
ILR: Where’d My Gadgets Go?

Jason Hiser, Anh Nguyen-Tuong, Michele Co, Matthew Hall, Jack W. Davidson

University of Virginia, Department of Computer Science
Charlottesville, VA

{hiser,an7s,mc2zk,mh,jwd}@virginia.edu

Abstract—Through randomization of the memory space and
the confinement of code to non-data pages, computer security
researchers have made a wide range of attacks against program
binaries more difficult. However, attacks have evolved to exploit
weaknesses in these defenses.

To thwart these attacks, we introduce a novel technique
called Instruction Location Randomization (ILR). Conceptu-
ally, ILR randomizes the location of every instruction in a
program, thwarting an attacker’s ability to re-use program
functionality (e.g., arc-injection attacks and return-oriented
programming attacks).

ILR operates on arbitrary executable programs, requires
no compiler support, and requires no user interaction. Thus,
it can be automatically applied post-deployment, allowing easy
and frequent re-randomization.

Our preliminary prototype, working on 32-bit x86 Linux
ELF binaries, provides a high degree of entropy. Individual
instructions are randomly placed within a 31-bit address
space. Thus, attacks that rely on a priori knowledge of the
location of code or derandomization are not feasible. We
demonstrated ILR’s defensive capabilities by defeating attacks
against programs with vulnerabilities, including Adobe’s PDF
viewer, acroread, which had an in-the-wild vulnerability.
Additionally, using an industry-standard CPU performance
benchmark suite, we compared the run time of prototype
ILR-protected executables to that of native executables. The
average run-time overhead of ILR was 13% with more than
half the programs having effectively no overhead (15 out of 29),
indicating that ILR is a realistic and cost-effective mitigation
technique.

Keywords-Randomization; Exploit prevention; Diversity;
ASLR; Return-oriented-programming, arc-injection;

I. INTRODUCTION

Computer software controls many major aspects of mod-

ern life, including air travel, power distribution, banking,

medical treatment, traffic control, and a myriad of other

essential infrastructures. Unfortunately, weaknesses in soft-

ware code (such as memory corruption, fixed-width integer

computation errors, input validation oversights, and format

string vulnerabilities) remain common. Via these weak-

nesses, attackers are able to hijack an application’s intended

control flow to violate security policies (exfiltrating secret

data, allowing remote access, bypassing authentication, or

eliminating services) [1–4].

Unfortunately, modern deployed defenses fail to thor-

oughly mitigate these threats, even when composed. Perhaps

the most commonly deployed defenses are Address Space

Layout Randomization (ASLR) [5] and W⊕X [5, 6]. In

theory, ASLR randomizes the addresses used in a pro-

gram. Unfortunately, only some addresses are randomized

in modern implementations. For example, the main program

text is not randomized on Linux implementations since

programs do not have enough information to safely relocate

this portion of code. Further, ASLR only randomizes the

base address of loaded modules, not each address within

the module. Thus, ASLR is vulnerable to information-

leakage and entropy-exhausting attacks [7, 8]. W⊕X seeks

to delineate code from data to prevent code-injection attacks.

However, arc-injection attacks and various forms of return-

oriented programming (ROP) attacks bypass W⊕X through

reuse of code already embedded in the program [2, 8–10].

In this paper we describe a novel technique, called In-

struction Location Randomization (ILR), that conceptually

randomizes the location of every instruction in a program.

ILR can use the full address space of the process (e.g.,

32-bits on 32-bit processors such as the x86). Information

leakage attacks that discover information about the location

of a code block (e.g., the randomized base address of

a dynamically loaded module or the start of a function)

are infeasible for two reasons: 1) the randomized code

addresses are protected from leakage and 2) a leak provides

no information about the location of other code blocks.

ILR changes a fundamental characteristic typically used

by attackers—predictable code layout. For example, pro-

grams are arranged sequentially in memory starting at a base

address, as shown in the left of Figure 1.1

In this example, the address used to return from function

foo (7003) might be leaked if there is a vulnerability

in the function. An attacker that learns this information

can easily determine the location of all other instructions.

Attackers routinely rely on the fundamental assumption of

predictable code layout to craft attacks such as arc-injection

and the various forms of return-oriented programming. In

the example, an attacker might use the address of the

add instruction to mount an ROP attack using add eax,
#1;ret as an ROP gadget.2 For a detailed explanation of

1For simplicity, the figure and discussion assume all instructions are
one byte. Our general approach, prototype implementation, and security
discussion do not rely on this fact.

2ROP gadgets are short sequences of code, typically ending in a return
instruction, that perform some small portion of the attack.

2012 IEEE Symposium on Security and Privacy

© 2012, Jason Hiser. Under license to IEEE.
DOI 10.1109/SP.2012.39

571

�������	
����

������������

	��

����������������

���������
��������

����������������

	��

������������

����� !"

����������#$

����%	�&'%�(��)�
* "�+,�#��
�#�-+,�"#�
�"#�+,!�-*
!�-$+,##$�
##$"+,� !"

����

����

���$

���*

���#

##$�

�#��

� !"

!�-*

* "�

.	������/���0	�'	����	�����/ 123+�	��������0	�'	��

����������#$
����2�

�����-��
����������������
�����������

	��

����������#$����

������-*#�"#�

Figure 1. Traditional program creation versus an ILR-protected program.
In a traditional program, instructions are arranged sequentially and pre-
dictably, allowing an attack. With an ILR-protected program, instructions
are distributed across memory randomly, preventing attack.

ROP gadgets and how they are combined to form an attack,

please see Shacham’s prior work [2].

ILR adopts an execution model where each instruction

has an explicitly specified successor. Thus, each instruc-

tion’s successor is independent of its location. This model

of execution allows instructions to be randomly scattered

throughout the memory space. Hiding the explicit successor

information prevents an attacker from predicting the location

of an instruction based on the location of another instruction.

ILR’s “non-sequential” execution model is provided

through the use of a process-level virtual machine (PVM)

based on highly efficient software dynamic translation tech-

nology [11–13]. The PVM handles executing the non-

sequential, randomized code on the host machine.

We have implemented a prototype ILR implementation

for Linux on the x86 and Section III provides complete

implementation details. In short, ILR operates on arbitrary

executables, requires no compiler support, and no user

interaction. Using a set of vulnerable programs (including a

binary distributed by Adobe to read PDF files) and ASLR-

and W⊕X-defeating exploits, we demonstrate that ILR de-

tects and thwarts these attacks. An important consideration

of any mitigation technique is the run-time overhead. Many

proposed mitigation techniques incur high overheads—as

much as 90% to 2000% [14, 15]. Using a large industry-

standard CPU performance benchmark suite [16], we com-

pared the run time of ILR-protected executables to that of

native executables. The average run-time overhead of ILR

was 13% with over half of all programs having effectively

no overhead (less than 3%) indicating that ILR is a realistic

and cost-effective mitigation technique.

This paper makes several contributions. It:

• presents Instruction Location Randomization (ILR), a

technique that provides high-entropy diversity for relo-

cating instructions with low run-time overhead,

• demonstrates that ILR defeats arc-injection and ROP

attacks on arbitrary binaries without need for compiler,

linker, operating system or hypervisor support,

• provides a complete description of how ILR can achieve

its goals despite inherent uncertainty about a program’s

structure, such as where code and data reside, and

• thoroughly analyzes the security, effectiveness, and

performance of ILR in a prototype system on large,

real-world benchmarks.

The remainder of the paper is organized as follows:

Section II first discusses the threat model within which ILR

operates. Section III describes the details of ILR. Sections IV

and V provide an evaluation and security discussion of

the proposed techniques. Section VI compares our work to

related work in the field. Finally, Section VII summarizes

our findings.

II. THREAT MODEL

We assume that the unprotected program is created and

distributed to an end user (and possibly the attacker) in

binary form. The program has been tested, but not guaran-

teed to be free from programmatic errors that might allow

malicious exploit, such as memory errors. The program is

assumed to be free from intentionally planted back doors,

trojans, etc. Furthermore, the program is to be protected

and deployed in a setting where the other software on the

system is believed to be operating correctly, and the system

administrator is trusted. An attacker does not have direct

access to the system or the protected program. However,

the attacker understands the protection methodology and

may have access to tools for applying ILR protections. The

attacker also has access to the unprotected version of the

program, and can specify malicious input to the protected

program.

In particular, ILR focuses on preventing attacks which

rely on code being located predictably. This threat model

includes a large range of possible attacks against a program.

For example, many attacks against client and server soft-

ware fit this model. Document viewers/editors (Adobe PDF

viewer, Microsoft Word), e-mail clients (Microsoft Outlook,

Mozilla Thunderbird), and web browsers (Mozilla Firefox,

Microsoft Internet Explorer, Google Chrome) need to be

protected from these types of threats anytime a user requests

the program to examine data from an untrusted source.

III. INSTRUCTION LOCATION RANDOMIZATION

ILR’s goals are to achieve high randomization and low

run-time overhead. Figure 1 conceptually illustrates the

effect of ILR and how it mitigates malicious attacks. The top

left of the figure shows the control-flow graph of a particular

program segment. The compiler and the linker collaborate

to produce an executable file where instructions are laid out

so they can be loaded into memory when the program is

executed. A typical layout of code is shown at the bottom

left of the figure.

572

ILR Static

Analysis

Arbitrary

Binary

ILR VM

ILR Rewrite

Rules

Offline

Analysis

ILR

Execution

Figure 2. High-level overview of ILR architecture.

An attacker, through knowledge of the instruction-set

architecture and the executable format, can easily locate

portions of code that may be useful in crafting an attack. For

example, the attacker may identify the instruction sequence

at locations 7004 and 7005 as being a gadget useful in

crafting an ROP attack. This particular gadget adds one to

register eax. By identifying a set of gadgets and exploiting

a vulnerability, an attacker can cause a set of gadgets to be

executed that effect the attack.

The right side of the figure shows the layout of the code

when ILR is applied. The program instructions are randomly

scattered through memory. With an address space of 32 bits,

it is infeasible for an attacker to locate a set of gadgets that

could be used to craft an attack.

To execute the randomized program, we employ a highly

efficient PVM that fetches and executes the instructions

in the proper order even though they are randomly scat-

tered throughout memory. This process is accomplished via

a specification that describes the execution successor of

each instruction in the program. This specification, called

a fallthrough map, is shown at the top right of Figure 1.

The PVM interprets the fallthrough map to fetch and execute

instructions on the host hardware. The following subsections

describe the process of automatically producing an ILR-

protected executable and its execution.

A. ILR Architecture

Figure 2 shows the high-level architecture of the ILR

process. ILR has an offline analysis phase to relocate instruc-

tions in the binary and generate a set of rewriting rules that

describe how and where the newly located instructions are

to be executed, and how control should flow between them,

(shown as the fallthrough map in Figure 1). The randomized

program is executed on the native hardware by a PVM that

uses the fallthrough map to guide execution.

The rewriting rules come in two forms. The first form,

the instruction definition form, indicates that there is an

instruction at a particular location. The first line of Figure 3

gives an example. In this example, address 0x39bc has the

instruction cmp eax, #24. Note that the rule indicates

that an instruction fetched from address 0x39bc should be

the cmp instruction. However, data fetches from address

0x39bc are unaffected. This distinction allows ILR to relo-

cate instructions even if instructions and data are overlapped.

39bc ** cmp eax, #24
39bd -> d27e
d27e ** jeq a96b
d27f -> cb20
cb20 ** call 5f32
cb21 -> 67f3
67f3 ** mov [0x8000], 0
67f4 -> a96b
224a ** add eax, #1
224b -> 67f3
a96b ** ret

Figure 3. ILR rewrite rules corresponding to the example in Figure 1.

ILR Static Analysis

Arbitrary

Binary

Disassembly

Engine

objdump

Disassembly

Validator

Call Site

Analysis

Reassembly

EngineInstructions

Functions

ILR

Rewrite

Rules

Indirect Branch

Target Analysis Targets

IDA Pro

Figure 4. High-level overview of the static analysis engine used in ILR.

An example of the second form of an ILR rewrite rule,

the redirect form, is shown in the second line of Figure 3.

This line specifies the fallthrough instruction for the cmp
at location 0x39bc. A normal processor would immediately

fetch from the location 0x39bd after fetching the cmp
instruction. Instead, ILR execution checks for a redirection

of the fallthrough. In this case, the fallthrough instruction is

at 0xd27e. The remaining lines show the full set of rewrite

rules for the example in Figure 1.

The ILR architecture fetches, decodes and executes in-

structions in the traditional style, but checks for rewriting

rules before fetching an instruction or calculating an instruc-

tion’s fallthrough address.

B. Offline Analysis

The static analysis phase creates an ILR-protected pro-

gram with random placement of every instruction in the

program. For such randomization, the static analysis locates

instructions, indirect branch targets, and identifies call sites

for additional analysis. Figure 4 shows the organization of

the static analysis used for ILR.

1) Disassembly Engine: The goal of the ILR disassembly

engine is to locate any byte that might be the start of an

instruction. We use a recursive descent disassembler (IDA

Pro) and a linear scan disassembler (objdump) [17]. To

ensure that all instructions are identified, we added the

disassembly validator module. The disassembly validator

iterates over every instruction found by either IDA Pro and

objdump, and verifies that both the fallthrough and (direct)

target instructions are inserted into the instruction database.

573

Since exact instruction start locations in the executable

segment are not known, some of the instructions in the

instruction database may not represent instructions that were

intended by the program’s original assembly code. We make

no attempt to determine which are the intended instructions,

and which are not. We simply choose to relocate all of them.

Any data address that is mis-identified as a code address will

not be executed, therefore the corresponding rewrite rules

will simply never be accessed.

One last responsibility of the Disassembly Engine is to

record the functions that IDA Pro detects. We record each

function as a set of instructions.

2) Indirect Branch Target Analysis: The goal of the

indirect branch target analysis phase is to detect any location

in the program that might be the target of an Indirect Branch

(IB). IBs create a distinct problem for ILR. Indirect Branch

Targets (IBTs) may be encoded in the instructions or data of

a program, and it is challenging to determine which program

bytes represent an IBT and which do not. Since we wish to

randomize any arbitrary binary, our technique must tolerate

imprecision in detecting which constants are an IBT in the

program and which are not. Our solution is to perform a

byte-by-byte scan of the program’s data, and further scan the

disassembled code to determine any pointer-sized constant

which could feasibly be an indirect branch target.

We find that in most programs, this simple heuristic is suf-

ficient (see Section IV-D3 for details). However, when C++

programs use exception handling (try/catch blocks), the

compiler uses location-relative addressing to encode IBTs

for properly unwinding the stack, and invoking exception

handlers. Our technique parses the portions of the ELF file

that contain the tables used to drive the unwinding and

exception throwing process, and records IBTs appropriately.

Rewriting the bytes in the program that encode an IBT

might induce an error in the program if those bytes are used

for something besides jumping to an instruction. To avoid

breaking the program when the analysis is wrong, we choose

to leave those program bytes unmodified. Unfortunately, not

rewriting the IBTs encoded in the program means that the

program might jump to the address of an original program

(and hence unrandomized) instruction.

To accommodate indirect branches jumping to unrandom-

ized addresses, each instruction that might be an IBT gen-

erates an additional ILR rule in the program. The additional

rule uses the redirect form to map the unrandomized address

to the new, randomized address. Thus, any indirect branch

that targets an unrandomized address, correctly continues

execution at the randomized address.

Unfortunately, attackers may know the unrandomized ad-

dresses in a program, and if they can inject a control transfer

to one of these addresses, they might be able to successfully

perform an attack. The evaluation in Section IV-D3 shows

the number of IBTs detected in most programs is very lim-

ited, and restricting attacks to only these targets significantly

reduces the attack surface.

3) Call Site Analysis: Since unrandomized instructions

may allow attacks, we wish to randomize the return address

for function calls. The call site analysis phase analyzes the

call instructions in a program to determine if the return

address can be randomized. Typically, a call instruction

stores a return address, and when execution of the function

completes, a ret instruction jumps to the address that

was stored. Most functions obey these semantics. Unfortu-

nately, call instructions can be used for other purposes, such

as obtaining the current program counter when position-

independent code or data is found in a library. Such a call

instruction is often called a thunk. Numerous other uses of

return addresses are possible.

The analysis proceeds as follows. If the call instruction is

to a known location that starts a function, we analyze the

function further. If the function can be analyzed as having

only standard function exits (using the return instruction),

having only entrances via the function’s entry instruction,

and having no direct accesses to the return value (such

as with a mov eax, [ebp+4] instruction), then ILR

declares that it is safe to rewrite the call instruction to store

a randomized return address.

Our heuristic makes the assumption that indirect memory

accesses should not access the return address. While not

strictly true for all programs, we find that the heuristic gener-

ally holds for programs compiled from high-level languages.

One exception to our heuristic is again the C++ exception

handling routines that “walk the stack.” The routines use the

return address to locate the appropriate unwinding, cleanup,

and exception handling codes to invoke. Like with the

IBT analysis, we adjust the call site analysis to take into

account the exception handling tables, so that call sites with

exception handling cannot push a randomized return address.

Once the analysis is complete, the ILR rules for calls

are emitted. If the call site analysis determines that the call

can randomize the return address, no additional rules are

required, and the call instruction’s location is randomized by

simply emitting the standard rewrite rules. If, however, the

non-randomized return address must be stored, we have two

choices: 1) we could choose to pin the call instruction to its

original location, so that the nonrandomized return address

is stored, or 2) rewrite the call (using ILR rewrite rules)

into a sequence of instructions that stores the unrandomized

return address and transfers control appropriately. Since

pinning instructions leads to a decrease in randomization,

we choose the second option. Most machines can efficiently

store the return address and perform the control transfer

necessary to mimic a call instruction, typically using only

2-3 instructions. For example, on the IA32 instruction set

architecture, a call foo instruction can be replaced with

two instructions, push <unrandomized address>;
jmp foo, resulting in only one extra instruction. This

transformation is exactly what is performed by our call site

574

Context

Switch

Fetch

Decode

Translate

New

PC

Done?

No

ILR Virtual Machine

Yes

Context

Capture

Cached?

Yes

New Fragment

Next PC

ILR Rewrite

Rules

Figure 5. Details of the ILR Virtual Machine.

analysis when we detect that a call instruction cannot push a

randomized return address. Furthermore, the unrandomized

return address is marked as a possible indirect branch target,

since we are not sure how the return address will be used.

4) Reassembly Engine: After completely analyzing the

program’s instructions, IBTs, and call sites, the reassembly

engine gets invoked. The reassembly engine’s purpose is to

create the rewrite rules necessary to create the randomized

program. For each instruction in the database, the engine

emits a set of rewrite rules. First, it emits the rules necessary

to relocate the instruction. Note that if the instruction has a

direct branch target encoded in it (such as a jmp L1), that

branch target is rewritten to the randomized address of the

branch target. Then, the reassembly engine emits the rule to

map the instruction’s fallthrough address to the randomized

location for the fallthrough instruction.

As a post-processing step, each byte of the original

executable text gets an additional rule. If the address of the

program text is marked as a possible IBT, the reassembly

engine adds a rule to redirect that address to the randomized

address for that instruction, effectively pinning the instruc-

tion. Any other byte of the executable code segment gets

a rule to map its address to a handler that prints an error

message and exits in a controlled manner. Thus, any possible

arc-injection or ROP attacks must jump to the start of an

instruction, and not bytes located within an instruction.

C. Running an ILR-protected Program

To apply the rewrite rules generated by the static analysis

steps, ILR uses a specific ILR VM. We believe that a

per-process virtual machine (PVM) is the best choice for

the ILR VM since it can be easily deployed and has low

performance and runtime overheads [11, 18, 19]. Figure 5

shows a typical PVM augmented with ILR extensions. The

following paragraphs provide a brief introduction to typical

PVM operation, and describe those extensions.

PVMs dynamically load an application and mediate ap-

plication execution by examining and translating an applica-

tion’s instructions before they execute on the host CPU. Most

PVMs operate as co-routines with the application that they

are protecting. Translated application instructions are held in

a PVM-managed cache called a fragment cache. The PVM is

first entered by capturing and saving the application context

(e.g., program counter (PC), condition codes, registers, etc.)

Following context capture, the PVM processes the next

application instruction. If a translation for this instruction

has been previously cached, the PVM transfers control to

the cached translated instructions.

If there is no cached translation for the next application

instruction, the PVM allocates storage in the fragment cache

for a new fragment of translated instructions. The PVM then

populates the fragment by fetching, decoding, and translating

application instructions one-by-one until an end-of-fragment

condition is met. As the application executes under the

PVM’s control, more and more of the application’s working

set of instructions materialize in the fragment cache.

Implementation of ILR within a PVM requires several

simple extensions to a typical PVM. First, we must modify

the PVM startup code to read the ILR rewrite rules (not

pictured). Next, we need to override the PVM’s instruction

fetching mechanism to first check, then read from ILR

rewrite rules as appropriate. Lastly, we need to modify the

next-PC operation to obey the fallthrough map that ILR

provides in the rewrite rules.

One further extension is necessary for security. The

PVM must take steps to protect itself and its code cache

from being compromised by a program that an attacker

is attempting to control. Since the PVM typically shares

an address space with the program, the PVM must take

care not to allow the program to attempt to jump into

the PVM’s code. Further, the PVM should prevent the

randomized instruction addresses from being leaked to the

user. Such protections can be accomplished by making the

PVM’s code and data unaccessible via standard memory

protection mechanisms whenever the untrusted application

code is executing. We discuss the technical details of one

mechanism in Section V-A.

IV. EVALUATION

A. Prototype Implementation

Our development and evaluation system were based on

a Linux kernel version 2.6.32-34-generic as part of our

Ubuntu 10.04.03 LTS release configured with gcc 4.4.3.

We used IDA Pro version 6.1, and objdump version

2.20.1-system.20100303 [17].

As the static analyzer components need to store in-

structions, functions, and indirect branch targets, we used

a Postgres database. This choice turned out to be wise

considering some programs we evaluated contained almost

half a million instructions. Each instruction is marked as

being part of a function, and whether is has been detected

as a possible indirect branch target.

575

We implemented the disassembly validator, call site anal-

ysis, indirect branch target analysis and reassembly engine

to access the database and deposit their information back to

the database. This modular design turned out to be useful

for implementing, debugging, and deploying the system.

Our implementation of the reassembly engine is split

into two phases. The first phase reads the database and

emits a symbolic, relocatable, assembly version of the ILR

rewrite rules to a file on the file system. The second step

performs the randomization, and binds the assembly version

of instructions to a machine code form. Splitting the tool into

two portions aids in re-randomization (as the full database

of instructions is no longer necessary) and run time (as the

database need not be accessed at runtime).

Our ILR VM is based on Strata [11]. The modifications

for ILR required about only 1K lines of code.

While our prototype implementation is based on the tools

and operating system above, we believe our techniques are

general, and can be easily applied to any hardware, operating

system, PVM, or executable format.

B. Experimental Setup

We evaluated the effectiveness and performance of

the ILR prototype using the SPEC CPU2006 benchmark

suite [16]. These benchmarks are state-of-the-art, industry-

standardized benchmarks designed to stress a system. The

benchmarks are processor, memory and compiler stressing.

The benchmarks are provided as source, and we compiled

them with gcc, g++, or gfortran (as dictated by the pro-

gram’s source code) version 4.4.3 before applying our ILR

technique. The benchmarks are compiled at optimization

level -O2, and use static linking. We used static linking

to thoroughly demonstrate the effectiveness of our system

at randomizing large bodies of code, and to fully test

the system using all the odd, compiler-specific, language-

specific, hand-coded, or otherwise abnormal code that is

often found in libraries. Furthermore, having all the code

packaged into one executable increases the attack surface

making it easier to locate an ROP gadget. Thus, we believe

our evaluation is a worst-case analysis for these benchmarks.

We run our experiments on a system with a 4-core, AMD

Phenom II B55 processor, running at 3.2 GHz. The machine

has 512KB of L1 cache, 2MB of L2 cache, 6MB of L3

cache, and 4GB of main memory. Performance numbers are

gathered by averaging 3 runs of each benchmark. Unless

otherwise noted, the performance of a protected binary is

reported by normalizing its run time to the run time of the

corresponding original binary produced by the compiler.

C. Security-Related Experiments

To verify that our technique stops attacks that are suc-

cessful against ASLR and W⊕X protected systems, we

performed a number of tests on vulnerable programs. For

each test, ASLR and W⊕X were enabled.

In the first test, we used a small program (44 lines of

code) that had a simple stack-based buffer overflow. The

program assigns grades to students based on the program’s

input, the student’s name. A malicious input can cause a

buffer overflow enabling an attack.

We created a simple arc-injection attack which causes

the program to print out a grade of B when the student

should receive a D. It was trivial to perform the arc-injection.

ASLR was ineffective because no randomized addresses

were used—only the unrandomized addresses in the main

program. Similarly, W⊕X was ineffective because the attack

only relied on instructions that were already part of the

program. We also used a tool called ROPgadget [20] to craft

an ROP attack that causes the program to start a shell which

can execute an arbitrary command. Again, ASLR and W⊕X

were ineffective. ILR, however, thwarted the attack.

We next verified our technique against a vulnerability

in a realistic program: a Linux PDF viewer, xpdf. We

seeded a vulnerability in the input processing routines. An

appropriately long input can trigger a stack overflow. In this

case, we were able to use ROPgadget to craft an attack to

create a shell. ILR was again able to prevent the attack.

Lastly, we used version 9.3.0 of Adobe’s PDF viewer,

acroread, that we downloaded from Adobe’s website

in binary form. The program has a well-documented vul-

nerability when parsing image files (see CVE-2006-3459)

that allows arc-injection and ROP attacks [21]. Again, we

used ROPgadget to craft an ROP attack payload for this

vulnerability to start a shell program. Because exploiting the

vulnerability is more complicated, it took additional effort

to adapt the attack. Using information from Security Focus’s

website, we were able to create a malicious PDF file that

effected the ROP attack [21]. ILR successfully processes and

randomizes the 24MB executable, and thwarts the attack.

Section IV-E discusses ILR’s effect on the use of such

tools as ROPgadget, and Section V-B describes how ran-

domized addresses needed for the attack are protected from

exfiltration by the ILR VM. Consequently, we believe attacks

using programs such as ROPgadget are not possible with

ILR.

D. Effectiveness of ILR Components

1) Disassembly Engine: The goal of the Disassembly

Engine is to locate any instruction which might be exe-

cuted, so that the instruction can be relocated later. For

our benchmarks, we found that the disassembly engine

successfully located 100% of the executed instructions for

all benchmarks. The Disassembly Engine has met its first

goal. We omit further discussion on disassembly as such

techniques are well studied [22–24].

A secondary goal of the Disassembly Engine is to intro-

duce few conflicting facts about instruction locations into

the database. We measured the fraction of bytes in the exe-

cutable segments that belonged to more than one instruction.

576

On average, only 0.005% of bytes were represented as part

of more than one instruction with the worst-case having

only 0.012% of bytes in conflict. Thus, we believe that the

disassembly engine has met its second goal.

2) Call Site Analysis: Figure 6 shows the percentage of

call sites marked as safe to randomize their return addresses.

The first bar shows that our technique works well for some

benchmarks. 403.gcc, for example, has 91% of the return

addresses randomized while 416.gamess reaches 97%.

Other benchmarks do not perform as well; 447.dealII
and 483.xalancbmk only manage to identify 5% and 3%

of return addresses as randomizable. The C++ benchmarks

(447.dealII, 450.soplex, 453.povray, 470.lbm,

and 471.omnetpp) do especially poorly. Only 10% of

calls can use a randomized return address.

To understand why the call site analysis phase was less

effective on some benchmarks, we examined the reasons

that the call site analysis indicated that a randomized return

address could not be used. Figure 7 shows the results as a

fraction of all call instructions. We find that indirect calls

(which cannot use a randomized return address because

our analysis does not attempt to determine possible targets)

result in a small fraction of unrandomized return addresses,

resulting in 5% of calls on average. Possible non-standard

uses of the return address, such as thunks, result in only

7.6% of return addresses. Interestingly, we find that direct

call instructions to targets that we were not able to include in

our disassembly result in 1.2% of the total call instructions.

Closer inspection indicates that the compiler is actually

emitting a call 0x0 instruction in many library functions.

If this type of call instruction were to ever execute, it

would cause a fault in the program, but the call instruction

is (dynamically) unreachable code. The compiler cannot

detect this fact, and so cannot eliminate the call. A minor

improvement would randomize the return address for this

type of call, knowing that the return address cannot be used

if the call instruction causes a fault. Together, these causes

represent only 21% of all unrandomized call instructions.

The top bar in the figure shows the real cause of the poor

performance, especially in C++ programs. More than 32% of

call instructions are marked as not being able to randomize

the return address because of the exception handling tables

used in the ELF file. In the C++ programs, this number

jumps up to an average of 79%! In C++ programs, the

compiler typically cannot calculate when a function, f ,

makes a call, whether the called function will throw an

exception and need to clean up f ’s stack. Consequently, the

C++ compiler emits cleanup code into f , and adds to the

.eh_frame and .gcc_except_table ELF sections

to drive the exception handling routines. Because most

functions with a call site fit this form, most call instructions

cannot have a randomized return instruction.

It is interesting that even the C and Fortran benchmarks

use the exception handling table. The C/Fortran benchmarks’

application code does not seem to directly add to these

tables. Instead, the table entries come from library routines

that are compiled to work with C++ source.

We believe that modifying the ILR toolchain to edit the

exception handling tables to reflect the randomization would

be feasible. The tables are in a fixed, known format and

can easily be rewritten with randomized addresses. Other

solutions are possible as well. For example, detecting if

C++ exception handling is actually used in the program or

a portion of the program would allow return address ran-

domization to be selectively applied. While fully exploring

this idea is beyond the scope of this paper, we were able to

modify our ILR toolchain to ignore the exception handling

tables when calculating safe calls. We term the ILR toolchain

with this modifications ILR+. ILR+ represents a very close

approximation to a system that could easily be achieved by

rewriting the exception handling tables in a binary.

With ILR+, the call site analysis performs well across all

benchmarks. As Figure 6 shows, 93% of all calls are marked

as using a randomized return address.

3) Indirect Branch Target Analysis: We continue our

evaluation of ILR by measuring the effectiveness of the

analysis of indirect branch targets (including return ad-

dresses). Figure 8 shows the fraction of instructions detected

as possible indirect branch targets. On average, only 2.2%

and 0.60% of the instructions are marked as indirect branch

targets for ILR and ILR+, respectively. Consequently, we

believe our scheme for detecting possible IBTs is not too ag-

gressive in marking instructions as possible indirect branch

targets.

4) Moved Instructions: Because we emit rewrites for

every byte of the executable segment, technically all instruc-

tions are moved. However, IBTs get a rule that maps the

unrandomized address to the relocated instruction. Despite

technically being moved, we consider this an unmoved (or

pinned) instruction because if an attacker were to inject an

arc or locate an ROP gadget at the unrandomized address,

they could still exploit that information in the randomized

program.

Figure 9 shows the percentage of instructions moved

for our benchmarks. The first bar shows the effectiveness

of ILR without call site analysis; approximately 95.0% of

instructions were successfully and safely located at random-

ized addresses. The second bar shows call site analysis for

standard ILR; 97.4% of instructions are moved. The last bar

shows the results for ILR+, almost all instructions (99.1%)

are assigned to a randomized location in memory. This

randomization represents a two order of magnitude reduction

in the attack surface for arc-injection and ROP attacks.

E. ILR Security

To assess the security of ILR, we first note that up to

99.7% of the instructions can be randomized. Furthermore,

all of the executable bytes of a program that do not make

577

��

���

���

���

���

���

	��

��

���

���

����

�
�
�
�
�
�
�
�	

�

�
�

�
�

�
	
�
��

�

�
�
�
�
�
�
�

�

�
�
	
�

�
�
�
�

�

�
�
�
�
�

�
�
�

�
�
�
�
�

�
�

�
�
�
�
�

��
�

�
�
�
�
�
�
�
�
�

�

�
�
�
�
�
�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�

!
"

�
�
#
�
��

�
��
�
�
$

�
�
�
�

�
�

$

�
�
�
�
�
�
	
�

%

�
�
#
�
$
�
�
�&
&

�
�
�
�
�
�
�
��

'

�
�
�
�
�
�
�
�
�
(

�
�
�
�
�
�
��

�
��
'

�
�
�
�
�
�

�
�
�

�
�
)
�
�
*
�

�

�
�
�
�
+

�
�

�
,
!

-
!

�
�
�
�
��
	
.
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�

�
#
�
�
�	

�

�
#

�
�
�

�
�
�
�

�
#
�
�
�
�
�
�
�

�
)

�
�

�
�

�
)
�
�
�
�
�
�

'
�

�
)
�
�
'
�
��

�
	
�

%

�
�
�
�
�
�
�

�
�
�
�
�
�
�
/�

0
�
/
1
2
2

�
�
�
�
�
�
�
/�

�
/
1
2
2

�
�
�
�
�
�
�
�
	
�

�
�

�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�

���������		
����������

Figure 6. Percent of call instructions which ILR and ILR+’s call site analysis deemed safe for using a randomized return address. On average, only 58%
of call instructions were identified as safe to use a randomized return address.

��

���

���

���

���

���

	��

��

���

���

����

�
�
�
�
�
�
�
�
	
�

�
�

�
�

�
	
�
�
�
�

�
�
�
�
�
�
�

�

�
�
	
�
�
�
�
�

�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

!

�
�
"
�
�
�
�
�
�
�
�
#

�
�
�
�

�
�
#

�
�
�
�
�
�
	
�
$

�
�
"
�
#
�
�
�
%
%

�
�
�
�
�
�
�
�
�
&

�
�
�
�
�
�
�
�
�
'

�
�
�
�
�
�
�
�
�
�
�
&

�
�
�
�
�
�
�
�
�

�
�
(
�
�
)
�

�

�
�
�
�
*
�
�
�
+

,

�
�
�
�
�
�
	
-
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�

�
"
�
�
�
	
�

�
"

�
�
�

�
�
�
�

�
"
�
�
�
�
�
�
�

�
(

�
�
�
�

�
(
�
�
�
�
�
�

&
�

�
(
�
�
&
�
�
�

�
	
�
$

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
	

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

	
�
�
�
�
�
�

�

�
�
�
�
�
�
�
�

���������		
���������

�������	
���	����	

���������	��������

������	������	�����	

��

�����

���	��	������������

������	�����	���	��	

�������

!�������	
���

Figure 7. Breakdown of call instructions marked as unsafe for using a randomized return address. C++’s exception handling mechanism results in a
severe reduction in return address randomization.

up a compiler-intended instruction sequence are marked as

invalid for execution. These features of ILR reduce the attack

surface for arc-injection by over two orders of magnitude.

We believe it would be very difficult for an attacker to inject

even one control-flow arc that achieves a meaningful result.
However, it has recently been shown that even small pro-

grams (with at least 20KB of program text) contain enough

executable bytes to successfully produce an ROP attack [25].

The basic ILR algorithm reduces the unrandomized program

text to less than 20KB for 26 of the 29 SPEC2006 bench-

marks, while ILR+ reduces the attack surface to below 20KB

for 28 of 29 benchmarks. On average, ILR+ reduces the

attack surface to just 3KB! Thus, even state-of-the-art gadget

compilers likely can not detect enough gadgets to mount an

ROP attack in an ILR+-protected program.
To more directly validate that ILR successfully random-

izes enough gadget locations to make ROP attacks infeasible,

we further examine the SPEC benchmarks. While we know

of no vulnerabilities in these benchmarks, they, like all large

pieces of software, may in fact have an error that might allow

an ROP attack. We study the feasibility of such an attack on

these large applications if an appropriate vulnerability were

to be found or seeded.
To search for gadgets in these benchmarks, we use a

tool available online, ROPgadget [20]. The tool contains a

database of gadget patterns and scans binary programs to

identify specific gadgets within an executable. For example,

one of the gadget patterns is mov e?x, e?x;ret, which

identifies gadgets that move one register to another. We

experiment with two versions of the tool, version 2.3 and

3.1. Version 2.3’s database contains 60 gadget patterns, while

version 3.1 has significantly more: 185 gadget patterns. Ver-

sion 3.1 also contains a simple gadget compiler that matches

gadgets with an attack template to form a complete attack

payload. While these payloads do not automatically exploit

a vulnerability in a program, they represent a significant

portion of the attack. Converting an attack payload into an

actual attack is dependent on the exact vulnerability, and is

not automated. However, if ROPgadget cannot assemble the

attack payload from the attack template, this failure indicates

that the templated ROP attack could not proceed, even with a

suitable vulnerability. ROPgadget 3.1 comes with two simple

attack templates.

For the experiment, we modified both versions of ROP-

gadget to ignore randomized addresses, so that the tool can

only locate gadgets at the unrandomized code addresses.

This modification mimics an attacker’s abilities via a remote

578

��

��

��

��

��

��

	�

�

��

��

���

�
�
�
�
�
�
�
�
	
�

�
�

�
�

�
	
�
�
�
�

�
�
�
�
�
�
�

�

�
�
	
�
�
�
�
�

�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

!

�
�
"
�
�
�
�
�
�
�
�
#

�
�
�
�

�
�
#

�
�
�
�
�
�
	
�
$

�
�
"
�
#
�
�
�
%
%

�
�
�
�
�
�
�
�
�
&

�
�
�
�
�
�
�
�
�
'

�
�
�
�
�
�
�
�
�
�
�
&

�
�
�
�
�
�
�
�
�

�
�
(
�
�
)
�

�

�
�
�
�
*
�
�
�
+

,

�
�
�
�
�
�
	
-
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�

�
"
�
�
�
	
�

�
"

�
�
�

�
�
�
�

�
"
�
�
�
�
�
�
�

�
(

�
�
�
�

�
(
�
�
�
�
�
�

&
�

�
(
�
�
&
�
�
�

�
	
�
$

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
	

�
�
�
�
�
�

�
�
�
	
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

���������		
����������

�� ���

Figure 8. Percent of instructions marked as possible indirect branch targets. Only 2.2% and 0.60% of instructions are marked on average for the two
techniques, indicating that ILR’s IBT analysis is effective.

���

���

���

���

���

���

�	�

�
�

���

���

���

���

����

�
�
�
�
�
�
�
�
	
�

�
�

�
�

�
	
�
�
�
�

�
�
�
�
�
�
�

�

�
�
	
�
�
�
�
�

�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

!

�
�
"
�
�
�
�
�
�
�
�
#

�
�
�
�

�
�
#

�
�
�
�
�
�
	
�
$

�
�
"
�
#
�
�
�
%
%

�
�
�
�
�
�
�
�
�
&

�
�
�
�
�
�
�
�
�
'

�
�
�
�
�
�
�
�
�
�
�
&

�
�
�
�
�
�
�
�
�

�
�
(
�
�
)
�

�

�
�
�
�
*
�
�
�
+

,

�
�
�
�
�
�
	
-
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�

�
"
�
�
�
	
�

�
"

�
�
�

�
�
�
�

�
"
�
�
�
�
�
�
�

�
(

�
�
�
�

�
(
�
�
�
�
�
�

&
�

�
(
�
�
&
�
�
�

�
	
�
$

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�	

�
�
�
�
�
�

�
�
�
	
�
�
�

�
	
�
�
�
�
�
�
�
�
�
�

���������		
����������

��� ��� �� ����!"#$%

�� ����!"#$&%

Figure 9. Percent of instructions moved using ILR. Results demonstrate that ILR can randomize the location of almost all instructions within an arbitrary
binary program.

attack. Figure 10 shows how ILR affects an attacker’s ability

to mount an ROP attack. The first bar shows the percentage

of unique gadgets that have been moved by ILR. We count

unique gadgets because typically an attacker could re-use a

gadget if needed, and any particular instance of a gadget is

likely sufficient to mount an attack which used that gadget.

Over 94% are moved on average, with 483.xalancbmk
being the worst performing at only 87%. The second bar

shows the results for ROPgadget version 3.1. Even more of

the gadgets appear to be hidden; over 90% in all cases, and

96% on average. What the figure does not show, however,

is that version 3.1 located slightly more gadgets in the

ILR-protected version, but found many more gadgets in the

unprotected version, thus the overall ratio has improved,

indicating that ILR is effective at hiding most gadgets in

a program, even in the face of a better gadget identification

framework. This result is quantified in the last bar of the

figure where we count not unique gadgets, but all gadgets

(including duplicates). On average, 99.96% of the total

gadgets have had their location randomized.

On average, only 2.48 gadgets remain in the program.

The worst performing benchmark, 483.xalancbmk, has

6 unique gadgets, versus 67 for the unprotected program.

Six gadgets is not enough to mount an attack in most

cases. Even the two very simple attack templates included

with ROPgadget require 8 and 9 gadgets. We note that

on an unprotected application, the gadget compiler can

successfully generate an attack payload for every program.

In fact, both attacks are automatically detected as possible

on 9 of the benchmarks. On the protected program, no attack

payloads are ever successfully generated.
With ILR+ (results not shown) the probability of mount-

ing an attack is further reduced. Most ILR+ protected

applications have only one gadget (21 of 29 benchmarks).

In every case, this lone gadget is an int 0x80 sequence.

Used alone, this gadget cannot mount an attack. On average,

only 1.5 gadgets remain available with ILR+.

F. Performance Metrics
1) Run-time Overhead: Figure 11 shows the performance

overhead of the base VM (Strata), as well as the overhead of

ILR and ILR+. We see that Strata adds much of the overhead

for the applications, and applying the randomization costs

little additional overhead. On average, Strata adds only 8%

overhead, with an additional 8% used for ILR. This extra

overhead occurs in the short-running, but large code size

benchmarks, for example, 400.perlbench, 403.gcc,

579

���

���

���

���

���

���

���

���

���

���

	���

�
�
�
�
�
�
�
�
	
�

�
�

�
�

�
	
�
�
�
�

�
�
�
�
�
�
�

�

�
�
	
�
�
�
�
�

�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

!

�
�
"
�
�
�
�
�
�
�
�
#

�
�
�
�

�
�
#

�
�
�
�
�
�
	
�
$

�
�
"
�
#
�
�
�
%
%

�
�
�
�
�
�
�
�
�
&

�
�
�
�
�
�
�
�
�
'

�
�
�
�
�
�
�
�
�
�
�
&

�
�
�
�
�
�
�
�
�

�
�
(
�
�
)
�

�

�
�
�
�
*
�
�
�
+

,

�
�
�
�
�
�
	
-
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�

�
"
�
�
�
	
�

�
"

�
�
�

�
�
�
�

�
"
�
�
�
�
�
�
�

�
(

�
�
�
�

�
(
�
�
�
�
�
�

&
�

�
(
�
�
&
�
�
�

�
	
�
$

�
�
�
�
�
�
�

�
�
�
�
�
�
�
	

��

�
�

�
�
�
�
�

���������		
����������

������������
�������������������������
�����������	�
�������������������������

�����������	�
������������ ���!�������

Figure 10. Reduction of number of gadgets found using ILR. Almost all gadgets are successfully randomized, and consequently unavailable for use in
an attack.

and 416.gamess). The overhead added is mostly due

to the startup overhead of reading the rewrite rules. In

481.wrf benchmark, for example, we note that reading

the rewrite rules takes about 45 seconds, and that the 7%

overhead difference between basic virtualization and ILR

also corresponds to about 46 seconds. We believe that this

startup overhead could be greatly reduced by a better rewrite

rule format than ASCII. Section IV-F2 discusses optimizing

the rewrite rules in more detail.

ILR+ actually reduces the overhead (by 3% to only 13%)

compared to ILR. This reduction is due to more call sites

being randomized. As mentioned in Section III-B3, storing

an unrandomized return address takes one extra instruction.

With more return addresses randomized, the instruction

count is reduced. Because ILR+ has the largest effects on

the C++ benchmarks, we see this difference most in the

C++ benchmarks that are ILR+ compatible (447.dealII,

450.soplex, and 483.xalancbmk).

Taken together, we believe there is strong evidence that

ILR can be implemented efficiently, perhaps as low as

the basic virtualization overhead of only 8%. Even our

prototype implementation, which has overheads of 13%-16%

on average could be used to protect many applications.

2) Space Overhead: Our prototype implementation has

memory overhead from two sources. The first is from the

PVM we used to implement the ILR VM. Such overheads

are well studied, and not particularly significant for modern

systems [26, 27].

The second source of overhead is the handling of the ILR

rewrite rules. In our prototype implementation, we made

the design choice to use ASCII for the ILR rewrite rules.

Our choice makes sense for an evaluation prototype: we

favored human readability and ease of debugging over raw

performance or storage efficiency. Consequently, we note

that the on-disk size of the rewrite rules can be quite large.

For example, the largest benchmark, 481.wrf, has 264MB

of rewrite rules. The in-memory size is even worse, 345MB.

This overhead is largely due to our hashtable implementation

that stores each byte of an instruction in a separate hash

bucket, which allocates many words of data for each byte

stored in an ILR rewrite rule. However, 481.wrf is clearly

a worst-case for our benchmarks. The average size of the

rewrite rules (104MB) is less than half that for 481.wrf.

While our prototype implementation is currently ineffi-

cient, we do not believe the rewrite rules are an inherent

limitation of ILR. Many techniques exist for minimizing this

overhead. For example, we used the gzip compression utility

to compress the rewrite rules, and obtained an average size

of 14MB. We believe that a binary encoding of the rewrite

rules and an efficient memory storage technique could easily

reduce the memory used to well under 14MB. On today’s

systems with multiple gigabytes of main memory, such space

overhead should be easily tolerated.

3) Analysis Time: We measured the analysis time of

the ILR technique. We were able to process the SPEC

benchmarks in an average of 23 minutes each. Only the

last step of the process creates any randomization, so most

of that processing time can be re-used if one wanted to

re-randomize. The randomization step itself took only 36

seconds, indicating that re-randomization once analysis is

complete could proceed very quickly.

V. SECURITY DISCUSSION

A. Protecting the ILR VM

This section discusses several issues related to the security

of the VM used to implement ILR.

The first issue that arises is the VM’s potential for being

vulnerable to an ROP or arc-injection attack. First, we

note that the input to the VM is actually the program’s

instructions and the ILR rewrite rules, which we assume

to be benign. Malicious programs or malicious rewrite rules

are beyond the scope of our remote-attacker threat model.

Benign programs and rewrite rules help, as that is the

majority of input for the VM, but does not absolutely

preclude an attacker from providing input to the program that

somehow exercises a vulnerability in the VM. Still, we feel

580

���

�

���

���

���

���

�

�
�
�
�
�
�
�
�
	
�

�
�

�
�

�
	
�
�
�
�

�
�
�
�
�
�
�

�

�
�
	
�
�
�
�
�

�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

!

�
�
"
�
�
�
�
�
�
�
�
#

�
�
�
�

�
�
#

�
�
�
�
�
�
	
�
$

�
�
"
�
#
�
�
�
%
%

�
�
�
�
�
�
�
�
�
&

�
�
�
�
�
�
�
�
�
'

�
�
�
�
�
�
�
�
�
�
�
&

�
�
�
�
�
�
�
�
�

�
�
(
�
�
)
�

�

�
�
�
�
*
�
�
�
+

,

�
�
�
�
�
�
	
-
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�

�
"
�
�
�
	
�

�
"

�
�
�

�
�
�
�

�
"
�
�
�
�
�
�
�

�
(

�
�
�
�

�
(
�
�
�
�
�
�

&
�

�
(
�
�
&
�
�
�

�
	
�
$

�
�
�
�
�
�
�

�
.
�
/
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

./0121/3����24����	
��

	
��
� �� ���

Figure 11. Performance overhead of ILR and ILR+, along with the average overhead and the average without the 453.povray and 481.omnetpp
benchmarks. With an average overhead of only 16% and 13%, most applications could be reasonably protected by our ILR or ILR+ prototypes. Further,
ILR overhead could be reduced to that of basic virtualization, at only 8%.

this threat is minimal, and could be addressed via a variety

of techniques. We believe that formal verification should

be possible since the VM’s code is typically quite small.

(Strata’s fully-featured IA32 implementation is only 18K

lines of code.) Much of the code is related to the decoder

for the machine’s ISA, which might be automatically verified

or generated from an ISA description. Even without formal

verification, bugs within a VM can largely be addressed

via iterative refinement, code-review, static analysis, and

compiler-based protection techniques. The last item has

significant potential for protecting the VM in this case. If

randomization (stack, heap, instruction-location, etc.) could

be used on the VM at the deployed location, most attacks

directly on the VM could be mitigated.

The more significant threat to the VM is that a vulner-

ability in the application allows the application’s code to

overwrite some portion of the VM, or to have the VM start

interpreting some portion of itself. Since a process-level VM

typically resides in the process’ address space, we need to

guard against these threats directly.

We do so by augmenting the VM to verify any instruction

before it is fetched for analysis. The VM ensures that

the instruction originates from allowable portions of the

application text (for pinned instructions) or an ILR rewrite

rule. The VM is prohibited from translating itself or its

generated code, and consequently the VM’s code cannot

be used for arc-injection or ROP attacks. Our prototype

implementation includes these protections.

To prevent a compromised application from overwriting

the VM’s code or data, we use standard hardware memory

protection mechanisms. When executing the untrusted ap-

plication code, the VM turns off read, write, and execute

permission on memory used by the VM, leaving only

execute (but not write) permission on the code cache. The

VM also watches for attempts by the application to change

these permissions. Previous work shows this technique to be

effective and cost very little [28].

Together, we believe that good coding practices, verifica-

tion, randomization, and actively protecting the VM from a

compromised application can result in a safe VM.

B. Entropy Exhausting Attacks

The entropy of the ILR technique can be quite high. Since

the ILR technique separates data and instruction memory,

randomized instructions can be located anywhere in memory,

even at the same addresses as program data, VM code

or data. Many operating systems reserve some pages of

memory specifically for code to interface with the operating

system, so those pages could not be used for randomized ad-

dresses. Further, any unrandomized instructions restrict the

entropy of the remaining instructions. Since there are very

few unmoved instructions, and almost all other addresses

are available for randomization, we believe that it would be

easy to produce a system that has at least 31-bits of entropy

on a 32-bit address system and at least 63-bits of entropy on

a 64-bit system. Thus, randomly attempting to guess gadget

addresses is completely infeasible and ILR can evade attacks

which attempt to reduce the entropy of a system.

C. Information Leakage Attacks

A more likely attack scenario is that an attacker is able

to leak information about randomized addresses. Fortu-

nately, the memory-page protection techniques mentioned

in Section V-A prevent leaking of information about most

randomized addresses. The only randomized addresses that

might be leaked are those that potentially end up in the appli-

cation’s visible data. For ILR, that is the randomized return

addresses that might be stored on the application’s stack.

For a complete ILR+ implementation, it also includes any

randomized addresses that are written into the application’s

exception handling tables.

In theory, all of these addresses might be leaked to an

attacker. However, revisiting Figure 9, we see that on average

only 5% of addresses in the total program could be known by

the user. In practice, only a few randomized return addresses

581

lea eax, [eax+eax*8+0x80b4545]
jmp eax

Figure 12. An example of a calculated branch target from gcc’s library
for arbitrary precision arithmetic.

are available in the application at any instance, and most

return addresses could not actually be leaked. If it were

possible for the entire exception handling table to be leaked,

the number of available addresses would likely be very close

to the ILR results, and no ROP attacks are available against

ILR in our benchmarks, as seen in Section IV-E.

Furthermore, since our ILR technique is designed to be

applied to arbitrary executables, re-randomization could oc-

cur regularly with little overhead. Regular re-randomization

of high-entropy systems has been shown to be effective in

the context of information leakage [29].

Thus, information leakage is not a problem for ILR.

D. False Detections

A false detection occurs when the program performs

an operation that is detected as illegal, when there is no

attack underway. On our benchmark suite, we found that

there were no false detections with ILR. Since our im-

plementation of ILR+ is incomplete, we did observe two

false detections. Both 453.povray and 471.omnetpp
resulted in incorrect output (from faulting the program) when

attempting to throw an exception. A complete implemen-

tation of ILR+ would not demonstrate this problem. We

believe this indicates that false detections would be rare

in real programs. Nonetheless, we discuss some possible

mechanisms by which false detections might occur.

False detections might occur if a program calculates an

indirect branch target, instead of simply storing the target in

data memory as is most common. We found one example

of this type of code in gcc’s library for doing arbitrary

precision arithmetic. The example, shown in Figure 12 and

originally written in assembly, is used to dispatch into a

switch-style table of code blocks. Each block in the table

is 9 bytes long. The assembly multiplies register eax by 9

(eax+eax*8), then adds the the base of the first code block

before finally jumping to that address. A similar construct

might be generated by a compiler, but we know of no

compilers which generate this type of code for a switch

statement. Other constructs exist that might hide code ad-

dresses. For example, a function pointer might be calculated

for some reason, such as for obfuscation techniques.

A more common compiler construct that might calculate

an indirect branch target is position independent code (PIC).

In PIC mode, the compiler will often generate a code address

by emitting a sequence of instructions that adds the current

PC and a constant offset, knowing that the desired code

address is a fixed distance from the current PC. PIC code is

not standard due to its performance overhead.

In most of these cases, we believe that a more advanced

indirect branch analysis would solve the problem. For exam-

ple, the code in Figure 12 is prefixed by code to verify that

register eax is in proper bounds. A simple range analysis on

the values that can reach the jmp instruction would reveal

the possible indirect branch targets.

Furthermore, our experience indicates that the ILR tech-

nique can easily print the address of an indirect branch

target if a false detection is encountered. A profile-based

or feedback-based mechanism that incorporates newly dis-

covered IBTs would be easy to implement to reduce false

detections over time if the IBT can be detected as derived

only from safe sources.

E. Shared Libraries

Modern computer systems are built using libraries that

are loaded on demand, and possibly shared among many

processes. Linux uses the .so (Shared Object) format, while

Windows uses the .dll (Dynamically Linked Library)

model. Our system is capable of processing and randomizing

a program that uses dynamic linking. Generally, analysis

of these types of programs is easier for our system. Since

the code is divided into libraries, we know that if a library

contains a constant, the constant can only be an IBT in the

library being considered, not to other libraries. Thus, this

separation dramatically reduces the number of potential IBTs

for a library. Furthermore, externally visible functions and

symbols need to be referenced by a handle that is given

in the library’s headers. Extracting these types of indirect

branch targets is trivial.

While our prototype can process and effectively random-

ize programs that require shared libraries, it does not actually

randomize the libraries. Both Linux and Windows support

some form of ASLR which provides coarse-granularity

randomization of shared libraries. We believe our technique

could easily be extended to include full randomization of

shared libraries, but it is not clear that doing so would

always be the best solution. When feasible, it seems better

to provide randomization within the library itself. On Linux,

this randomization could be accomplished by using a ran-

domizing compiler to generate a per-system version of the

libraries. When library source code is not available, such

as on Windows-based systems, ILR-based randomization

would be important. To achieve this, ILR-rewrite rules for

a library would have to be loaded and symbolic addresses

resolved whenever a new library entered the system. Such

a mechanism could be easily included in a dynamic loader,

or by having the ILR VM watch for library loading events.

F. Self-modifying Code

Our ILR implementation does not currently support self-

modifing, dynamically generated, or just-in-time compiled

(JITted) code because our underlying VM does not sup-

port such constructs. However, the ILR mechanism itself

582

should operate properly with dynamically generated and

JITted code, which is significantly more common than self-

modifing code. ILR would not randomize the generated

code, but we believe that to be an easy task for the JITter. A

security-minded JITter would perform this simple operation.

VI. RELATED WORK

A. ROP Defenses

The original authors of ROP have described ROP’s salient

feature as “Turing completeness without code injection” [9].

ROP invalidates the assumption that attack payloads are in-

trinsically external by nature as ROP re-uses code fragments

already present in a target program. Defensive techniques

such as various forms of instruction-set randomization that

target code injection attacks directly are completely circum-

vented by arc-injection attacks in general [28, 30, 31], of

which ROP, return-to-libc [32, 33], and partial overwriting

attacks of return addresses [10] are special cases. W⊕X is

also circumvented as it implicitly assumes that external code

will be executed from data pages [5].

Since the original seminal work on ROP [2], several

defensive techniques have been proposed. Early defenses

targeted what would emerge to be non-essential features of

ROP attacks. For example, DROP [14] instruments binaries

searching for short consecutive sequences of instructions

ending in a return instruction. Li et al. and Onarlioglu et al.

avoid gadget-like instruction sequences altogether when gen-

erating code [34, 35]. Kil et al. permute function locations to

randomize gadget locations, but require additional compile-

time information [36]. ROPDefender [15] and TRUSS [37]

look for mismatched calls and returns essentially using a

shadow stack.

Checkoway et al. showed that the use of the return instruc-

tion is not a necessary condition in building ROP gadgets,

thereby bypassing such ad-hoc defenses [9]. The balance

against ad hoc defenses is further tilted by recent works that

have automated the process of gadget discovery [20, 38, 39]

and ROP exploit compilation and hardening [25].

TRUSS [37], ROPDefender [15], DROP [14], and

TaintCheck [40] use software dynamic translation frame-

works for instrumenting code and implementing their respec-

tive defenses. TaintCheck uses dynamic taint analysis and

provides a comprehensive approach to thwarting ROP at-

tacks by detecting attempts at control-flow hijacking, though

it suffers from high overhead (over 20X). Performance

overhead for ROPDefender is approximately 2X overhead on

the SPEC2006 benchmarks, while preliminary performances

measurements for DROP range from 1.9X to 21X. While

not directly comparable, ILR achieves average performance

overhead of only 13-16%, which makes it practical for

deployment.

B. Defenses based on randomization

In contrast to approaches that look for specific ROP

patterns, ILR provides a comprehensive defense based on

high-entropy diversification to thwart attacks. ILR provides

31 bits of entropy (out of a maximum of 32 for our

experimental prototype) which makes derandomizing attacks

impractical. ASLR on a 32-bit architecture only provides 16

bits of entropy and is susceptible to brute-force attacks [7].

Even on 64-bit architectures, there would be two potential

problems. The first is that ASLR is not applied universally

throughout the address space. Even when using dynamically-

linked libraries, it is common for the main program text to

start at a known fixed location. Red Hat developed Posi-

tion Independent Executable to remedy this situation [41].

However, PIE requires recompilation. The second problem is

that ASLR and other coarse-grained technology such as PIE

do not perform intra-library randomization. Any information

leaked as to the location of one function, or even one

address, could be used to infer the complete layout of a

library. Roglia et al. demonstrated a single-shot return-to-

libc attack that used ROP gadgets to leak information about

the base address of libc, and bootstrapped this information

into all other libc functions [8]. Their proposed remedy of

encrypting the Global Offset Table was specific to their

attacks and leaves open the possibility of other leakage

attacks.

Bhatkar et al. use source-to-source transformation tech-

niques to produce self-randomizing programs (SRP) to

combat memory error exploits [42]. Unlike other compiler-

based randomization techniques [43], SRP produces a single

program image, which makes it more practical for deploy-

ment. SRP randomizes code at the granularity of individual

functions and therefore retains a larger attack surface than

the ILR approach of randomizing at the instruction level.

Instruction Set Randomization (ISR) helps defeat code-

injection attacks, but provides no protection against arc-

injection and ROP attacks [28].

C. Control Flow Integrity

Control flow integrity (CFI) is designed to ensure the con-

trol flow of a program is not hijacked [44]. CFI relies on the

Vulcan instrumentation system. The Vulcan system allows

instruction discovery, static analysis, and binary rewriting.

Figure 13 shows an example program. In the figure,

CFI enforces that the return instruction (in function log)

can only jump to the instruction after a call to the log
function. In this case, this policy allows an arc-injection

attack if the log function is vulnerable. An attacker might

be able to overwrite the return address to erroneously jump

to L2, thereby granting additional access. Even the best static

analysis cannot mitigate these threats using CFI.

Further, a partial overwrite attack might defeat ASLR in

this example, since the distance between the two return sites

583

call log
L1: cmp [isRoot], #1

jeq L3
...
call log

L2: call grantAccess
L3: ...
log: ...

ret

Figure 13. Example demonstrating CFI’s weakness. The return instruction
jump either L1 and L2, possibly allowing additional access if the log
function is vulnerable.

is fixed. Since ILR randomizes this distance, ILR can defeat

partial-overwrite attacks.

VII. CONCLUSIONS

This paper presents instruction location randomization

(ILR), a high-entropy technique for relocating instructions

within an arbitrary binary. ILR is shown to effectively hide

99.96% of ROP gadgets from an attacker, a 3.5 order of

magnitude reduction in attack surface.
This work describes the general technique, as well as

evaluates two versions of an ILR prototype. It further

discusses the security implications of ILR. We find that ILR

can be applied to a wide range of binary programs compiled

from C, Fortran, and C++. Performance overhead is shown

to be as low as 13% across the 29 SPEC CPU2006 industry-

standard benchmarks [16].
This work surpasses state-of-the-art techniques for defeat-

ing attacks in a variety of ways. In particular, the technique:

• can be easily and efficiently applied to binary programs,

• provides up to 31 bits of entropy for instruction loca-

tions on 32-bit systems,

• can regularly re-randomize a program to thwart

entropy-exhausting or information-leakage attacks,

• provides low execution overhead,

• randomizes statically and dynamically linked programs,

and

• defeats attacks against large, real-world programs in-

cluding the Linux PDF viewer, xpdf, and Adobe’s

PDF viewer, acroread.

Taken together, these results demonstrate that ILR can be

used in a wide variety of real-world situations to provide

strong protection against attacks.

ACKNOWLEDGMENT

This research is supported by National Science Founda-

tion (NSF) grant CNS-0716446, the Army Research Of-

fice (ARO) grant W911-10-0131, the Air Force Research

Laboratory (AFRL) contract FA8650-10-C-7025, and DoD

AFOSR MURI grant FA9550-07-1-0532. The views and

conclusions contained herein are those of the authors and

should not be interpreted as necessarily representing the of-

ficial policies or endorsements, either expressed or implied,

of the NSF, AFRL, ARO, DoD, or the U.S. Government.

REFERENCES

[1] J. Pincus and B. Baker, “Beyond stack smashing: Recent
advances in exploiting buffer overruns,” IEEE Security &
Privacy, vol. 2, no. 4, pp. 20–27, Jul/Aug 2004.

[2] H. Shacham, “The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86),” in
Proceedings of the 14th ACM Conference on Computer and
Communications Security. ACM, 2007, pp. 552–561.

[3] E. Buchanan, R. Roemer, H. Shacham, and S. Savage, “When
good instructions go bad: Generalizing return-oriented pro-
gramming to RISC,” in Proceedings of the 15th ACM Con-
ference on Computer and Communications Security. ACM,
2008, pp. 27–38.

[4] D. Dai Zovi, “Practical return-oriented programming,”
SOURCE Boston, 2010.

[5] The PAX Team, http://pax.grsecurity.net.

[6] M. Howard and M. Thomlinson, “Windows vista ISV secu-
rity,” Microsoft Corporation, April, vol. 6, 2007.

[7] H. Shacham, M. Page, B. Pfaff, E. Goh, N. Modadugu, and
D. Boneh, “On the effectiveness of address-space random-
ization,” in Proceedings of the 11th ACM Conference on
Computer and Communications Security. ACM, 2004, pp.
298–307.

[8] G. Roglia, L. Martignoni, R. Paleari, and D. Bruschi, “Sur-
gically returning to randomized lib (c),” in 2009 Annual
Computer Security Applications Conference. IEEE, 2009,
pp. 60–69.

[9] S. Checkoway, L. Davi, A. Dmitrienko, A. Sadeghi,
H. Shacham, and M. Winandy, “Return-oriented program-
ming without returns,” in Proceedings of the 17th ACM Con-
ference on Computer and Communications Security. ACM,
2010, pp. 559–572.

[10] T. Durden, “Bypassing PaX ASLR protection,” Phrack
Magazine, vol. 0x0b, no. 0x3b, 2002. [Online]. Available:
http://www.phrack.org/issues.html?issue=59&id=9

[11] K. Scott, N. Kumar, S. Velusamy, B. R. Childers, J. W.
Davidson, and M. L. Soffa, “Retargetable and reconfigurable
software dynamic translation,” in International Symposium
on Code Generation and Optimization. San Francisco, CA:
IEEE Computer Society, Mar. 2003, pp. 36–47.

[12] V. Bala, E. Duesterwald, and S. Banerjia, “Dynamo: A
transparent dynamic optimization system,” in SIGPLAN ’00
Conference on Programming Language Design and Imple-
mentation, 2000, pp. 1–12.

[13] M. Payer and T. Gross, “Fine-grained user-space security
through virtualization,” in Proceedings of the 7th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execu-
tion Environments. ACM, 2011, pp. 157–168.

[14] P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie,
“DROP: Detecting return-oriented programming malicious
code,” Information Systems Security, pp. 163–177, 2009.

[15] L. Davi, A. Sadeghi, and M. Winandy, “ROPdefender: A
detection tool to defend against return-oriented programming

584

attacks,” in Proceedings of the 6th ACM Symposium on In-
formation, Computer and Communications Security. ACM,
2011, pp. 40–51.

[16] Standard Performance Evaluation Corporation, “SPEC
CPU2006 Benchmarks,” http://www.spec.org/osg/cpu2006.

[17] (2011, November) Hex-rays website. [Online]. Available:
http://www.hex-rays.com/products/ida/index.shtml

[18] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin:
Building customized program analysis tools with dynamic
instrumentation,” in PLDI ’05: Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design
and Implementation. New York, NY, USA: ACM Press,
2005, pp. 190–200.

[19] M. Voss and R. Eigenmann, “A framework for remote dy-
namic program optimization,” in Proceedings of the ACM
Workshop on Dynamic Optimization Dynamo ’00, 2000.

[20] “Shell storm website,” http://www.shell-sorm.org/project/
ROPgadget/.

[21] (2008) Libtiff tifffetchshortpair remote buffer overflow
vulnerability. [Online]. Available: http://www.securityfocus.
com/bid/19283

[22] A. Kapoor, “An approach towards disassembly of mali-
cious binary executables,” Ph.D. dissertation, University of
Louisiana, 2004.

[23] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna, “Static
disassembly of obfuscated binaries,” in Proceedings of the
13th USENIX Security Symposium, 2004, pp. 255–270.

[24] B. Schwarz, S. Debray, and G. Andrews, “Disassembly of
executable code revisited,” in Proceedings of the 9th Working
Conference on Reverse Engineering. IEEE, 2002, pp. 45–54.

[25] E. J. Schwartz, T. Avgerinos, and D. Brumley, “Q: Exploit
hardening made easy,” in Proceedings of the USENIX Secu-
rity Symposium, 2011.

[26] J. Hiser, D. Williams, W. Hu, J. Davidson, J. Mars, and
B. Childers, “Evaluating indirect branch handling mecha-
nisms in software dynamic translation systems,” in Proceed-
ings of the International Symposium on Code Generation and
Optimization. IEEE Computer Society, 2007, pp. 61–73.

[27] A. Guha, K. Hazelwood, and M. Soffa, “Reducing exit stub
memory consumption in code caches,” High Performance
Embedded Architectures and Compilers, pp. 87–101, 2007.

[28] W. Hu, J. Hiser, D. Williams, A. Filipi, J. Davidson,
D. Evans, J. Knight, A. Nguyen-Tuong, and J. Rowanhill,
“Secure and practical defense against code-injection attacks
using software dynamic translation,” in Proceedings of the
2nd International Conference on Virtual Execution Environ-
ments. ACM, 2006, pp. 2–12.

[29] A. Nguyen-Tuong, A. Wang, J. Hiser, J. Knight, and J. David-
son, “On the effectiveness of the metamorphic shield,” in
Proceedings of the Fourth European Conference on Software
Architecture: Companion Volume. ACM, 2010, pp. 170–174.

[30] E. G. Barrantes, D. H. Ackley, S. Forrest, and D. Stefanovic,
“Randomized instruction set emulation,” ACM Transactions
on Information System Security., vol. 8, no. 1, pp. 3–40, 2005.

[31] G. S. Kc, A. D. Keromytis, and V. Prevelakis, “Countering
code-injection attacks with instruction-set randomization,”
in CCS ’03: Proceedings of the 10th ACM Conference on
Computer and Communications Security. New York, NY,
USA: ACM Press, 2003, pp. 272–280.

[32] S. Designer, ““return-to-libc” attack,” Bugtraq, Aug, 1997.

[33] Nergal, “The advanced return-into-lib(c) exploits (PaX case
study).” Phrack Magazine, 58(4), December 2001.

[34] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram, “De-
feating return-oriented rootkits with “return-less” kernels,” in
Proceedings of the 5th European Conference on Computer
Systems, ser. EuroSys ’10. New York, NY, USA: ACM,
2010, pp. 195–208.

[35] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda,
“G-Free: defeating return-oriented programming through
gadget-less binaries,” in Proceedings of the 26th Annual
Computer Security Applications Conference. ACM, 2010,
pp. 49–58.

[36] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning, “Address
space layout permutation (ASLP): Towards fine-grained ran-
domization of commodity software,” in Computer Security
Applications Conference, 2006. ACSAC’06. 22nd Annual.
Ieee, 2006, pp. 339–348.

[37] S. Sinnadurai, Q. Zhao, and W. fai Wong, “Transparent
runtime shadow stack: Protection against malicious return
address modifications,” 2008.

[38] T. Dullien and T. Kornau, “A framework for automated
architecture-independent gadget search,” in 4th USENIX
Workshop on Offensive Technologies, 2010.

[39] R. G. Roemer, “Finding the bad in good code: Automated
return-oriented programming exploit discovery,” 2009.

[40] D. S. James Newsome, “Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on
commodity software,” in Proceedings of the Network and
Distributed System Security Symposium, 2005.

[41] A. van de Ven, “New security enhancements in red hat
enterprise linux v.3, update 3.” Red Hat, Inc., 2004.

[42] S. Bhatkar, R. Sekar, and D. C. DuVarney, “Efficient tech-
niques for comprehensive protection from memory exploits,”
in Proceedings of the 14th Conference on USENIX Security
Symposium. USENIX Association, 2005.

[43] T. Jackson, B. Salamat, A. Homescu, K. Manivannan,
G. Warner, A. Gal, S. Brunthaler, C. Wimmer, and M. Franz,
“Compiler-generated software diversity,” 2011.

[44] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, “Control-
flow integrity,” in Proceedings of the 12th ACM Conference
on Computer and Communications Security. ACM, 2005,
pp. 340–353.

585

