
Security bugs in embedded interpreters

Haogang Chen Cody Cutler Taesoo Kim Yandong Mao
Xi Wang Nickolai Zeldovich M. Frans Kaashoek

MIT CSAIL

Abstract
Because embedded interpreters offer flexibility and per-

formance, they are becoming more prevalent, and can be
found at nearly every level of the software stack. As one
example, the Linux kernel defines languages to describe
packet filtering rules and uses embedded interpreters to
filter packets at run time. As another example, the RAR
archive format allows embedding bytecode in compressed
files to describe reversible transformations for decompres-
sion. This paper presents an analysis of common pitfalls
in embedded interpreter implementations, which can lead
to security vulnerabilities, and their impact. We hope that
these results are useful both in augmenting existing em-
bedded interpreters and in aiding developers in building
new, more secure embedded interpreters.

1 Introduction

Many systems offer customization by allowing third par-
ties to download executable extensions [9]. For flexibility
and portability reasons, these systems often define an
instruction set, in the form of bytecode, and implement
an embedded interpreter to run downloaded bytecode.
For performance reasons, they may translate bytecode
into machine code before execution [8], using a just-in-
time (JIT) compiler. One example is the Berkeley Packet
Filter (BPF) [15]. An OS kernel accepts packet filters
from user space, in the form of bytecode. The kernel
implements an interpreter to execute the BPF bytecode
against network packets and drop unwanted ones.

Embedded interpreters raise interesting security con-
cerns. First, many real-world systems do not adopt sand-
boxing techniques such as process isolation [20] or soft-
ware fault isolation [28] for embedded interpreters, possi-
bly due to performance considerations. Consequently, a
compromise of the interpreter is likely to lead to a com-
promise of the host system as well. Second, embedded in-
terpreters often validate untrusted bytecode using ad-hoc
rules, which is error-prone. Third, the bytecode (e.g., BPF
filters) usually accepts input data (e.g., network packets),
in which case both the bytecode and its input data may
be untrusted, thereby exposing the host system to a wider
range of attack vectors. An embedded interpreter must
defend against both malicious bytecode and malicious
input data; failing to do so can lead to a compromise.

This paper investigates the security implication of de-
ploying embedded interpreters in systems. The first con-
tribution is a case study of how systems use embedded
interpreters in practice. As we will show in §2, they are
surprisingly widespread. For example, the Linux kernel
alone hosts multiple embedded interpreters, which are
used for packet filtering [15], system call filtering [7],
network monitoring [13], and power management [11].
The Clam AntiVirus (ClamAV) engine runs an interpreter
to identify viruses with complex signatures [30], and also
runs another interpreter for inspecting RAR files, which
can contain bytecode for decompression [17]. Even a
TrueType font file can contain bytecode for rendering;
the infamous JailbreakMe exploit took advantage of a
vulnerability in the TrueType interpreter via a crafted font
file, leading to privilege escalation on iOS devices [24].

The second contribution of this paper is a case study
of attack vectors for embedded interpreters. In the worst-
case scenario, an adversary controls both the bytecode and
the input data. To ensure safety, an embedded interpreter
may have to regulate memory access, handle undefined
operations (e.g., division by zero), and avoid resource
exhaustion (e.g., infinite loops). As an example, failing
to defend against malicious code and data in BPF can

1

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
APSys ’13, July 29-30 2013, Singapore, Singapore
Copyright 2013 ACM 978-1-4503-2316-1/13/07 ...$15.00.

lead to kernel vulnerabilities, the consequences of which
include crashes, information leaks, and even arbitrary
code execution. §3 illustrates such vulnerabilities and
their attack vectors.

Building on the case study of embedded interpreters,
§4 summarizes state-of-the-art defense techniques and
provides security guidelines. §5 discusses research direc-
tions for improving the security of embedded interpreters.
For example, testing embedded interpreters is challeng-
ing because one must consider corner cases in both the
bytecode and the input to it. Finally, §6 concludes.

2 Embedded interpreters

Figure 1 summarizes embedded interpreters discussed
in this paper. Each interpreter is designed to execute
bytecode of a hypothetical machine that aims at solving
problems in a specific domain, as detailed next.

Linux Socket Monitoring Interface (INET-DIAG).
INET-DIAG is designed for socket monitoring. For ex-
ample, consider the following ss command [13], which
monitors sockets with source port in range [21,1024):

ss 'sport >= :21 and sport < :1024'

The ss command generates the following bytecode and
submits it to the kernel:

sge 21, L1, rej # if (sport >= 21) goto L1
else goto rej

L1: sge 1024, L2, acc # if (sport >= 1024) goto L2
else goto acc

L2: jmp rej
acc: nop # accept
rej: # reject

The INET-DIAG interpreter executes the bytecode in the
kernel and returns a list of sockets for which the execution
reaches “accept” (nop).

The INET-DIAG bytecode supports comparisons and
forward jumps, but not backward jumps, to avoid loops.
Therefore, the interpreter must check that every jump
offset must be positive. Failing to reject bytecode that
violates this invariant will lead to infinite loops (§3.1).

Berkeley Packet Filter (BPF). BPF is used in many
Unix-like OS kernels to filter link-layer packets [15]. Re-
cently, the Linux kernel added support for system call
filtering via BPF [7]. BPF uses a register-based virtual ma-
chine, which consists of two registers and a small scratch
memory. The BPF interpreter executes bytecode to check
input data, and returns a boolean result. The Linux kernel
also includes a JIT compiler for BPF [4]. BPF supports
integer arithmetic, logical operations, branches, and for-
ward jumps. One example of a malicious operation that

BPF should prevent is division by zero; failing to prevent
it leads to a crash (§3.2). Since the BPF interpreter sup-
ports a memory region, failing to zero the memory before
use will leak information of the host system (§3.3).

ACPI Machine Language (AML). AML [11] defines
ACPI control methods, which instruct the OS kernel how
to respond to certain power management events. Because
AML bytecode is usually loaded from the firmware, it is
considered trusted and allowed to do anything, including
accessing arbitrary memory, performing device I/O, and
invoking any functions in the kernel. The Linux kernel,
however, allows user-space applications to override some
control methods. If the permission checks in this override
mechanism are insufficient, an adversary can inject and
execute arbitrary code in the kernel (§3.4).

Bitcoin. Bitcoin uses an interpreter to define transac-
tions over its network [1]. The Bitcoin interpreter is
a stack machine. The input, such as public keys, are
embedded in its bytecode as constants. The interpreter
returns whether a transaction is valid or not. Besides con-
ditional branches, arithmetic, and logical operations, the
interpreter also supports many string and cryptographic
operations to validate a transaction.

ClamAV. The ClamAV antivirus engine uses LLVM-
based bytecode as signatures for polymorphic mal-
ware [30]. LLVM is a register machine that supports
arithmetic and logical operations, branches, jumps, and
function calls. ClamAV’s interpreter and JIT engine
sandboxes the bytecode so that all pointers are bounds-
checked, loops have timeouts, and external function invo-
cations are disallowed.

TrueType and Type 2 Charstring. TrueType defines
a hinting language for rendering fonts [27]. The bytecode
manipulates control points in the font outline. The True-
Type VM is a stack machine that supports arithmetic and
logical operations, branches, loops, and function calls. It
also has opcodes to move, align, and interpolate points
in various ways. The Type 2 Charstring VM defined in
Adobe Type 2 Font [12] is similar to TrueType, except
that it does not allow jumps and loops.

Universal Decompressor Virtual Machine (UDVM).
UDVM [19] is used by Wireshark, a packet analyzer,
to decompress certain stream protocols. UDVM provides
64 KB of memory and a call stack. It supports arithmetic,
logical, and some string operations. These instructions
can reference memory directly. UDVM also supports
branches and loops. UDVM imposes cycle limits on byte-
code based on the length of the input data.

2

interpreter arith. br. loop func. ext. JIT
bytecode
source

input
source description

INET-DIAG Y user space kernel network monitoring [13]
BPF Y Y Y user space network packet & syscall filtering [7, 15]
AML Y Y Y Y Y firmware device power management [11]
Bitcoin Y Y network network digital currency [1, 16]
ClamAV Y Y Y Y Y file & network antivirus engine [30]
TrueType Y Y Y Y file & browser font rendering [26, 27]
Type 2 Y Y Y file & browser font rendering [12]
UDVM Y Y Y Y file network universal decompressor [19]
RarVM Y Y Y Y Y file file decompressor filter [17]
Pickle Y Y file & network data serialization [18]

Figure 1: Summary of embedded interpreters and their features. Here “arith.” means arithmetic operations; “br.” means
conditional branches and forward-only jumps; “func.” means user-defined functions; “ext.” means external function
calls; “JIT” indicates whether there is a known JIT implementation.

RarVM. RAR files can contain RarVM bytecode that
performs some reversible transformation on input data to
increase redundancy [17]. RarVM is an x86-like register
machine. It provides 8 registers and 64 KB of memory
with a stack at the top. It supports arithmetic and logical
operations, branches, loops, and function calls. RarVM
sandboxes its bytecode in a way similar to ClamAV, but
allows some external function calls.

Pickle. The Python standard library provides the
Pickle [18] module for serializing and deserializing
Python objects. The Pickle protocol defines a stack in-
terpreter, and executes bytecode to deserialize Python
objects. Pickle’s input data is embedded in its bytecode
program. The Pickle interpreter provides opcodes to ma-
nipulate Python objects such as dictionary and list, as well
as opcodes to load and invoke external Python libraries.
Therefore, inappropriate use of the Pickle library often
leads to privilege escalation attacks, or arbitrary code
execution in remote machines, as described in Figure 2.

3 Vulnerabilities in embedded interpreters

An embedded interpreter that receives bytecode from an
untrusted source must validate it before execution. In ad-
dition, if input data to the bytecode is also untrusted, the
interpreter must execute the bytecode defensively. This
section illustrates common vulnerabilities found in em-
bedded interpreters that fail to do so. Figure 2 summaries
the vulnerabilities studied in this section.

3.1 Resource exhaustion
When an embedded interpreter runs bytecode, it should
be able to control resource consumption. If the bytecode
supports jumps [11, 17, 30], it is possible to construct
backward jumps that lead to infinite loops; the interpreter

should constrain such jumps. Similarly, if the bytecode
supports subroutines, the interpreter should guard against
infinite recursion that will lead to stack overflows.

Figure 3 shows a vulnerable code snippet, from the
INET-DIAG interpreter in the Linux kernel, as well as
the corresponding patch. The interpreter increases the
instruction pointer by inet_diag_bc_op->yes when the
current instruction evaluates to true. To forbid backward
jumps, the code defines “yes” as an unsigned integer;
but it forgets to validate that yes is non-zero, leaving the
interpreter vulnerable to infinite loops.

A general way to constrain infinite loops or infinite re-
cursion is to limit the number of executed instructions and
the depth of nested function calls. Every time an instruc-
tion is executed or the depth of call stack is increased,
the counter is incremented. The interpreter aborts the
execution when the counter reaches a limit. In complex
interpreters, however, resource consumption can happen
in many places in the code. Implementing ad-hoc watch-
dog counters becomes non-trivial and error-prone, as we
can find in CVE-2010-2286 and CVE-2011-3627. With-
out careful plans for restricting resources, it is hard to
avoid DoS in embedded interpreters.

3.2 Arithmetic errors

Embedded interpreters that provide arithmetic instruc-
tions are prone to arithmetic errors. These errors may
come from unexpected arithmetic behaviors of the target
machine. For example, when handling a signed division
instruction, an interpreter should check that the divisor
is non-zero, and that the quotient does not overflow (i.e.,
not INT_MIN/−1); otherwise, the division might trigger
a machine exception and potentially result in program
termination.

Checking for overflow conditions can be tricky and
error-prone [29]. Figure 4 shows the ClamAV interpreter

3

Vulnerability type Vulnerabilities Virtual machine Software

Resource exhaustion CVE-2010-2286 UDVM Wireshark
CVE-2010-3880 INET-DIAG Linux
CVE-2011-2213 INET-DIAG Linux
CVE-2011-3627 LLVM ClamAV

Arithmetic errors CVE-2010-5137 Bitcoin bitcoind
CVE-2007-3725 RarVM ClamAV

Information leak CVE-2010-4158 BPF Linux
CVE-2012-3729 BPF Apple iOS

Arbitrary code execution CVE-2010-4347 AML Linux
CVE-2011-1021 AML Linux
CVE-2011-2520 Pickle Fedora firewall config
CVE-2012-4406 Pickle Openstack-Swift

Memory corruption CVE-2010-2995 UDVM Wireshark
CVE-2010-2520 TrueType FreeType
VU#662243 RarVM Sophos Antivirus

Figure 2: Examples of vulnerabilities of embedded interpreters.

struct inet_diag_bc_op {
unsigned char code; // opcode
unsigned char yes; // instruction length
unsigned short no; // conditional jump offset

};
const void *bc = bytecode;
while (len > 0) {

struct inet_diag_bc_op *op = bc;
...

+ if (op->yes < min_len // min_len is at least 4
+ || op->yes > len + 4 || op->yes & 3)
+ return -EINVAL;

bc += op->yes;
len -= op->yes;

}

Figure 3: The patch that fixes CVE-2011-2213. The
vulnerability was missing validation of INET-DIAG in-
structions in the Linux kernel, which results in infinite
loop if op->yes is zero.

attempting to verify division operands but mistakenly
mixing up the dividend and divisor, allowing a denial-of-
service attack. Similarly, a proposed patch to “fix” the
DragonFlyBSD bug #1748 [6] was incorrect, allowing
specially crafted BPF filters to cause a kernel panic.

Bit shifts can also lead to arithmetic errors. For exam-
ple, CVE-2010-5137 shows that a missing check of an
oversized shift amount causes Bitcoin to crash on some
machines when processing a transaction containing a left-
shift opcode.

3.3 Information leak
When an embedded interpreter exposes unintended in-
formation to the bytecode in its input or in its execution
environment, malicious users can extract this information
by crafting bytecode and observing the result of its ex-

case OP_SDIV:
{

int64_t a = BINOPS(0); // dividend
int64_t b = BINOPS(1); // divisor
if (b == 0 || (a == -1 && b == INT64_MIN))

return CL_EBYTECODE;
value->v = a / b;
break;

}

Figure 4: Incorrect handling of the signed division op-
code in ClamAV’s interpreter. The correct check to
avoid signed division overflow should swap a and b (i.e.,
a == INT64_MIN && b == -1).

ecution. This type of vulnerability often happens when
an embedded interpreter simulates register files, scratch
memory, or uses a stack for executing the bytecode. If
these buffers were not properly initialized, malicious byte-
code could output uninitialized values and obtain sensitive
information about the host system.

Figure 5 shows code from the BPF interpreter in the
OpenBSD kernel, which did not zero out the mem array on
the kernel stack. A malicious filter might return the value
of an unused memory slot as the number of accepted bytes,
potentially exposing kernel randomness to userspace, and
thereby breaking security mechanisms that depend on ran-
domness, such as Address Space Layout Randomization
(ASLR) [23]. A similar vulnerability (CVE-2012-3729)
was discovered in the Linux kernel.

3.4 Arbitrary code execution
Enabling external calls breaks the isolation between the
interpreter and the host system, and can lead to arbitrary
code execution in the host system if not carefully designed.
Unless both the bytecode and the input come from trusted

4

u_int bpf_filter(pc, p, wirelen, buflen)
{

...
u_int32_t mem[BPF_MEMWORDS]; // scratch memory

+ bzero(mem, sizeof(mem));
... // run the filter

}

Figure 5: CVE-2012-3729: OpenBSD BPF filters load-
ing from uninitialized scratch memory (mem array) could
leak sensitive information from the kernel stack. The
patch initializes it with bzero.

while (ip < limit) {
CFF_Operator op = *ip++;
FT_Fixed *args = decoder->top;
... // handling op, which may change args
decoder->top = args;

+ if (decoder->top - stack >= CFF_MAX_OPERANDS)
+ goto Stack_Overflow;
}

Figure 6: CVE-2010-1797: Stack-based buffer overflow
in FreeType. The Type 2 Charstring interpreter forgets to
validate the stack pointer after processing an operator.

sources, the embedded interpreter should have a clear
plan for isolating the execution of the bytecode.

For example, Linux’s AML interpreter can invoke any
kernel functions. Usually this is not a problem because the
AML bytecode comes from firmware in trusted hardware.
However, when a kernel developer accidentally exposed
the custom control method interface to unauthorized users,
the lack of isolation in the AML interpreter resulted in a
severe vulnerability (CVE-2010-4347).

Another example is the notorious Pickle module in
Python. The Pickle interpreter defines GLOBAL and REDUCE
opcodes that provide the capability for importing and
running arbitrary builtin Python libraries. Many Python
developers are unaware of the security implications, and
use Pickle to deserialize objects from untrusted sources,
thereby permitting remote code execution [25], such as
CVE-2012-4406 and CVE-2011-2520.

3.5 Memory corruption

Many embedded interpreters are written in an unsafe lan-
guage, and programming errors can lead to memory cor-
ruption errors. Examples include mishandling of the ex-
ecution stack (Figure 6), omitting bounds checks when
executing string operations, etc. We do not dive further
into these problems since they are the result of imple-
mentation errors, as opposed to design issues specific to
embedded interpreters.

3.6 JIT spraying
In order to speed up execution, some embedded inter-
preters [15, 30] use a JIT engine to compile their bytecode
into native instructions. JITted bytecode introduces a new
attack vector called JIT spraying [2, 21], in which attack-
ers encode shell code as constants in benign-looking byte-
code. These constants can be strung together to form code
gadgets that facilitate return-oriented programming [22].

For example, when specially constructed BPF byte-
code is compiled and loaded into the kernel, attackers
can trigger another memory corruption vulnerability, and
jump into the middle of the JIT-compiled code, where
the attacker-controlled constants are interpreted as native
machine instructions.

JIT spraying works for two reasons. First, JITted byte-
code usually resides in pages which are concurrently
writable and executable. This can effectively disable exist-
ing protection techniques, such as DEP (Data Execution
Prevention) and SMEP (Supervisor Mode Execution Pro-
tection) [14]. Second, JIT engines transform bytecode
from untrusted sources in a rather predictable way. At-
tackers can force the JIT engine to generate many copies
of the same gadget throughout the memory, diminishing
the protection provided by ASLR [23].

4 Security guidelines

§3 shows that it is non-trivial to design and implement a
secure embedded interpreter. In this section, we suggest
some guidelines for improving the security of embedded
interpreters.

Process isolation. When performance is not a critical
factor, one can consider securing an embedded interpreter
via process isolation. For example, web browsers such
as Chrome [20] isolate the execution of JavaScript for
different web pages in separate OS processes. As another
example, RarVM bytecode can execute in a dedicated
process because the overhead of creating a process is
amortized over the cost of decompressing a RAR file.

This approach has several limitations. First, it in-
curs performance overhead due to inter-process com-
munication (IPC), which makes it less appropriate for
performance-critical applications such as packet filter-
ing. Second, it cannot prevent semantic bugs, where a
compromised interpreter can produce wrong results (e.g.,
incorrect files decompressed from RarVM). Third, pro-
cess isolation is difficult to apply inside OS kernels.

Limiting resource consumption. If an embedded in-
terpreter runs within the context of the host system, it
is critical to ensure that the execution of bytecode does
not exhaust the host system’s resources. In particular, in

5

order to provide jumps or subroutines, interpreters should
have a plan for monitoring and constraining the proces-
sor time and memory that bytecode utilizes. Whenever
the bytecode violates the resource utilization policy, the
interpreter should be able to detect and reclaim allocated
resources, thereby avoiding DoS attacks on the host sys-
tem. As illustrated by INET-DIAG and BPF, allowing
only forward jumps, or limiting the number of executed
instructions or execution time is necessary to constrain
the resource usage of embedded interpreters.

Limiting feature sets. One interesting observation is
that the more expressive a bytecode design is, the more
invariants an interpreter implementation must maintain,
which consequently enables a wider range of possible
attack vectors. A developer designing an embedded in-
terpreter should consider the trade-off between flexibility
and security in their design. For instance, Bitcoin chose
to disable certain instructions [1] to reduce attack vectors
after several arithmetic errors were discovered in its im-
plementation (see §3.2). In this vein, INET-DIAG, which
does not support arithmetic operations by design, is more
immune to arithmetic errors such as division by zero.
If the embedded interpreter needs to provide a Turing-
complete instruction set, extra care should be taken in its
implementation.

Limiting calls to host. When a bytecode program
needs to interact with or to process external input given
by the host machine, interpreters should define a clean
interface between them. For example, in designing a new
Pickle protocol, one could define a set of safe Python
libraries that Pickle programs can invoke. Unlike Pickle,
BPF bytecode has a clean input and output interface to a
host machine; it takes a packet as the input, and outputs a
bit indicating whether the input packet is filtered or not.

5 Research problems

Testing embedded interpreters. Symbolic testing
tools such as KLEE [3] and SAGE [10] explore code
paths and construct input data to trigger bugs. To make
those tools effective in testing bytecode interpreters with
high coverage, one needs to consider how to construct not
only untrusted input data, but also untrusted bytecode, as
control flow decisions in interpreters are highly dependent
on the bytecode, and symbolically exploring all the paths
can easily lead to path explosion.

For example, a naïve approach is to generate a random
bytecode program for testing. However, this bytecode
program is likely to be malformed and simply rejected
by the interpreter, and thus is ineffective for exploring

code paths of the interpreter’s implementation. An alter-
native approach is to develop a specific generator tailored
for each interpreter. How to effectively derive bytecode
instances that have both high coverage and little path
duplication remains an open problem.

Moreover, the prevalence of JIT compilation poses an-
other intriguing research problem: how to systematically
test the correctness of JITted bytecode? The traditional
symbolic testing paradigm does not fit JIT schemes well
because the generated native code, which itself is the
output of the symbolic bytecode, also needs to be sym-
bolically executed. Scheduling heuristics are necessary
to explore “interesting” bytecode programs first, instead
of naïvely checking all possible bytecode programs. Fur-
thermore, to symbolically execute JITted bytecode, one
needs to model the symbolic engine at the native machine
instruction level. An alternative may be to transform the
machine code back to some intermediate representation,
and then prove its equivalence to the original bytecode.

Build extensible interpreters. Since it is error-prone
to build an interpreter from scratch, one strategy is to
reuse sound bytecode formats and construct an extensi-
ble interpreter, which consists of reusable components,
similar to the Xoc extensible compiler [5]. Developers
can build and customize an interpreter by choosing a set
of components, such as whether the interpreter supports
integer arithmetic, or whether it allows loops. For ex-
ample, Seccomp [7], a security mechanism for isolating
processes, reuses the existing BPF interpreter to run BPF
bytecode for specifying system call filtering rules, instead
of implementing an interpreter from scratch. One research
question is whether a single extensible interpreter can ad-
dress sometimes-conflicting requirements of different use
cases, such as minimal runtime complexity, high through-
put, low latency for short bytecode, performance isolation,
and support for general-purpose C-like programs.

6 Conclusion

In this paper, we analyzed security bugs found in embed-
ded interpreters, classified their effects, and suggested
ways to reduce common vulnerabilities. We hope our
results can shed some light on how to design secure em-
bedded interpreters in the future.

Acknowledgments

Thanks to the anonymous reviewers for their feedback.
This work was supported by the DARPA Clean-slate de-
sign of Resilient, Adaptive, Secure Hosts (CRASH) pro-
gram under contract #N66001-10-2-4089, and by NSF
award CNS-1053143.

6

References

[1] Bitcoin. Script - Bitcoin, 2013. https://en.bitcoin.
it/wiki/Script.

[2] D. Blazakis. Interpreter exploitation: Pointer inference
and JIT spraying. BlackHat DC, 2010.

[3] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted
and automatic generation of high-coverage tests for com-
plex systems programs. In Proceedings of the 8th Sym-
posium on Operating Systems Design and Implementa-
tion (OSDI), San Diego, CA, Dec. 2008.

[4] J. Corbet. A JIT for packet filters, Apr. 2011. http:
//lwn.net/Articles/437981/.

[5] R. Cox, T. Bergan, A. T. Clements, M. F. Kaashoek, and
E. Kohler. Xoc, an extension-oriented compiler for sys-
tems programming. In Proceedings of the 13th Interna-
tional Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), pages
244–254, Seattle, WA, Mar. 2008.

[6] DragonFlyBSD. Dragonflybsd bug 1748, 2010. http:
//bugs.dragonflybsd.org/issues/1748.

[7] W. Drewry. SECure COMPuting with filters, Jan. 2012.
http://lwn.net/Articles/498231/.

[8] D. R. Engler. VCODE: A retargetable, extensible, very
fast dynamic code generation system. In Proceedings of
the 1996 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 160–
170, Philadelphia, PA, June 1996.

[9] D. R. Engler, M. F. Kaashoek, and J. W. O’Toole. Exoker-
nel: An operating system architecture for application-level
resource management. In Proceedings of the 15th ACM
Symposium on Operating Systems Principles (SOSP), Cop-
per Mountain, CO, Dec. 1995.

[10] P. Godefroid, M. Y. Levin, and D. Molnar. SAGE: White-
box fuzzing for security testing. Communications of the
ACM, 55(3):41–44, Jan. 2012.

[11] Hewlett-Packard, Intel, Microsoft, Phoenix, and Toshiba.
Advanced configuration and power interface specifica-
tion, Dec. 2011. http://www.acpi.info/DOWNLOADS/
ACPIspec50.pdf.

[12] A. S. Incorporated. The type 2 charstring format,
Mar. 2000. http://partners.adobe.com/public/
developer/en/font/5177.Type2.pdf.

[13] A. Kuznetosv. SS utility: Quick intro, Sept. 2001. http:
//www.cyberciti.biz/files/ss.html.

[14] K. McAllister. Attacking hardened Linux sys-
tems with kernel JIT spraying, Nov. 2012. http:
//mainisusuallyafunction.blogspot.com/2012/
11/attacking-hardened-linux-systems-with.
html.

[15] S. McCanne and V. Jacobson. The BSD packet filter: A
new architecture for user-level packet capture. In Pro-
ceedings of the Winter 1993 USENIX Annual Technical

Conference, San Diego, CA, Jan. 1993.

[16] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash
system, 2008. http://bitcoin.org/bitcoin.pdf.

[17] T. Ormandy. Fun with constrained programming,
2012. http://blog.cmpxchg8b.com/2012/09/
fun-with-constrained-programming.html.

[18] A. Pitrou. Pickle protocol version 4. PEP 3154, Dec. 2011.
http://www.python.org/dev/peps/pep-3154.

[19] R. Price, C. Bormann, J. Christoffersson, H. Hannu, Z. Liu,
and J. Rosenberg. Signaling compression (SigComp).
RFC 3320, Jan. 2003. http://www.ietf.org/rfc/
rfc3320.txt.

[20] C. Reis, A. Barth, and C. Pizano. Browser security:
Lessons from Google Chrome. Communications of the
ACM, 52(8):45–49, June 2009.

[21] C. Rohlf and Y. Ivnitskiy. The security challenges of client-
side just-in-time engines. Security & Privacy, IEEE, 10
(2):84–86, 2012.

[22] H. Shacham. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In
Proceedings of the 14th ACM Conference on Computer
and Communications Security (CCS), pages 552–561,
Alexandria, VA, Oct.–Nov. 2007.

[23] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu,
and D. Boneh. On the effectiveness of address-space ran-
domization. In Proceedings of the 11th ACM Conference
on Computer and Communications Security (CCS), pages
298–307, Washington, DC, Oct. 2004.

[24] J. Sigwald. Analysis of the jailbreakme v3 font exploit,
July 2011. http://esec-lab.sogeti.com/post/
Analysis-of-the-jailbreakme-v3-font-exploit.

[25] M. Slaviero. Sour pickles: Shellcoding in
Python’s serialisation format, 2011. https:
//media.blackhat.com/bh-us-11/Slaviero/
BH_US_11_Slaviero_Sour_Pickles_WP.pdf.

[26] TrueType. The instruction set, 2011. https:
//developer.apple.com/fonts/TTRefMan/RM05/
Chap5.html.

[27] TrueType. TrueType hinting, 2012. http://www.
truetype-typography.com/tthints.htm.

[28] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham.
Efficient software-based fault isolation. In Proceedings of
the 14th ACM Symposium on Operating Systems Princi-
ples (SOSP), pages 203–216, Asheville, NC, Dec. 1993.

[29] X. Wang, H. Chen, Z. Jia, N. Zeldovich, and M. F.
Kaashoek. Improving integer security for systems with
KINT. In Proceedings of the 10th Symposium on Oper-
ating Systems Design and Implementation (OSDI), pages
163–177, Hollywood, CA, Oct. 2012.

[30] A. Wu. Bytecode signatures for polymorphic malware,
Nov. 2010. http://blog.clamav.net/2011/11/
bytecode-signatures-for-polymorphic.html.

7

