefore, to execute system("/bin/sh")
we have to load the address of a string containing "/bin/sh" into R0. We do
not have to write the string to memory ourselves, as it is already present in libc-
2.19.so. We use the information leak to get the base address of libc-2.19.so. The
address of libc-2.19.so is also required to get the address of system(). But at
first, we have to find the gadgets to load the address of system() and the string
"/bin/sh" from the buffer and call the system() function. These addresses are
placed later on in our buffer. A pointer to the buffer is passed to our gadgets in
R0. Due to the protection scheme in place, the gadget has to start at an EP. The
end of the gadget is not defined, yet. An automatically discovered gadget that
exhibits the required actions is displayed in Fig. 2. First, it loads the address
of "/bin/sh" from our buffer to R0 via LDR R0, [R0,#0x1C]. And second,
it loads the address of system() to R12 and calls R12 at the end. This way,

Fig. 2. An ARM gadget which loads
the address of "/bin/sh" from the sup-
plied buffer in R0, loads the address of
system() from the buffer to R12, and
ends with an IC of R12.

# Must contain 0x00000001.
Buf+0x00 => 0x00000001
...
# .rodata:00122F58 aBinSh DCB "/bin/sh",0
Buf+0x1C => 0x00122F58
...
# .text:0003B190 system
Buf+0xA4 => 0x0003B190
...
# Address of the first gadget
# Offset in buffer is dependent on freed object
Buf+0xXX => 0x00071704

Fig. 3. Buffer exploit data. Only
addresses at the offsets 0x1C and 0xA4,
the address for the initial control-flow
transfer (0x71704), and 0x1 at offset
0x00 have to be set.
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the objective to execute system("/bin/sh") is achieved with a single gadget.
The buffer that we use during the exploit is shown in Fig. 3. At offset 0x00 the
buffer must contain 0x1 to satisfy TST R3,#1. Just if this check is valid, the
address of system() gets loaded and called.

4.3 Comparison to Other Gadget Discovery Tools

To investigate how our framework performs compared to other tools, we used
ROPgadget [33], XROP [43], and IDA sploiter [23] to search for unique gadgets in
mshtml.dll, ieframe.dll, and libc-2.19.so. ROPgadget performs a semantic search
based on the disassembly of Capstone [6], while XROP and IDA sploiter perform
a standard instruction search. Thereby, IDA sploiter uses IDA Pro. Hence, we
can compare our framework to a tool which uses the same disassembly as input.
We searched gadgets with a length of max. 30 instructions with ROPgadget and
IDA sploiter, and with a max. length of five instructions in XROP, because the
length cannot be adjusted. Then we dropped unaligned gadgets which these tools

Table 3. Number of unique EP and CS gadgets found by other tools in comparison
to our framework. Improvement factor states the factor of more gadgets found by our
tool.

Tool CFI-resistant gadgets Improvement factor

IDA sploiter: libc (ARM): 0 ARM not supported

ieframe.dll (x86): 11721 7.8

mshtml.dll (x86): 14762 10.0

ieframe.dll (x86 64): 14192 6.7

mshtml.dll (x86 64): 19984 8.2

ROPgadget: libc (ARM): 8677 1.2

ieframe.dll (x86): 28747 3.2

mshtml.dll (x86): 30631 4.8

ieframe.dll (x86 64): 10479 9.1

mshtml.dll (x86 64): 14283 11.5

XROP: libc (ARM): 1107 9.4

ieframe.dll (x86): 660 138.8

mshtml.dll (x86): 957 154.3

ieframe.dll (x86 64): 1531 62.1

mshtml.dll (x86 64): 2479 66.1

Our framework: libc (ARM): 10450 -

ieframe.dll (x86): 91584 -

mshtml.dll (x86): 147695 -

ieframe.dll (x86 64): 95062 -

mshtml.dll (x86 64): 163827 -
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delivered, as well as non CFI-resistant gadgets. Overall, it is shown in Table 3
that our tool found 1.2 times to 154.3 times more gadgets than other tools.

5 Related Work

Code-reuse attacks have evolved from a simple return-into-libc [16] into a highly
sophisticated attack vector. In times of DEP, Krahmer was the first to propose
a method called borrowed code chunks technique [26]. By chaining code snippets
together that end with return instructions, Krahmer showed how to perform
specific operations and as a consequence bypass DEP. His work was extended
by Shacham in 2007 [37], who showed that Turing-completeness can be achieved
by reusing instruction sequences that end in return opcodes, thus leading to the
name Return-Oriented-Programming. He called those sequences gadgets. Large
code bases typically provide enough gadgets to achieve Turing-completeness.

While the first attacks targeted the x86 architecture, the concepts have been
shown to be applicable on ARM [25] or SPARC [5] systems as well. ASLR [30]
has been successful in stopping static ROP chains. However, its ineffectiveness
has also been shown in the presence of information leaks. Even fine-grained
re-randomization can be circumvented by the means of just-in-time ROP as
demonstrated by Snow et al. [41]. During the attack, they harvest gadgets based
on the Galileo algorithm introduced by Shacham et al [37]. The algorithm starts
at return instructions and iterates backwards over a code section to retrieve
gadgets that end with the return instruction. A table lookup matches their gad-
gets against semantic definitions. This differs from our approach as we lift only
CFI-permitted code paths to an intermediate representation (VEX) having a
high ISA coverage, and symbolically evaluate the gadgets to achieve a semantic
binning. Schwartz et al. developed a gadget search and compiler framework to
automatically generate ROP chains. They apply program verification techniques
to categorize gadgets into semantic definitions [36]. However, they do not take
CFI policies into account.

To aid in both the development of ROP attacks and CFI defenses, toolkits
to locate suitable gadgets have emerged. Frameworks such as the one introduced
by Kornau [25] or ROPgadget [33] utilize an intermediate language to abstract
the underlying architecture. However, these do not locate gadgets conforming to
the constraints introduced by CFI solutions. Our framework fills this gap and
enables researchers to test their CFI policies on multiple architectures with only
one toolkit. Closely related to our work is research which tries to measure the
gadget quality by introducing several metrics [19]. However, these metrics are
bound to an architecture, while our approach is architecture independent.

6 Discussion

Thecoreproperty of our framework is the ability toquickly testCFIpolicies onmul-
tiple architectures. With the possibility to locate gadgets conforming to the same
constraints in multiple environments, we enable researches to gain a fast overview
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on the security of policies. This is applicable not only to one architecture, but to all
systems supported by our toolkit. As such, it speeds up evaluation allowing more
time to be invested into the design of the policies. The multi-platform approach
also enables to determine differences between architectures, each of which have
an impact on the availability of certain gadget classes. One specific gadget class
can commonly occur on one architecture, while it is nearly non-existent on another
architecture, consequently not posing a risk. Allowing researchers to focus on the
most relevant gadget classes for each architecturemay lead to defenses that fitmore
to the environment. While there are other toolkits that are able to locate gadgets
on ARM, our framework differs in that it allows to apply the same CFI policies to
different architectures.

Limitations. At the current state, we did not include a compiler that is able to
generate complete chains from the found gadgets. While we simplify the task by
providing a query interface, the last step is still manual. The simplest approach
would be to blindly combine chains of gadgets until one of them satisfies the
constraints. However, a better solution is to combine gadgets based on a logic
that translates an intermediate language written by a developer to a series of
gadgets. However, this is no easy task as avoding CFI detections requires longer
and more complex gadgets, which are not side-effect free. The compiler would
need to account for both, the intended effects and the compensation of any
side effect of the gadget. Due to the modular design, we can support additional
gadget types and architectures. For instance, it is possible to extend the discovery
phase to locate unintended instructions or whole virtual functions needed for a
COOP-attack [34]. Another option is extending the definitions by a limit of
targets for an IC of a gadget. This allows assessing fine-grained CFI defenses.

7 Conclusion

We presented a framework that not only discovers code-reuse gadgets across
multiple architectures, but also locates gadgets that can be used with deployed
CFI defenses. While our framework can be used in an offensive way, we deem its
value for defensive research to be higher. By quickly testing CFI constraints on
multiple architectures, it is possible to focus on the most relevant attack vectors
and improve both the defensive capabilities and the performance. In this process,
we also showed that it is possible to locate CFI-compatible gadgets not only on
x86, but also on ARM. CFI research is lacking behind on mobile platform and
we hope that by providing an effective evaluation tool, further work on this topic
can be simplified.

Acknowledgment. This work was supported by ERC Starting Grant No. 640110
(BASTION).
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