
Hooking Graceful Moments: A Security Analysis
of Sudo Session Handling

Ji Hoon Jeong1,2, Hyung Chan Kim1(B), Il Hwan Park1, and Bong Nam Noh2

1 The Affiliated Institute of ETRI, P.O. Box 1, Yuseong,
Daejeon 34188, Republic of Korea

kimhc@nsr.re.kr
2 Chonnam National University, Yongbong-ro 77, Gwangju 61186, Republic of Korea

Abstract. Sudo is a widely used utility program to temporarily provide
the privileges of other users when executing shell commands in many
UNIX and Linux systems. In conventional usage, a Sudo user who fulfills
password authentication is eligible to execute a series of shell commands
with system administrative privilege for a while. As Sudo enables privi-
lege switchover, it has been the attractive target of attacks for privilege
escalation in nature. Although Sudo source code have been reviewed by
security researchers and patched accordingly, in this paper, we show that
Sudo is still vulnerable to session hijacking attacks by which an attacker
is able to achieve privilege escalation. We explain how such attacks are
possible by spotlighting the inherently flawed session handling of Sudo.
We also describe two attack designs – shell proxy and ticket reuse attack –
by revisiting some known attack strategies. Our experimental results
show that the recent versions of Sudo, in combination with the underly-
ing shell program, are affected to the attack designs.

Keywords: Least privilege principle · Session hijacking · Privilege esca-
lation · Software security

1 Introduction

Sudo [4], firstly developed at around 1980, is a utility program that enables tem-
poral privilege switchover from one user to another in executing shell commands
for UNIX and Linux systems. Sudo has been commonly used for administrative
tasks, which require system root privilege, such as installing/updating software
packages, editing system configuration files, adjusting kernel parameters, and
so on. Sudo is vastly adopted to be used by default in widely deployed Linux
distributions such as Debian, Ubuntu, and its derivatives. The other distribu-
tions mostly include Sudo package to be activated by choice. Mac OS X is also
configured to use Sudo by default.

The opinions expressed herein reflect those of the authors, and not of the affiliated
institute of ETRI.

c© Springer International Publishing Switzerland 2016
K. Ogawa and K. Yoshioka (Eds.): IWSEC 2016, LNCS 9836, pp. 41–60, 2016.
DOI: 10.1007/978-3-319-44524-3 3



42 J.H. Jeong et al.

Sudo is usually encouraged as it provides several security benefits. With Sudo
deployment, a user does not need to get, and stay with, interactive root shell
session to execute a series of administrative commands. Otherwise, the user
might input destructive commands inadvertently, thereby impairing the system
under management. Moreover, multiple users assigned to administrative jobs do
not need to share any root password and their rights to execute a specific set of
privileged commands can be separated by configuration. As for accountability,
Sudo instance actively logs whole issued commands while conventional root shell
session does not.

Despite of the wide adoption, as for attackers, Sudo is the attractive target of
attacks to achieve privilege escalation in nature. Sudo enables temporal privilege
overriding: therefore, it is evident that if an attacker is able to compromise a Sudo
user (Sudoer), the attacker has chances to set up an attack to surreptitiously
execute shell commands with the additionally permitted privilege. The target
privilege is of administrative (root) account in most cases. This kind of attack is
feasible with the proxy execution strategy: i.e., the attacker may be able to let
the victim user to execute some commands of the attacker’s flavor on behalf of
the attacker by exploiting Sudo session weakness.

Sudo, in fact, has been considered to prevent this weakness with a ticket-
based session management scheme together with some additional protective
mechanisms. If a Sudo session is established after taking configured – mostly
password based – authentication procedure, then a ticket is issued by which the
following Sudo shell command can be executed with no additional authentica-
tion until the timestamp expiration in the ticket. Fundamentally, the attacker
cannot invoke privileged shell commands directly from another terminal as Sudo
checks session ID [8] and also validates whether the terminal in use is the place of
ticket issue. Sudo also prohibits the well-known library injection attacks by throt-
tling some environmental variables which can be abused for replacing a dynamic
shared object (dso) with malicious one. This is intended to preclude the possible
session hijacking attack by a modified shared object dynamically linked with
Sudo. In addition, there are external defense measures provided at kernel layer:
Yama Linux security module [6] as well as SELinuxDenyPtrace [3]. Both are
helpful to make difficult or impossible code injection attack. Yama restricts the
scope of ptrace system call and SELinux with ptrace control even turns off the
system call facility. These two measures thus can protect shell process tied with
valid Sudo session from adversarial code implanting.

Notwithstanding all the defense measures and mitigation efforts, in this
paper, we show that it is still possible to achieve successful privilege escalation
attack against the very recent versions of Sudo (1.8.16). There have been some
previous works concerning the proxy execution and ticket constraint avoidance
strategies [13,18,20] to tackle Sudo session handling issues. Basically, here we
revisit the two strategies elaborating those to work on the recent Sudo versions.
Unlike the previous works, we present more comprehensive and detailed review
on session handling issues and also provide concrete attack examples. Note that
we do not tackle vulnerabilities of code implementation. Our viewpoint is rather
on highlighting the flawed session handling of Sudo.



Hooking Graceful Moments: A Security Analysis of Sudo Session Handling 43

To show the security impacts of our analysis, first of all, we examine the
privilege semantics of Sudo session. The ticket-based session establishment is
basically for the convenience: once a Sudo session is established, the validated
Sudoer does not need to take repetitive authentication procedures for the follow-
ing Sudo invocations until the session timeout. One fundamental security issue
here is on that the invoking shell process gets to semantically have dual privileges
which is definitely inappropriate in terms of the principle of least privilege.

Although the dually privileged session is inevitable for the purpose of using
Sudo, great care must be taken in dealing with established session. The other
problem is on that Sudo seems to be failed to prevent session hijacking attacks
due to insufficient session protection mechanism. Throughout this work, we found
that the following factors can lead to illegal reuse of established – in our views,
dually privileged – Sudo session:

– Lack of integrity check for issuing shell processes. Sudo does not care
whether issuing shell is trustworthy or not. An attacker, thus, is able to execute
privileged shell commands by compromising the issuing shell process bypassing
the most of Sudo protections.

– Reusable ticket. Although Sudo session ticket has been revised to prevent
ticket reuse attack, it is still possible to reuse it. If an attacker is successful in
matching out ticket parameters within a given session timeout, the ticket is
reusable resulting in the illegal session reuse without valid authentication.

It is quite clear that the misuses of established Sudo session may result in
escalation from the privilege of Sudo user – and also of the attacker – to that
of another – normally administrative – one. Based on the problem review, we
describe real world attack designs and conduct experiments on a Linux system
installed with the recent versions of widely used distributions.
Contributions. In this paper we will analyze the security impacts of the flawed
Sudo session handling and describe realistic attack designs.

1. A study of the improper session handling which may incur dually privileged
state in terms of the privilege semantic.

2. Exploring weaknesses around Sudo which may lead to the possible misuse of
established Sudo session.

3. Providing two proof-of-concept examples based on attack designs revisiting
the shell proxy as well as ticket reuse strategies.

The source code package of our experimental tools, to demonstrate the attack
designs, is available on a github project1.

Paper Organization. Section 2 presents background of Sudo session handling
and then, in Sect. 3, we show the problem issues around it. In Sect. 4, we describe
attack designs to conduct realistic attacks for privilege escalation and show the
experimental results in Sect. 5. In Sect. 6, we discuss on related work. Section 7
concludes this paper.
1 https://github.com/binoopang/sudo.

https://github.com/binoopang/sudo


44 J.H. Jeong et al.

Fig. 1. The relation among Sudo session entities.

2 Background

2.1 Establishing Sudo Session

Sudo enables a configured user, usually assigned to administrator role, to invoke
shell commands with root privilege. In order to invoke a series of privileged com-
mands with Sudo, the user is required to be legitimately authenticated. As Sudo
operates on a per-command basis [16], in fact, every command invocation should
be passed through proper authentication. At the very first command execution
under Sudo, a user is required to undergo, primarily, password based authen-
tication procedure at first hand unless non-default authentication methods are
included by configuring Plugable Authentication Module (PAM) [10]. Unlike su
command, which requires the password of root account, Sudo requires the pass-
word of Sudoer.

For the sake of convenience, Sudo maintains the ticket-based session man-
agement so as not to put Sudoer through repetitive password inputs. After the
successful initial authentication, Sudo establishes a session and issues the cor-
responding session ticket. The following privileged command invocations are
legitimately permitted without further password authentication by checking the
validity of the issued ticket. The session validity is hold during the grace period
and it is 5 min in most default configurations.

Throughout this paper, we mean that Sudoer shell and Sudoer terminal are
the respective entities associated with established session. Figure 1 illustrates the
relationship among Sudo session entities and it is the conceptual situation after
initial authentication.

2.2 Session Tickets

The established, thus valid, Sudo session is associated with a ticket. When a
Sudoer passes through initial authentication, the corresponding session ticket is
generated and it is stored in the per-user ticket repository. The repository is not
allowed to be read and/or modified by non-root users: only root privileged user
can access to the repository directly.



Hooking Graceful Moments: A Security Analysis of Sudo Session Handling 45

The parameters of Sudo ticket has been revised for many years to deal with
security issues brought up by public communities. In the latest version of Sudo
(version 1.8.16), the two types of tickets are involved: tty ticket and ppid ticket.

tty ticket. When an user wants to perform a series of shell command execu-
tions interactively, the user have to log in into the given system directly via
terminal devices such as local console (tty), serial (ttyS), pseudo terminal (pty),
and the like. For brevity, here we use the term tty as the representative termi-
nal device instance. When Sudo handles sessions with per-tty granularity, Sudo
generates tty ticket for each terminal which has completed initial authentication.
The parameters of valid tty ticket is comprised of quadruple (SID, TID, UID,
TIMESTAMP ); The user UID associated with the session SID and the terminal
TID is permitted to invoke privileged shell commands. The tty ticket is valid
during the grace period, i.e., from the time of ticket issuing TIMESTAMP to the
time TIMESTAMP + timeout where the timeout is 5 min in default configura-
tion. SID is the session ID which is determined by the process ID of session
leader. Note that shell process, such as bash, becomes session leader in usual
Sudo usages. TID represents the actual device number of (pseudo) tty by which
one can discriminate each terminal device in use. UID is the system user ID of
ticket owner (Sudoer). The timestamp field TIMESTAMP records the time of the
most recent shell command execution with Sudo. For every Sudo invocations,
the TIMESTAMP value is updated accordingly.

ppid ticket. It is also possible to deploy Sudo with non-interactive manner.
Terminal devices therefore are not directly involved for this case. For example, a
user can set up a script that includes login facility with the help of sshpass [2]. In
such case, Sudo employs the PPID (parent process ID, or ppid) instead of the TID

to establish sessions with per-ppid granularity. The parameters of ppid ticket are
defined by (SID, PPID, UID, TIMESTAMP ); The user UID associated with the
session SID and the parent process PPID is permitted to invoke privileged shell
commands. As same with tty ticket, ppid ticket expires session if no further Sudo
invocation follows within a given grace period.

3 Problems of Sudo Session Handling

We have conducted an empirical source code auditing as well as dynamic analysis
on Sudo program. In this section, we explain our examination results around
Sudo session handling issues.

3.1 Dually Privileged Session

The most good reason of Sudo deployment in terms of security is that Sudoer
is relatively safe from inadvertent mistake in executing shell commands mixed
with root and non-root privileges. This is evident compared to the case of just
staying with root shell. Sudoer should be explicit when using the root privileged
commands. In view of Sudoer, it looks like explicit privilege switchover between



46 J.H. Jeong et al.

Fig. 2. The privilege transition in a Sudo session.

root and non-root modes. However, this is not true in terms of the privilege
semantic. To clear out the privilege transitional semantic in a Sudo session, we
illustrate the situation in Fig. 2. Here we define a function max priv(a, b) which
returns the maximum privilege between the time a and b. Then, max priv(t, t+
g), where t is the time of successful initial authentication (i.e., session start
time) and g is the configured grace time (5 min in default), will constantly
returns the maximum privilege between the two time points. This implies that
the established Sudo session is associated with dual privileges: the one of Sudoer
and the other one of root account.

The session semantically tied with dual privileges is obviously problematic in
terms of the classical least privilege principle. In other words, during the given
grace period, although the Sudoer shell process is non-root privileged as for what
the underlying OS kernel understands, it is actually dually privileged; therefore,
the attacker may be able to misuse root privileged commands if one can properly
set up the link point between the privileges.

As for the real world link point, the code injection technique using ptrace()
system call could be a candidate in realizing Sudo session attack. More con-
cretely, malicious code injection into Sudoer shell process will incur indirect root-
privileged command executions by an attacker who set up the link point between
the privileges. In Sect. 4.2, we will present an example scenario of this case.

3.2 Too Wide Subject Eligibility

When Sudo is invoked, in normal cases, there would be a shell process, such
as bash, as its parent. The shell process might be initially created by fork()
call from, e.g., login, sshd, or gnome-terminal process or it can be created from
another shell process, especially if Sudo is invoked from a script file. If a given
shell process creates some child processes, these are tied with the same session ID
(sid) [11]2. Unless the process does not declare to be a new session leader, it will
be included to the same session group with the invoking shell (parent process).

2 Note that this is not the concept of Sudo session but that of process session.



Hooking Graceful Moments: A Security Analysis of Sudo Session Handling 47

Timet1 t1 + gt2

$ sudo apt update

$ sys˙check (Actually, malware)
Command
Sequence

sudo start˙malware UID: 1000

UID: 0

Surreptitiously execute 
malicious program with sudo

Fig. 3. Subject eligibility problem: the downloaded malware is able to execute Sudo
shell command without authentication after one of the other child of parent shell
process establishes a valid Sudo session.

Concerning with the two session concepts, there is the subject problem: if one
of process once establishes a Sudo session, all the other processes in the same
process session group are eligible to invoke Sudo commands without requiring
any independent authentication during the given grace period. Evidently, it is
not safe because an arbitrary child process with the same process session ID can
invoke root privileged commands and it possibly leads to security problem if the
child is compromised.

Let’s take an example of such negative case, shown in Fig. 3, assuming that
a user downloaded a system utility of one’s flavor. Opening a terminal, the user
makes system changes using some administrative commands (apt) with Sudo.
Then, in the same terminal, the downloaded utility is invoked (sys check) to
evaluate newly changed environment without Sudo as it does not require root
privilege. At this time, the utility, which is actually malware implanted by an
attacker, can gain root privilege if it surreptitiously executes malicious Sudo
commands because it has the same process session ID with the invoking shell.
This situation is surely in contrast to the user’s intention, in terms of privilege
assignment, because the user executes the utility explicitly without involving
Sudo. However, the malicious code in the utility is able to implicitly trigger the
malicious commands with root privilege.

3.3 Reusable Ticket

If a session ticket is issued after authentication, it is stored in the local file-system
until Sudo reissues the ticket or the system faces to shutdown. Meanwhile, the
Sudo session can outlive the shell login session of Sudoer [5] and this means
that the Sudo session information is still remained for a while as the ticket is
accessible by the file system operations. As a result, an attacker can ride on the
outlived Sudo session if the attacker is able to reuse the stored ticket.

Reusing Sudo ticket is trying to match up the shell environment of attacker to
the parameters of Sudo session ticket currently saved in the file system: in fact,
this is a well-known security issue. However, no complete fixes are yet applied
to mitigate this issue as it is generally considered that reusing Sudo ticket is
difficult to achieve. In this work, we highlight that Sudo session hijacking attack
through ticket reuse trials can be practically achievable.



48 J.H. Jeong et al.

One ideal case of reusing ticket may happen when Sudoer exits one’s shell
session immediately after invoking Sudo legitimately, and such usage pattern
is commonly occurred in general. For example, a single one-liner Sudo com-
mand can be used to manage multiple remote servers with ssh command
(e.g., ssh-t admin@host "sudo/path/to/script"). In this case, an attacker
can try to reuse the generated Sudo ticket during the nearly full grace period.
In targeting tty ticket type, defined in Sect. 2.2, the attacker have to match up
the two constraints, SID and TID, as the user ID of shell process of the attacker
is same with UID by our assumption. The match up should be finished before
the time constrained by TIMESTAMP .

The attacker can be more aggressive if a Sudoer does not exit the login shell
in use by which an attacker cannot resolve tty constraint TID as the Sudoer
holds the tty by which the underlying OS cannot yield the tty value to the
attacker. In such case, the attacker can forcibly eject the Sudoer shell process –
thus the tty is released – and have a chance to resolve the TID. It would be more
effective if the ejection is performed right after the successful Sudo invocation, as
the attacker can have sufficient grace period to match up the related parameters
for reusing the Sudo session ticket.

4 Attack Designs

This section presents the possible attack designs based on our examination. We
basically revisit strategies discussed in some previous works as well as related
communities around Sudo. Here we limit our environmental boundary to Linux
systems and confine to the privilege escalation case – i.e., from non-root to root –
for the sake of succinctness.

4.1 Attacker Model and Assumptions

We assume that an attacker is successful in breaking into a victim system and
gets the privilege of Sudoer via any possible scenarios except password sniff-
ing. The scenarios may include performing APT style attacks such as sending
malicious e-mail and/or performing watering hole scenarios [12,21]. By the first
stage attack, the attacker is successful in driving to download an infected upgrade
package, or any other methods to gain privilege of the victim account, so as to
execute shell commands without the knowledge of the password of that account.
The attacker’s goal here is achieving privilege escalation from the victim account
to the system root account. Real world attack campaigns may also have the sim-
ilar goal.

Sudo attack designs require such a strong assumption as it is not a server-
like remotely exploitable program. Rather, privilege escalation exploiting Sudo
might be the second stage goal for attackers within a local system. Moreover,
under this strong assumption, there would be alternative ways to get the root
privilege excluding Sudo involvement such as inducing to execute a fake version



Hooking Graceful Moments: A Security Analysis of Sudo Session Handling 49

pty1 pty2

Proxy
Object

bash A.
bash B.

SudoSudo

Ticket A : (pty1, bash A, UID=1000)
Sudo only accepts commands of the session with the ticket A.

Command injection

Command execution
in behalf of the attacker

No sudo session
established

Attacker
Sudoer
(victim)

IPC

Fig. 4. Shell proxy attack.

of Sudo. However, our aim is here to review the Sudo session handling issues,
therefore, the attack models of our interests inevitably involve Sudo.

Specifically, if the attacker successfully access the target victim shell with
any first stage attacks, the victim account should meet the following conditions:

– The account have read and write permissions in accessing local file system and
this is normally true in most cases.

– The account is included in the Sudoer group. This means that the account is
eligible to execute privileged shell commands with Sudo.

4.2 Shell Proxy Attack

Here we present a proxy style attack to invoke arbitrary shell commands with
root privilege. Figure 4 depicts the flow of shell proxy attack. The core idea
behind this attack is on compromising live Sudoer shell process so that make
the Sudoer shell process execute some commands of the attacker’s flavor. The
attacker may set up the shell monitor that detects successful Sudo command
invocations. The setup also includes the proxy executor that literally executes
attacker’s Sudo command. Whit this setup, the attacker’s commands can be
executed with root privilege bypassing tty ticket constraint.

In order to achieve shell proxy attack, the attacker must be able to inject
proxy code into the address space of the Sudoer shell process. This is basically



50 J.H. Jeong et al.

permitted as the shell processes of the attacker and Sudoer have same user ID.
There are a few techniques to perform code injection: the attacker can make use
of the debugger purposed system call (e.g., ptrace()) or the linker trick taking
advantage of the environmental variable (LD PRELOAD). The former enables the
attacker to inject proxy code directly and the latter might be used for the shared
object, which includes proxy code, to be loaded into the shell process of the
victim. In our test case, we first build a proxy shared object to deliver the
attacker’s commands as well as to execute them in behalf of the attacker. The
channel between the proxy object and the attacker can be set up with inter-
process communication (IPC) facility such as pipe [7].

The followings further explain how the attacker can inject the shared object,
which contains proxy functions, into Sudoer shell process.

Shared Object Injection with Ptrace System Call. The process tracing
system call (ptrace()) is like a swiss army knife for many hackers as it provides
rich interface to control over live processes considerably. With the ptrace(), one
can pause a process, change register values, and even patch data and/or code
part of the process. The daily use of debugging tools such as gdb and strace are
implemented on top of the ptrace() system call. Meanwhile, attackers are also
in favor of this facility to patch and/or inject malicious code/object.

As for injecting shared objects into a live process, there is a famous system
API function in Windows world: CreateRemoteThread(). Attackers can use
this function perform shared object injection very easily. On the other hand,
in Linux/Unix world, there is no such system call or function supported by
underlying OS or system libraries. However, there are some efforts to enable
shared object injection such as Jugaad [9] and hotpatch [14]. These works also
internally use ptrace() to inject shell code which eventually loads shared object
into target process.

Shared Object Injection with Linker Trick. In Linux systems, there is
a well known linker trick by which one can inject shared object into initiat-
ing process. The trick is supported by the linker (ld). It can be used with the
environmental variable LD PRELOAD that points to the path of shared object
which is loaded preferentially. This is widely used to extend features or to modify
behavior of pre-built application without re-compiling main executable.

In order to implant the proxy object into Sudoer shell, we modify the initial-
ization script of the shell, .bashrc in case of the shell program bash. Whenever
bash is started, by Sudoer login, .bashrc script in the Sudoer’s home directory
is read and the according initialization is applied for the bash process. Note
that most other shell program such as csh and ksh also deploy such initialization
script. By the attacker model of this work, the attacker can modify .bashrc file
as the shell session of the attacker is associated with the same user ID (uid) with
that of victim Sudoer.



Hooking Graceful Moments: A Security Analysis of Sudo Session Handling 51

1 i f [ −z ”$SUDO EXP” ] ; then
2 echo ” F i r s t execut ion o f bash”
3 export LD PRELOAD=/tmp/ l ib shproxy . so
4 export SUDO EXP=TRUE
5 bash
6 e l s e
7 echo ”Second execut ion o f bash”
8 unset LD PRELOAD
9 f i

Listing 1.1. Code snippet that loads our proxy object automatically when a bash
process is started.

In our attack setup, the code snippet in Listing 1.1, is inserted to .bashrc file
of the victim Sudoer. After that, as soon as the Sudoer logs in into the system,
two bash processes will be started in series: the first one will execute the second
bash by our code resulting in the injection of our proxy object specified with
LD PRELOAD (i.e., /tmp/libshproxy.so).

4.3 Ticket Reuse Attack

As explained in Sect. 3.3, Sudo session ticket is able to be reused, and there-
fore, Sudo session is also reusable under if successfully resolved. Let’s assume
that an attacker is targeting a just established Sudo session of the tty ticket
(SID, UID, TID, TIMESTAMP ), and then the Sudoer is logged out by oneself or
kicked out by the attacker.

In order to reuse the Sudo session, the attacker needs to resolve the con-
straints of each parameters of the ticket before the ticket expiration. As the
attacker has valid UID by the attacker model, the SID and TID should be
resolved to be successful in session reusing. Basically, the attacker can resolve
the two constraints by matching up the attacker’s shell environment with a sim-
ple brute force manner. The attacker repeats terminal process creation until the
values of the two parameters are matched up. During the match up procedure,
the SID and TID can be compared with the values obtained from results of ps
command invocation.

Resolving TID . TID is a minor number of pseudo terminal device and all
pseudo terminals have the unique TID for them. That is why the TID is used
as a index parameter for getting associated tty ticket. In fact, Sudo stores both
major numbers and minor numbers of pseudo terminal devices in the ticket
storage. It is not necessary to match up major number as all those values are
same. However, each pseudo terminal has unique minor number.

Since Linux system tries to assign the lowest value to TID like open() system
call’s fd assignment, we can predict the next TID value for the newly created
pseudo terminal. Therefore, an attacker is able to match up the TID constraint
by simply creating a new pseudo terminal after the shell process of victim Sudoer
is just exited (or forced to be exited). This approach guarantees that the attacker
will eventually get the same TID value for one of newly created terminals because
all the non-assigned values can be tried by the attacker.



52 J.H. Jeong et al.

Resolving SID . SID is a session ID determined by the process ID of session
leader. Sudo compares the current SID with the one in a given ticket and reject
any Sudo invocation if the SID does not match to prevent the class of session
hijacking attacks as well as session reuse attacks [18]. As the probability of having
the same session ID is 1

32767 in typical 32-bit systems, it is hard to reuse sessions
with manual Sudo tactics. However, a simple brute force approach – which is
similar with TID resolving – will also work for resolving the SID.

The domain of process ID is a finite totally ordered set < P,≤ > where P is
defined by {x | (1 ≤ x) ∧ (x ≤ 32767)} in 32-bit Linux systems. The process ID
assigning function f returns from the least element 1 and continues to increase,
by consecutive calls, until it reaches to the greatest element 32767. If the return
of f reaches to that value, then the next return value will roll over. Thus, the
attacker is able to iterate the whole process ID domain except the ID values
already assigned and the target ID value for SID will be matched up eventually.

A Brute Force Algorithm to Revive Sudo Session. Attackers can think
of the process ID assigning function f to be fork() system call in Linux sys-
tems. fork() creates a child process and a new process ID will be assigned to
the child. In order to resolve SID and TID constraints at the same time, attack-
ers can deploy forkpty() which is a combination of openpty(), fork(), and
login tty(). Thus, it has the ability to generate the values for process ID as
well as terminal ID. With the system call, attackers can try to perform the match
up process for both SID and TID.

With the forkpty() system call, we devise a simple brute force algorithm
(Algorithm 1) to resolve SID and TID constraints. At the first phase, TID resolv-
ing is performed with a simple brute force loop. If the target TID value is
obtained, it is forced to close the terminal immediately so that the same TID

value can be produced again in the very next forkpty() call. At the 2nd phase,
forkpty() is called repeatedly to get the targeting value for SID. When it
returns the right SID, the shell with the revived Sudo session will be ready.
Note that this algorithm will not fail unless one of the other processes coinciden-
tally pre-occupies the targeting values by assigning a new terminal or forking a
new process in the middle of the loops.

5 Experimental Evaluation

This section reports our evaluation results of the two attack designs – shell
proxy and ticket reuse attack – described in the previous section. To confirm the
security impacts of the attacks, we implemented a set of tools to realize the two
attacks and tested on a dozen of Linux systems. The Linux distributions were
selected by the popularity referencing the distrowatch web site [1].

5.1 Experiment I: Shell Proxy Attack

Shell proxy attack (Fig. 4) can be performed with the linker trick explained in
Sect. 4.2. One can build a shell proxy object, which is a basically dso with



Hooking Graceful Moments: A Security Analysis of Sudo Session Handling 53

Algorithm 1. Resolving SID and TID constraints.
SID: A target session ID.
TID : A target pseudo terminal ID.
fd : A file descriptor to communicate with the terminal of TID.

� 1st phase: try to resolve the TID first.
while true do

tid ← CreatePseudoTerminal();
if tid equals to TID then

ClosePseudoTerminal (tid);
break ;

� 2nd phase: here we have the valid TID, now resolve the SID.
while true do

(sid, fd) ← forkpty();
if sid > 0 then

if sid equals to SID then
return fd ;

else
close(fd);

else
� If the two constraints are matched up, child process invokes execve()

to make the shell environment for reusing Sudo ticket.
if sid equals to SID then

execve(bash);

position independent code (PIC) option enabled. When the proxy object is
loaded into a shell process of interest, it first creates a thread to perform proxy
activities while the host (shell) process is alive. The role of our proxy function is
simple: it just monitors a pipe which is created to receive attacker’s shell com-
mands. If a command is pended to the pipe, the monitor just executes it by
forking a child process. We also made a tiny commander, named as fwd, which
actually pushes the monitored shell commands into the communication pipe.

On completion of the attack setup, now we can launch shell proxy attack just
by waiting victim Sudoers. Once a Sudoer logs in into the system under test, the
proxy object is loaded into the Sudoer’s shell process. Now if the Sudoer executes
a root shell command “sudo id” passing through successful password authenti-
cation (Fig. 5(a)), the attacker is also able to execute the same command in the
different terminal without password authentication (Fig. 5(b)). To be practical,
the very first forwarded shell command might be the one for being a root shell
session so as to get the whole control of the system without requiring no more
shell proxy attack stages.

Te investigate the possible attack deployment range, we have conducted the
same experiment described above on some popular Linux distributions (Table 1).



54 J.H. Jeong et al.

Fig. 5. After the victim user’s sudo execution in terminal (a), the attacker placed in
terminal (b) is also successful in invoking sudo ID command indirectly via fwd.

Table 1. The results of shell proxy attack (sorted by the distrowatch hit rank).

Distribution Default Sudo version Process protection Vulnerable?

MintOS Cinnamon 1.8.9p5 ptrace scope yes

Ubuntu 15.10(stable) 1.8.15 ptrace scope yes

Ubuntu 15.04(stable) 1.8.9p5 ptrace scope yes

Debian 7(stable) 1.8.5p2 none yes

Debian 8(testing) 1.8.10p3 none yes

Debian 8(unstable) 1.8.11p2 none yes

OpenSUSE 13.2 1.8.10p3 none yes

Fedora Core 21(stable) 1.8.8 none yes

Fedora Core 22(unstable) 1.8.12 ptrace scope yes

CentOS 7.0 1.8.6p7 none yes

RHEL 7.1 1.8.6p7 none yes

We could be successful in privilege escalation with shell proxy attack for all the
distributions we have tested.

5.2 Experiment II: Ticket Reuse Attack

Based on the attack design described in Sect. 4.3, we have performed ticket reuse
attack on the various versions of Sudo. Here we show our experimental results
to answer the two questions: (1) whether it is possible to resolve constraints in
Sudo session ticket, and (2) if so, whether attacker is able to finish resolving
constraints assigned to session ticket within limited grace period.

Resolving Ticket Constraints. In order to reuse a session ticket, an attacker
should be able to resolve all the constraints of the ticket during the grace period
defined with TIMESTAMP . It would be sufficient time if Sudoer exists or is kicked
out from one’s shell session just after invoking a valid Sudo command. Otherwise,
it depends on the remaining time.

To perform constraint resolving, we built a simple brute force program reflect-
ing Algorithm 1 and applied the program for various Sudo versions compiled from



Hooking Graceful Moments: A Security Analysis of Sudo Session Handling 55

Table 2. Our experimental results for resolving Sudo ticket constraint (S: Session ID,
T: Terminal ID, U: User ID, TS: Timestamp, G: Group ID, CT: Creation Time of
PTY).

Version Release date tty ticket Resolved?

1.8.16 2016-03-17 (S, T, U, TS) yes

1.8.15 2015-11-01 (S, T, U, TS) yes

1.8.12 2015-02-09 (S, T, U, TS) yes

1.8.10 2014-03-10 (S, T, U, TS) yes

1.8.9 2014-01-06 (S, T, U, G, TS) yes

1.8.6 2012-09-04 (S, T, CT, TS) partial

respective official source archives. Table 2 shows our results. We could resolve
ticket constraints completely with the version 1.8.7 and above. Meanwhile we
were not fully successful with the version 1.8.6 and below. Especially matching
up the CT constraint, which is the creation time of pseudo terminal, was not
made. In order to match up the CT constraint, attackers should be able to con-
trol system local time, however, it deviates from our assumptions. Overall, ticket
reuse attack is valid for the most recent versions of Linux distributions as they
mostly deploy the vulnerable versions. Note that CentOS and RHEL systems
with the major version 7 are not affected as those distributions still stay with
Sudo version 1.8.6. However, at the time of this writing, we conjecture that it
will be upgraded to some of the vulnerable versions.

As we mentioned in Sect. 2, the parameter constitution of Sudo ticket has
been revised for a long time. The current constitution is concretized after the ver-
sion 1.8.10 and this version newly introduces the ppid ticket. This paper only deal
with the tty ticket case although we also have finished our tests for ppid ticket
case. The results were quite similar in many aspects with the tty ticket case,
thus, we do not include the ppid ticket results due to the paper limit.

The Feasibility of Reusing Session Ticket. Even though one can resolve
a given ticket constraints, it is useless if it takes too much time exceeding the
limited grace period. It takes more time to resolve SID than TID since the domain
of SID is greater than that of TID. Furthermore, attackers need to iterate the
whole domain of SID in the worst case. The probabilities of successful reusing
both tty ticket and ppid ticket are highly dependent on the size of SID domain
and the remaining time until session expiration.

We have analyzed the size of SID domain for 32-bit and 64-bit Linux systems
and it turns out that it was 32768 for 32-bit and 131072 for 64-bit systems
respectively. As having larger domain size, attackers need more time to resolve
ticket constraints in 64-bit systems.

To measure the constraint resolving time, we have performed our experiments
on a virtual machine which has the specification of 2.7 GHz Intel Core i7 and



56 J.H. Jeong et al.

Table 3. Sudo vulnerabilities reported in the last 5 years

ID Score Details

CVE-2014-0106 6.6 Improper environment variable checking in env reset

CVE-2013-2777 4.4 Improper controlling terminal validation

CVE-2013-2776 4.4 Improper controlling terminal validation

CVE-2013-1776 4.4 Improper controlling terminal validation

CVE-2013-1775 6.9 Bypass intended time restriction by setting the system clock

CVE-2012-3440 5.6 Allows overwriting arbitrary files via a symlink attack

CVE-2012-2337 7.2 Improper support of configurations that use a netmaks syntax

CVE-2012-0809 7.2 Format String Bug. Allows local user to execute arbitrary code

Bug #87023 - Bypass tty ticket by revisiting closed pseudo terminal

2 GB RAM. Our experiment results show that it takes no more than 20 s in a
32-bit system. With a 64-bit system, we could iterate whole SID domain within
80 s in our implementation. This means that we can resolve ticket constraints if
the remaining time of grace period is greater than, roughly, 2 min in worst case.

However, attackers can set up an attack environment so as not to run the
1st phase of Algorithm1 by forcibly kicking out Sudoer as soon as the valid
Sudo session is detected. With such tactics, the brute force can be more feasi-
ble. Unfortunately the 2nd phase loop is hard to be eliminated due to frequent
background process launchings and the loop iteration is required in most cases.

In Linux systems, the size of SID domain can be tuned as it is a kernel para-
meter (/proc/sys/kernel/pid max). This kernel parameter can influence on
the capability of Algorithm 1. In our test, if we set the kernel parameter greater
than 451,000, then the constraint resolving iteration could not be completed
until session expiration. However, note that the default value of the parameter
rarely changed and most Linux distributions retain original value encoded in
Linux kernel source code.

6 Related Work

6.1 Sudo Vulnerabilities and Fixes

Since the year 1999, several Sudo vulnerabilities have been reported and we list
the related bug report items of the recent years in Table 3.

Bug #87023 [13] discussed the possibility of Sudo session reuse on tty ticket
with reusable TID which is of previously closed pseudo terminal. As the inves-
tigated Sudo version (1.6.8) checks only TID and UID, it is possible to reuse
tty ticket if one can reopen a terminal which is associated with the previously
used TID before session expiration. This bug has been dealt with by introduc-
ing a new constraint, i.e., the creation time of pseudo terminal (CT ). We think
that this fix trial can not effectively counter ticket reuse attack as the creation
time of real tty is always same after system boot up. Furthermore, attackers



Hooking Graceful Moments: A Security Analysis of Sudo Session Handling 57

may roll back the system time by exploiting ntp vulnerabilities [15] to avoid the
constraint. Interestingly, the CT constraint is omitted from the version 1.8.9.

CVE-2012-0809, CVE-2012-2337, and CVE-2012-3440 are caused due to
improper code implementation. In such cases, the respective code snippets were
patched. CVE-2013-1775 is about bypassing ticket constraint in which clock
resetting technique is introduced [17]: when a user issues sudo-k to expire one’s
ticket, the time-stamp is set to the UNIX epoch time value. If an attacker can
reset the time-stamp to that value, then the attacker also can run Sudo com-
mand with escalated privilege without authentication. This vulnerability has
been fixed in a way of ignoring timestamp of the epoch value instance.

Among the assigned items, CVE-2013-1776, CVE-2013-2776, and CVE-2013-
2777 were related to session handling problems. These are basically the same vul-
nerability; namely, these have been discriminated because of differently affected
versions. These items are related to ticket constraint avoidance issue in where
terminal device ID spoofing technique is involved. This issue also has been fixed:
session ID is included into the ticket data structure. Since attacker can not
spoof his or her session ID, the applied fix is on right way to defeat the some ID
spoofing attacks. However, it is possible to reuse ticket by restoring terminal ID
and session ID at the same time conducting brute-force attack and, in the last
section, we showed the attack setup is realistic through our experiments.

Sudo have been revised to deal with session hijacking problem. Before the
version 1.7.3, Sudo does not enable tty ticket by default and which means that
one ticket is valid for all of terminal instances. An attacker, thus, could gain root
privilege when an user establishes Sudo session. To address this problem, Sudo
enables tty ticket enforcing by default after that.

Another notable fix against ticket reuse attack is also made. Before the ver-
sion 1.8.6, ticket does not includes SID to classify controlling terminal devices.
Since the lack of SID, an attacker is able to hijack the Sudo session if the attacker
can spoof any valid TID. A related work [18] described the possible TID spoofing
issue in which techniques of redirecting standard file descriptors were presented.
To deal with this problem, after the version 1.8.6, Sudo ticket contains SID and
both TID and SID should be matched.

6.2 Works on Sudo Session Handling Issues

Sudo Session Hijacking. Napier discussed the issues of least privilege in
using some automated tools including Sudo [20]. Especially, he pointed out the
improper Sudo session handling: a single Sudo ticket can be used for multiple
terminal instances and a established Sudo session can be reusable after the asso-
ciated Sudoer has logged out. Before version of 1.7.3, Sudo does not enables
tty ticket policy by default. An user, thus, could invokes privileged command
over all instance of terminal after one valid session is established. Before version
of 1.8.6, tty ticket does not contain session ID. An attacker, thus, could reuse
ticket by login same terminal.

Authentication Bypass Using Terminal ID Spoofing. Castellucci pre-
sented that the use of ttyname() could lead to the potential bypass of the



58 J.H. Jeong et al.

tty tickets constraints [18]. Sudo deploys ttyname() function to discriminate
among terminal devices. However, the function accepts file descriptors as inputs
for its functionality. If an attacker is able to manipulate the mappings between
file descriptors and active terminal devices, he or she can bypass the constraints
on tty ticket. This vulnerability is assigned to CVE-2013-1776.

Environmental Variable Injection. Macke reported that the env reset
option is disabled in Sudoers file of Sudo versions until 1.8.5 [19]. When the
option is disabled, it is not possible to block out all dangerous environment vari-
ables. By this weakness, an attacker could deploy the notorious LD PRELOAD
environmental variable to execute arbitrary commands with escalated privilege.
This vulnerability is assigned to CVE-2014-0106. As a workaround, the recent
version of Sudo deploy the proc file system as well as sysctl() instead of relying
on ttyname().

Concerning the well-known weaknesses that we discussed above, the latest
version of Sudo (1.8.16) activates tty ticket, by default, to prevent the execution
of Sudo from different terminal devices. Moreover, the data structure of session
ticket has been revised to contain POSIX session ID to prohibit the known ticket
reuse attack. Although such mitigation efforts have been discussed and patched
in the related communities, we have shown that it is still possible to override
Sudo session by elaborating the attack strategies.

6.3 Possible Mitigations

Disabling the concept of grace period in Sudo session may require consecutive
authentication activities for every command invocations and that will lead to
usability sacrifice. To sustain the current usage of Sudo, privilege escalation
with the attack designs shown in this paper should be mitigated in some ways.

To protect Sudo from a class of shell proxy attacks, we need to disable code
injection facilities, such as ptrace, more radically with the help of kernel layer
component: e.g., applying ptrace scope to any launching Sudo instances. It may
be difficult to protect code injection solely with user level solutions. Moreover,
it is necessary to supplement invalidating procedure of the used tickets so as to
properly counter ticket reuse attacks. For example, introducing some unrecover-
able variables, such as nonce values or session creation time, into session ticket
items may severely hinder attacker’s reconstruction of valid ticket constraints.

Overall, it is certain that Sudo itself does not have whole responsibility to
protect attacks for privilege escalation. Because it is quite difficult to protect
Sudo itself especially against attacks involving code injection. Moreover, privilege
information stored in places accessible by user level process may be susceptible
to be recycled and that leads to possible session reuse. Fundamentally, it would
be more appropriate to provide a facility for transient privilege switchover as a
OS service.



Hooking Graceful Moments: A Security Analysis of Sudo Session Handling 59

7 Conclusion

In this paper, we presented our security analysis of the vastly used utility pro-
gram, Sudo, for daily uses to perform some administrative tasks in UNIX/Linux
systems. We have conducted empirical source code auditing as well as runtime
testing, and noticed that there are still session handling problems in Sudo: dually
privileged session, process subject eligibility, and reusable ticket problems. Based
on the recognition of these problems, we described the two attack designs to
demonstrate effective attacks to hijack live Sudo session so as to achieve priv-
ilege escalation. The attack strategies are basically based on previous studies,
and we have revisited to make concrete example cases. We have also conducted
experiments and confirmed that the attack designs are feasibly deployable by
imaginary attackers if they can access to a victim Sudoer shell process but with-
out knowing authentication password.

Possible future work may include enhancing the security of Sudo session
handling scheme to mitigate attacks demonstrated through this work possibly
reflecting our remarks in Sect. 6.3. Moreover, another approach would involve
designing a new scheme to support transient privilege escalation in more safe
way replacing the current session handling scheme, and the effort should sustain
both usability as well as security.

Acknowledgments. We would like to thank Kaan Onarlioglu, Erwan Le Malécot,
and the anonymous reviewers for their suggestions and comments.

References

1. Distrowatch page hit ranking. http://distrowatch.com/dwres.php?resource=
popularity

2. Non-interactive SSH password auth. http://sourceforge.net/projects/sshpass/
3. Selinuxdenyptrace (fedora features). https://fedoraproject.org/wiki/Features/

SELinuxDenyPtrace
4. Sudo main page. http://www.sudo.ws/
5. Sudoers manual. http://www.sudo.ws/sudoers.man.html
6. Yama, limux security module. http://www.kernel.org/doc/Documentation/

security/Yama.txt
7. pipe(7) linux user’s manual (2005)
8. credentials(7) linux user’s manual (2008)
9. Jugaad: Linux Thread Injection Kit. Defcon19 (2011)

10. Morgan, A.G., Kukuk, T.: The linux-pam system administrator’s guide Ver. 1.1.2
(2010)

11. Kerrisk, M.: The Linux Programming Interface. No Strach Press, San Francisco
(2010)

12. Kindlund, D.: Holyday watering hole attack proves difficult to detect and defend
against. ISSA J. 11, 10–12 (2013)

13. kko: sudo option “tty tickets” gives false sense of security due to reused pts numbers
(2007). https://bugs.launchpad.net/ubuntu/+source/sudo/+bug/87023

14. Kumar, V.N.: Hotpatch (2013). http://selectiveintellect.com/hotpatch.html

http://distrowatch.com/dwres.php?resource=popularity
http://distrowatch.com/dwres.php?resource=popularity
http://sourceforge.net/projects/sshpass/
https://fedoraproject.org/wiki/Features/SELinuxDenyPtrace
https://fedoraproject.org/wiki/Features/SELinuxDenyPtrace
http://www.sudo.ws/
http://www.sudo.ws/sudoers.man.html
http://www.kernel.org/doc/Documentation/security/Yama.txt
http://www.kernel.org/doc/Documentation/security/Yama.txt
https://bugs.launchpad.net/ubuntu/+source/sudo/+bug/87023
http://selectiveintellect.com/hotpatch.html


60 J.H. Jeong et al.

15. Malhotra, A., Cohen, I.E., Brakke, E., Goldberg, S.: Attacking the network time-
protocol. IACR Cryptology ePrint Archive 2015, p. 1020 (2015). http://dblp.
uni-trier.de/db/journals/iacr/iacr2015.html#MalhotraCBG15

16. Miller, T.C.: Sudo in a nutshell. http://www.sudo.ws/sudo/intro.html
17. Miller, T.C.: Authentication bypass when clock is reset (2013). http://www.sudo.

ws/sudo/alerts/epoch ticket.html
18. Miller, T.C.: Potential bypass of tty tickets constraints (2013). http://www.sudo.

ws/sudo/alerts/tty tickets.html
19. Miller, T.C.: Security policy bypass when env reset is disabled (2014). http://www.

sudo.ws/sudo/alerts/env add.html
20. Napier, R.A.: Secure automation: achieving least privilege with SSH, Sudo, and

Suid. In: Proceedings of the 18th USENIX Conference on System Administration
(LISA), pp. 203–212. USENIX Association, Berkeley (2004)

21. O’Gorman, G., McDonald, G.: The elderwood project. Technical report, Symantec
(2012)

http://dblp.uni-trier.de/db/journals/iacr/iacr2015.html#MalhotraCBG15
http://dblp.uni-trier.de/db/journals/iacr/iacr2015.html#MalhotraCBG15
http://www.sudo.ws/sudo/intro.html
http://www.sudo.ws/sudo/alerts/epoch_ticket.html
http://www.sudo.ws/sudo/alerts/epoch_ticket.html
http://www.sudo.ws/sudo/alerts/tty_tickets.html
http://www.sudo.ws/sudo/alerts/tty_tickets.html
http://www.sudo.ws/sudo/alerts/env_add.html
http://www.sudo.ws/sudo/alerts/env_add.html

	Hooking Graceful Moments: A Security Analysis of Sudo Session Handling
	1 Introduction
	2 Background
	2.1 Establishing Sudo Session
	2.2 Session Tickets

	3 Problems of Sudo Session Handling
	3.1 Dually Privileged Session
	3.2 Too Wide Subject Eligibility
	3.3 Reusable Ticket

	4 Attack Designs
	4.1 Attacker Model and Assumptions
	4.2 Shell Proxy Attack
	4.3 Ticket Reuse Attack

	5 Experimental Evaluation
	5.1 Experiment I: Shell Proxy Attack
	5.2 Experiment II: Ticket Reuse Attack

	6 Related Work
	6.1 Sudo Vulnerabilities and Fixes
	6.2 Works on Sudo Session Handling Issues
	6.3 Possible Mitigations

	7 Conclusion
	References


