
Privilege escalation attack through address space

identifier corruption in untrusted modern processors

Michail Maniatakos

Electrical and Computer Engineering Department

New York University Abu Dhabi

Abu Dhabi, UAE

michail.maniatakos@nyu.edu

Abstract—Privilege escalation attacks are one of the major
threats jeopardizing microprocessor operation. Such attacks
aim to maliciously increase the privilege level of the executed
process, in order to access unauthorized resources. Modern
microprocessors include complex memory management modules,
with various different privilege levels and numerous ways to
change the privilege level. In this paper, we present a malicious
modification in the microprocessor process switch mechanism.
Contrary to recent work presented in literature, the modification
can be deployed during manufacturing process, as it consists
of a trivial addition of a gate or wire sizing. The minimal
footprint, however, comes at the cost of small window of attack
opportunities. Experimental results show that a modification-
aware application can gain escalated privileges within a few
thousand clock cycles. Moreover, the malicious code has been
added to SPEC benchmarks, and we show that the modified
benchmarks can get escalated privileges before the end of typical
workload, with minimal performance overhead.

I. INTRODUCTION

Modern microprocessors are ubiquitously deployed in a

wide range of applications: From personal computers, laptops

and cellphones, to space and automotive applications. There-

fore, ensuring the integrity of a microprocessor is of critical

importance, as security breaches can have catastrophic impact.

Microprocessor designers incorporate extended security fea-

tures in latest designs, in an effort to protect the system from

external attacks. Due to the globalized supply chain, however,

the final design may be tampered with and not satisfy the

security properties specified by the designers.

Due to the vast choice of intellectual property (IP) cores,

circuit designers and system integrators are highly liberated

from the tedious work to design functional modules but

only to focus on the development of system architectures.

However, the widely usage of IP cores also breeds new security

problems. Before arriving at the hand of the system integrator,

an IP core has traveled through many stages and is modified

by various design houses [1]. There are plenty of opportunities

for attackers to insert malicious logic in the IP core throughout

the whole IP transaction process. Such modifications, known

as hardware Trojans, are purportedly done without the knowl-

edge of the IP consumer. The additional functionality can be

exploited by a perpetrator to cause catastrophic results if the

IP core is embedded into mission-critical device.

Especially in the domain of modern microprocessors, as dis-

cussed previously, malicious modifications can have extensive

impact: The dramatic increase of mobile devices, consisting of

high-performance, multi-core microprocessors, provide a wide

radius of attack impact. Due to the microprocessor complexity,

however, introducing malicious modifications is a very tedious

process, as microprocessor designs are very compact with very

limited, if any, area for malicious hardware. Therefore, it is

very difficult to maliciously insert a significant amount of

hardware at the design stage of the microprocessor.

In this paper, we present a malicious modification with neg-

ligible overhead. Contrary to recent work discussed in Section

II, this modification can be applied during the fabrication stage

of the microprocessor, as it can be as simple as an addition of

a buffer or changing the size of a wire. In order to stage the at-

tack, a malfunction is introduced on the memory subsystem of

the microprocessor, allowing a compromised process to access

unauthorized memory locations and gain escalated privileges.

The attack is extensively discussed in Section III. The rest

of the paper is organized as follows: Section IV presents the

experimental platform used to demonstrate the effectiveness

of the attack. As due to the negligible overhead, there is

limited control over the attack, experimental results presented

in Section V corroborate that compromised processes can gain

escalated privileges before the end of their execution. Finally,

conclusions and future directions of the presented work are

discussed in Section VI.

II. RELATED WORK

Malicious modification insertion and detection has risen as

a contemporary topic of interest. An extensive taxonomy of

modifications (called “Hardware Trojans” appears) in [2]. Side

channel attacks, such as wireless channels, have also been

extensively discussed [3], [4], [5] for integrated circuits (ICs).

Nonetheless, there has been a limited amount of work targeting

commercial, high performance microprocessors.

A recent competition (Cyber Security Awareness Week -

CSAW [6]) targeted an i8051 microprocessor executing a cryp-

tographic algorithm. The winners presented a set of malicious

modifications that allow the attacker to execute unauthorized

code [7]. As the competition targeted an old microprocessor

and no operating system was used, the solutions can not be

easily ported to latest commercial microprocessors.

The authors of [8], present a microprocessor modification

targeting advanced systems. The authors insert extra hard-

161978-1-4673-6040-1/13/$31.00 c©2013 IEEE

ware during the design stage, providing the attacker with an

extended stage of attack (login backdoor, stealing password

etc.). The area overhead, however, is a few thousand gates (the

minimum overhead for login attacks is 1,341 gates). Therefore,

due to this overhead it can not be applied during the fabrication

stage of the microprocessor and inserting the modification

requires extensive access to the design internals.

A public-key encryption circuit attack has been presented

in [9]. The authors attack a circuit by turning off portions

of the circuit, enabling a key-leaking attack. The malicious

hardware still incurs a non-negligible overhead of 406 gates,

and can only applied to RSA-specific designs.

The concept of privilege escalation attacks has been ex-

tensively studied in the software domain [10]. The dramatic

increase of mobile devices has resurfaced privilege escalation

problems as a problem of interest: The attackers exploit

programming or hardware bugs to stage privilege escalation

attacks [11]. These attacks, however, target embedded proces-

sors and rely on existing bugs.

III. PRIVILEGE MODE ESCALATION ATTACK

In this section we discuss the prerequisites of the privileged

mode escalation attack, present how this attack could be staged

in a modern microprocessor, discuss potential payloads and

also present the limitations of the presented attack.

A. Attack prerequisites

Staging a privilege mode escalation attack in a modern

microprocessor, through address space identifier corruption,

requires:

• Distinct privilege levels, such as kernel, supervisor, user

etc. Different privilege levels enhance the security of the

microprocessor, as a limit is imposed on process resource

usage. During normal operation, the privilege level can be

modified only with permission from the operating system.

• Existence of address space identifier, as part of the in-

struction translation lookaside buffer (I-TLB). An address

space identifier points to the virtual space allocated for a

specific process, and it allows context switching without

the need for TLB flush. As TLB flushes are expensive,

use of address space identifiers greatly increase the per-

formance of the microprocessor.

Almost all modern microprocessors implement the two

aforementioned features. Privilege levels first appeared with

the 80386 [12] in the x86 architecture, with 4 distinct privilege

levels (“Rings”): Ring 0 has the highest privileges (kernel

mode), while Ring 3 has the least privileges (application

mode). Faults in a ring affect only rings of the same or

less privileges. Similarly, the latest Alpha microprocessors

also implement 4 privilege levels [13]: Kernel, executive,

supervisor and user.

As for the address space identifier, the Intel Pentium Pro

introduced the page global enable (PGE) flag, that can be used

to avoid TLB flushes during context switch. The Alpha 21264

introduced a similar identifier, named Address Space Number

(ASN), where only TLB entries that match the process ASN

would be considered valid. Furthermore, both Intel and AMD

(starting with the Nehalem VT-X [14] and SVM [15] respec-

tively) implemented a similar feature, where the address space

tag is built in the TLB and dedicated hardware check tags for

validity. This greatly increased the performance of the x86

architecture, as TLBs are designed to operate completely in

hardware, with extremely low latency. Thus, the prerequisites

for the presented attack exist in the latest commercial modern

microprocessors, providing a common stage of attack.

B. Staging the attack

In this paper, we focus on attacks that can be deployed dur-

ing the fabrication stage of the design. Thus, any modifications

should consist of simple gate alterations or interconnection

tampering, in order to introduce stuck-at, delay, coupling

faults etc. As such faults could potentially create catastrophic

effects during microprocessor deployment, multiple, no over-

head modifications may be required in different parts of the

microprocessor.

An example of an address space identifier corruption ap-

pears in Fig. 1, where the I-TLB of the Alpha 21264 micro-

processor is presented. In this case, a delay fault is introduced

at the most significant bit of the address space identifier (called

adress space number - ASN in the Alpha). A delay fault can be

introduced during fabrication by modifying the interconnection

(through wire sizing) between the memory elements storing

the next address space identifier, and the location where the

comparison occurs. Alternatively, a buffer between the two

aforementioned locations can be inserted.

Given the maliciously inserted delay fault, the most sig-

nificant bit of the address space identifier may not capture

the intended value during process context switch and will

end up corrupted. For example, when the process to be

executed has an identifier of 128 (1000000, given 8-bit

address space identifiers), then a delay fault will convert the

identifier to 0 00000000, process ID 0 is reserved for kernel

processes). Therefore, the next instruction of the modification-

aware process will use a different address space than the one

allocated by the operating system (Section III-D discusses

the potential limitations of the attack). Thus, if the next

instruction is a request for elevated access, or a carefully

crafted memory store instruction that modifies the kernel

structures, then a modification-aware process can access and/or

write to unauthorized memory address space.

C. Potential payloads

Once the process can execute an instruction in an unau-

thorized memory address space, there are different ways to

escalate the process privileges. We should note that the options

here are heavily instruction-set and architecture dependent;

thus, the attacker should have some knowledge about the

maliciously modified platform.

The most straightforward way to escalate privileges is to

execute an instruction that serves this purpose. Since the

microprocessor address space is momentarily corrupted and

matches that the process to a different address space, it would

162 2013 8th International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS)

Fig. 1. Alpha 21264 memory structure [16]

grant access to the resources belonging to the process under

attack. If this process is a kernel process, then the attacker can

get kernel privileges and compromise the system.

However, not all instruction set architectures include in-

structions that directly elevate privileges. Privilege escalation

usually occurs in an as-needed basis. Therefore, another way

to attack the system to gain escalated privileges is to write

directly to the kernel structures. These unauthorized accesses

alter the privileges of the attacking process, masking it as a

kernel process or altering the allocated virtual address space.

This type of payload requires extensive knowledge of the

operating system kernel, as well as dynamic information of

the attacking process.

Finally, another way to escalate privileges is to overwrite

locations where there is a priori known information. Examples

of such information include interrupt handlers, shared libraries

and operating system specific code. This payload requires

information about the kernel, but it is independent of where

the attacking process is located in memory. Because of this

flexibility, we will use this type of payload to gain escalated

privileges, as presented in Section IV.

D. Attack limitations

With no-overhead malicious modifications, comes very lim-

ited control of the attack. Specifically, there are a number

of conditions that need to be satisfied in order to be able to

successfully deliver a privilege escalation attack:

1) The attacking process must receive a specific process ID.

2) When the address space identifier is corrupted, the “new”

identifier must belong to a process with escalated privi-

leges.

3) Context switch should occur directly before that one

instruction that will attack the system.

Therefore, the attack will take place in a non-deterministic

time. Experimental results presented in Section V corroborate

that most of the attacks can go through within a few thousand

cycles.

A problem with the presented attack is that modification-

unaware processes that access the memory directly after

context switch may end up with corrupted memory contents.

However, this is rare, as context switch usually happens during

I/O access and in modern operating systems process usually

do not use the whole quantum [17]. Indeed, experimental

results presented in Section V show that the workload used

was not corrupted. However, as this could eventually lead to

problems in other configurations and operating systems, we are

currently working on masking the effect of different address

space identifiers in modification-unaware processes.

IV. EXPERIMENTAL SETUP

In this section we discuss the specific parameters of the

presented work.

A. Microprocessor model

The test vehicle for our study is the Alpha 21264 micro-

processor. The block diagram of the Alpha 21264 appears

on Fig. 2. It features aggressive speculative and out-of-order

execution, with a peak execution rate of six instructions per

cycle. The 3-stage fetch unit can bring up to four instructions

at any given cycle.

The DTLB structure of the Alpha 21264 is presented

in Fig. 1. The DTLB contains 128 entries and it is fully

associative. The address space number (ASN) is the address

space identifier that ensures that the TLB is not flushed on a

context switch. The translation begins by sending the virtual

address to all tags. Once a (valid) match is identified, it goes

2013 8th International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS) 163

Fig. 2. Block diagram of Alpha 21264

through a 128:1 multiplexor, augmented with the physical page

frame to form the final physical address. The Alpha DTLB also

contains a protection permission (“Prot” in Fig. 1) and valid

(“V”) bits.

B. Attack payload

As discussed in Section III-C, once the address space iden-

tifier is corrupted the attacker can utilize different options in

order to gain escalated privileges. In this paper, we modify the

the operating system-specific special kernel functions (called

Privileged Architecture Library code - PALcode in the Alpha

instruction set architecture).

Alpha PALcode provides a hardware abstraction layer that

can be used to implement hardware special functions, such as

[18]:

• Instruction that require complex sequencing

• Translation buffer management (flush/load)

• Interrupt and exception dispatching etc.

The Alpha architecture lets these functions be implemented

in standard machine code, that is resident in memory. Fig.

3 presents the physical memory layout of the machine with

PALcode installed in a location defined by the PAL BASE

register. This register is written by the operating system, and is

known a priori for each operating system. Because PALcode is

resident in main memory, not all physical memory is available

to the operating system code.

Since the PALcode resides in main memory, as soon as the

attacking process can access the kernel memory address space,

it can overwrite part of the PALcode. As only one instruction

can be executed in the foreign address space, a potential

attack mechanism is to abruptly return to the user process

while still in kernel mode. This is presented on the right hand

side of Fig. 3: The attacking process overwrites an instruction

Fig. 3. Alpha 21264 PALcode entry points into memory

belonging to the execution area of the PALcode instruction

“bugchk”; the new instruction is a simple return. Therefore,

when the “bugchk” instruction is executed, the system will

return to the user code, still in PALcode environment (in non-

malicious code, a special instruction is used to return from

PALcode). The PALcode environment has the most privileges

in the system, as it has complete control of the machine state

and allows all functions of the machine to be controlled. Thus,

after the malicious instruction is installed after the address

space identifier corruption, a simple “bugchk” instruction call

suffices to gain escalated privileges.

The “bugchk” instruction was specifically chosen for two

reasons:

• It is an unprivileged CALL PAL instruction, therefore it

can be invoked by any process.

• It is only used for program debugging, so it will not be

executed during normal system operation. Any software

attempting to execute it will receive an invalid response.

C. Experiment flow

Gem5 [19] is the functional simulator used to implement

and evaluate the presented attack. Gem5 is a modular, discrete

event driven computer system simulator platform written in

C++. Gem5 can execute an unmodified linux kernel, with full

device support, at very high speeds.

The linux kernel used in this study is the 2.4 version,

optimized for the alphaev67 platform (codename for the Alpha

21264A, a smaller version of the Alpha 21264). The linux

kernel source code has been slightly modified to match the

164 2013 8th International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS)

ASN to the process IDs. This modification allows the attacking

process to identify their ASN by reading the OS-assigned

process ID. Ongoing work explores avoiding this modification

by maintaining a ASN to process ID translation table.

Similar to the BIOS functionality in the x86 architecture,

a firmware layer is needed to correctly initialize the machine

state. Therefore, we use the Alpha Linux Miniloader (MILO)

[20], in order to load the linux kernel. MILO builds the

page tables, turns on virtual addressing, installs PALcode and

initializes the linux kernel.

Two different types of workload are utilized for demonstrat-

ing privilege escalation attacks in the Alpha 21264:

• Synthetic workload, that consists of infinite loops of

writing to the target PALcode instruction location (as

described in Section IV-B) and executing the “bugchk”

instruction that will eventually provide escalated privi-

leges to the attacker.

• SPEC2000 benchmarks, where the attacking code de-

scribed previously is injected in random locations of

the algorithm. Therefore, while the SPEC benchmark

executes its useful workload, an continuous privilege

escalation attack is taking place in the background. Six

different benchmarks, namely bzip2, mcf, gap, gzip, cc

and parser, are used in this study.

The linux kernel, MILO firmware, the synthetic workload

and the SPEC2000 benchmarks were cross-compiled for the

Alpha using the crosstool-NG tool [21].

V. RESULTS AND DISCUSSION

This section discusses the timing perturbations of the pre-

sented attack for the synthetic and the SPEC2000 benchmarks.

As discussed in Section III, there is no expected area or power

overhead of the malicious modification.

A. Time to gain privileges

Fig. 4 presents the number of clock cycles needed for syn-

thetic benchmarks to get escalated privileges, for 20 different

trials. For clarity, the trials are sorted in decreasing order

of clock cycles. As a reminder, a synthetic benchmark only

contains the necessary code to alter the PALcode code and

successfully execute a “bugchk” instruction. Fig. 4 shows that

if the benchmark is the only (user) process in the system,

then a privilege escalation attack can take place within a few

thousand cycles. As more processes are added to the system

competing for the CPU (10 processes for medium workload

and 100 for heavy workload), the number of clock cycles

needed to successfully deliver the attack greatly increases, as

the process runs less often in the microprocessor. An interest-

ing observation though, is that adding an order of magnitude

more processes (100 instead of 10) does not significantly

increase the number of clock cycles before privilege escalation.

This is attributed to the fact that with both medium and heavy

workload there is very intensive switching, so the synthetic

workload has many windows of opportunities to deliver the

attack.

Fig. 4. Clock cycles to gain escalated privileges for synthetic benchmarks
(20 trials)

Fig. 5. Clock cycles to gain escalated privileges for SPEC2000 benchmarks
(average of 20 trials), for given performance overhead

B. SPEC benchmarks performance overhead

The number of extra instructions maliciously added to an

existing benchmark affect how many clock cycles are required

to receive escalated privileges. Fig. 5 presents the average

number of clock cycles needed to deliver the attack for differ-

ent number of performance overhead (i.e., added instructions),

for 20 trials. Performance overheads of approximately 10%,

20% and 30% are examined.

As expected, there is a linear decrease of the time the attack

successfully takes place for increasing performance overhead,

for all given benchmarks. It should be noted that the average

time-to-attack figures vary for different benchmarks; this is

attributed to different numbers of I/O accesses. Since a few

thousand cycles is a negligible fraction of time in real-world

attack deployment, the performance overhead of the SPEC

benchmarks can be sustained in very small percentages.

2013 8th International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS) 165

Fig. 6. Clock cycles to gain escalated privileges for SPEC2000 benchmarks
(average of 20 trials), for different system activity

C. System load impact on time-to-attack

The final set of results discusses the behavior of the at-

tack in the presence of resource-competing processes. Fig. 6

presents the number of clock cycles required to gain escalated

privileges, for the SPEC2000 benchmarks. The results are the

average of 20 trial runs, for 10% performance overhead.

The first observation is that when the SPEC2000 benchmark

is the only user process in the system, then a privilege

escalation attack can take place within a million clock cycles.

However, as more processes are added, this number increases

dramatically: More processes mean less CPU time for the

benchmark. Furthermore, the benchmark individual I/O de-

mand is forcing them to yield to other processes, decreasing

the probability for all 3 conditions presented in Section III-D to

be satisfied at the same time. Therefore, the attack may require

several million cycles to successfully deliver the payload. In

our experiments, the use of typical input for the SPEC2000

benchmarks provided enough time for the attack to take

place. However, the attack might not go through given small

workloads.

VI. CONCLUSION - FUTURE DIRECTIONS

In this paper, we presented a malicious modification that can

be used during the fabrication stage of the microprocessor.

Specifically, a maliciously added delay fault corrupts the

address space identifier, allowing an unauthorized process to

access the kernel address space, targeting escalated privileges.

The attack is demonstrated on an Alpha 21264 microprocessor

executing real workload. Experimental results corroborate that

the attack can successfully gain escalated privileges within

a few thousand cycles for synthetic workload, and within

a few million cycles for maliciously modified SPEC2000

benchmarks.

Future directions of the presented research focus on increas-

ing the controllability of the attack: Limit the catastrophic

impact of the modification on modification-unaware processes,

untie the ASN to process ID connection and allow the at-

tacking process to identify kernel vs. non-kernel processes.

Furthermore, potential countermeasures are currently explored,

such as functional identification of the corruption or added

hardware that can verify the legitimacy of the address space

of the executed process.

REFERENCES

[1] U.S.D.O. Defense, “Defense science board task force on high
performance microchip supply,” Washington, DC, 2005.

[2] R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor,
“Trustworthy hardware: Identifying and classifying hardware
Trojans,” Computer, vol. 43, no. 10, pp. 39–46, 2010.

[3] Y. Jin and Y. Makris, “Hardware Trojans in wireless crypto-
graphic ICs,” IEEE Design and Test of Computers, vol. 27, pp.
26–35, 2010.

[4] M. Tehranipoor, H. Salmani, X. Zhang, X. Wang, R. Karri,
J. Rajendran, and K. Rosenfeld, “Trustworthy hardware: Trojan
detection and design-for-trust challenges,” Computer, vol. 44,
no. 7, pp. 66–74, 2011.

[5] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security
analysis of logic obfuscation,” in Design Automation Conference
(DAC), 2012 49th ACM/EDAC/IEEE. IEEE, 2012, pp. 83–89.

[6] http://www.poly.edu/csaw2011/csaw-embedded.
[7] Y. Jin, M. Maniatakos, and Y. Makris, “Exposing vulnerabilities

of untrusted computing platforms,” in IEEE International
Conference on Computer Design. IEEE, 2009, pp. 91–96.

[8] S.T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and Y. Zhou,
“Designing and implementing malicious hardware,” in Proceed-
ings of the 1st USENIX Workshop on Large-scale Exploits and
Emergent Threats. USENIX Association, 2008, pp. 1–8.

[9] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar,
“Trojan detection using ic fingerprinting,” in Security and
Privacy, 2007. SP’07. IEEE Symposium on. IEEE, 2007, pp.
296–310.

[10] N. Provos, M. Friedl, and P. Honeyman, “Preventing privilege
escalation,” in Proceedings of the 12th USENIX Security
Symposium, 2003, vol. 12, pp. 231–242.

[11] L. Davi, A. Dmitrienko, A.R. Sadeghi, and M. Winandy, “Priv-
ilege escalation attacks on android,” Information Security, pp.
346–360, 2011.

[12] J. Uffenbeck et al., The 80x86 family: design, programming,
and interfacing, Prentice Hall PTR, 1997.

[13] COMPAQ, “Alpha 21264 Microprocessor Hardware Reference
Manual,” Tech. Rep., Compaq computer corporation, 1999.

[14] G. Neiger, A. Santoni, F. Leung, D. Rodgers, and R. Uhlig,
“Intel virtualization technology: Hardware support for efficient
processor virtualization,” Intel Technology Journal, vol. 10, no.
3, pp. 167–177, 2006.

[15] AMD, “AMD Secure Virtual Machine Architecture Reference
Manual,” Tech. Rep., AMD Corporation, 1999.

[16] D.A. Patterson and J.L. Hennessy, Computer organization and
design: the hardware/software interface, Morgan Kaufmann,
2009.

[17] J. Aas, “Understanding the linux 2.6. 8.1 cpu scheduler,”
Retrieved Oct, vol. 16, pp. 1–38, 2005.

[18] R.L. Sites, Alpha architecture reference manual, Digital Pr,
1998.

[19] N. Binkert et al., “The gem5 simulator,” SIGARCH Comput.
Archit. News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[20] D.A. Rusling, “Linux on alpha axp—milo, the mini-loader,”
1994.

[21] “Crosstool-NG,” http://crosstool-ng.org/.

166 2013 8th International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

