
XiOS: Extended Application Sandboxing on iOS

Mihai Bucicoiu1, Lucas Davi2, Razvan Deaconescu1, Ahmad-Reza Sadeghi2

1

University "POLITEHNICA" of Bucharest, Romania
{mihai.bucicoiu,razvan.deaconescu}@cs.pub.ro

2

Technische Universität Darmstadt
Intel Collaborative Research Institute for Secure Computing, Darmstadt, Germany

{lucas.davi,ahmad.sadeghi}@trust.cased.de

ABSTRACT
Until very recently it was widely believed that iOS malware
is effectively blocked by Apple’s vetting process and appli-
cation sandboxing. However, the newly presented severe
malicious app attacks (e.g., Jekyll) succeeded to undermine
these protection measures and steal private data, post Twit-
ter messages, send SMS, and make phone calls. Currently,
no effective defenses against these attacks are known for iOS.

The main goal of this paper is to systematically analyze
the recent attacks against iOS sandboxing and provide a
practical security framework for iOS app hardening which
is fully independent of the Apple’s vetting process and par-
ticularly benefits enterprises to protect employees’ iOS de-
vices. The contribution of this paper is twofold: First, we
show a new and generalized attack that significantly reduces
the complexity of the recent attacks against iOS sandbox-
ing. Second, we present the design and implementation of
a novel and efficient iOS app hardening service, XiOS, that
enables fine-grained application sandboxing, and mitigates
the existing as well as our new attacks. In contrast to pre-
vious work in this domain (on iOS security), our approach
does not require to jailbreak the device. We demonstrate
the efficiency and effectiveness of XiOS by conducting sev-
eral benchmarks as well as fine-grained policy enforcement
on real-world iOS applications.

Categories and Subject Descriptors
D.4.6 [Software]: Operating Systems—Security and Pro-
tection

Keywords
binary instrumentation; sandboxing; mobile security; iOS

1. INTRODUCTION
iOS is after Android the most popular mobile operating

system worldwide. It is deployed on well-known Apple de-
vices such as iPhone, iPad, or iPod Touch, used by millions

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ASIA CCS ’15, April 14 - 17, 2015, Singapore, Singapore
Copyright c© 2015 ACM 978-1-4503-3245-3/15/04 ...$15.00.
http://dx.doi.org/10.1145/2714576.2714629.

of users everyday. Apple maintains an app store, first in-
troduced in July 2008, that hosts in Sep. 2014 more than
1, 300, 000 applications (apps) [28].

On the other hand, the popularity, the high number of fea-
tures and apps, as well as the large amount of sensitive and
private information that are available on iOS devices make
them attractive targets for attackers. To address the secu-
rity and privacy concerns, iOS enforces two main security
principles: code signing and application sandboxing. The
former ensures that only Apple-approved software can be
executed on an iOS device while the latter technique guaran-
tees that an app only performs operations within the bound-
aries of a pre-defined sandbox, and can neither disrupt nor
access other applications. In particular, iOS distinguishes
between public and private frameworks in its sandboxing
model. Public frameworks comprise shared system libraries
and APIs that can be accessed by every third-party app. For
instance the AddressBook framework is a well-known avail-
able public framework that a developer is allowed to use
in an iOS application [6]. In contrast, private frameworks
and APIs should only be accessed by system applications.
Prominent examples for private APIs are sending SMS mes-
sages or setting up a call.

As another line of defense, Apple also conducts applica-
tion review/vetting for all apps that are to be published on
the App Store, and rejects any application that attempts
to invoke a private API. The folklore belief is that the vet-
ting process is sufficient to effectively block malware from
entering the App Store [17, 32].

However, recent research results shed new light on the se-
curity of iOS by demonstrating how to bypass the vetting
process and iOS application sandboxing [19, 35]. The main
idea of these attacks is to dynamically load private frame-
works and invoke private APIs to induce malicious behavior
without the user’s consent. The attacks range from send-
ing SMSs or emails to attacker specified addresses, posting
Twitter tweets, abusing camera and audio, setting up phone
calls, and stealing the device ID.

Some of these attacks use return-oriented programming [30]
to hide and obfuscate the malicious functionality [35]. Such
techniques impede the detection of malicious code and man-
ifest the limits of any off-line application vetting approach.

Preventing these attacks is highly challenging due to the
current system design of iOS. Prohibiting applications to
load private frameworks is not a solution since public frame-
works are not self-contained and need to interact with pri-
vate frameworks to complete their tasks. Moreover, some
public frameworks also contain private (hidden) API func-

43

tions, e.g., sending a Twitter message in background is a
private API call inside a public framework [19].

Moreover, the recently proposed security enhancements
for iOS (see Section 7) suffer from various deficiencies: these
are either static and cannot detect attacks that trigger ma-
licious behavior (only) at runtime [16], or require a jailbreak
and induce performance overhead [15, 37].

Our goal in this paper is to provide a framework for app
hardening that enables fine-grained app sandboxing on iOS
and tackles the shortcomings of existing solutions, i.e., de-
feating the recent attacks against iOS sandboxing [19, 35].
In particular, we make the following contributions:

New malicious app attacks. We investigate previous at-
tacks against iOS application sandboxing and significantly
reduce their complexity. We show a new attack that requires
no specific use of a public framework to access a private
API, but rather exploits the default memory layout used in
all iOS applications to invoke any private API of the ad-
versary’s choice. This allows us to construct general attack
vectors on iOS application sandboxing.

Defense tool. We present the design and implementation
of a novel mitigation service and tool, termed XiOS, for
fine-grained application sandboxing on iOS tackling these
attacks at API and function-level. In contrast to previous
work in this domain [15, 37], our solution performs efficiently
without requiring a jailbreak of the underlying device. We
developed a new static binary rewriter for iOS that implants
a reference monitor into the application’s code, and protects,
under reasonable assumptions, the reference monitor from
the (potentially malicious) application without requiring the
source code of the application. Our defense mechanism in-
struments all API calls and provides the following features:
(i) API address hiding, and (ii) optional policy checks based
on user, developer or administrators (e.g., enterprises) de-
fined policies for public API calls.

Evaluation. We show the effectiveness and efficiency of
our approach by applying it to several existing real-world
iOS applications including Gensystek, WhatsApp, System
Monitor, Music Notes and Frotz. Our evaluation shows that
no overhead is added in terms of user-experience when XiOS
is used to protect the application. We also show fine-grained
policy enforcement for WhatsApp, allowing filtering of con-
tacts information (see Section 6.4).

Advantages of our solution. Our defense technique does
neither require a jailbreak nor the application’s source code.
Since our defense is implemented as a static binary rewriter,
it can be applied just before an application is submitted
to the App Store. On the one hand, it provides a useful
tool for benign developers to harden their app from being
compromised by a remote exploit that invokes private APIs.
On the other hand, it can also be used by Apple to improve
the vetting process by hardening potentially malicious apps
with XiOS. In other words, XiOS (1) constrains malicious
apps in their actions, and (2) hardens benign apps.

Compliance and independency. Our solution adheres to
the existing design of private and public frameworks in iOS.
It allows for flexible policy enforcement giving developers
the possibility to define fine-grained access control policies
for each app according to their own requirements. Finally,
our solution is not dependent on application vetting, and
can be deployed by enterprises to protect employees’ devices,
and still allowing the employees to use popular apps such as
WhatsApp (see Section 4.5, and 6.3).

2. BACKGROUND
In this section, we recall the iOS security architecture and

elaborate on related attacks against app sandboxing.

2.1 iOS Security
The main security mechanisms used on iOS are (1) code

signing, (2) application vetting, (3) file system and data
encryption, (4) memory randomization (ASLR) along with
non-executable memory, and (5) application sandboxing.

Code signing ensures that only Apple-signed software can
be executed on an iOS device. To bypass this restriction,
users can jailbreak (root) their devices which allow them
to arbitrarily install non-approved Apple software. Apple
approves signed applications after a vetting process. Al-
though the implementation details of application vetting are
not public, Apple states that it reviews all apps to ensure
they are reliable, perform as expected, and are free of offen-
sive material [4]. Apple also deploys an AES-256 hardware
crypto engine to encrypt the file system of an iOS device.

Address space layout randomization (ASLR) randomizes
the start addresses of data and code segments. This makes
runtime attacks like return-oriented programming that rely
on fixed code addresses more cumbersome. Typically, ASLR
is combined with the non-executable memory security model,
which enforces that a memory page cannot be writable and
executable at the same time [25]. This technique prevents
runtime attacks that attempt to inject malicious code into
an application’s address space and execute it. iOS goes even
one step further, and enforces code signing on memory pages
at runtime: it prohibits any third-party app from dynami-
cally generating code or changing existing (mapped) code.

An abstract view of the security architecture to realize
application sandboxing on iOS is shown in Figure 1. iOS de-
ploys sandboxing to isolate applications from each other, and
to control access of applications to the operating system. In
particular, we distinguish components on three software lay-
ers: (1) the kernel layer which provides basic system services
(file system and network) and a kernel module to realize ap-
plication sandboxing, (2) the Objective-C framework layer
and a privacy setting service, and (3) the application layer
where third-party and built-in apps are executing.

The main component to enforce application sandboxing
resides in the iOS kernel, namely a TrustedBSD mandatory
access control (MAC) module. This kernel module enforces
sandboxing at the level of system calls and directory paths.
Further, sandboxing is driven by sandboxing profiles which
are pre-defined by Apple. The profiles consist of access con-
trol lists (ACLs) that either deny or grant access to certain
system calls and file paths.

Apple defines a single sandboxing profile for third-party
apps. Hence, all apps execute with the same privilege level.
In particular, this profile prohibits App A to access code or
data from other applications like App B (see Figure 1).

Apart from the TrustedBSD kernel module, there are sev-
eral restrictions imposed by Apple indirectly related to ap-
plication sandboxing. As mentioned before Apple distin-
guishes between public and private frameworks1. Private
frameworks are reserved for iOS built-in and system appli-
cations. Although third-party applications are only allowed
to access public APIs of a public framework, there is no fun-

1The list of all available frameworks can be downloaded
from http://theiphonewiki.com/wiki/System/Library/
Frameworks

44

App A

Code

Data

App B

Code

Data

Private FrameworksPublic Frameworks

Objective-C
Runtime

TrustedBSD
MAC Kernel

Module
- Sandboxing -

Privacy
Settings

iOS
User

Apple

Framework 1

Public
APIs

Private
APIs

… …

Framework 2

Private APIs

A
P

P
LIC

ATIO
N

Layer
O

B
JEC

TIV
E-C

Fram
ew

o
rk Layer

K
ER

N
EL

Layer

Kernel
Components

File System

Network

…

Sandboxing
Profile 1

Sandboxing
Profile N

Figure 1: Basic iOS architecture to enforce applica-
tion sandboxing

damental operating system mechanism that prevents the use
of private APIs. Instead, Apple relies on the application vet-
ting process to discover such unauthorized access requests.

Finally, since iOS version 6, iOS allows users to specify
privacy settings on a per-app basis. Typically, iOS apps
have by default access to private information such as con-
tacts, device IDs, keyboard cache, or location. In order to
restrict the access to this information, iOS users can arbi-
trarily configure privacy settings. In fact, this allows users
to specify restrictions on some selected privacy-related pub-
lic APIs. However, there is no general for all non-privacy
related public APIs as well as private APIs.

2.2 Related Attacks on iOS Sandboxing
Recent attacks deploy a malicious third-party application

that dynamically loads private frameworks and invokes pri-
vate APIs without being detected by Apple’s vetting pro-
cess [35, 19]. In order to understand these attacks, we need
to take a deeper look at how legitimate calls to private APIs
in system apps are handled.

Typically, a call to a private API is internally handled
as an external function call to a shared library. For this, a
program requires that the library encapsulating that func-
tion is loaded into the application’s address space. In ad-
dition, the runtime address of the desired function needs to
be populated. In practice, this is achieved by dynamic load-
ing [24]. In iOS, dynamic loading is provided by a dedicated
library called libdl.dylib. We refer to this library as the
dynamic loader. Specifically, the dynamic loader provides
two fundamental methods: (1) load-library via the function
dlopen, and (2) load-address using the dlsym function that
determines the runtime address of a function residing in a li-
brary that has been already loaded. If an executable module
(i.e., an application or a shared library) attempts to invoke
a private API, then the linker will add the corresponding
placeholders into the data section of the executable module.
These placeholders will be automatically initialized with the
correct addresses of load-library and load-address at load-
time. Once the executable module starts executing, it can

Application

CODE

DATA

Pointer to Public API

Malicious
Code

Public Framework

CODE

DATA

Pointer to load-library

Public API

Pointer to load-address Dynamic Loader

CODE

DATA

load-library

load-address

Private Framework

CODE

DATA

Private API

1

2

3

static distance

Figure 2: Dynamically invoking private APIs

invoke load-library to dynamically open a private framework,
and subsequently issue load-address to retrieve the address
of a private API and call it.

However, Apple prohibits any third-party application from
using load-library and load-address, thereby preventing at-
tempts to invoke private APIs. In the vetting process, one
can simply check whether the application contains place-
holders for these functions in the data section. On the other
hand, public frameworks (developed by Apple) are allowed
to use these functions. This leads to a confused deputy prob-
lem [20]: since third-party applications are allowed to load
public frameworks, they can potentially misuse them to call
a private API.

Figure 2 shows the general workflow of these attacks in de-
tail. The malicious application legitimately links to a public
framework (that uses load-library and load-address) and in-
vokes a public API for benign reasons. Hence, the dynamic
iOS loading process will populate the address of the public
API into the data section of the malicious application. This
allows the adversary to read out the address of the public
API at runtime by de-referencing the designated placeholder
in the data section (step 1). Effectively, this reveals the run-
time location of the public API in memory. Based on this
runtime address the adversary can determine the location
of the two placeholders where the runtime addresses of load-
library and load-address are stored (step 2). This is possible,
because the relative offset (i.e., distance) between the start
of the public API function and the two placeholders is con-
stant, and can be pre-computed prior to execution. Once
the adversary knows the address of load-library and load-
address, he can call these functions to dynamically load a
private framework of his choice and execute a private API
(step 3).

In summary, existing attacks against iOS application sand-
boxing require (i) the availability of a public framework that
necessarily uses dynamic loader functions load-library and
load-address, and (ii) two address de-reference operations:
one for the public API and another one for the address of
either load-library or load-address.

3. DEVELOPING IMPROVED ATTACKS
Recent attacks require a public framework that either

invokes load- library or load-address (as described in Sec-
tion 2.2). Our investigation showed that out of 319 avail-
able public frameworks only 25 use load-library and 36 load-

45

address. Hence, one theoretical approach to defend against
this attack is to rewrite some of the public frameworks and
disable dynamic loading for them. However, by system-
atically analyzing and reverse-engineering the lazy binding
mechanism used in iOS, we were able to launch the same
attacks without requiring the application to link to any of
the public frameworks. This not only significantly reduces
the complexity of the attacks but also allows more general
attacks, because the mechanisms we exploit in our attacks
are by default enabled in every iOS application.

Specifically, we developed a simple iOS application using
the standard settings in Xcode (which is the main IDE for
iOS app development). By default, our application deploys
lazy binding mechanisms. We traced back at assembler and
binary-level2 how lazy binding is performed in iOS, and were
able to recognize that the lazy binding implementation is
vulnerable to even simpler attacks.

In general, lazy binding dynamically (and transparently
to the application) resolves the runtime address of a sym-
bol (e.g., an external function or variable) the first time
it is used [2]. In contrast, non-lazy binding resolves all
the addresses of symbols once at application load-time. To
support lazy binding, iOS maintains two data sections in
iOS applications, one for non-lazy symbols and one for lazy
symbols. One important symbol that is always defined in
the section for non-lazy symbols is the external function
dyld_stub_binder. This particular function realizes lazy
binding: it resolves the runtime address of an external func-
tion that is defined in the lazy symbol section when it is
accessed for the first time. Remarkably, this function is part
of the dynamic loader library, the same library that contains
load-library and load-address. Hence, an adversary can di-
rectly infer the address of the dynamic loader functions by
de-referencing the address of dyld_stub_binder from the
data section of the malicious application. Our improved at-
tack completely removes the operations and attack require-
ments for Step 2 in Figure 2.

Note that the de-referencing of dyld_stub_binder makes
no use of the string "dyld_stub_binder", making the at-
tack vector stealthy to static analysis methods. Its location
offset inside the executable is statically precomputed using
binary analysis. A potential attack would use the computed
offset to retrieve the address of dyld_stub_binder from its
location and then compute the address of load-library or
load-address. This can be achieved offline due to the fact
that all three functions are stored within the same library.

In contrast to previous work on bypassing iOS sandbox-
ing [19, 35], our new attack does not require any specific
public frameworks to be loaded. We also reduce the nec-
essary attack steps: we only require a single address read
from the data section of the application. Our attack has
important implications: it can be applied to any iOS appli-
cation since lazy binding is currently used for all iOS appli-
cations. Hence, given a benign application that contains a
vulnerability, we can arbitrarily invoke private APIs using
return-oriented programming.

In order to show the effectiveness of our new attack, we
have developed an application for iOS 7 that dynamically
invokes private APIs at runtime. We added to the applica-
tion malicious code that can be used at runtime to derive
the address of the private createScreenIOSurface API from

2using the Xcode debugger and IDAPro as disassembler

XiOS App Hardening
Service

Developer

App

Developer
Policy

optional App*

Implant Reference
Monitor

Integrate Developer-
Defined Policies

End User
Develop 1

5

Define

2Compile

3

Submit for
Review

4

6

7

Publish

8
Down-
load

Figure 3: General approach and workflow of XiOS

the UIWindow class. Similar to previous attacks, our attack
is triggered remotely, and continuously takes snapshots and
sends them to a remote server controlled by us. We obfus-
cated and submitted our application to the App Store, and
successfully passed the vetting process. Hence, our mali-
cious app can still invoke private APIs in a stealthy manner
without being detected by the vetting process using less de-
referencing actions than existing attacks. The application
was installed only on our testing device and then removed
from the App Store. Moreover, we also stopped the server
which remotely triggered the attack.

4. OUR DEFENSE SERVICE XiOS
Mitigation of attacks against iOS sandboxing and, in par-

ticular our new attacks, is a challenging task due to sev-
eral reasons: First, the attacks are based on exploiting lazy
binding which is enabled by default on iOS due to perfor-
mance reasons and cannot be simply disabled. Second, pub-
lic frameworks are tightly coupled to private frameworks.
Removing this interdependency would induce heavy design
changes. Third, iOS is closed-source preventing direct ex-
tensions of the operating system with a reference monitor
for private APIs.

In this section, we introduce the requirements on XiOS
describe its workflow and system model, its components,
and the corresponding security aspects. Finally, we discuss
real-world deployment scenarios for XiOS.

4.1 Requirements and Assumptions
Given the above mentioned challenges, a defense tool needs

to meet the following functional and security requirements:

R1: Preserve the benefits and efficiency features. In partic-
ular, mechanisms such as lazy binding should further
be in place.

R2: Require no changes to the operating system and cur-
rent software stack architecture of iOS. In particular,
we need to ensure that private APIs are still accessible
from public frameworks.

R3: Require no application’s source code. Typically, the
source code of iOS applications is not available, even

46

Apple’s App Store only retrieves an application as a
binary bundle.

R4: Integrate seamlessly into the existing application de-
velopment and distribution process of iOS. In particu-
lar no jailbreak of the user’s device is needed.

S1: Prevent (previous) attacks on iOS sandboxing [19, 35],
and our novel attack (Section 3).

S2: The malicious application cannot bypass or disable our
reference monitor (see Section 4.4).

We build our defense on the following assumptions:

A1: We assume that the target system enforces the prin-
ciple of non-executable memory. Otherwise, an adver-
sary could revert our security checks and circumvent
our defense. As mentioned in Section 2.1, iOS deploys
a very strict version of non-executable memory.

A2: Since our defense operates at application-level (due to
R2), we obviously assume the underlying operating
system kernel to be benign and not compromised.

A3: An adversary is not able to statically pre-compute the
address of a private API or a critical function such as
load-library and load-address. This is ensured by iOS
since it applies ASLR to shared libraries.

4.2 System Model
As mentioned above (S1), the main goal of our solution is

to prohibit the invocation of any private API from a third-
party app to prevent attacks against app sandboxing. At
the same time, we need to ensure that public frameworks
can still access private APIs. Moreover, we generalize our
design to enable fine-grained access control rules on pub-
lic APIs. Our new hardening service XiOS achieves both
(i) preventing invocations of private APIs, and (ii) enforcing
developer-defined fine-grained access control rules on public
APIs.

The workflow of XiOS is depicted in Figure 3. Our hard-
ening service seamlessly integrates into Apple’s application
development process: after the developer has finished pro-
gramming the app and compiling it (Step 1 and 2), the ap-
plication is submitted to our hardening service via a web
browser (Step 3). Next, the hardening process implants the
XiOS reference monitor and some additional startup code
into the application. The reference monitor and the startup
code will hide traces of external API addresses including the
address of dyld_stub_binder. Moreover, if the developer
appended a policy for public APIs, we also embed these poli-
cies into the application (Step 4). To accomplish these tasks,
XiOS makes use of binary instrumentation techniques (R3).
Finally, the app is submitted to the App Store and can be
later installed on users’ devices (Step 6 to 8).

Our service always implants the reference monitor to pre-
vent invocation of private APIs through the dynamic loader.
In addition, it allows the developer to optionally append a
custom policy for public APIs (Step 5). For instance, one
could define a policy that restricts a messenger app (e.g.,
WhatsApp) to only upload a subset of the address book
to the app server (due to privacy reasons). For this, we
support different policy enforcement options: allow, deny,
log or modify. In particular, the modify option allows the

Application

XiOS

App Code

Stub Code
(instrumented by XiOS)

Shadow Table
(Lazy and non-lazy

symbols)

Reference Monitor

Lazy and Non-Lazy
Symbols

CALL stub_API1

CALL stub_API2

stub_API1:
CALL XiOS

stub_API2:
CALL XiOS

CHECK Policy

JUMP to API

Developer

(Optional)
Developer

Policy

Figure 4: Instrumented XiOS App

replacement of the arguments passed to an external func-
tion and public API return values. Defining such policies
is tightly coupled to the application purpose and its target
users. Enterprises can integrate XiOS within their mobile
device management (MDM) systems and harden all appli-
cations before they are deployed on employees’ (personal)
devices. Hence, enforcement of privacy-related policies can
protect a company from being legally held responsible for
information leakage [33].

It is also possible that an end-user submits an existing app
to our service along with policies she desires to be enforced
on that app. However, post-changes on existing apps would
change the hash value of the application. This would imply
re-submission to Apple’s App Store to retrieve an updated
Apple certification. Hence, the main purpose of XiOS is
app hardening for both vulnerable benign and potentially
malicious apps before Apple signs and uploads the app on
the App Store.

4.3 Architecture
The high-level idea of XiOS app instrumentation is de-

picted in Figure 4. XiOS is directly implanted into the orig-
inal iOS application (R2 and R4) and mainly contains a ref-
erence monitor that mediates all access requests of an appli-
cation to an external library. The idea is here to completely
hide public API calls and the dyld_stub_binder address
from the app and redirect these requests to the reference
monitor which is the only component that knows and can
retrieve the runtime addresses of external functions.

There are three binary sections which are of particular
interest: (1) the main app code section, (2) the so-called
symbol stub code section, and (3) a data section where the
lazy and non-lazy symbol pointers are stored. These sections
correspond to the following iOS Mach-O binary sections:
__text for the main app code, __symbol_stub for the sym-
bol code section, __la_symbol_table and __nl_symbol_table

for the lazy and non-lazy symbol data section.
Typically, when an iOS application attempts to invoke an

external library function (i.e., a public API), the compiler
will insert a dedicated stub for the desired function in the
code stub section. Hence, the originating call to that exter-
nal function effectively redirects the control-flow to the stub
code section, e.g., a call to stub API1 or stub API2 in Fig-

47

ure 4. The stub code reads out the runtime address of the
external function in either the lazy or non-lazy symbol data
section. When the runtime address of the external func-
tion is not yet known, the stub code will ask the dynamic
loader to resolve the runtime address and eventually invoke
the external function.

To prevent exploitation of the lazy binding process and the
leakage of important runtime addresses, we instrument the
stub code section and remove its connection to the lazy sym-
bol section. To this end, XiOS creates a duplicate of the lazy
and non-lazy symbol section in a dedicated memory area de-
noted as shadow table. It also overwrites the original section
with zeroes. In addition, we instrument each stub entry so
that it always invokes our XiOS reference monitor when an
external function is called. Thus, we ensure that all calls to
external functions are redirected to our reference monitor,
and simultaneously guarantee that a malicious application
cannot read runtime addresses from the lazy and non-lazy
symbol sections to launch attacks against app sandboxing.

Upon invocation, the reference monitor of XiOS performs
as follows: first, it determines which external function the
application attempts to execute. This is achieved by looking
up the corresponding entry in the duplicate of the lazy and
non-lazy symbol section. Next, it performs a policy check.
For the invocation of public APIs, the (optional) developer-
defined policies are consulted. The invocation of private
APIs is prevented by the design of our reference monitor as
it hides the crucial runtime addresses of public APIs and
dynamic loader functions. However, the challenge is to still
preserve the performance benefits of lazy binding. We tackle
this as follows: when an external function is called for the
first time, our reference monitor asks the dynamic loader to
resolve the runtime address, and stores its value for later
invocations in the shadow table.

4.4 Security Considerations
As mentioned in Section 4.1, we need to ensure the in-

tegrity of XiOS and prevent the untrusted application from
reading the shadow table (S1 and S2). This is challenging
as XiOS resides in the application’s address space.

As explained above, the shadow table contains runtime
addresses of public APIs and the dynamic loader functions.
If an adversary can access these addresses then the attacks
described in Section 2.2 and 3 can be launched. Ideally, the
XiOS reference monitor should be executed in a separate
process. However, due to the closed iOS, we can only im-
plant it into the application itself to avoid a jailbreak (R4).

To only allow the reference monitor to access the shadow
table, we need to enforce software fault isolation (SFI) [34],
i.e., basically dividing an application in trusted and un-
trusted code parts. Since realizing SFI is cumbersome [40],
we opted for a pragmatic SFI solution for our proof-of-concept
implementation: Whenever the (untrusted) main applica-
tion code is executing, XiOS marks all memory pages al-
located for the shadow table as non-readable. In contrast,
when the control is transferred to the reference monitor,
XiOS changes the access rights of the pages back to read-
able. We demonstrate in Section 6 that modifying the access
rights of the memory pages performs efficiently in XiOS. Al-
though we fully support multithreading, an adversary can
potentially trigger a policy validation, and force the iOS
scheduler to switch to another thread while the shadow ta-
ble is readable. We have not addressed this issue in our

current proof-of-concept implementation, but currently we
are working on ensuring that no other program thread is
allowed to execute while the shadow table is set to readable.

As XiOS invokes memory management functions to pre-
vent the main application from accessing the shadow table,
we need to prevent the main application to exploit system
calls to get access to the shadow table. Although it might
seem that applications become limited by not allowing them
to directly invoke system calls, this is not the case for iOS.
Note that applications can still indirectly use system calls
through external API functions that wrap their function-
ality and are mediated by our reference monitor. We pro-
hibit all applications to directly invoke system calls using
an in-house developed script that identifies invocations of
system calls. Moreover, we have analyzed a large number
of popular iOS applications (e.g., Facebook, Google Maps,
YouTube, Angry Birds, Skype) and noticed that none uses
directly system calls, hence, XiOS can be applied to them.

We also need to ensure that at application-start XiOS
takes over the control first. Otherwise, an application could
access the non-lazy symbol section to retrieve critical run-
time addresses. Hence, we dispatch the entry point of an
application such that XiOS is always executed first to set-
up the shadow table and zeroing out the original lazy and
non-lazy symbol sections.

XiOS prevents attacks that attempt to jump over policy
validation code. Since we instrument all stubs (see Figure 4),
we ensure that policy validation always starts from its origi-
nal entry point. Note that stub code cannot be modified by
an adversary as the code is mapped as non-writable. A last
chance for the adversary is to exploit an indirect jump, call
or return to redirect the control-flow to the place after the
policy check. These attacks can be prevented by control-
flow integrity (CFI) for iOS [15], or by computing a secret
value at the beginning of the policy check and checking the
secret value at return of XiOS (see for instance checkpoint
handling in [27]). We leave this as future work to further
extend and improve XiOS.

4.5 XiOS Deployment
XiOS can be mainly deployed as an off-line remote hard-

ening service in two scenarios. Primarily, it can be deployed
by Apple or an enterprise before a new app is uploaded to
the application store. This provides protection against ma-
licious apps such as the one described in [19, 35])3. Alter-
natively, it can be deployed by (benign) developers that aim
at hardening their apps from being remotely exploited and
enforcing access control rules on public APIs.

For the former scenario, an enterprise can integrate XiOS
into its Mobile Device Management infrastructure. Apple
actively supports enterprise-specific app stores where em-
ployees can run applications that only need to be signed by
the developer and the enterprise [5]. In this case, the appli-
cations are instrumented by XiOS, signed by the enterprise’s
administration, and the employee can download and install
the hardened application over a custom enterprise applica-
tion store.

The latter scenario allows benign developers to deploy
XiOS to enforce fine-grained access control rules on public
APIs. This provides better security than directly integrating
access control rules into an app’s source code, because an ad-
versary could bypass these checks by jumping over the policy
validation instructions. We prevent such attacks by enforc-

48

ing every external function call to be dispatched over our
instrumented code stubs. We are also currently working on
an XiOS extension where such policies can be downloaded
from and defined on a remote server.

5. IMPLEMENTATION
In this section we detail on our current implementation of

XiOS. Considering that our hardening process works directly
on the application’s binary executable, and that the Mach-O
file format is used by all iOS applications regardless of the
operating system version, our implementation is applicable
to any existing iOS app.

The first step of the hardening process is to search for
direct invocations of system calls. To do so, we use binary
disassembly tools (specifically IDAPro) to identify the as-
sembler instruction used for system calls. On ARM, one
can directly invoke a system call by using the svc (super-
visor call) instruction3. In contrast to the x86 architecture,
ARM instructions are aligned and any unaligned memory ac-
cess generates a fault exception. Hence, an adversary must
explicitly insert the svc instruction. We search for these
instructions and raise an alarm if an app is using such an
instruction.

In the remainder of this section we describe how calls to
external functions are dispatched by XiOS and present the
implementation of our reference monitor.

5.1 Dispatching External Function Calls
As already mentioned in Section 4.3, we instrument the

stub code of an application to redirect execution to our ref-
erence monitor. Originally, each entry i in the stub code
section consists of a load instruction that loads the address
placed at entry i in the lazy symbol section into the program
counter pc. Effectively, this instruction realizes an indirect
jump where the target address is taken from memory (i.e.,
from the lazy symbol section). Recall that this requires the
dynamic loader to relocate the runtime addresses of exter-
nal functions in the lazy symbol section section either at
load-time or on-demand at runtime, c.f. Section 2.

In our implementation, we replace the pc-load instruction
in the stub code with a branch instruction that targets our
reference monitor. Since both instructions have the same
size no realignment of the binary is required. Specifically,
we overwrite the original ldr (load register) instruction with
a b (branch) as follows:

ldr pc,[lazy_sym_i] -> b reference_monitor

5.2 Reference Monitor
The reference monitor achieves two important goals: (1) re-

places the iOS dynamic loader and offers a mechanism for
dynamically searching the addresses of external functions
while protecting them from being leaked to the main appli-
cation, and (2) enforce developer-based policies.

The pseudo code of the reference monitor is shown in Al-
gorithm 1. First, we determine the name and parameters
of the hooked functions (lines 1-2). Second, based on the
enforcement rules defined in the hardening process, we de-
termine if the call to the external function is allowed or
blocked (line 3). If the access to the external function is not
granted, the program exits and, thus, blocks any information
leakage. Third, if invocation is allowed and after marking

3Previously denoted as swi (software interrupt) instruction.

the shadow table as readable and writable (line 5), the refer-
ence monitor verifies if a previous call to the same function
has been made (line 6). If so, the address of the function can
be retrieved from the shadow table (line 7) and the control-
flow can be transferred to the external function (line 12). In
case the function is called for the first time, we make use
of the standard iOS dynamic loader to resolve the runtime
address of the external function (line 9) and store it into the
shadow table for future invocations (line 10). Finally, the
reference monitor marks the shadow table as non-readable
and non-writable (line 13).

Algorithm 1 Reference monitor - pseudo-code

1: params[] = read params from registers();
2: fnct name = decode function name();
3: execution = apply pre policies(fnct name, params[]);
4: if (execution is granted) then
5: unprotect(shadow symbol table);
6: if shadow symbol table[fnct name] not 0 then
7: address = shadow symbol table[fnct name];
8: else
9: address = bind(fnct name);

10: shadow symbol table[fnct name] = address
11: end if
12: protect(shadow symbol table)
13: execute function at(address);
14: apply post policies(fnct name, params[]);
15: end if

One technical challenge that our reference monitor needs
to tackle concerns the resolving of a function’s name at
runtime. This is required to accurately enforce policies at
function-level. To address this challenge, we exploit the fact
how functions are called in ARM-compiled binaries. In gen-
eral, a function can be called by means of a bl (branch with
link) or a blx (branch with link and exchange) instruction.
Both instructions have in common that they store the re-
turn address (which is simply the address following the bl

or blx instruction) into ARM’s dedicated link register lr.
Hence, when an application attempts to invoke an exter-
nal function, it actually uses a blx instruction targeting the
corresponding entry i in the code stub section:

1. blx code_stub_i

Since we instrumented the code stub section (i.e., by re-
placing pc-loads with branch instructions to our reference
monitor), the reference monitor will be invoked next:

2. b reference_monitor

Next, we let our reference monitor read the value of lr as
it contains the return address. This allows us to dynamically
calculate the address from where our reference monitor has
been invoked. As we now know from where inside the main
application the reference monitor has been called, we can dy-
namically compute the target address of blx code_stub_i.
Specifically, we decode the blx instruction on-the-fly to de-
termine the targeted entry i in the code stub section. Once
we know i, we are able to resolve the function name from a
pre-computed table stored within the reference monitor:

3. decode_function_name(i)

This table is generated during static analysis of the binary
and contains a list with the names of all external functions
used by the iOS application. In addition, the equivalent dy-
namic loader code to resolve a function’s name is integrated

49

into our reference monitor. We have implemented the refer-
ence monitor using ARM assembly instructions.

5.3 Shadow Table
Recall that within a normal executable the addresses of

lazy-resolved functions are stored in the lazy symbol sec-
tion. Our approach for protecting lazy-resolved functions’
addresses is based on the following three steps: (1) the en-
tries from the lazy symbol section are stored into the shadow
table, (2) we zeroise the entries in the lazy symbol section,
and (3) we protect the shadow table from being accessed
outside the reference monitor. Note that we need to main-
tain a separate table due to limitations of existing memory
management capabilities, i.e., memory operations such as
changing access rights can only be done at page level. Hence,
we cannot apply such actions directly to sections from the
data segment of an iOS application without affecting adja-
cent data.

The entries in the non-lazy symbol section are populated
by the dynamic loader before the program starts executing.
In order to prevent attackers from reading these values at
the beginning of program execution, we add a small startup
code that we refer to as pre-main which setups the reference
monitor and the shadow table, and zeroise the original lazy
and non-lazy symbol section. To this end, we overwrite the
LC_MAIN command in the iOS Mach-O header with the start
address of pre-main. Hence, pre-main is the code which is
executed first when an application is launched. For protect-
ing the memory region of our shadow table, we invoke the
well-known mprotect() system call, which allows us to mark
the shadow table as readable when the reference monitor
is executed, and as non-readable when program control is
passed back to the application.

An adversary could try bypassing the mprotect-based shadow
table protection mechanism through accessible memory man-
agement functions. However, XiOS checks the arguments
(if they target the shadow table) and disallows these call to
prevent leakage of the shadow table.

Note that our binary rewriting does not impact the main
code section of the application. Thus our mechanism has no
impact on the internal flow and performance of the applica-
tion, and avoids error-prone binary rewriting.

5.4 Developer-Defined Policies
XiOS allows the creation and integration of developer-

defined policies. While the first one is highly dependent on
the application that the policies are made for, for the sec-
ond one we have implemented an easy way to add policies.
Specifically, the developer provides XiOS with two prede-
fined functions, i.e., pre external call and post external call,
that are executed before and after each external function
call. These functions need to be implemented in C and self-
contained, i.e., cannot use other external functions such as
memcpy as this would end up intercepted by XiOS and cre-
ate a loop. In order to facilitate the job of the developer we
can provide her with a set of pre-defined functions, e.g., she
can use xios memcpy instead of memcpy.

Within the pre external call and post external call func-
tions, the developer has access to the function name, argu-
ments and return value. Note that the return of a func-
tion can be a value or a pointer referring to internal buffers.
XiOS can handle both cases. However, each external func-
tion takes a different number of arguments and returns a

different type; thus, the developer must be aware of the sig-
nature for the functions she aims to handle. Moreover, with
XiOS, the return values and the arguments can be changed.
The following code snippet shows an example where an ex-
ternal call to the NSLog function will not be allowed:

int p r e e x t e r n a l c a l l (const char ∗ function name ,
const unsigned long r eg s []) {

char ns log [6] = ”NSLog” ;
i f (x io s s t r cmp (function name , ns log) == 0)

return FAIL ;
}

Note that the reference monitor does not differentiate be-
tween invocations of C functions or Objective-C methods, as
the Objective-C mechanism dispatches all objects’ methods
through a generic C function called objc msgSend. With
XiOS both can be analyzed in the same manner within the
two pre-defined functions.

Developing self-contained policies in C maybe cumber-
some. Hence, we are currently working on a service where
the developer submits the app, and uses a simple interface
to define rules and triggers XiOS ’s hardening mechanism.
This will enable convenient definition of custom policies.

6. EVALUATION
In this section we present a detailed evaluation of XiOS

with respect to its effectiveness and efficiency. First, we
analyze the effectiveness of our hardening process against
previous and our own new attacks (see Section 2.2 and 3).
Then, we evaluate the performance impact of our changes on
the application, and measure the overhead they impose on a
randomly selected set of both C and Objective-C functions.
Moreover, we evaluate our hardening mechanism on several
real-world applications.

6.1 Effectiveness
In order to test the effectiveness of XiOS we use our ma-

licious sample application that we introduced in Section 3.
In particular, we modified our sample application so that it
includes both attack types: (1) exploiting a runtime address
of a public API ([19, 35] and Section 2.2), and (2) exploit-
ing the runtime address of the dynamic loader function to
resolve lazy symbols (Section 3). To this end, we first ap-
ply XiOS to our sample malicious application. Afterwards,
we deploy the hardened application on our test iOS device
(iPhone 4 running iOS 7.0).
Previous Attacks: To test XiOS against previous attacks,
we let our malicious application de-reference the runtime
address of a public API. Specifically, we invoke the CGIm-

ageSourceCreateWithURL public API residing in the public
ImageIO framework as ImageIO contains references to load-
library and load-address. Since the runtime address of the
public API is lazily resolved on-demand, its runtime address
will be stored in the lazy symbol section after we have called
the public API during normal program execution. However,
since XiOS completely overwrites the original lazy and non-
lazy symbol section with zeroes, the de-referenced value will
be always zero rather than the runtime address of CGImage-
SourceCreateWithURL. In XiOS, the runtime address of the
public API is on the shadow table which is only accessible
from the XiOS reference monitor. This effectively prevents
the first attack step of previous attacks [19, 35].
Our New Attack: Recall that our improved attack does
not require the knowledge of a public API runtime address.

50

printf mmap strerror NSString alloc NSUserName NSTemporaryDirectory

1 Policy Check 0.029459 -0.018641 0.016662 0.041377 -0.013764 0.096091
10 Policy Checks 0.037107 -0.002330 0.023010 0.063399 0.105262 0.058099
100 Policy Checks 0.140015 0.088113 0.091601 0.260605 0.334400 0.228264

Table 1: Overhead for 10,000 calls (in seconds)

Instead, our attack attempts to access the runtime address
of the dynamic loader function dyld_stub_binder which is
present in every iOS application in the non-lazy symbol sec-
tion. XiOS successfully prevents this attack similar to the
previous attack as it hides runtime addresses of external
functions contained in the non-lazy symbol section by over-
writing this section with zero and maintaining the runtime
addresses in the protected shadow table.

To summarize, in both attack instances (previous and our
new one), XiOS prevents the malicious application from
determining critical runtime addresses of function pointers
that could be exploited to invoke a private API.

Since the pointers in the lazy and non-lazy symbol sec-
tion are no longer available to the adversary, he may try to
leak function addresses by inspecting return buffers, return
values and return register values in public APIs that can be
called. We prevent this by the use of policies that inspect
the return information of a public API and zeroise or replace
any sensitive pointer data.

On the other hand, the adversary could perform a com-
plete memory scan to identify private APIs and dynamic
loader functions based on signature or instruction matching.
However, this requires the adversary to know exactly the lo-
cation of all mapped memory pages. Otherwise, the appli-
cation will crash upon read access on non-mapped memory.
Moreover, many consecutive read operations from main ap-
plication code to shared library code resembles a program
anomaly which one can certainly monitor at runtime.

A current limitation of XiOS are attacks through an ad-
dress of a global external variable stored in the non-lazy
symbol section. This allows an adversary to use offset-based
computation to retrieve the address of dynamic loader func-
tions. We successfully tested this attack and it is indeed
currently feasible in iOS, since the shared library code and
its data section are always located at the same offset, ir-
respective of ASLR. Such attacks are only possible as the
ASLR scheme implemented in iOS does not randomize the
offset between the data and code section. Since our focus in
XiOS resides on attacks based on function pointers and more
fine-grained ASLR solves the issue, we did not implement
a mechanism to hide data pointers which is an orthogonal
problem and we leave as future work.

6.2 Efficiency
Our hardening mechanism is deployed by the reference

monitor for each function call. The overhead is constant ir-
respective of the type of function called and depends on the
number of policies. As described in Section 4.3, we intercept
only calls to external functions. Thus, the main application
code and instructions from shared libraries execute with na-
tive performance.

In order to determine the overhead of our approach per
external call, we have selected a variety of functions and

evaluated their execution time. Specifically, we have imple-
mented an application that calls only the tested function and
implanted a set of 1, 10, 100 policies using XiOS. We mea-
sure the execution time when running the application with
and without policy enforcement. Each of the selected func-
tions runs for 10,000 times. Note that the selected policies
only perform a sanity check (i.e., verify the function’s name
and print its arguments) and do not prohibit execution of
functions as this would end the testing procedure.

We present the results in Table 1. The overhead for run-
ning Objective-C functions 10,000 times is, at most, only
of 0.33s, while the overhead for native-C functions is only
0.14s in the case of 100 policies. The negative numbers dis-
played for mmap and NSUserName show that the hardened
application was actually faster than the vanilla version. This
is due to the fact that we do not control how the operating
system scheduler (i.e., closed-source OS) affects our tests.

During our tests, we analyzed the average number of func-
tion calls per second inside an app. For normal use (clicks,
accessing resources) there are no more than 1,000 function
calls per second. This means, that if an app were to use only
the functions listed in Table 1 the overhead would at most
be 0.033s; less than 5%.

We applied our enforcements on a popular iOS bench-
mark tool called Gensystek [1]. Figure 5 shows results for
eight different benchmarks with different number of threads
(1, 2 and 4) and with different number of policy checks
(1, 10 and 100). The computation of an MD5 hash dis-
plays the most noticeable slowdown of 3.9x. However, simi-
lar heavy-CPU computation such as Floating point calcula-
tion/Arithmetic logical unit (FPU/ALU) show an overhead
of only 1.5% when tested against 100 policy checks. The
overhead for taking and saving a screenshot to disk is 4.3%.
Moreover, XiOS induces less overhead than previous work,
e.g., MoCFI adds up to 500% overhead for the PI calcula-
tion [15]. Note that every external function called is applied
the 100 policy checks, irrespective of what the function does,
as these checks were part of the reference monitor implemen-
tation. Within a more realistic scenario, there would only
be a handful of functions that do these many policy checks,
reducing the overall incurred overhead.

In terms of required memory, our experiments with XiOS
on real applications show that no additional space is required
for storing the reference monitor inside the executable. This
is due to the fact that the reference monitor requires only
1KB and can be stored in unused space of the binary, such
as the __TEXT segment. The shadow table requires 4K and
is allocated dynamically when the application is executed.
In our evaluation, less than 1KB was required for one policy.
However, if complex policies (hence, more space required for
storing the policies) are to be inserted, new code sections and
memory pages can be added at the end of the application.

51

0

3

6

9

12

15

18

21

24

27

1
 T

h
re

ad

2
 T

h
re

ad
s

4
 T

h
re

ad
s

1
 T

h
re

ad

2
 T

h
re

ad
s

4
 T

h
re

ad
s

1
 T

h
re

ad

2
 T

h
re

ad
s

4
 T

h
re

ad
s

1
 T

h
re

ad

2
 T

h
re

ad
s

4
 T

h
re

ad
s

1
 T

h
re

ad

2
 T

h
re

ad
s

4
 T

h
re

ad
s

1
 T

h
re

ad

2
 T

h
re

ad
s

4
 T

h
re

ad
s

1
 T

h
re

ad

2
 T

h
re

ad
s

4
 T

h
re

ad
s

1
 T

h
re

ad

2
 T

h
re

ad
s

4
 T

h
re

ad
s

FPU/ALU PI Calc MD5 Calc ScrShot Disk Quartz2D ResizeIMG Trans3D

Ti
m

e
 in

 s
e

co
n

d
s

Benchmarks

100 Polices

10 Policies

1 Policy

Default

Figure 5: Gensystek Benchmark

No. of policies SysMonitor Frotz MusicNotes

1 -8.78% -9.05% 1.74%
10 3.68% 2.25% -9.69%

100 21.39% 10.35% -2.49%

Table 2: Loss in number of external functions calls

6.3 Study of Real World Apps
To demonstrate the effectiveness of our approach, we tested

XiOS on several real-world applications such as Facebook,
Twitter, Gmail, Youtube. In our experiences with the hard-
ened applications we encountered no overhead. Moreover,
we used our hardening service to apply policies to several ap-
plications such as System Monitor, Frotz, WhatsApp, Mu-
sicNotes and Gensystek. For testing the application behav-
ior we sequentially used a number of 1, 10, and 100 policies
and measured the number of external function calls with and
without XiOS in a time frame of 30s. As before, policies are
configured to allow all external calls. In order to access
the application’s binary (as iOS stores them encrypted), we
made use of a well established tool, namely Clutch [14].

We compared ”vanilla” application runs against hardened
application runs. The results are shown in Table 2 as the
percentage of loss in the number of external calls. Remark-
ably, XiOS does not reduce the number of external calls
that are made within a given time frame. A noticeable
overhead of 21% is noticed only when XiOS is configured
with 100 policies for each external function call which is far
from realistic but represents worst-case scenarios. The Mu-
sicNotes application allows users to play different sounds at
a touch of a screen-keyboard. We did not encounter any
noticeable delay when performing different tests.

6.4 Access Control on Public Applications
XiOS allows enterprises to create and apply their own

policies on any application available on the App Store. In
order to demonstrate how such policies can be created we

have chosen one of the most used application today, namely
the instant messenger WhatsApp [3]. One particular feature
of WhatsApp is that it uses the phone number for identifying
different users in the network. Moreover, the full address
book is copied to the developer servers when the application
is installed. XiOS allows filtering of the contacts to avoid
that WhatsApp retrieves all the user’s contacts.

Before creating the filtering policies we need to identify
which functions are relevant and need to be instrumented.
To do so, XiOS provides a script that can be used to iden-
tify all external functions invoked by the application along
with the framework that they belong to. Specifically, What-
sApp uses ABAddressBookGetPersonWithRecordID within
the AddressBook framework to extract the contacts from
the address book.

Next, the developer can check the function’s signature and
specify policies according to the format shown in Section 5.4.
In our particular use-case we prevent WhatsApp from ac-
cessing all contact phone numbers that belong to the do-
main corporate. Note that the domain name is maintained
in the kABPersonOrganizationProperty field belonging to
the class ABRecordRef. Hence, when WhatsApp retrieves
the contacts, we simply validate for each record whether
kABPersonOrganizationProperty is set to corporate. If so,
we simply replace the entire record with NULL. Appendix A
presents the specific implementation of the policy.

7. RELATED WORK
The work related to XiOS can be roughly classified into

protection schemes for iOS and runtime protection mecha-
nisms that aim at hiding function pointers and instrument-
ing function calls.
iOS Security: There are a few proposals that aim at en-
hancing the security of iOS-based systems. PiOS is a static
privacy analysis tool that performs off-line path validation
on an application’s control-flow graph [16]. Although PiOS
revealed that many apps leak the device ID to application
developers, it cannot detect Jekyll-like attacks [35] where
the malicious behavior is only triggered at runtime. On the
other hand, MoCFI [15] and PSiOS [37] could potentially

52

prevent the mentioned attacks by enforcing control-flow in-
tegrity (CFI) and fine-grained sandboxing policies. How-
ever, both solutions require a jailbreak and suffer from per-
formance problems, which limit their deployment in prac-
tice. In contrast, XiOS avoids jailbreaking devices and only
incurs modest performance overhead.
Runtime Protection Mechanisms: For Android-based
systems, several Inline Reference Monitors (IRM) have been
proposed recently. Most of them insert a policy hook or
check before a critical function is called at Dalvik Bytecode
level [7, 22]. Most closely to our approach is Aurasium [39],
as it deploys a similar redirection technique: it overwrites
entries of the global offset table (GOT) – that holds run-
time addresses of lazy and non-lazy symbols – with the start
address of policy check functions. However, in contrast to
XiOS, it does not provide any mechanism to hide the actual
runtime addresses in a shadow table. Hence, an adversary
can deploy memory disclosure attacks to infer the runtime
address of a critical function and directly redirecting exe-
cution to it (via an indirect branch instruction). Moreover,
Aurasium can be bypassed through native code that directly
invokes system calls [13].

Since the GOT is critical in many Linux-based systems
to intiate runtime attacks, Xu et al. proposed a solution
that randomizes the GOT section at load-time, but allow
its address to be discovered through the procedure linkage
table (PLT) section [38]. Roglia et al. improve this solution
by randomizing the GOT section and rewriting the PLT re-
gion [29]. The mechanisms behind those two solutions can
be migrated to the iOS operating system. However, in con-
trast to our solution, both proposals need to be integrated
into the operating system as they require higher privileges
to rewrite a binary at load-time.

Another approach to instrument function calls aims at
adding a wrapper and verifying the parameters passed to
the function [9, 8]. A common mechanism to load such
interceptors is the Linux LD_PRELOAD linker facility which
forces the application to use a wrapper function rather than
the actual external function. However, since it is unrealistic
that every external function is replaced by a wrapper (due
to space and complexity reasons), an adversary can exploit
the knowledge of the runtime address of one single (not in-
strumented) function to directly call a private API.

In the domain of runtime attack mitigation the security
model of address space layout randomization (ASLR) is used
against memory (i.e., function pointer) disclosure attacks.
The basic idea is to randomize the start address of code and
data segments. Recently, several schemes have been pro-
posed to even enforce fine-grained code randomization [10,
18, 21, 26, 23, 36, 12, 11]. However, sophisticated mem-
ory disclosure attacks [31] can bypass ASLR-based schemes.
Moreover, in order to mitigate the attacks presented in this
paper (Section 2.2 and 3), one would need operating system
support and a jailbreak, because ALSR needs to be applied
to the dynamic loader and public/private frameworks.

8. SUMMARY AND FUTURE WORK
Recent attacks have demonstrated that the current de-

sign of iOS is vulnerable to a variety of attacks that under-
mine the iOS sandboxing model leading to the invocation
of private APIs (e.g., sending text messages in background).
While previous attacks rely on specific assumptions such as
the availability of a public framework, we showed that the

default iOS application structure by itself can be easily ex-
ploited to invoke dangerous private APIs.

Since existing solutions suffer from performance overhead
or require a jailbreak, we introduce a new hardening ser-
vice, XiOS, that implants an inline reference monitor into
an iOS application to tackle these attacks without requiring
a jailbreak or source code of the application. This reference
monitor efficiently prevents an application from inferring
addresses of private APIs, and at the same time enforces
(optional) developer-defined policies on public APIs. We
demonstrate the benefits of the latter by enabling a contacts
filtering mechanism for the popular WhatsApp messenger.

In the future, we plan to extend XiOS with a web fron-
tend, where end-users can conveniently upload their custom
policies that are automatically translated into C code and
deployed at runtime when the application is launched on
the device. In addition, we also aim at validating entire call
chains rather than only enforcing access control on a per
function-level.

9. REFERENCES
[1] Gensystek benchmark. http://www.

ooparts-universe.com/apps/app_gensystek.html.

[2] Lazy binding. http://developer.blackberry.com/
native/documentation/core/com.qnx.doc.

neutrino.prog/topic/devel_lazy_binding.html.

[3] Whatsapp. http://www.whatsapp.com/.

[4] Apple Inc. App review. https:
//developer.apple.com/appstore/guidelines.html.

[5] Apple Inc. iOS developer enterprise program. https:
//developer.apple.com/programs/ios/enterprise/.

[6] Apple Inc. iOS frameworks. https://developer.
apple.com/library/ios/documentation/

Miscellaneous/Conceptual/iPhoneOSTechOverview/

iPhoneOSFrameworks/iPhoneOSFrameworks.html.

[7] M. Backes, S. Gerling, C. Hammer, M. Maffei, and
P. von Styp-Rekowsky. AppGuard: Enforcing user
requirements on Android apps. In International
Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), 2013.

[8] A. Baratloo, N. Singh, and T. Tsai. Transparent
run-time defense against stack smashing attacks. In
USENIX Annual Technical Conference (ATC), 2000.

[9] A. Barenghi, G. Pelosi, and F. Pozzi. Drop-in control
flow hijacking prevention through dynamic library
interception. In Tenth International Conference on
Information Technology: New Generations (ITNG),
2013.

[10] E. G. Barrantes, D. H. Ackley, T. S. Palmer,
D. Stefanovic, and D. D. Zovi. Randomized
instruction set emulation to disrupt binary code
injection attacks. In ACM Conference on Computer
and Communications Security (CCS), 2003.

[11] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address
obfuscation: An efficient approach to combat a board
range of memory error exploits. In USENIX Security
Symposium, 2003.

[12] S. Bhatkar, R. Sekar, and D. C. DuVarney. Efficient
techniques for comprehensive protection from memory
error exploits. In USENIX Security Symposium, 2005.

[13] S. Bugiel, S. Heuser, and A.-R. Sadeghi. Flexible and
fine-grained mandatory access control on android for

53

diverse security and privacy policies. In USENIX
Security Symposium, 2013.

[14] Clutch. Clutch.
https://github.com/KJCracks/Clutch.

[15] L. Davi, A. Dmitrienko, M. Egele, T. Fischer, T. Holz,
R. Hund, S. Nürnberger, and A.-R. Sadeghi. MoCFI:
A framework to mitigate control-flow attacks on
smartphones. In Network and Distributed System
Security (NDSS), 2012.

[16] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS:
Detecting privacy leaks in iOS applications. In
Network and Distributed System Security (NDSS),
2011.

[17] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and
D. Wagner. A survey of mobile malware in the wild.
In ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices (SPSM), 2011.

[18] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum.
Enhanced operating system security through efficient
and fine-grained address space randomization. In
USENIX Security Symposium, 2012.

[19] J. Han, S. M. Kywe, Q. Yan, F. Bao, R. Deng, D. Gao,
Y. Li, and J. Zhou. Launching generic attacks on iOS
with approved third-party applications. In Applied
Cryptography and Network Security (ACNS), 2013.

[20] N. Hardy. The confused deputy: (or why capabilities
might have been invented). SIGOPS’98 Oper. Syst.
Rev., 1998.

[21] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and
J. Davidson. Ilr: Where’d my gadgets go? In IEEE
Security and Privacy (Oakland), 2012.

[22] J. Jeon, K. K. Micinski, J. A. Vaughan, A. Fogel,
N. Reddy, J. S. Foster, and T. Millstein. Dr. Android
and Mr. Hide: Fine-grained permissions in Android
applications. In Workshop on Security and Privacy in
Smartphones and Mobile Devices (SPSM), 2012.

[23] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning.
Address space layout permutation (ASLP): Towards
fine-grained randomization of commodity software. In
Annual Computer Security Applications Conference
(ACSAC), 2006.

[24] H. Lu. ELF: From the programmer’s perspective.
http://linux4u.jinr.ru/usoft/WWW/www_debian.

org/Documentation/elf/node7.html.

[25] Microsoft. Data Execution Prevention (DEP).
http://support.microsoft.com/kb/875352/EN-US/,
2006.

[26] V. Pappas, M. Polychronakis, and A. D. Keromytis.
Smashing the gadgets: Hindering return-oriented
programming using in-place code randomization. In
IEEE Security and Privacy (Oakland), 2012.

[27] V. Pappas, M. Polychronakis, and A. D. Keromytis.
Transparent ROP exploit mitigation using indirect
branch tracing. In USENIX Security Symposium, 2013.

[28] PGbiz. Count of active applications in the App Store.
http://www.pocketgamer.biz/metrics/app-store/

app-count/, 2014.

[29] G. F. Roglia, L. Martignoni, R. Paleari, and
D. Bruschi. Surgically returning to randomized lib(c).
In Annual Computer Security Applications Conference
(ACSAC), 2009.

[30] H. Shacham. The geometry of innocent flesh on the
bone: Return-into-libc without function calls (on the
x86). In ACM Conference on Computer and
Communications Security (CCS), 2007.

[31] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko,
C. Liebchen, and A.-R. Sadeghi. Just-in-time code
reuse: On the effectiveness of fine-grained address
space layout randomization. In IEEE Security and
Privacy (Oakland), 2013.

[32] Symantec Corporation. 2013 internet security threat
report, volume 18.
http://www.symantec.com/security_response/

publications/threatreport.jsp.

[33] T. Backdoor in top iPhone games stole user data, suit
claims. http://www.theregister.co.uk/2009/11/06/
iphone_games_storm8_lawsuit/, 2014.

[34] R. Wahbe, S. Lucco, T. E. Anderson, and S. L.
Graham. Efficient software-based fault isolation. In
ACM Symposium on Operating Systems Principles
(SOSP), 1993.

[35] T. Wang, K. Lu, L. Lu, S. Chung, and W. Lee. Jekyll
on iOS: when benign apps become evil. In USENIX
Security Symposium, 2013.

[36] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin.
Binary stirring: Self-randomizing instruction addresses
of legacy x86 binary code. In ACM Conference on
Computer and Communications Security (CCS), 2012.

[37] T. Werthmann, R. Hund, L. Davi, A.-R. Sadeghi, and
T. Holz. PSiOS: bring your own privacy & security to
iOS devices. In ACM SIGSAC Symposium on
Information, Computer and Communications security
(ASIACCS), 2013.

[38] J. Xu, Z. Kalbarczyk, and R. Iyer. Transparent
runtime randomization for security. In International
Symposium on Reliable Distributed Systems, 2003.

[39] R. Xu, H. Säıdi, and R. Anderson. Aurasium:
Practical policy enforcement for Android applications.
In USENIX Security Symposium, 2012.

[40] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth,
T. Orm, S. Okasaka, N. Narula, N. Fullagar, and
G. Inc. Native client: A sandbox for portable,
untrusted x86 native code. In IEEE Security and
Privacy (Oakland), 2009.

APPENDIX
A. WHATSAPP POLICY DEFINITION
unsigned long p o s t e x t e r n a l c a l l (const char

∗ function name , const unsigned long
r e tu rned va lue)

{
i f (x io s s t r cmp (function name , addressGetID) ==

0) {
char ∗ companyName =

ABRecordCopyValue (person ,
kABPersonOrganizationProperty) ;

i f (x io s s t r cmp (”corporate ” , companyName) ==
0){

return 0 ;
}

}
return r e tu rned va lue ;

}

54

