CFHipsterRef

Low-Level Programming
oni0S& OS X

Mattt Thompson

Mattt Thompson

CFHipsterRet:

Low-Level Programming
on 10§ & MacOS X

Copyright © 2014 Mattt Thompson
All rights reserved

Mlustrated by Conor Heelan
ISBN 978-0-9912182-4-0

NSHipster
Portland, Oregon
http://nshipster.com

https://www.myidentifiers.com/myaccount_manageisbns_titlereg?isbn=978-0-9912182-4-0&icon_type=new

Contents

Kernel

Objective-C Runtime

Clang

OSAtomic

Grand Central Dispatch
Inter-Process Communication
CoreServices

Image I/O

Accelerate

Security

System Configuration

International Components for Unicode

Dictionary Services
Xcode Toolchain
Third Party Tools

CocoaPods

18
35
59
70
91
115
125
136
158
179
192
220
233
245
258

Chapter 1

Kernel

It’s often remarked that the architecture of software reflects the

structure of the organization building it. *

Therefore, if you're at all familiar with the story of how Apple acquired
NeXT, you already have an intuitive sense about the architecture of the

OS X kernel—even if you don't really know what a kernel is.
So, what is a kernel?

A kernel is a program that coordinates input and output between
software and the underlying hardware. It’s the fundamental part of an
operating system, responsible for reading and writing information to
and from the CPU, memory, and any other mounted devices. How a
kernel should go about coordinating access to these resources across
all of the contending processes has been an ongoing quandary for

industry and academia alike.

As it so happens, this question of computer architecture played an

important role in a pivotal moment of Apple’s history.

Apple, NeXT, & Be

The mid 1990’s were a bad time for Apple. After years of uninspired,

over-priced computers, the company had become all but irrelevant.

1 As codified by Melvin Conway in his eponymous law: "Organizations which design systems ... are con-
strained to produce designs which are copies of the communication structures of these organizations."

PCs were more performant, more ubiquitous, and more cost-efficient
than anything coming out of Cupertino at the time. Between '94 and
'97, the company posted losses in the hundreds of millions, and may
have been forced to declare bankruptcy had it not been for a cash
infusion from Microsoft, which was fighting an antitrust lawsuit at the

time.

It wasn't just hardware innovation that had stalled. By the release of
System 7, the technical debt built up since the original Macintosh had
become insurmountable: in order to remain competitive, it needed to
be addressed. In 1994, development started on Copland, a project to
rewrite the underlying Macintosh OS for its 8.0 release. However, as
deadlines slipped, and the completion date continued to be pushed

back, it was decided that the project was dead-on-arrival.

The only way to get a new operating system would be through an

acquisition.

On the table were two companies with strong connections to Apple:
Be Inc., founded by former Apple exec Jean-Louis Gassée *, and NeXT,
the company Steve Jobs started after he was forced out of Apple.

2 Gassée was appointed to Jobs' former position as head of Macintosh development by Apple CEO John
Sculley. Notable achievements during his tenure include the Macintosh Portable and Newton Mes-
sagePad

Both companies had built modern, eponymous operating systems—Be
Inc.'s BeOS, and NeXT’s NeXTSTEP—from the ground-up, but were
struggling to gain a foothold into the mainstream computer market. *
BeOS, with an impressively forward-looking architecture and focus on
multimedia, was in many ways the technological forerunner, but it was
ultimately NeXTSTEP that would be given the nod. *

NeXTSTEP ° would go on to be ported to PowerPC and eventually

become the OS X everyone knows today.

Darwin

Darwin is the UNIX core of OS X. The term "Darwin" specifically
refers to the operating system, composed of the XNU kernel,
Objective-C runtime, and I/O Kit driver framework, though it is often

used interchangeably to refer to any individual component. °

3 Around the time of acquisition, NeXT had nearly given up on their operating system, and had considered
shifting focus onto WebObjects instead.

4 Regarding the acquisition, Gil Amelio famously quipped, "We choose Plan A instead of Plan Be."”

5 Or, to be pedantic, OPENSTEP, which was a specific implementation of the OpenStep API (note the
capitalization), which was jointly developed by NeXT and Sun Microsystems (hence the NS prefix for
"NeXT/Sun")

6 Each major release of Darwin is coordinated with a minor release of OS X. For a given release of OS X,
10.x.y, the corresponding Darwin release is (x + 4).y.0.

The source code for Darwin and other underlying technologies can

be downloaded from Apple’s Open Source website. *

a http://opensource.apple.com

XNU, the Darwin kernel, is an acronym for "X is Not UNIX". " Itis a

hybrid kernel, incorporating both the microkernel architecture of
Mach and features of the monolithic BSD kernel. *

$ uname -a

Darwin NSHipster.local 13.3.0 Darwin Kernel Version 13.3.0: Tue Jun 3 21:27:35 <
PDT 2014; root:xnu-2422.110.17~1/RELEASE_X86_64 x86_64

It’s endearing to view this marriage of Mach and BSD in the XNU
kernel as an extension of Apple’s philosophy of pragmatic eclecticism.
By combining competing technologies in ways that compliment one
another, one gets the best of both worlds. Like how the ideas of
Smalltalk were bolted onto a C implementation to form
Objective-C—under the right circumstances, the whole can be much

greater than the sum of its individual parts.

7 Though, as of OS X 10.5, Darwin has been certified under the Single UNIX Specification version 3
(SUSv3)

8 Assuch, OS X is often described as having a "Mach/BSD" kernel.

http://opensource.apple.com

Actually, the parallels between Mach/BSD and Smalltalk/C run deeper
than that.

Both Mach and Smalltalk are designed around the concept of message
passing. For Smalltalk, it’s objects sending messages to one another in
order to invoke methods. For Mach, it’s untyped interprocess
communication (IPC) and remote procedure calls (RPC) as a means of
sending information between processes. Message passing is a safe and
elegant abstraction, but necessarily incurs a performance penalty

because of this indirection.

High-minded idealism is wasted without some basis in reality. That’s
where C & BSD come in.

For Objective-C, transforming message sends into highly-optimized C
function calls makes the cost of objects negligible. For Mach, serious
performance gains are made by linking kernel components into a

single address space.

As a result, XNU gets the extensibility of Mach with the performance
of the monolithic BSD kernel.

Mach

At the core of XNU is Mach, which provides a small set of abstractions

for interacting with the system:

o Task: The unit of resource allocation, similar to a process, consisting
of a virtual address space and port rights.

o Thread: The unit of CPU utilization for a task.

o Port: A simplex, or one-way, communication channel with send and
receive capabilities made accessible via port rights.

» Message: A typed collection of data objects.

o Memory Object: An internal unit of memory management,

representing data that can be mapped into address spaces.

Multitasking

The original Mac OS kernel was extremely simple. The allocation and
usage of system resources was left up to the individual processes
themselves, in a scheme known as cooperative multi-tasking.
Applications would run until they would either exit or yield back to
the OS. The idea was that by switching between tasks in rapid
succession, it would give the illusion of running them all
simultaneously. However, this behavior was entirely elective, resulting
in a "tragedy of the commons", where a single bad actor could bring

the entire system to a halt.

OS X, on the other hand, is a preemptive multitasking environment,

which means that the kernel enforces cooperation by scheduling

resources for processes to share. Under this scheme, an application
can still "beachball”, but it’s usually possible to recover by

force-quitting any unresponsive processes.

As the saying goes, "Good fences make good neighbors".

Mach-O

Darwin also adopts the Mach-O file format for executables, object

code, and shared libraries. ° *°

Mach-O has been the exclusive file format for NeXTSTEP, OS X, and
iOS. One feature of particular importance for these platforms is Mach’s

support of multi-architecture, or "fat", binaries.

For example, a single iOS binary can have six instruction set

architectures:

9 Commonly known by their file extensions: .0, .dylib, and .bundle.

10 Nearly every other Unix-based system adopts the ELF format for executables and shared libraries. Since
Darwin is already POSIX compliant, this would be one of the last steps to compatibility with Solaris,
BSD, and Unix.

Architectures & Supported Devices

ARMvG iPhone, 3G; 1st & 2nd generation iPod touch
ARMv7 iPhone 3GS, 4, 4S; iPad, 2, 3rd generation; 3rd, 4th, & 5th
generation iPod touch
ARMV7s iPhone 5; 4th generation iPad
ARMv8 iPhone 58
x86 iPhone Simulator (32-bit)
x86_64 iPhone Simulator (64-bit)
BSD

The BSD layer provides the operating system personality of Darwin, as
well as a POSIX-compliant interface to everything one can expect on a
Unix system. It’s implemented on top of Mach in such a way that
allows developers to interact with high-level abstractions, rather than

the underlying primitives.

Among the most visible features of BSD are its ubiquitous sockets API
for TCP & UDP networking, along with Kqueue, an efficient event

pipeline between kernel and user space. Everything else, from

memory protection to multiuser access, are more notable for how

they’re extended by Darwin.

Darwin Additions

iOS vs. OS X

From a kernel and operating systems perspective, iOS is OS X with
some slight modifications. For one, the architecture of the kernel and
binaries is ARM-based, rather than the Intel i386 or x86_64 used on
desktops. !

Perhaps the most significant difference between the OS X & iOS
kernels, however, are the additional protections built to keep iOS on
lockdown. A cynical take on these measures would be that they serve
to protect the interests of a business driven by vendor lock-in. In
fairness, many of these decisions follow sound technical reasoning that
acknowledges the fundamental differences in use cases and

requirements between iOS and OS X.

11 With this new platform, Apple decided not to open source the ARM-based kernel.

10

Basic Security Module

Darwin incorporates Sun’s Basic Security Module, or BSM, to provide
an auditing log of actions taken by users and processes. It’s enabled on
OS X by default, but disabled on iOS, since it makes less sense on the

single-user platform.

Mandatory Access Control

Mandatory Access Control (MAC), limits access to protected
resources like sockets and shared memory segments to specific
processes. It was originally developed as part of TrustedBSD, and
incorporated into OS X 10.5.

MAC is the substrate of both OS X Sandboxing and iOS Entitlements.

Jetsam

OS X & iOS implement a memory status mechanism called Jetsam, or

alternatively, Memorystatus. Similar to the "Out-Of-Memory" handler

11

oom on Linux, Jetsam is used to monitor the memory usage of

processes and kill any that are consuming more than their fair share.

On a regular interval, launchd takes a snapshot of how many pages of
memory are being used by each process. Jetsam then takes this
information and builds an ordered list of candidates that should be
killed if memory pressure exceeds a certain threshold. The current list
of snapshots and candidates can be queried using the sysct1 system

call, or the APIs exposed in <sys/kern_memorystatus.h>

Under a constrained memory environment like iOS, Jetsam is critical
for ensuring that no running application in the foreground or

background over-utilizes system resources.

This important to keep in mind when investigating the source of a

crash on i0S. Consider the following crash log:

Incident Identifier: <GUID>
CrashReporter Key: <Checksum>

Hardware Model: <Apple Model Identifier>

0S Version: <Version>

Kernel Version: <Version (output of *$ uname -a')>
Date: <Date>

Time since snapshot: <Timestamp>

Free pages: <Number of Remaining Pages of Memory>

Wired pages: <Number of Resident Pages of Memory>

12

Purgeable pages: <Number of Pages to be Freed>

Largest process: <Process Causing Crash>
Processes
Name UUID Count resident pages
<Name> <UUID> <Count> (jettisoned) (active)

If a process is marked as (jettisoned), it means that Memorystatus /
Jetsam killed it for consuming too much memory. > The easiest way
to mitigate the chance of an application being jettisoned is to respond

to the following low memory warnings:

e UIApplicationDelegate -
applicationDidReceiveMemoryWarning: delegate method

« UIViewController -didReceiveMemoryWarning delegate method

e UIApplicationDidReceiveMemoryWarningNotification

notification

Process Hibernation

As of i0S 5 and OS X 10.7 Lion, high-memory processes identified by
Jetsam can be frozen instead of immediately killed. When a process is

frozen, its state is captured in such a way that it can be thawed and

12 An (active) designation indicates that the process was in the foreground at the time of the log.

13

resumed when memory pressure subsides. This is known as

hibernation.

Hibernate is only enabled on iOS, again, due to the prevalence of

low-memory conditions on mobile devices relative to the desktop.

From a user’s perspective, hibernation occurs as a consequence of
switching between applications. By default, a screenshot of an
application’s current window is taken before hibernation, and used in
the multitasking UI. By listening for the
UIApplicationWillResignActiveNotification notification, an
application has the opportunity to customize what is displayed in the

application switcher.

Kernel Address Space Layout Randomization

For the vast majority of applications, Address Space Layout
Randomization (ASLR) is a completely irrelevant implementation

detail. However for hackers, it has profound implications.

One of the primary attack vectors for software is injecting behavior at
particular memory addresses. Know the position of the stack, heap,

and libraries in a process’s address space, and that process can easily be

14

exploited. By randomizing memory offsets within that address space,

however, a process becomes much less susceptible to attack.

I/O Kit

The last piece of the XNU kernel is I/O Kit, a framework for
developing device drivers for OS X & iOS.

The source code for I/O Kit and its companion library libkern can

be downloaded from Apple’s Open Source website. “

a http://opensource.apple.com

I/O Kit was created to replace NeXT’s Driver Kit, which critically
lacked the capabilities of hot-swappable hardware and automatically
configuration. Unlike Driver Kit, which is written in Objective-C, I/O
Kit is implemented in Embedded C++, a subset that omits languages
features deemed problematic within a multithreaded kernel

environment. **

I/O Kit is organized into several different families, each responsible for

a particular type of interface:

13 Specifically: no exceptions, no multiple inheritance, and no templates. (Sounds pretty nice, right?)

15

http://opensource.apple.com

« ADB (Apple Desktop Bus)

o AGP (Accelerated Graphics Port)

o ATA & ATAPI (ATA Packet Interface)
 Audio

o FireWire

o Graphics

o HID (Human Interface Devices)

« Network

 PCI (Peripheral Component Interconnect)
o SBP-2 (Serial Bus Protocol 2)

o SCSI (Small Computer System Interface '*)
o Serial

« Storage

o USB (Universal Serial Bus)

Families are, themselves, divided into logical layers that are
represented in a class hierarchy. Consistent with best practices in
application level development, most drivers inherit from the most
specific class available. For example, a keyboard driver would inherit

from I0OHIKeyboard rather than I0HIDevice, or even I0Service.

Although consumer software development doesn't often require much

in the way of kernel programming, it’s still fun to poke around to get a

14 Pronounced /'skazi/

16

better sense of how everything fits together. To that end, the following
command-line utilities offer a safe way to explore the hidden world of

drivers (io prefix) and kernel extensions (kext prefix):

Driver Utilities

ioreg Prints the contents of the I/O Registry (a
command-line version of the I/O Registry
Explorer application).

iostat Displays kernel I/O statistics on terminal, disk,
and CPU operations.

ioclasscount Displays instance count of a specified class.

ioalloccount Displays some accounting of memory allocated

by I/0O Kit objects in the kernel.

Kernel Extension Utilities

kextstat Prints statistics about currently loaded drivers

and other kernel extensions.

kextload Loads a kernel extension (such as device driver)
or generates a statically linked symbol file for

remote debugging.

kextunload Unloads a kernel extension (if possible).

17

Chapter 2

C

Objective

Runtime

Objective-C, by itself, is just talk. All of its high-falutin' ideas about
message passing and dynamism is nothing but a bunch of hot air

without a runtime to do the hard work.

It’s almost unfair how the Objective-C language gets all of the credit,
when it’s really the Objective-C runtime things happen.

"What's that? Your object-oriented paradigm was inspired by the

interactions of microorganisms, you say? '° Get a job, hippy!”

The Objective-C runtime acts as a kind of meta operating system,
facilitating the data structures and function calls that that implement

the dynamic features of Objective-C.

Every class declaration, method invocation, and expression evaluation
is compiled into equivalent C functions to interact with the runtime.
Indeed, most interactions a developer has with the Objective-C
runtime is through the Objective-C language. But as a strict superset

of C, these runtime functions can be invoked directly as well.

15 Alan Kay took inspiration from the autonomous, message-passing interactions of cells within an organ-
ism when he created Smalltalk, the language credited with bringing object-oriented programming to the
mainstream.

19

The Objective-C 2.0 Runtime is open source, and available for

download from Apple’s Open Source website. ¢

a http://opensource.apple.com/source/objc4

libobjc

Libobjc is the shared library for the Objective-C 2.0 runtime. It can
be used directly from an Objective-C application to introspect and

change its own behavior.

#import <objc/runtime.h>

Objective-C developers are conditioned to be wary of whatever follows
this ominous incantation. And for good reason: messing with the
Objective-C runtime changes the very fabric of reality for all of the

code that runs on it.

In the right hands, the functions of <objc/runtime.h> have the

potential to add powerful new behavior to an application or

20

http://opensource.apple.com/source/objc4

framework, in ways that would otherwise be impossible.

Message Sending

At the heart of Objective-C’s object-oriented paradigm is the concept
of message passing. It's enshrined in the syntax of square brackets,

which delimit the act of sending a message to an object.

Consider the following Objective-C code:

[object messagel;

The compiler will translate this into an equivalent objc_msgSend call:

16
objc_msgSend(object, @selector(message));

A class (Class) maintains a dispatch table to resolve messages sent at
runtime; each entry in the table is a method (Method), which keys a
particular name, the selector (SEL), to an implementation (IMP), which

is a pointer to an underlying C function.

16 Any parameters would be passed as additional arguments to objc_msgSend.

21

When a message is sent to an object, it consults its class’s dispatch table
to find an implementation associated with the message’s selector. If a
match is found, the associated function is invoked. If not, the dispatch
table of the superclass is consulted, and so on, until either a match is

found, or the selector is determined to be unrecognized.

With dynamic dispatch, the behavior of message-based code is not
deterministic at compile time. Every aspect of execution is deferred
until the last possible moment. The class of object could be changed,
the method corresponding to the message selector could have its
implementation replaced, or the ivar layout of object could just be
sabotaged in such a way that it crashes the process. Anything is

possible.
Such are the risks and rewards of hacking the Objective-C runtime.

You have nothing to gain and everything to lose by invoking
objc_msgSend directly. Objective-C code has the benefit of an
incredibly sophisticated compiler and analyzer, which can detect and
safeguard against incorrect behavior. Cutting out the middle man
means taking all of that responsibility on yourself, with little to no
direct benefit.

But, if you like to live dangerously... and consider asinine

development practices to quality, here’s what’s what:

22

« objc_msgSend: Sends a message with a simple return value to a class.

« objc_msgSend_stret: Sends a message with a data-structure return
value to a class.

» objc_msgSendSuper: Sends a message with a simple return value to
the superclass of a class.

» objc_msgSendSuper_stret: Sends a message with a data-structure

return value to the superclass of a class.

Metaprogramming with Properties

Properties define the public interface for an object’s state. Using
libobjc, a clever developer can work with classes on an entirely new

level.

For instance, with access to a list of an object’s properties, the
drudgery of manually implementing NSCoding can be avoided with a

dose of metaprogramming:

#pragma mark — NSCoding

- (id)initwithCoder: (NSCoder x)decoder {
self = [super init];
if (!self) {
return self;

b

23

unsigned int count;
objc_property_t *properties = class_copyPropertyList([self class], &count);
for (NSUInteger i = @; i < count; i++) {

objc_property_t property = properties[i];

NSString xkey = [NSString stringWithUTF8String:property_getName(<

property)];
[self setValue: [decoder decodeObjectForKey:key]
forKey:keyl;

}

free(properties);

return self;

- (void)encodeWithCoder: (NSCoder *)coder {

unsigned int count;
objc_property_t *properties = class_copyPropertyList([self class], &count);
for (NSUInteger i = @; i < count; i++) {
objc_property_t property = properties[i];
NSString xkey = [NSString stringWithUTF8String:property_getName(<
property)l;
[coder encodeObject: [self valueForKey:key] forKey:keyl;
}

free(properties);

Associated Objects

Associated objects are a feature of the Objective-C runtime without a

counterpart in the language itself.

24

This feature allows objects to associate arbitrary values for keys at
runtime. It can be used to work around a language constraint that

prevents categories from declaring new storage properties.

@interface NSObject (AssociatedObject)
@property (nonatomic, strong) id associatedObject;
@end

@implementation NSObject (AssociatedObject)

@dynamic associatedObject;

- (void)setAssociatedObject: (id)object {
objc_setAssociatedObject(self, @selector(associatedObject), object, <
0BJC_ASSOCIATION_RETAIN_NONATOMIC) ;

- (id)associatedObject {

return objc_getAssociatedObject(self, @selector(associatedObject));

Associated objects are fairly straightforward: use
objc_setAssociatedObject to store an associated value, and

objc_getAssociatedObject to retrieve it. '’

Each associated object is referenced by a key, which can be any
constant value. The easiest solution is to just pass the selector of the

getter method. '®

17 Anyone from a time before @synthesize will no doubt recognize this getter / setter pattern.
18 Selectors are guaranteed to be unique and constant in the runtime.

25

Dynamically Adding a Method

Just as properties describe the state of an object, methods comprise
their behavior. In Objective-C, methods are declared with a leading +
or -, to denote whether a method is associated with a class or instances
of that class.

Normally, class declarations are relatively stable. Setting aside the
confounding effect of extensions and categories, the methods of a class
usually remain stable over an application’s execution. However, using
the Objective-C runtime, methods can be added and removed as

desired.

Consider the following category:

@interface NSObject ()
- (NSString *)greetingWithName: (NSString *)name;
@end

@implementation NSObject ()
- (NSString *)greetingWithName: (NSString *)name {
return [NSString stringWithFormat:@"Hello, %@!", namel;
}
@end

By including this code in a source file at compile time,

greetingWithName: will be available to all instances of NSObject.

26

However, the equivalent behavior could instead be achieved at

runtime:

Class ¢ = [NSObject class];

IMP greetingIMP = imp_implementationWithBlock((NSString *)~(id self, NSString * <=
name){

return [NSString stringWithFormat:@"Hello, %@!", namel;

3}

const char xgreetingTypes = [[NSString stringWithFormat:@"%s%s%s", @encode(id), <
@encode(id), @encode(SEL)] UTF8Stringl;

class_addMethod(c, @selector(greetingWithName:), greetingIMP, greetingTypes);

The ability to add new methods and properties makes it possible to
define complex behavior in terms of macro-based DSLs, or work

around compatibility bugs within an SDK.

It’s a lot of power at a very reasonable price.

Method Swizzling

Method swizzling is the process of changing the implementation of an
existing selector. It’s a technique made possible by the fact that method
invocations in Objective-C can be modified at runtime, by changing
how selectors are mapped to underlying functions in a class’s dispatch
table.

27

Consider the task of tracking how many times each view controller in

an application is presented during its lifetime:

Each view controller could add tracking code to an overridden
implementation of viewDidAppear:, but that would make for a ton of
duplicated boilerplate code. Subclassing is another possibility, but it
would require subclassing UIViewController,
UITableViewController, UINavigationController, and every other
view controller class—an approach that also suffers from excessive

code duplication.

With method swizzling, the solution is rather elegant:

#import <objc/runtime.h>
@implementation UIViewController (Tracking)

+ (void)load {
static dispatch_once_t onceToken;
dispatch_once(&onceToken, ~{

Class class = [self classl;

SEL originalSelector = @selector(viewWillAppear:);

SEL swizzledSelector = @selector(xxx_viewWillAppear:);

Method originalMethod = class_getInstanceMethod(class, originalSelector <
)i

Method swizzledMethod = class_getInstanceMethod(class, swizzledSelector <
)i

28

BOOL didAddMethod =
class_addMethod(class,
originalSelector,
method_getImplementation(swizzledMethod),
method_getTypeEncoding(swizzledMethod));
if (didAddMethod) {
class_replaceMethod(class,
swizzledSelector,
method_getImplementation(originalMethod),
method_getTypeEncoding(originalMethod));
} else {

method_exchangeImplementations(originalMethod, swizzledMethod);

1)

#pragma mark — Method Swizzling

- (void)swizzled_viewWillAppear: (BOOL)animated {
[self swizzled_viewWillAppear:animated];
NSLog(@"viewWillAppear: %@", self);

@end

Now, when any instance of UIViewController or one of its subclasses

invokes viewWillAppear:, a log statement will be printed. **

Because method swizzling affects global state, it is important to

19 It may appear that swizzled_viewWillAppear: would cause an infinite loop by calling itself in its own
implementation, but that’s not the case. In the process of swizzling, swizzled_viewWillAppear: has
been reassigned to the original implementation of UIViewController -viewWillAppear:.

29

minimize the possibility of race conditions. +1oad is guaranteed to be
executed during class initialization, thereby affording a modicum of
consistency for changing system-wide behavior. By contrast,

+initialize provides no such guarantee of when it will be executed.
20

Injecting behavior into the view controller lifecycle, responder events,
view drawing, or the Foundation networking stack are all reasonable
examples of how method swizzling can be used to great effect. There
are a number of other occasions when swizzling would be an
appropriate technique, and they become increasingly apparent the

more seasoned an Objective-C developer becomes.

Dynamically Creating a Class

Combining the previous concepts of dynamic property and method

definition, libobjc's ultimate feat is creating a class at runtime.

Consider the following interface and implementation for a simple

Product class, with name and price properties:

20 In fact, unless a class is messaged directly by the app, its +initialize method won't be called.

30

@interface Product : NSObject
@property (readonly) NSString *name;
@property (readonly) double price;

- (instancetype)initWithName: (NSString *)name
price:(double)price;
@end

@implementation Product

- (instancetype)initWithName: (NSString *)name
price:(double)price

{
self = [super init];
if(!self) {

return nil;

}
self.name = name;
self.price = price;
return self;

}

@end

If ever there was a sympathetic case to be made for Objective-C’s
syntax, it's how elegant that code looks in comparison to its runtime

equivalent:

Class ¢ = objc_allocateClassPair([NSObject class], "Product", 0);
class_addIvar(c, "name", sizeof(id), log2(sizeof(id)), @encode(id));

31

class_addIvar(c, "price", sizeof(double), sizeof(double), @encode(double));

Ivar namelvar = class_getInstanceVariable(c, "name");
ptrdiff_t priceIvarOffset =
ivar_getOffset(class_getInstanceVariable(c, "price"));

IMP initIMP = imp_implementationWithBlock(
~(id self, NSString *name, double price)

{
object_setIvar(self, nameIvar, name);
char xptr = ((char *)(__bridge void *)self) + priceIvarOffset;
memcpy (ptr, &price, sizeof(price));
return self;
)3

const char *xinitTypes = [[NSString stringWithFormat:@"%s%s%s%5%s%s",
@encode(id), @encode(id), @encode(SEL), @encode(id), @encode(id),
@encode(NSUInteger)] UTF8Stringl;
class_addMethod(c,
@selector(initWithFirstName: lastName:age:),
initIMP,
initTypes);

IMP nameIMP = imp_implementationWithBlock(~(id self) {
return object_getIvar(self, namelvar);
;i
const char *nameTypes =
[[NSString stringWithFormat:@"%s%s%s",
@encode(id), @encode(id), @encode(SEL)] UTF8Stringl;

class_addMethod(c, @selector(name), nameIMP, nameTypes);
IMP priceIMP = imp_implementationWithBlock(~(id self) {

char *xptr = ((char %)(__bridge void %)self) + pricelvarOffset;

double price;

32

memcpy (&price, ptr, sizeof(price));

return price;

i

const char *priceTypes = [[NSString stringWithFormat:@"%s%s%s", @encode(double) <
, @encode(id), @encode(SEL)] UTF8String];

class_addMethod(c, @selector(age), priceIMP, priceTypes);

objc_registerClassPair(c);

There’s a lot going on here, so let’s take things one step at a time.

First, a class is allocated with objc_allocateClassPair, which

specifies the class’s superclass and name. *'

After that, instance variables are added to the class using
class_addIvar. That fourth argument is used to determine the
variable’s minimum alignment, which depends on the ivar’s type and

the target platform architecture. **

The next step is to define the implementation for the initializer, with
imp_implementationWithBlock:. To set name, the call is simply
object_setIvar. price is set by performing a memcpy at the

previously-calculated offset.

21 Why a class pair? Every class has a meta-class, which manages the dispatch table for messages sent to
the class itself. Classes are objects in Objective-C; class methods are actually instance methods for class
objects.

22 For variables of any pointer type, the correct alignment is log2(sizeof(type)).

33

In order to add the initializer, the type encodings of each argument
needs to be calculated. It's an awkward mess of @encode and string

interpolation, but it does the job.
Adding methods for the ivar getters follows much the same process. >

Finally, once all of the methods are added, the class is registered with
the runtime. And from that point on, Product can be interacted with

in Objective-C like any other class:

Product *widget = [[Product alloc] initWithName:@"Widget"
price:50.00];

NSLog(@"%@: %g", widget.name, widget.price);

23 Although this example declares readonly properties, setter methods would be implemented in similar
manner to the initializer.

34

Chapter 3

Clang

Apple’s adoption of LLVM in the mid-00’s was the most important
technical decision made since the acquisition of NeXT. In many ways,
it serves as the demarcation point for when the company started to hit

its technological stride once again.

Originally created as a research project at the University of Illinois by
Vikram Adve and Chris Lattner, LLVM has grown to encompass a
range of low-level toolchain technologies, including assemblers,
compilers, and debuggers. Its modern, modular architecture and
non-Copyleft ** *° license made it a particularly appealing alternative
to GCC. As such, Apple took an early interest in the project, and has
been its primary steward ever since—going so far as to hire Lattner to
head a new developer technologies team within the organization in
2005.

Clang is architected as a 3-phase compiler:

- Source Code
1. Front-end

2. Optimizer

24 GCC is released under the terms of the GNU General Public License, which has a Copyleft provision
that mandates redistributed software to also be released under the same license. Companies like Apple
have often taken a defensive stance against such terms, preferring non-GPL-licensed projects and even
going as far as to create their own alternatives.

25 LLVM is released under the University of Illinois/NCSA Open Source License, which is based on the
MIT and BSD 3-Clause Licenses, and lacks any such Copyleft provisions that might constrain the dis-
tribution of proprietary software.

36

3. Back-end

- Machine Code

The genius of this approach is that both the front-end and back-end
can be swapped out to support any source language input (C, Haskell,
Ruby, etc.) or instruction set output (x86, PowerPC, ARM), without
falling victim to theM x N combinatorics of supporting each
combination individually. Instead, each LLVM front-end compiles
source code into the LLVM Intermediate Representation (IR), which is
analyzed and transformed by the common optimizer, and then passed
into the desired back-end. *°

Clang is the front-end to the LLVM compiler for the C language
family. It has a deep understanding of the syntax and semantics of
Objective-C, and is largely responsible for how Objective-C came to be

the capable language it is today.

libclang

libclang is the C interface to the Clang LLVM front-end. It's a
powerful way for C & Objective-C programs to introspect their own

internal structure and composition.

26 LLVM was developed for maximum compatibility with GCC, and as such, can use GCC font-ends as a
fallback for situations where an LLVM front-end is not provided.

37

There’s a lot of functionality baked into Clang, which libclang

organizes it into several different components:

Clang Components

libsupport Basic support library, from LLVM.

libsystem System abstraction library, from LLVM.

libbasic Diagnostics, SourceLocations, SourceBuffer
abstraction, file system caching for input source files.

libast Provides classes to represent the C AST, the C type
system, builtin functions, and various helpers for
analyzing and manipulating the AST (visitors, pretty
printers, etc).

liblex Lexing and preprocessing, identifier hash table,
pragma handling, tokens, and macro expansion.

libparse Parsing. This library invokes coarse-grained Actions
provided by the client (e.g. libsema builds ASTs) but
knows nothing about ASTs or other client-specific
data structures.

libsema Semantic Analysis. This provides a set of parser
actions to build a standardized AST for programs.

libcodegen Lower the AST to LLVM IR for optimization & code
generation.

librewrite Editing of text buffers (important for code rewriting
transformation, like refactoring).

38

(continued)

libanalysis Static analysis support.

Translation Units

The first step to working with source code is to load it into memory.
Clang operates on translation units, which are the ultimate form of C
or Objective-C source code, after all of the #include, #import, and

any other preprocessor directives have been evaluated.

A translation unit is created by passing a path to the source code file,

and any command-line compilation arguments:

CXIndex idx = clang_createIndex(0, 0);
const char xfilename = "path/to/Source.m";
int argc;

const char *argvl[];

CXTranslationUnit tu =
clang_parseTranslationUnit(idx,
filename,
0,

argv,

39

argc,
0,
CXTranslationUnit_None);

{ coo ¥

clang_disposeTranslationUnit(tu);

clang_disposeIndex(idx);

AST

In order to understand the structure of a translation unit, Clang
constructs an Abstract Syntax Tree (AST). ASTs are the platonic ideal
of what code, derived by distilling constructs from their

representation.

Each node in an AST is represented by a cursor to its respective
declaration, definition, statement, or reference. A cursor provides the
name, location, range, and type of the node, as well as a pointer to any

children it may have.

To iterate over the nodes of an AST, use clang_visitChildren,
passing a pointer to a function that evaluates each node, and decides
whether to recurse into children, continue onto the next sibling node,

or terminate:

40

static unsigned Visitor(CXCursor cursor,
CXCursor parent,
CXClientData data)

switch (clang_getCursorKind(cursor)) {

case CXCursor_FunctionDecl:
// Function
break;

case CXCursor_VarDecl:
// Variable
break;

case CXCursor_ObjCInstanceMethodDecl:
// Objective-C Instance Method
break;

[/ s

default:

break;

return CXChildVisit_Recurse;

CXCursor cursor = clang_getTranslationUnitCursor(tu);

clang_visitChildren(cursor, Visitor, 0);

Because a translation unit may #include code included from another
source file, it’s often useful to first check that the cursor is contained

within that specific source file:

CXSourceLocation location = clang_getCursorLocation(cursor);

41

CXFile file;
clang_getFileLocation(location, &file, @, 0, 0);

const char xfilename = "/path/to/Source.m";

if (filename != clang_getCString(clang_getFileName(file))) {
return CXChildVisit_Continue;

For reference types, Clang can find all of the other local references
within the AST. Xcode uses this functionality to jump between a
reference and its declaration, as well as refactor by renaming all
occurrences. This information could also be used for semantic
highlighting, or using colors to differentiate between individual

references.

Tokens

It may be useful to abstract away syntax, but for syntax highlighting or

code formatting, the representation is what actually matters.

A token represents a keyword, identifier, punctuation, literal, or
comment, which exists at a particular location and range.
clang_tokenize tokenizes the content of a translation unit within a

particular range:

42

CXCursor cursor = clang_getTranslationUnitCursor(tu);

CXSourceRange range = clang_getCursorExtent(cursor);

CXTokenx tokens;
unsigned count;

clang_tokenize(tu, range, &tokens, &count);

for (unsigned i = @; i < count; i++) {
CXToken token = tokens[i];
unsigned line, column, offset;
clang_getFileLocation(clang_getTokenLocation(tu, token),
&file, &line, &column, &offset);
switch (clang_getTokenKind(token)) {
case CXToken_Punctuation:
case CXToken_Keyword:
case CXToken_Identifier:
case CXToken_Literal:
case CXToken_Comment:
/] oun
break;
default:
break;

Xcode uses this to provide syntax highlighting for source code. In
order to avoid recoloring the entire document on every keypress, the

highlighter can constrain its tokenization to just the immediate lexical

43

scope of the change.

Diagnostics

Where Clang really starts to show off its smarts are through

diagnostics.

Clang diagnostics are ranked into different levels of severity, much like

log statements:

CXDiagnostic_Ignored | A diagnostic that has been suppressed, e.g.,

by a command-line option.

CXDiagnostic_Note This diagnostic is a note that should be
attached to the previous (non-note)

diagnostic.

CXDiagnostic_Warning This diagnostic indicates suspicious code

that may not be wrong.

CXDiagnostic_Error This diagnostic indicates that the code is
ill-formed.
CXDiagnostic_Fatal This diagnostic indicates that the code is

ill-formed such that future parser recovery

is unlikely to produce useful results.

Diagnostics are evaluated in the scope of an entire translation unit,

44

since the correctness of any one declaration is dependent on its
preceding context. clang_getNumDiagnostics gets the total number
of diagnostics for the translation unit, which can be enumerated in a

for statement:

for (unsigned i = @; i < clang_getNumDiagnostics(tu); i++) {
CXDiagnostic diagnostic = clang_getDiagnostic(tu, i);
CXString string =
clang_formatDiagnostic(diagnostic,

clang_defaultDiagnosticDisplayOptions());

switch (clang_getDiagnosticSeverity(diagnostic)) {
case CXDiagnostic_Note:
case CXDiagnostic_Warning:
case CXDiagnostic_Error:
case CXDiagnostic_Fatal:
V/ACEY:
break;
case CXDiagnostic_Ignored:
default:

break;

/] s

clang_disposeString(string);

Xcode annotates source code with Clang diagnostics with visual

indicators in the gutter, which can be disclosed to highlight offending

45

code in-line. %’

Fix-Its

It’s one thing to be able to point out problems, but it’s another thing
entirely to fix them as well. Clang fix-its take diagnostics to a whole

new level.

For each diagnostic, there are any number of potential changes that
can be made to address the issue. These options would typically be
presented to the end-user in order to determine the best course of

action:

for (unsigned j = @; j < clang_getDiagnosticNumFixIts(diagnostic); j++) {
CXSourceRange range;
CXString fixIt =

clang_getDiagnosticFixIt(diagnostic, j, &range);
CXSourcelLocation start = clang_getRangeStart(range);
unsigned startLine, startColumn;

clang_getSpellinglLocation(start, @, &startLine , &startColumn, 0);

/] aus

27 Yellow caution icons are displayed for CXDiagnostic_Note and CXDiagnostic_Warning. Red error
icons are displayed for CXDiagnostic_Error and CXDiagnostic_Fatal.

46

clang_disposeString(fixIt);

Xcode denotes fix-its with a dot over the yellow or red diagnostic
gutter icon. When activated, all of the available options are presented,

which when selected, automatically make the necessary changes to
(hopefully) fix the code.

Clang CLI

Clang’s insight into code can also be accessed via the command line.

Consider the following piece of source code:

@import Foundation;
/*%

This is documentation.
*/

@interface Calculator : NSObject

+ (int)add: (int)a
to: (int)b;

@end

@implementation Calculator

47

+ (int)add: (int)a

to: (int)b
{
int sum = a + b;
return sum;
}
@end

If we pass this into xcrun clang and include the —ast-dump flag, the

output is an abstract syntax tree of the source file:

$ xcrun -sdk iphoneos clang -x objective-c -Xclang —ast—dump -fsyntax-only <=
Calculator.m

|-0bjCInterfaceDecl 0x1036f8040 <Calculator.m:6:1, line:11:2> Calculator

| |-super ObjCInterface 0x10501c3b@ 'NSObject'

| |-ObjCImplementation 0x1036f82d@ 'Calculator’

| |-FullComment 0x1036f8820 <line:4:1, col:24>

| | “-ParagraphComment 0x1036f87f@ <col:1, col:24>

|] ‘-TextComment 0x1036f87c@ <col:1, col:24> Text=" This is documentation."

| “-0bjCMethodDecl 0x1036f8170 <line:8:1, line:9:18> + add:to: 'int'

| |-ParmVarDecl 0x1036f8200 <line:8:13, col:17> a 'int'

| “—ParmVarDecl 0x1036f8260 <line:9:13, col:17> b 'int'

"-0bjCImplementationDecl 0x1036f82d0 <line:13:1, line:22:1> Calculator
|-ObjCInterface 0x1036f8040 'Calculator’

"-0bjCMethodDecl 0x1036f8390 <line:15:1, 1line:20:1> + add:to: 'int'
|-ImplicitParamDecl 0x1036f84f0@ <<invalid sloc>> self 'Class':'Class'
|-ImplicitParamDecl 0x1036f8550 <<invalid sloc>> _cmd 'SEL':'SEL *'
|-ParmVarDecl 0x1036f8420 <line:15:13, col:17> a 'int'

48

|-ParmVarDecl 0x1036f8480 <line:16:13, col:17> b 'int'
|-VarDecl 0x1036f85c@ <line:18:5, col:19> sum 'int'
| “-BinaryOperator 0x1036f8698 <col:15, col:19> 'int' '+'

| |-ImplicitCastExpr 0x1036f8668 <col:15> 'int' <LValueToRValue>
|

| “-DeclRefExpr 0x1036f8618 <col:15> 'int' lvalue ParmVar 0x1036f8420 ' <=
a' 'int'
| “-ImplicitCastExpr 0x1036f8680 <col:19> 'int' <LValueToRValue>
| “-DeclRefExpr 0x1036f8640 <col:19> 'int' lvalue ParmVar 0x1036f8480 ' <

b' 'int'
*—-CompoundStmt 0x1036f8738 <line:17:1, line:20:1>
|-DeclStmt 0x1036f86c0 <line:18:5, col:20>
| “-VarDecl 0x1036f85c@ <col:5, col:19> sum 'int'
| ‘—-BinaryOperator 0x1036f8698 <col:15, col:19> 'int' '+'
| |-ImplicitCastExpr 0x1036f8668 <col:15> 'int' <LValueToRValue>
| | “-DeclRefExpr 0x1036f8618 <col:15> 'int' lvalue ParmVar 0 <
x1036f8420 'a' 'int'
| ‘—-ImplicitCastExpr 0x1036f8680 <col:19> 'int' <LValueToRValue>
| "-DeclRefExpr 0x1036f8640 <col:19> 'int' lvalue ParmVar 0 <
x1036f8480 'b' 'int'
“—ReturnStmt 0x1036f8718 <line:19:5, col:12>
“-ImplicitCastExpr 0x1036f8700 <col:12> 'int' <LValueToRValue>
"—-DeclRefExpr 0x1036f86d8 <col:12> 'int' lvalue Var 0x1036f85c@ 'sum' <

'int'

Look past the noisy memory pointers and angled brackets, and the
structure of the source code emerges from the AST branches. At the
root is the top-level class declaration for Calculator, with its
immediate children pointing to its superclass implementation,
NSObject and the class implementation that follows, as well as the
comment and class method declaration. In the implementation, there

is a reference back to the interface, as well as the class method

49

implementation, with parameters, returns type, variable declarations,

and return statement.

Static Analyzer

Within the context of programming, static analysis refers to algorithms
and techniques used to analyze source code in order to automatically
find bugs. The idea is similar in spirit to compiler warnings, which can
be useful for finding coding errors, but taken a step further to find

bugs that would otherwise be encountered at runtime.

Bug-finding tools have evolved over several decades, from basic
syntactic checkers to those that find deep bugs by reasoning about the
semantics of code. The goal of the Clang Static Analyzer is to provide a
industrial-quality static analysis framework for analyzing C, C++, and
Objective-C programs that is freely available, extensible, and has a high
quality of implementation. Just a cursory look at all of the detectable

warnings, it’s clear that Clang has lived up to its own expectations:

50

Core Analyzer Warnings

core. Check for logical errors for function calls and

CallAndMessage | Objective-C message expressions (e.g., uninitialized
arguments, null function pointers).

core. Check for division by zero.

DivideZero

core.NonNullPa

ramChecker

Check for null pointers passed as arguments to a
function whose arguments are marked with the

nonnull attribute.

core.NullDeref

erence

Check for dereferences of null pointers.

core.StackAddr

essEscape

Check that addresses of stack memory do not

escape the function.

core.Undefined
BinaryOperator

Result

Check for undefined results of binary operators.

core.VLASize

Check for declarations of VLA of undefined or zero

size.
core. Check for uninitialized values used as array
uninitialized. | subscripts.
ArraySubscript
core. Check for assigning uninitialized values.
uninitialized.
Assign

51

(continued)

core. Check for uninitialized values used as branch
uninitialized. | conditions.

Branch

core. Check for blocks that capture uninitialized values.
uninitialized.
CapturedBlockV

ariable

core. Check for uninitialized values being returned to the

uninitialized. | caller.

UndefReturn
Dead Code Analyzer Warnings
deadcode. Check for values stored to variables that are never
DeadStores read afterwards.
OS X Analyzer Warnings
0SX.API Check for proper uses of various Apple APIs
(dispatch_once)
0SX. Check for improper uses of the Security
SecKeychainAPI | framework’s Keychain APIs

52

(continued)

0SX.COCoa. Check for nil pointers used as mutexes for
AtSync @synchronized.

0SX.C0Coa. Check for sending retain, release, or autorelease
ClassRelease directly to a class.

0SX.cocoa. Check for an incompatible type signature when
IncompatibleMe | overriding an Objective-C method.

thodTypes

alpha.osx. Warn about Objective-C methods that lack a

cocoa.Missing$S

uperCall

necessary call to super.

0SX.cocoa.NSAu

Warn for suboptimal uses of NSAutoreleasePool in

toreleasePool | Objective-C GC mode (-fobjc-gc compiler option).
05X.Cocoa. Check usage of NSError** parameters.
NSError

05X.Cocoa. Check for prohibited nil arguments in specific
NilArg Objective-C method calls (compare:, et. al.)
0SX.cocoa. Check for leaks and violations of the Cocoa
RetainCount Memory Management rules.

0SX.C0coa. Check that self is properly initialized inside an
SelfInit initializer method.

0SX.COCoa. Warn about private ivars that are never used.
UnusedIvars

53

0SX.COCOa.
VariadicMethod
Types

(continued)

Check for passing non-Objective-C types to
variadic collection initialization methods that

expect only Objective-C types.

osx.coreFounda

tion.CFError

Check usage of CFErrorRef* parameters.

osx.coreFounda

tion.CFNumber

Check for improper uses of CFNumberCreate.

osx.coreFounda
tion.CFRetainR

elease

Check for null arguments to CFRetain, CFRelease,
CFMakeCollectable.

0sX.coreFounda
tion.
containers.

OutO0fBounds

Checks for index out-of-bounds when using
CFArray APL

0sx.coreFounda
tion.
containers.
PointerSizedVa

lues

Warns if CFArray, CFDictionary, CFSet are created

with non-pointer-size values.

54

Security Analyzer Warnings

security.Float

Warn on using a floating point value as a loop

LoopCounter counter (CERT: FLP30-C, FLP30-CPP).
security. Warn on uses of functions whose return values
insecureAPI. must be always checked: setuid, setgid, seteuid,
UncheckedRet setegid, setreuid, setregid

urn

security. Warn on uses of the getpw function.
insecureAPI.

getpw

security. Warn on uses of the gets function.

insecureAPI.

gets

security. Warn when mktemp, mkstemp, mkstemps or
insecureAPI. mkdtemp is passed fewer than 6 X’s in the format
mkstemp string.

security. Warn on uses of the mktemp function.
insecureAPI.

mktemp

security. Warn on uses of inferior random number
insecureAPI. generating functions (only if arc4random function
rand is available): drand48, erand48, jrand48, lcong4s,

lrand48, mrand48, nrand48, random, rand_r

55

(continued)

security. Warn on uses of the strcpy and strcat functions.
insecureAPI.
strcpy
security. Warn on uses of the vfork function.
insecureAPI.
vfork
Unix Analyzer Warnings
unix.API Check calls to various UNIX/POSIX functions:

open, pthread_once, calloc, malloc, realloc,

alloca

unix.Malloc

Check for memory leaks, double free, and

use-after-free and offset problems involving malloc.

unix.

MallocSizeof

Check for dubious malloc, calloc or realloc

arguments involving sizeof.

unix.Mismatche

dDeallocator

Check for mismatched deallocators (e.g. passing a

pointer allocating with new to free()).

unix.cstring.

BadSizeArg

Check the size argument passed to strncat for
common erroneous patterns. Use
-Wno-strncat-size compiler option to mute other

strncat-related compiler warnings.

56

(continued)

unix.cstring. Check for null pointers being passed as arguments
NullArg to C string functions: strlen, strnlen, strcpy,
strncpy, strcat, strncat, strcmp, strncmp,

strcasecmp, strncasecmp

Xcode integrates Clang’s static analysis into the Build & Analyze
command, which does a pretty remarkable job at tracing problems
back to their root cause. However, the same functionality is available

via the command line as well.

Clang Analyzer is not included as a standalone utility in the Xcode
Developer Tools, and must be compiled from source, which is avail-

able for download on the project website. “.

a http://clang-analyzer.llvm.org

After using xcodebuild to build an Xcode project, execute scan—

build with the same arguments to get an HTML-formatted readout of

all of the analyzer warnings. **

28 Always build using the debug configuration when running the static analyzer.

57

http://clang-analyzer.llvm.org

$ xcodebuild -project /path/to/Project.xcodeproj —-scheme YOU_APP_SCHEME -sdk <
iphonesimulator7.1 analyze

$ scan-build !!

58

Chapter 4

OSAtomic

It is telling that the word used to describe structure and organization

. . " "
in a system is "order".

Human logic and understanding are entirely contingent on a universe
operating in linear, chronological fashion, with every action traceable

back to its mover, through an unbroken chain of causality.

This is what makes concurrent programming so difficult. Allowing
state to be mutated by multiple threads at the same time creates chaos.
There can be no guarantees that anything will be as it was from
moment to moment, making bugs difficult to predict, understand, and
reproduce. Worse still is that looks are often deceiving. Many
operations that seem atomic in nature are, in reality, decomposable
into several sub-operations, that, without safeguards, are vulnerable to

race conditions.

<libkern/0SAtomic.h> are the kernel-level concurrency API headers
for iOS and OS X. Although many;, if not most, of these functions are
dispreferred to higher-level APIs, namely those provided by
libdispatch, they are still informative as core constructs in

concurrent programming.

OSAtomic functionality can be divided up into four distinct categories:

60

Integer Operations
o Compare & Swap Operations
« Spinlocks

e Queues

Integer Operations

One of the most basic operations in programming is incrementing an
integer. It's so common a task, that it can be accomplished with several

equivalent operators:

int x = 3;

// Equivalent
X =X+ 1;
X +=1;

X++;

However, what looks like one operation—incrementing an integer

variable—is actually comprised of three distinct steps.

* Get x (3)
* Perform Addition (3 + 1)
*x Set x (4)

61

For a single-threaded application, there is a reasonable guarantee x
will only ever be accessed in that order: "get-add-set". But throw

another thread into the mix, and any such guarantee is up in smoke.

As an example, imagine that two threads, T & T,, both attempt to

perform x++ in short succession of one another:

- T~1~: Get X (3)
- T~2~: Get X (3)
- T~1~: Perform Addition (3+1)
- T~1~: Set X (4)
- T~2~: Perform Addition (3+1)
- T~2~: Set X (4)

In this scenario, the result would be a missed increment, such that x =

=4 despite it being incremented twice from x =3. **

OSAtomic provides thread-safe operators that ensure that a memory

address is only read by a single thread at any given moment.

The following code demonstrates a thread-safe OSAtomic equivalent

to the previous code:

29 This is known as the ABA problem, wherein a the same value is read by two different threads at the same
time, resulting in missed work.

62

int64_t x = 3;

// Equivalent
0SAtomicAdd64(1, &x);
0SAtomicIncrement64(&x);

As a matter of simplicity, OSAtomic operations work with a
constrained set of fixed-length types—specifically integers of either
32-bit or 64-bit length. Operations include atomic increment,
decrement, and add (subtraction can be accomplished by negating the
addend), as well as bitwise AND, OR, & XOR.

Increment / Decrement / Addition

int64_t x = 3, y = 5;

X++ 0SAtomicIncrement64 (&x)

X—— 0SAtomicDecrement64 (&x)

X +=y 0SAtomicAdd64(y, &x)

X —=y 0SAtomicAdd64(-y, &x)
Bitwise AND / OR / XOR

uint32_t p = 0xf00, q = Oxfof;

63

p &=q 0SAtomicAnd32(q, &p)
p |=q 0SAtomic0r32(q, &p)
p "=q 0SAtomicXor32(q, &p)

Compare & Swap Operations

Compare & Swap is the fundamental atomic operation, from which all
others can be derived. After all, the challenge of multi-threaded
programming is to ensure that values don’t get read when they’re
about to be written to by another process. Controlling access to a

memory address is the key to synchronizing concurrent processes.

Still not convinced? Here’s how one might implement the previous

atomic integer addition function using 0SAtomicCompareAndSwap32:

int32_t Add32(int32_t amount, volatile int32_t *value) {
BOOL success;
int32_t new;
do {
int32_t old = *value;
new = old + amount;
success = 0SAtomicCompareAndSwap32(old, new, value);

} while(!success);

return new;

64

Compare & Swap is actually a single operation in OSAtomic. A naive,

non-thread-safe C implementation might look like this:

BOOL CompareAndSwap(int old, int new, int xvalue) {
if(kvalue == old) {
*value = new;
return YES;
} else {

return NO;

Like the integer operations, Compare & Swap functions comes in both
32- and 64-bit, as well as barrier and non-barrier varieties. In addition,
there are versions that take int and long arguments, as well as
0SAtomicCompareAndSwapPtr, which can be used to safely

heap-allocated object pointers.

Memory Barriers

Many OSAtomic functions provide both barrier and non-barrier
variants. A barrier enforces ordering of memory access across threads.
When a barrier is created, operations before the barrier are guarantee

to finish before those created after the barrier can begin. The barrier

65

and non-barrier varieties of the aforementioned functions differ by

whether or not they incorporate a memory barrier.

30

Test & Set / Clear

Similar to Compare & Swap, 0SAtomicTestAndSet atomically sets a
bit in the specified variable to 1, and returns that value. Its negation,

0SAtomicTestAndClear does the same, but setting a 0 instead.

These functions can be used to create a semaphore to direct concurrent
execution flow. Again, like most things in OSAtomic, libdispatch
offers a safer & more convenient API, so there’s really no reason to use

anything but dispatch_semaphore at the application level.

Spin Locks

Spinlocks are perhaps the easiest type of lock to understand. They

instruct the thread to hang out and wait until the lock is released. It’s a

30 Asa general rule, semaphores, counters, and other standalone values that fit within a single 32- or 64-
bit memory address don’t need barriers. Anything where values aren't self-contained, or involve data
outside of the value should use a barrier.

66

busy form of waiting, akin to directing an airplane into a holding
pattern until other traffic clears the runway. This might sound
inefficient, but in situations where the lock is not held onto for very
long, a spinlock has superior performance characteristics over its

alternatives.

OSAtomic spin locks sit between pthread spinlocks and NSLock in
terms of abstraction. In most situations where a spinlock might be
called for, a serial dispatch queue or NSLock would be likely be
preferable.

Before libdispatch, though, 0SAtomicLock/Unlock in combination
with 0SAtomicTestAndSet offered one of the most effective thead-safe
singleton patterns available at the time. Again, this is strictly worse to
dispatch_once in a modern application, but in the interest of

curiosity, here’s what that looks like:

static id _sharedInstance = nil;

static int32_t onceToken = 0;

if (!0SAtomicTestAndSet(1, &onceToken)) {
static 0SSpinLock lock = 0S_SPINLOCK_INIT;
0SSpinLockLock(&lock) ;

sharedInstance = [[[self class] alloc] init];

0SSpinLockUnlock(&lock) ;

67

Queues

0SAtomicEnqueue & 0SAtomicDequeue are a lock-free, thread-safe
implementation of a LIFO queue. There are also FIFO queue variants

0SAtomicFifoEnqueue & 0SAtomicFifoDequeue.

typedef struct node {

int value;

volatile struct node *xlink;
} node_t;

node_t a = {1, NULL};
node_t b = {2, NULL};

0SQueueHead queue = 0S_ATOMIC_QUEUE_INIT;
0SAtomicEnqueue(&queue, &a, offsetof(node_t, link));
0SAtomicEnqueue(&queue, &b, offsetof(node_t, link));

node_t *n;
n = 0SAtomicDequeue(&queue, offsetof(node_t, link));
// n == &b

n = 0SAtomicDequeue(&queue, offsetof(node_t, link));
// n == &a

Before GCD queues, 0SAtomicEnqueue/Dequeue provided a
respectable mechanism for safely scheduling work in a multi-threaded

environment.

68

But since GCD does exist, youre almost certainly better off with
dispatch_queue, which has a number of additional benefits, which

are discussed in depth in the next chapter.

69

Chapter 5

Grand
Central
Dispatch

One of the most striking things about process control is how close
reality matches the domain models of computers. You won't happen
upon a String as you walk down the street, or decide to hold a lunch
conversation over a socket. But you will stand in a queue, and wait for
a signal before crossing a street. Semaphores were flags and locks

were made of metal long before they were a cause of application
deadlock, after all.

Determining how best to schedule resources in order to perform work

is as directly applicable to everyday life as programming gets.

Maybe it’s for this reason that concurrency is such a mainstay of
programmer humor. Jokes in which a thread order of the the changes
punchline, or locks sudd—. There’s definitely an element of gallows
humor to it, because—let’s be honest—threading is really hard to get
right. But perhaps moreso, these jokes evoke absurdity about the way

things are supposed to operate.

Setting aside the philosophy of humor, one thing is clear: for
concurrent programming, Grand Central Dispatch is seriously

awesome.

Grand Central Dispatch (GCD) is a technology for optimizing

performance on multiprocessor systems. Introduced with the

71

C-language blocks extension in iOS 4 and OS X 10.6, GCD is used

throughout Cocoa APIs to make applications faster and more efficient.

Apple’s implementation of GCD, libdispatch, is open source, and

available for download from Mac OS Forge. ¢

a https://libdispatch.macosforge.org

Queues

In GCD, work is divided up into discrete blocks or functions, which
are scheduled on dispatch queues. Queues abstract the concept of
threads from programmers. The system provides a main queue, which
executes work on the main thread, in addition to several global queues
that execute on background threads at different priority levels. In

addition to these, users can create their own queues.

Custom queues can either be serial (executing one task at a time) or

concurrent (executing multiple tasks at once).
dispatch_queue_t mainQueue = dispatch_get_main_queue();

dispatch_queue_t globalQueue =
dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

72

https://libdispatch.macosforge.org

dispatch_queue_t customSerialQueue =
dispatch_queue_create("com.example.serial", DISPATCH_QUEUE_SERIAL);

dispatch_queue_t customConcurrentQueue =
dispatch_queue_create("com.example.concurrent", DISPATCH_QUEUE_CONCURRENT) ;

Work is scheduled on a queue to execute either synchronously or
asynchronously. Specifying synchronous execution will have the queue
wait until the block or function terminates, whereas asynchronous

means that execution will proceed to the next statement immediately.

dispatch_queue_t mainQueue = dispatch_get_main_queue();
dispatch_sync(mainQueue, ~{

sleep(3);

NSLog(@"Finished");
)i

A common pattern with GCD is to dispatch work to a background
queue, and then return results on the main queue. This is especially
important for things like updating the UI, which needs to be done on

the main thread.

dispatch_queue_t mainQueue = dispatch_get_main_queue();
dispatch_queue_t globalQueue =

dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
dispatch_async(globalQueue, ~{

73

sleep(3);

dispatch_async(mainQueue, ~{
NSLog(@"Finished");
H;
b

Tasks can also be scheduled to be run on a queue after a specified

delay:

dispatch_queue_t mainQueue = dispatch_get_main_queue();

int64_t delay = 1 x NSEC_PER_SEC;

dispatch_after(dispatch_time(DISPATCH_TIME_NOW, delay), mainQueue, ~{
NSLog(@"Finished");

)8

A lesser-known, yet useful feature of GCD queues is applying a block
over a range of integers. When run on a concurrent queue,
dispatch_apply offers a highly concurrent alternative to garden

variety for loops:

dispatch_queue_attr_t attributes = DISPATCH_QUEUE_CONCURRENT;
dispatch_queue_t queue = dispatch_queue_create(NULL, attributes);
dispatch_apply (1000, queue, ~(size_t n) {

size_t square = n x n;

printf("%zu: %zu\n", n, square);

sleep(1);
b

74

As mentioned in the previous chapter, GCD can be used to implement
robust, thread-safe implementations of common atomic operations.
For example, dispatch_once can guarantee that a statement is
executed exactly once—making it perfectly suited for creating

singletons:

+ (instancetype)sharedInstance {
static id _sharedInstance = nil;
static dispatch_once_t onceToken;
dispatch_once(&onceToken, ~{
_sharedInstance = [[self alloc] init];
1}

return _sharedInstance;

Groups

Tasks can also be scheduled in groups, providing a callback for when

all tasks within that group are finished executing:

dispatch_queue_t queue =
dispatch_queue_create(NULL, DISPATCH_QUEUE_CONCURRENT);
dispatch_group_t group =

dispatch_group_create();

dispatch_apply(10, queue, ~(size_t n) {

75

dispatch_group_enter(group);
dispatch_group_async(group, queue, ~{
sleep((int)n);
dispatch_group_leave(group);
H;
b

dispatch_group_notify(group, queue, ~{
7 ooo
B

Semaphores

Semaphores play a crucial role in GCD, by allowing asynchronous
code to wait and block execution, thereby becoming synchronous. For
many applications, asynchronous execution is strictly preferable to the
alternative. However, in some cases, an API must be run
synchronously. And it is in those cases, where dispatch semaphore

shines:
dispatch_queue_t queue =
dispatch_queue_create(NULL, DISPATCH_QUEUE_CONCURRENT) ;

dispatch_semaphore_t semaphore =

dispatch_semaphore_create(0);

dispatch_async(queue, ~{
sleep(3);

76

dispatch_semaphore_signal(semaphore);
K

dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);

Barriers

Barriers are another concept explored in the previous chapter. In the

case of GCD, barriers are used to synchronize access to shared state.

Without Barrier

dispatch_queue_t queue =
dispatch_queue_create(NULL, DISPATCH_QUEUE_CONCURRENT);

dispatch_async(queue,~{

sleep(3);

dispatch_async(queue,~{

sleep(5);

dispatch_async(dispatch_get_main_queue(), ~{
NSLog(@"Finished");
)8
)5
)8

With Barrier

77

dispatch_queue_t queue =
dispatch_queue_create(NULL, DISPATCH_QUEUE_CONCURRENT);

dispatch_async(queue,~{
sleep(5);
K

dispatch_async(queue,~{
sleep(3);
19N

dispatch_barrier_async(queue,”{
dispatch_async(dispatch_get_main_queue(),”{
Al ooo
H;
;i

This is especially useful for methods that mutate a collection, such as a

backing array or dictionary:
@property NSMutableDictionary sxmutableDictionary;
@property dispatch_queue_t queue;

- (void)setObject: (id)object
forKey: (id) key

dispatch_barrier_async(self.queue, ~{

self.mutableDictionary[key] = object;
197

78

Sources

GCD can be used to handle events from sources like timers, processes,
mach ports, and file descriptors. Dispatch sources start suspended,

and must be explicitly resumed in order to start.

A timer dispatch event source can be thought of as a more flexible
alternative to dispatch_after, with the ability to be cancelled, and
offer leeway to minimize the performance impact of temporally

misaligned instructions:
dispatch_queue_t queue =
dispatch_queue_create(NULL, DISPATCH_QUEUE_CONCURRENT);

dispatch_source_t timer =
dispatch_source_create(DISPATCH_SOURCE_TYPE_TIMER, @, @, queue);

int64_t delay = 30 * NSEC_PER_SEC;
int64_t leeway = 5 * NSEC_PER_SEC;
dispatch_source_set_timer(timer, DISPATCH_TIME_NOW, delay , leeway);
dispatch_source_set_event_handler(timer, ~{
NSLog(@"Ding Dong!");

1)

dispatch_resume(timer);

79

To monitor a file or directory for changes, create a dispatch event for a
file descriptor. Whenever one of the watched events is triggered, the

event handler will be scheduled on the specified queue:

dispatch_queue_t queue =

dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

NSURL *fileURL = [[[NSFileManager defaultManager]
URLsForDirectory:NSDocumentDirectory

inDomains:NSUserDomainMask] firstObject];

int fileDescriptor =

open([fileURL fileSystemRepresentation], O_EVTONLY);

unsigned long mask = DISPATCH_VNODE_EXTEND |
DISPATCH_VNODE_WRITE |
DISPATCH_VNODE_DELETE;
__block dispatch_source_t source =
dispatch_source_create(DISPATCH_SOURCE_TYPE_VNODE,
fileDescriptor,
mask,

queue) ;

dispatch_source_set_event_handler(source, ~{
dispatch_source_vnode_flags_t flags =

dispatch_source_get_data(source);

if (flags) {
dispatch_source_cancel(source);
dispatch_async(dispatch_get_main_queue(), ~{
4 ooo
R

80

58

dispatch_source_set_cancel_handler(source, ~{
close(fileDescriptor);
1)

dispatch_resume(source);

A similar approach can be used to read from STDIN:

dispatch_queue_t globalQueue =
dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

dispatch_source_t stdinReadSource =
dispatch_source_create(DISPATCH_SOURCE_TYPE_READ,
STDIN_FILENO,
o,
globalQueue);

dispatch_source_set_event_handler(stdinReadSource, ~{
uint8_t buffer[1024];
int length = read(STDIN_FILENO, buffer, sizeof(buffer));
if (length > 0) {
NSString *string =
[[NSString alloc] initWithBytes:buffer
length: length
encoding:NSUTF8StringEncoding];
NSLog(@"%@", string);

ok

dispatch_resume(stdinReadSource);

81

Finally, a dispatch source can listen for process signals, such as a
SIGTERM:

pid_t ppid = getppid();

dispatch_queue_t globalQueue =
dispatch_get_global_queue (DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

dispatch_source_t source =
dispatch_source_create(DISPATCH_SOURCE_TYPE_PROC,
ppid,
DISPATCH_PROC_EXIT,
globalQueue);
if (source) {
dispatch_source_set_event_handler(source, "~{
NSLog(@"pid: %d Exited", ppid);
dispatch_source_cancel(source);
15

dispatch_resume(source);

I/0

Although dispatch sources provide a convenient way to interact with a
input and output, it requires quite a bit of responsibility on the part of
the API consumer. GCD’s I/O APIs allow the developer to hand over

most of that responsibility, which not only makes for less code to write,

82

but greatly improves the overall capacity for concurrent I/O operations

by reducing resource contention.

The dispatch I/O APIs operate on channels. Each channel manages a
file descriptor, reading data either as a stream or allowing for random
access of content. When a channel is created, it takes control of the file
descriptor until one of the following occurs: the channel is closed, all

references to the channel are released, or an error occurs.

Here’s how to create a dispatch channel to STDIN:

dispatch_queue_t queue =
dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

dispatch_io_t stdinChannel =
dispatch_io_create(DISPATCH_IO_STREAM,
STDIN_FILENO,
queue,
~(int error) {
if (error) {

NSLog(@"stdin: (%d) %s", error, strerror(error));

)7

Before reading from a channel, it's important to tune it specifically for
the desired use case. The critical factor of working with I/O is

determining how often to process data. You can do this one of two

83

ways: wait for a certain amount of data to accumulate, or wait for a

certain amount of time to pass.

Specifying what constitutes a meaningful amount of data can be
accomplished by setting a low and high water mark—the minimum
and maximum amount of data to gather before invoking the handler.
In the case of reading STDIN, input is usually interactive, so it makes

sense to set a low water mark of a single byte:

dispatch_io_set_low_water(stdinChannel, 1);

While it doesn’t make sense to do so in this example, the
corresponding dispatch_io_set_high_water function can lower the
upper bounds from its default SIZE_MAX value, to something more
reasonable for situations like parsing large amounts of data streamed

over a socket.

Specifying the time interval to wait between processing data can be
accomplished with the dispatch_io_set_interval function, which
accepts time intervals at nanosecond resolution. Again, this isn't a
great fit for processing from STDIN, but it would be a great approach
for things like capturing audio or video data from a peripheral for

sampling.

Once a channel is configured, it can start reading data:

84

off_t offset = 0; // Ignored for stream
UInt length = SIZE_MAX; // Read until EOF
dispatch_io_read(stdinChannel, offset, length, queue,
~(bool done, dispatch_data_t data, int error) {
/] ous
1915

Data can also be written to a channel in a similar manner. Creating a

new channel to a file path makes for a rudimentary logging tool:

dispatch_io_t fileChannel =
dispatch_io_create_with_path(DISPATCH_IO_STREAM,
"/path/to/file",
0_RDONLY,
0,
queue,
~(int error) {
if (error) {
NSLog(@"file: (%d) %s'", error, strerror(error));
+
H;

dispatch_io_read(stdinChannel, offset, length, queue,
~(bool done, dispatch_data_t data, int error) {
if (data) {

dispatch_write(fileChannel, @, data, queue, nil);

DF

Alternatively, GCD also provides dispatch_read and

dispatch_write, which are convenience methods built on top of

85

dispatch_io_read and dispatch_io_write for simple, one-oft I/O

operations.

Data

When first introduced, dispatch data objects were unique within
Apple’s SDKs for being a container for both contiguous and
noncontiguous data. The major implication being that two data
objects could be concatenated in constant time, without having to
copy over into a single continuous segment. As of iOS 7 and OS X
10.9, NSData added support for noncontiguous access, as well as a
one-way cast from dispatch_data_t objects. *' *?

Perhaps the best way to understand dispatch data is to say that it has

all of the convenience of NSData in a low-level C interface.

dispatch_data_create constructs a dispatch data object from a
buffer:

31 According to the Foundation release notes: "In 64-bit apps using either manual retain/release or ARC,
dispatch_data_t can now be freely cast to NSData *, though not vice versa."

32 Although no specific details are made explicit in the documentation, one could reasonably speculate
that NSData and NSFileHandle both had their underlying implementations replaced to use their GCD
equivalents, dispatch data and dispatch I/O, in this release.

86

size_t length;

void *buffer = malloc(length);

dispatch_data_t data =

dispatch_data_create(buffer,

length,
NULL,
DISPATCH_DATA_DESTRUCTOR_DEFAULT);

free(buffer);

It can even do the free call automatically, by passing the destructor
DISPATCH_DATA_DESTRUCTOR_FREE.

dispatch_data_create_concat can create a new dispatch data object

by concatenating two existing objects:

dispatch_data_t first, second;

dispatch_data_t combined = dispatch_data_create_concat(first, second);

Using this, and taking advantage of the new
enumerateByteRangesUsingBlock: method in NSData, a function can
be created to construct a dispatch data object from NSData (whereas

only NSData to dispatch_data_t is provided by the framework):

dispatch_data_t dispatch_data_create_with_nsdata(NSData *data) {
dispatch_queue_t queue =
dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);

87

__block dispatch_data_t container;

[data enumerateByteRangesUsingBlock:

~(const void xbytes, NSRange byteRange, BOOL *stop) {

if (container) {
dispatch_data_t region =
dispatch_data_create(bytes,

byteRange. length,
queue,
DISPATCH_DATA_DESTRUCTOR_DEFAULT) ;

container = dispatch_data_create_concat(container, region);
Y13

return container;

GCD’s equivalent to NSData -enumerateByteRangesUsingBlock: is
dispatch_data_apply, which executes a block for each memory

region contained within the container:

dispatch_data_apply(data, ~(dispatch_data_t region, size_t offset, const void * <
buffer, size_t size) {
ey
return true;

F

Or, when interacting with calls that operate on a single, contiguous

buffer, use dispatch_data_create_map:

88

void xbuffer;
size_t length;
dispatch_data_create_map(data, &buffer, &length);

Debugging

As of OS X 10.8 and iOS 6.0, GCD types are full-fledged NSObject
subclasses, which respond to -debugDescription. This means that

doing po in lldb will return useful diagnostic output, e.g.:

<0S_dispatch_queue_root:
com.apple.root.default-priority[0x2024100] = {
xrefcnt = 0x80000000,
refcnt = 0x80000000,
suspend_cnt = 0x0,
locked = 1,
target = [0x0],
width = ox7fffffff,
running = 0x1,

barrier = 0

Benchmarking

dispatch_benchmark is part of libdispatch, but is not publicly

available. To use it, it must be re-declared:

89

uint64_t dispatch_benchmark(size_t count, void (”~block)(void));;

dispatch_benchmark executes a block the specified number of times,

and then returns the average execution runtime, in nanoseconds:

size_t const objectCount = 1000;
uint64_t n = dispatch_benchmark(10000, ~{
@autoreleasepool {
id obj = @42;
NSMutableArray *array = [NSMutableArray arrayl;
for (size_t i = 0; i < objectCount; ++i) {

[array addObject:objl;

1)
NSLog(@"-[NSMutableArray addObject:] : %llu ns", n)

90

Chapter 6

Inter-Process

1011

Communicat

Up until this point in the book, the guiding narrative has been
technologies fusing together through happy accidents of history to
create something better than before. And, while this is true for many
aspects of Apple’s technology stack, inter-process communication is a

flagrant counter-example.

Rather than taking the best of what was available at each juncture,
solutions just kinda piled up. As a result, a handful of overlapping,
mutually-incompatible IPC technologies are scattered across various

abstraction layers. **

o Mach Ports
Distributed Notifications
Distributed Objects

AppleEvents & AppleScript
Pasteboard
¢ XPC

Ranging from low-level kernel abstractions to high-level,

object-oriented APIs, they each have particular performance and

33 Whereas all of these are available on OS X, only Grand Central Dispatch and Pasteboard (albeit to a
lesser extent) can be used on iOS.

92

security characteristics. But fundamentally, they’re all mechanisms for

transmitting and receiving data from beyond a context boundary.

Mach Ports

All inter-process communication ultimately relies on functionality
provided by Mach kernel APIs.

Mach ports are light-weight and powerful, but poorly documented **

and inconvenient to use directly. *

Sending a message over a given Mach port comes down to a single
mach_msg_send call, but it takes a bit of configuration in order to build

the message to be sent:

natural_t data;

mach_port_t port;

struct {
mach_msg_header_t header;
mach_msg_body_t body;
mach_msg_type_descriptor_t type;

} message;

34 How poorly documented? The most up-to-date authoritative resource was a Mach 3.0 PostScript file
circa 1990 tucked away on a Carnegie Mellon University FTP server.

35 How inconvenient? Well, just look at the code samples.

93

message.header = (mach_msg_header_t) {
.msgh_remote_port = port,
.msgh_local_port = MACH_PORT_NULL
.msgh_bits = MACH_MSGH_BITS (MACH_MSG_TYPE_COPY_SEND, 0),
.msgh_size = sizeof(message)
+

message.body = (mach_msg_body_t) {
.msgh_descriptor_count = 1

55

message.type = (mach_msg_type_descriptor_t) {
.padl = data,
.pad2 = sizeof(data)

13

mach_msg_return_t error = mach_msg_send(&message.header);

if (error == MACH_MSG_SUCCESS) {
7] aon

Things are a little easier on the receiving end, since the message only

needs to be declared, not initialized:

mach_port_t port;

struct {
mach_msg_header_t header;
mach_msg_body_t body;
mach_msg_type_descriptor_t type;

mach_msg_trailer_t trailer;

94

} message;
mach_msg_return_t error = mach_msg_receive(&message.header);

if (error == MACH_MSG_SUCCESS) {
natural_t data = message.type.padl;
/] aoa

Fortunately, higher-level APIs for Mach ports are provided by Core
Foundation and Foundation. CFMachPort / NSMachPort are wrappers
on top of the kernel APIs that can be used as a runloop source, while
CFMessagePort / NSMessagePort facilitate synchronous

communication between two ports.

CFMessagePort is actually quite nice for simple one-to-one
communication. In just a few lines of code, a local named port can be
attached as a runloop source to have a callback run each time a

message is received:

static CFDataRef Callback(CFMessagePortRef port,
SInt32 messagelD,
CFDataRef data,

void *info)

/] aun

95

CFMessagePortRef localPort =
CFMessagePortCreateLocal(nil,
CFSTR("com.example.app.port.server"),
Callback,
nit,

nil);

CFRunLoopSourceRef runLoopSource =

CFMessagePortCreateRunLoopSource(nil, localPort, 0);

CFRunLoopAddSource (CFRunLoopGetCurrent(),
runLoopSource,

kCFRunLoopCommonModes) ;

Sending data is straightforward as well. Just specify the remote port,
the message payload, and timeouts for sending and receiving.

CFMessagePortSendRequest takes care of the rest:

CFDataRef data;
SInt32 messageID = 0x1111; // Arbitrary
CFTimeInterval timeout = 10.0;

CFMessagePortRef remotePort =
CFMessagePortCreateRemote(nil,

CFSTR("com.example.app.port.client"));

SInt32 status =
CFMessagePortSendRequest (remotePort,
messagelD,
data,
timeout,

timeout,

96

NULL,
NULL) ;
if (status == kCFMessagePortSuccess) {
/AT

Distributed Notifications

There are many ways for objects to communicate with one another in

Cocoa:

There is, of course, sending a message directly. There are also the
target-action, delegate, and callbacks, which are all loosely-coupled,
one-to-one design patterns. KVO allows for multiple objects to
subscribe to events, but it strongly couples those objects together.
Notifications, on the other hand, allow messages to be broadcast

globally, and intercepted by any object that knows what to listen for. >

Each application manages its own NSNotificationCenter instance
for infra-application pub-sub. But there is also a lesser-known Core
Foundation API, CFNotificationCenterGetDistributedCenter that

allows notifications to be communicated system-wide as well.

36 It’s pretty astonishing just how many notifications are fired off during the lifecycle of an application. Try
adding NSNotificationCenter -addObserverForName:object:queue:usingBlock with nil values
for name and object just as an application launches, and see just how many times that block fires.

97

To listen for notifications, add an observer to the distributed
notification center by specifying the notification name to listen for,

and a function pointer to execute each time a notification is received:

static void Callback(CFNotificationCenterRef center,
void xobserver,
CFStringRef name,
const void *object,

CFDictionaryRef userInfo)

/] s

CFNotificationCenterRef distributedCenter =

CFNotificationCenterGetDistributedCenter();

CFNotificationSuspensionBehavior behavior =

CFNotificationSuspensionBehaviorDeliverImmediately;

CFNotificationCenterAddObserver(distributedCenter,
NULL,
Callback,
CFSTR("notification.identifier"),
NULL,

behavior);

Sending a distributed notification is even simpler; just post the

identifier, object, and user info:

void *object;

98

CFDictionaryRef userInfo;

CFNotificationCenterRef distributedCenter =
CFNotificationCenterGetDistributedCenter();

CFNotificationCenterPostNotification(distributedCenter,
CFSTR("notification.identifier"),
object,
userInfo,

true);

Of all of the ways to link up two applications, distributed notifications
are by far the easiest. It wouldn’t be a great idea to use them to send
large payloads, but for simple tasks like synchronizing preferences or

triggering a data fetch, distributed notifications are perfect.

Distributed Objects

Distributed Objects (DO) is a remote messaging feature of Cocoa that
had its heyday back in the mid-90’s with NeXT. And though its not
widely used any more, the dream of totally frictionless IPC is still

unrealized in our modern technology stack.

Vending an object with DO is just a matter of setting up an

NSConnection and registering it with a particular name:

99

@protocol Protocol;
id <Protocol> vendedObject;

NSConnection xconnection = [[NSConnection alloc] init];
[connection setRootObject:vendedObject];

[connection registerName:@"server"];

Another application would then create a connection registered for that
same registered name, and immediately get an atomic proxy that

functioned as if it were that original object:

id proxy = [NSConnection rootProxyForConnectionWithRegisteredName:@"server" <=
host:nill;

[proxy setProtocolForProxy:@protocol(Protocol)];

Any time a distributed object proxy is messaged, a Remote Procedure
Call (RPC) would be made over the NSConnection to evaluate the
message against the vended object and return the result back to the

proxy. >’

Distributed Objects are simple, transparent, and robust. And they
would have been a flagpole feature of Cocoa had any of it worked as

advertised.

37 Behind the scenes, a shared NSPortNameServer instance managed by the operating system was respon-
sible for hooking up named connections.

100

In reality, Distributed Objects can’t be used like local objects, if only
because any message sent to a proxy could result in an exception being
thrown. Unlike other languages, Objective-C doesn’t use exceptions
for control flow. As a result, wrapping everything in a @try/@catch is

a poor fit to the conventions of Cocoa.

DO is awkward for other reasons, too. The divide between objects and
primitives is especially pronounced when attempting to marshal
values across a connection. Also, connections are totally unencrypted,
and the lack of extensibility for the underlying communication

channels makes it a deal-breaker for most serious usage.

All thats really left are traces of the annotations used by Distributed
Objects to specify the proxying behavior of properties and method

parameters:

o in: Argument is used as input, but not referenced later

o out: Argument is used to return a value by reference

e inout: Argument is used as input and returned by reference
« const: Argument is constant

« oneway: Return without blocking for result

 bycopy: Return a copy of the object

o byref: Return a proxy of the object

101

AppleEvents & AppleScript

AppleEvents are the most enduring legacies of the classic Macintosh
operating system. Introduced in System 7, AppleEvents allowed apps
to be controlled locally using AppleScript, or remotely using a feature
called Program Linking. To this day, AppleScript, using the Cocoa
Scripting Bridge, remains the most direct way to programmatically

interact with OS X applications. **
That said, it’s easily one of the weirdest technologies to work with.

AppleScript uses a natural language syntax, intended to be more
accessible to non-programmers. And while it does succeed in
communicating intent in a human-understandable way, it’s a

nightmare to write.

To get a better sense of the nature of the beast, here’s how to tell Safari

to open a URL in the active tab in the frontmost window:

38 Mac OS’s Apple Event Manager provided the initial low-level transport mechanism for AppleEvents, but
was reimplemented on top of Mach ports for OS X.

102

tell application "Safari"
set the URL of the front document to "http://nshipster.com"
end tell

In many ways, AppleScript’s natural language syntax is more of a
liability than an asset. English, much like any other spoken language,
has a great deal of redundancy and ambiguity built into normal
constructions. While this is perfectly acceptable for humans,

computers have a tough time resolving all of this.

Even for a seasoned Objective-C developer, it’s nearly impossible to
write AppleScript without constantly referencing documentation or

sample code.

Fortunately, the Scripting Bridge provides a proper programming

interface for Cocoa applications.

Cocoa Scripting Bridge

In order to interact with an application through the Scripting Bridge, a

programming interface must first be generated:

$ sdef /Applications/Safari.app | sdp -fh —-basename Safari

103

sdef generates scripting definition files for an application. These files
can then be piped into sdp to be converted into another format—in
this case, a C header. The resulting . h file can then be added and #
import-ed into a project to get a first-class object interface to that

application.

Here’s the same example as before, expressed using the Cocoa

Scripting Bridge:

#import "Safari.h"

SafariApplication xsafari = [SBApplication applicationWithBundleIdentifier:@" <—

com.apple.Safari"];

for (SafariWindow xwindow in safari.windows) {
if (window.visible) {
window.currentTab.URL = [NSURL URLWithString:@"http://nshipster.com"];

break;

It’s a bit more verbose than AppleScript, but this is much easier to
integrate into an existing codebase. It’s also a lot clearer to understand
how this same code could be adapted to slightly different behavior
(though that could just be the effect of being more familiar with
Objective-C).

104

Alas, AppleScript’s star appears to be falling, as recent releases of OS X
and iWork applications have greatly curtailed their scriptability. At
this point, it's unlikely that adding support in your own applications

will be worth it.

Pasteboard

Pasteboard is the most visible inter-process communication
mechanism on OS X and iOS. Whenever a user copies or pastes a
piece of text, an image, or a document between applications, an
exchange of data from one process to another over mach ports is being

mediated by the com.apple.pboard service.

On OS X there’s NSPasteboard, and on iOS there’s UIPasteboard.
They’re pretty much the same, although like most counterparts, i0S
provides a cleaner, more modern set of APIs that are slightly less
capable than what’s found on OS X.

Programmatically writing to the Pasteboard is nearly as simple as

invoking Edit > Copy in a GUI application:

NSImage *ximage;
NSPasteboard *pasteboard = [NSPasteboard generalPasteboard];

[pasteboard clearContents];

[pasteboard writeObjects:@[imagel];

105

The reciprocal paste action is a bit more involved, requiring an

iteration over the Pasteboard contents:

NSPasteboard xpasteboard = [NSPasteboard generalPasteboard];

if ([pasteboard canReadObjectForClasses:@[[NSImage class]] options:nill) {
NSArray *contents = [pasteboard readObjectsForClasses:@[[NSImage classl] <=
options: nill;

NSImage ximage = [contents firstObject];

What makes Pasteboard especially compelling as a mechanism for
transferring data is the notion of simultaneously providing multiple
representations of content copied onto a pasteboard. For example, a
selection of text may be copied as both rich text (RTF) and plain text
(TXT), allowing, for example, a WYSIWYG editor to preserve style
information by grabbing the rich text representation, and a code editor

to use just the plain text representation.

These representations can even be provided on an on-demand basis by
conforming to the NSPasteboardItemDataProvider protocol. This
allows derivative representations, such as plain text from rich text, to

be generated only as necessary.

Each representation is identified by a Unique Type Identifier (UTI), a

106

concept discussed in greater detail in the next chapter.

XPC

XPC is the state-of-the-art for inter-process communication in the
SDKs. Its architectural goals are to avoid long-running process, to
adapt to the available resources, and to lazily initialize wherever
possible. The motivation to incorporate XPC into an application is not
to do things that are otherwise impossible, but to provide better
privilege separation and fault isolation for inter-process

communication.
It’s a replacement for NSTask, and a whole lot more.

Introduced in 2011, XPC has provided the infrastructure for the App
Sandbox on OS X, Remote View Controllers on iOS, and App
Extensions on both. It is also widely used by system frameworks and

first-party applications:

$ find /Applications —name *.xpc

By surveying the inventory of XPC services in the wild, one can get a

much better understanding of opportunities to use XPC in their own

107

application. Common themes in applications emerge, like services for
image and video conversion, system calls, webservice integration, and

3rd party authentication.

XPC takes responsibility for both inter-process communication and
service lifecycle management. Everything from registering a service,
getting it running, and communicating with other services is handled
by launchd. An XPC service can be launched on demand, or restarted
if they crash, or terminated if they idle. As such, services should be
designed to be completely stateless, so as to allow for sudden

termination at any point of execution.

As part of the new security model adopted by iOS and backported in
OS X, XPC services are run with the most restricted environment
possible by default: no file system access, no network access, and no
root privilege escalation. Any capabilities must be whitelisted by a set

of entitlements.

XPC can be accessed through either the 1ibxpc C API, or the
NSXPCConnection Objective-C API. *

XPC services either reside within an application bundle or are

advertised to run in the background using launchd.

39 Though one should always try to use the highest-level API available to accomplish a particular task, this
book does have the words "Low-Level" in the title, so the examples in this section will use libxpc.

108

Services call xpc_main with an event handler to receive new XPC

connections:

static void connection_handler(xpc_connection_t peer) {
xpc_connection_set_event_handler(peer, ~(xpc_object_t event) {
peer_event_handler(peer, event);
1)

xpc_connection_resume (peer);

int main(int argc, const char *xargv[]) {
xpc_main(connection_handler);
exit(EXIT_FAILURE);

Each XPC connection is one-to-one, meaning that the service operates
on distinct connections, with each call to xpc_connection_create

creating a new peer. *° :

Xxpc_connection_t ¢ = xpc_connection_create("com.example.service", NULL);
xpc_connection_set_event_handler(c, ~(xpc_object_t event) {
V/ACEY:
i
xpc_connection_resume(c);

When a message is sent over an XPC connection, it is automatically

40 This is similar to accept in the BSD sockets API, in that the server listens on a single file descriptor that
creates additional descriptors for each inbound connection.

109

dispatched onto a queue managed by the runtime. As soon as the
connection is opened on the remote end, messages are dequeued and

sent.

Each message is a dictionary, with string keys and strongly-typed

values:

xpc_dictionary_t message = xpc_dictionary_create(NULL, NULL, 0);
xpc_dictionary_set_uint64(message, "foo", 1);
xpc_connection_send_message(c, message);

xpc_release(message)

XPC objects operate on the following primitive types:

o Data
 Boolean

« Double

« String

« Signed Integer
« Unsigned Integer
o Date

« UUID

o Array
 Dictionary

« Null

110

XPC offers a convenient way to convert from the dispatch_data_t
data type, which simplifies the workflow from GCD to XPC:

void xbuffer;
size_t length;
dispatch_data_t ddata =
dispatch_data_create(buffer,
length,
DISPATCH_TARGET_QUEUE_DEFAULT,
DISPATCH_DATA_DESTRUCTOR_MUNMAP) ;

xpc_object_t xdata = xpc_data_create_with_dispatch_data(ddata);

dispatch_queue_t queue;
Xxpc_connection_send_message_with_reply(c, message, queue,

~(xpc_object_t reply)

if (xpc_get_type(event) == XPC_TYPE_DICTIONARY) {
7anr

)7

Registering Services

XPC can also be registered as launchd jobs, configured to

automatically start on matching IOKit events, BSD notifications or

111

CFDistributedNotifications. These criteria are specified in a service’s
launchd.plist file:

launchd.plist

<key>LaunchEvents</key>
<dict>
<key>com.apple.iokit.matching</key>
<dict>
<key>com.example.device-attach</key>
<dict>
<key>idProduct</key>
<integer>2794</integer>
<key>idVendor</key>
<integer>725</integer>
<key>IOProviderClass</key>
<string>I0USBDevice</string>
<key>IOMatchLaunchStream</key>
<true/>
<key>ProcessType</key>
<string>Adaptive</string>
</dict>
</dict>
</dict>

A recent addition to launchd property lists is the ProcessType key,
which describe at a high level the intended purpose of the launch
agent. Based on the prescribed contention behavior, the operating
system will automatically throttle CPU and I/O bandwidth

accordingly.

112

Process Types and Contention Behavior

Standard Default value

Adaptive Contend with apps when doing work on their
behalf

Background Never contend with apps

Interactive Always contend with apps

To register a service to run approximately every 5 minutes (allowing a
grace period for system resources to become more available before
scheduling at a more aggressive priority), a set of criteria is passed into

xpc_activity_register:

xpc_object_t criteria = xpc_dictionary_create(NULL, NULL, 0);
xpc_dictionary_set_int64(criteria, XPC_ACTIVITY_INTERVAL, 5 * 60);
xpc_dictionary_set_int64(criteria, XPC_ACTIVITY_GRACE_PERIOD, 10 * 60);
xpc_activity_register('"com.example.app.activity",
criteria,
~(xpc_activity_t activity)
// Process Data

xpc_activity_set_state(activity, XPC_ACTIVITY_STATE_CONTINUE);

dispatch_async(dispatch_get_main_queue(), ~{
// Update UI

113

Xpc_activity set_state(activity, XPC_ACTIVITY_STATE_DONE);
197
197

114

Chapter 7

Core Services

Let’s take a moment to really think about what a file is.

Fundamentally, a file is a resource with information. It’s persisted in
such a way that it remains durable—available beyond the scope of the
program that originally created it. A file itself is usually encoded as a
one-dimensional byte array, ideally in sequential portions of the

storage medium.

By themselves, files are meaningless blobs of 0's and 1’s. It is only
through the programs that read and write them that any sense can be

made of it all.

A common practice for interchange formats—especially image
encodings like PNG, GIE, and JPEG—is to use a unique value at the
start of the file, also known as a file signature or "magic number".
Information about a file, such as its name, size, and other attributes are
stored as metadata by the filesystem. Programs reading from a file use

this to determine how to parse and interpret the file’s data.

How this information is structured and encoded is one of the main

differentiating factors of a filesystem.

Data & Resource Forks

The old school Apple Macintosh Filesystem (MFS) associated a data

fork, a resource fork, and multiple named forks for each file entry. For

116

applications, the data fork would hold the binary executable, while the

resource fork would contain things like icon bitmaps and localized

strings. Not all files had resource forks, but they were useful for

separating content from presentation, like in the case of a word

processing documentation.

On Mac OS, file types and creator codes were represented by an
0SType, a four-byte identifier, most often encoded as four ASCII /

Macintosh Roman characters. Common examples of file types are

listed in the figure below:

OSType of Common File Types

CODE

Executable Binary

Text

Plain Text

PICT

QuickDraw Image

SND

Sound

0SType was also used to denote the type of pasteboard contents, error

codes, and AppleEvents, the inter-process communication mechanism

introduced in System 7.

117

Actually, that last point about 0SType being repurposed for tasks like
handling copy-paste between applications raises an interesting point:

files are but one of many ways that data gets passed around.
One such example is information downloaded over the internet.

The vast majority of networking done in applications today is over
HTTP. Although the type of resource may sometime be gleaned from
the extension of the URI, the canonical identifier is found in the
Content-Type HTTP header field. Values for this header use MIME
types. *'. MIME types are defined by a central authority, The Internet
Assigned Numbers Authority (IANA), which also manages root name

servers and IP address blocks.

Therefore, any system that would replace 0SType would have to be able

to accommodate internet media, as well as existing file types.

That system was Universal Type Identifiers (UTI), and it was
introduced with OS X.

UTI

UTIs provide an extensible, hierarchical classification system that

affords the developer great flexibility in handling even the most exotic

41 MIME types were originally used in the development of mail applications using SMTP

118

file types. For example, a Ruby source file (. rb) is categorized as "Ruby
Source Code > Source Code > Text > Content > Data"; a QuickTime
Movie file (. mov) is categorized as "Video > Movie > Audiovisual

Content > Content > Data".

Not limited to files, UTIs can be used to identify a number of different

entities:

o Files

e Directories

o Pasteboard Data
o Bundles

o Frameworks

« Internet Media
 Streaming Data

« Aliases and Symbolic Links

Type Identifiers

The public domain is reserved for common or standard types that are

of general use to most applications, such as:

e public.text

119

e public.plain-text
e public.jpeg
e public.html

Dynamic Type Identifiers

Sometimes a data type does not have a UTI declared for it. UTIs
handle this case transparently by creating a dynamic identifier.
Dynamic identifiers have the domain dyn, with the rest of the string
that follows being opaque. They can be thought of as a
UTI-compatible wrapper around an otherwise unknown filename

extension, MIME type, OSType, and so on.

Custom Type Identifiers

When creating a custom type identifier, the aim is to have the UTI

conform to both a physical and functional hierarchy:

« A physical hierarchy involves the nature of the item, such as whether

it’s a file or directory. This should inherit from public.item.

120

« A functional hierarchy relates to how the item is used. This should
not inherit from public. item, but instead something like public.

content or public.executable.

Working with UTIs

The Core Services framework on OS X and Mobile Core Services
framework on iOS provide functions that identify and categorize data
types by file extension and MIME type, according to Universal Type
Identifiers.

Comparing

There are two functions for comparing UTIs. UTTypeEqual does an
equality check, which is the equivalent of a case insensitive string
comparison. UTTypeConformsTo is more compelling, as it consults the
functional and physical hierarchies to find a match. It’s the same

difference between isMember0fClass: and isKind0fClass:. **

42 Like any other function that takes string identifiers, use constants rather than literal value when possi-
ble (e.g. kUTTypeApplication, instead of "com.apple.application"). The examples here use literal
strings for clarity.

121

UTTypeConformsTo(CFSTR("public.jpeg"),
CFSTR("public.item")); // YES

UTTypeConformsTo(CFSTR("public.jpeg"),
CFSTR("public.image")); // YES

UTTypeEqual(CFSTR("public.jpeg"),
CFSTR("public.image")); // NO

UTTypeConformsTo(CFSTR("public. jpeg"),
CFSTR("public.png")); // NO

Copying Declarations

In addition to its unique identifier, each UTI is registered with a
property list of attributes. Those attributes can be retrieved with

UTTypeCopyDeclaration:

UTTypeCopyDeclaration(CFSTR("public.png"));

UTTypeConformsTo = "public.image";
UTTypeDescription = "Portable Network Graphics image";
UTTypeIdentifier = "public.png";
UTTypeTagSpecification = {
"com.apple.nspboard-type" = "Apple PNG pasteboard type";

122

"com.apple.ostype" = PNGf;

"public.filename-extension" = png;
"public.mime-type" = "image/png";
};
}
Converting

A common task, when working with UTIs, is to get their equivalent
MIME type or filename extension. This can be accomplished using the

function UTTypeCopyPreferredTagWithClass:

NSString *contentType =
(__bridge_transfer NSString x)
UTTypeCopyPreferredTagWithClass (CFSTR("public.text"),
kUTTagClassMIMEType);

The converse, determining the UTI for a MIME type, can be
accomplished with UTTypeCreatePreferredIdentifierForTag:

NSString *UTI =
(__bridge_transfer NSString x)
UTTypeCreatePreferredIdentifierForTag(kUTTagClassFilenameExtension,
CFSTR("jpg"),
NULL);

123

The tag class arguments for UTTypeCopyPreferredTagWithClass &
UTTypeCreatePreferredIdentifierForTag can be any of the

following string constants: **

const CFStringRef kUTTagClassFilenameExtension;
const CFStringRef kUTTagClassMIMEType;

const CFStringRef kUTTagClassNSPboardType; // 0S X
const CFStringRef kUTTagClassOSType; // 0S X

As a means of reconciling the growing and evolving landscape of data
and file transfer, UTIs have performed remarkably well. The shift from
filesystem-specific mechanisms like "magic number" signatures and
resource forks to a formalized type hierarchy has afforded applications

great flexibility in how data is handled.

Making the most of UTIs will ensure that applications interact with

files responsibly, and play well with others.

43 For OSType values containing only printable 7-bit ASCII characters, you can still use the CFSTR macro
with a four-character string literal (for example, CFSTR("TEXT") to create a valid OSType tag.

124

Chapter 8

ImagelO

Image I/0 is a powerful, albeit lesser-known framework for working
with images. Independent of Core Graphics, it can read and write
between between many different formats, access photo metadata, and
perform common image processing operations. The framework offers
the fastest image encoders and decoders on the platform, with
advanced caching mechanisms and even the ability to load images

incrementally.

Supported Image Types

According to the official docs, Image I/O supports "most image
formats". Rather than take the docs at their word and guess what
exactly that entails, this information can be retrieved

programmatically.

CGImageSourceCopyTypeIdentifiers returns list of UTIs for image

types supported:
Image I/O UTIs
UTI i0S OS§X
com.adobe.photoshop-image X
com.adobe. raw-image X X
com.apple.icns X

126

(continued)

UTI

HON

>

com.apple.macpaint-image

com.apple.pict

com.apple.quicktime-image

com.canon.cr2-raw-image

com.canon.crw—raw—image

com.canon.tif-raw-image

com.compuserve.gif

com.epson.raw—image

com. fuji.raw-image

com.hasselblad.3fr-raw—image

com.hasselblad. fff-raw-image

BT o I e R R

com.ilm.openexr—image

com. kodak. flashpix—image

com. kodak. raw—-image

com.konicaminolta. raw-image

com. leafamerica. raw—image

com. leica.raw—image

com. leica.rwl-raw—image

com.microsoft.bmp

com.microsoft.cur

com.microsoft.ico

com.nikon.nrw-raw-image

oI T I T I B I B I B B B

T I T T - T I T T O O O I I T T O O B B - - I I B I

127

(continued)

UTI

6
wn

>

com.nikon.raw-image

com.olympus.or-raw—image

com.olympus. raw—-image

com.olympus.sr-raw—image

com.panasonic.raw-image

com.panasonic.rw2-raw-image

com. pentax. raw—image

com.samsung. raw—image

oI o T e A

com.sgi.sgi-image

com.sony.arw-raw-image

com.sony.raw—image

com.sony.sr2-raw-image

com.truevision.tga-image

public.jpeg

public.jpeg-2000

S T T I I

public.mpo-image

public.png

public.radiance

public.tiff

public.xbitmap-image

T T - T - T I T O T O O O I I T I T I T O I T I B B I I B e

128

As it turns out, that does seem like most formats. At least the ones that
matter for applications today. There is universal support for common
formats: TIFF, JPEG, GIE, PNG, RAW, and Windows Bitmap, Icon,
and Cursor. Additionally, several vendor-specific RAW camera

formats are supported on iOS, but OS X supports a few more of them.

Writing to a File

Image I/O offers advanced output configuration without much

overhead.

Specify the UTT of the desired output format, as well as any options,
like compression quality, orientation, or whether to ignore alpha
channels. A CGImageDestinationRef is created for the destination,
has the CGImage added to it, and is then finalized:

UIImage *image = ...;

NSURL *fileURL = [NSURL fileURLWithPath:@"/path/to/output.jpg"l;
NSString *UTI = @"public.jpeg";
NSDictionary xoptions = @{
(__bridge id) «+
kCGImageDestinationLossyCompressionQuality: @(0.75),
(__bridge id)kCGImagePropertyOrientation: @(4),
(__bridge id)kCGImagePropertyHasAlpha: @(NO)
I

129

CGImageDestinationRef imageDestinationRef =
CGImageDestinationCreateWithURL((__bridge CFURLRef)fileURL,
(__bridge CFStringRef)UTI,
1,
NULL) ;

CGImageDestinationAddImage(imageDestinationRef, [image CGImage], (__bridge <=
CFDictionaryRef)options);
CGImageDestinationFinalize(imageDestinationRef);

CFRelease(imageDestinationRef);

Reading from a File
Reading an image from a file is a very similar process to writing.

Create a file URL to the desired input file, and set any desired flags for
caching or image type hinting. A CGImageSourceRef is created with
that URL, which then reads the data and creates a CGimage with a call

to CGImageSourceCreateImageAtIndex.

NSURL *fileURL = [NSURL fileURLWithPath:@"/path/to/input.jpg"];
NSDictionary xoptions = @{
(__bridge id)kCGImageSourceTypeldentifierHint: @" <«
public.jpeg",
(__bridge id)kCGImageSourceShouldCache: @(YES),
(__bridge id)kCGImageSourceShouldAllowFloat: @(YES),
}

130

CGImageSourceRef imageSourceRef =
CGImageSourceCreateWithURL((__bridge CFURLRef)fileURL, NULL);
CGImageRef imageRef =
CGImageSourceCreateImageAtIndex(imageSourceRef,
0,
(__bridge CFDictionaryRef)options);

UIImage ximage = [UIImage imageWithCGImage:imageRef];

CFRelease(imageRef);

CFRelease(imageSourceRef) ;

Incrementally Reading an Image

The previous example can be extended to load the image
incrementally, which may contribute a better user experience for

especially large or remote images.

Since many applications load images over HT TP, the session task
delegate method URLSession:dataTask:didReceiveData: isa great

opportunity for performance gains:

- (void)URLSession: (NSURLSession *)session
dataTask: (NSURLSessionDataTask *)dataTask
didReceiveData: (NSData *)data

[self.mutableResponseData appendData:datal;

131

CGImageSourceUpdateData(self.imageSourceRef,
(__bridge CFDataRef)self.mutableResponseData,
[self.mutableResponseData length]
[dataTask countOfBytesExpectedToReceive]);

if (CGSizeEqualToSize(self.imageSize, CGSizeZero)) {
NSDictionary *properties =
(__bridge_transfer NSDictionary)
CGImageSourceCopyPropertiesAtIndex(self.imageSourceRef,
0,
NULL) ;
if (properties) {
NSNumber *width = properties[(__bridge id) <
kCGImagePropertyPixelWidth];
NSNumber xheight = properties[(__bridge id) <
kCGImagePropertyPixelHeight];

if (width && height) {
self.imageSize = CGSizeMake([width floatValuel,
[height floatValuel);

CGImageRef imageRef = CGImageSourceCreateImageAtIndex(self.imageSourceRef,
0,
NULL) ;

UIImage *ximage = [UIImage imageWithCGImage:imageRef];

CFRelease(imageRef);

dispatch_async(dispatch_get_main_queue(), ~{

// delete or block callback to update with image
K

132

Given a CGImageSourceRef, which would have been initialized when
the request began loading, this delegate method calls
CGImageSourceUpdateData to update with the response data buffer.

If enough data has been loaded to determine the final dimensions of
the image, CGImageSourceCopyPropertiesAtIndex can retrieve that
information and cache it. From that point on, a delegate or block
callback would be able to send the partially-loaded image to update
the UT on the main thread.

Image Metadata

In the incremental image loading example, the image’s width and
height were retrieved from its metadata so that it could be properly

sized—even before all of the data was loaded.

That same approach can be used to retrieve image metadata, such as
GPS data (location), camera EXIF (lens, exposure, shutter speed, etc.),
or IPTC (information suitable for publication, like creator and

copyright).

Metadata is divided into several different dictionaries, which can be

specified with any of the following keys:

133

e kCGImagePropertyTIFFDictionary
e kCGImagePropertyGIFDictionary
e kCGImagePropertyJFIFDictionary
e kCGImagePropertyExifDictionary
e kCGImagePropertyPNGDictionary
e kCGImagePropertyIPTCDictionary
e kCGImagePropertyGPSDictionary
e kCGImagePropertyRawDictionary
e kCGImagePropertyCIFFDictionary
e kCGImageProperty8BIMDictionary
e kCGImagePropertyDNGDictionary
e kCGImagePropertyExifAuxDictionary

Retrieving image metadata properties with Image I/0O is pretty
self-explanatory: one call to CGImageSourceCopyPropertiesAtIndex,
and it’s all standard NSDictionary access on CGImageProperty keys

from there on out:

NSDictionary *properties =
(__bridge_transfer NSDictionary)
CGImageSourceCopyPropertiesAtIndex(self.imageSourceRef,
0,
NULL) ;

NSDictionary *EXIF = properties[(__bridge id)kCGImagePropertyExifDictionaryl;
if (EXIF) {

134

NSString *Fnumber = EXIF[(__bridge id)kCGImagePropertyExifFNumber];
NSString xexposure = EXIF[(__bridge id)kCGImagePropertyExifExposureTime];
NSString *ISO = EXIF[(__bridge id)kCGImagePropertyExifISOSpeedRatings];

NSLog(@"Shot Information: %@ %@ %@", Fnumber, exposure, ISO);
NSDictionary *GPS = properties[(__bridge id)kCGImagePropertyGPSDictionary];
if (GPS) {

NSString *latitude = GPS[(__bridge id)kCGImagePropertyGPSLatitude];

NSString *latitudeRef = GPS[(__bridge id)kCGImagePropertyGPSLatitudeRef];

NSString *longitude = GPS[(__bridge id)kCGImagePropertyGPSLongitude];
NSString *longitudeRef = GPS[(__bridge id)kCGImagePropertyGPSLongitudeRef];

NSLog(@"GPS: %@ %@ / %@ %@", latitude, latitudeRef, longitude, longitudeRef <—
)3

135

Chapter 9

Accelerate

Over the last decade, there has been a focus on doing more with less,

when it comes to hardware.

As each generation of microprocessor pushes the physical limits of
silicon, a greater emphasis has been placed on doing more with less.
Moore’s Law, the observation that the number of transistors that can
be fit onto a chip doubles every 18 months or so, has to end sometime,

and that time is fast approaching.

At the same time, the rise of mobile computing has turned the
performance paradigm on its head, emphasizing battery life over

power.

In response to these two emerging realities, hardware manufacturers
have built muti-core CPUs, which software developers have learned to

exploit with high degrees of parallelism and concurrency.

On iOS and OS X, the best way to harness these advanced capabilities

is the Accelerate Framework.

With over 2,000 APIs, Accelerate is easily the single largest framework
in the iOS and OS X SDKs. But far from being monolithic, it’s really
more of an umbrella framework, with several inter-related component

parts.

137

At the top level, Accelerate can be split up between vecLib & vImage.
vecLib contains data types and C functions for digital signal processing
(vDSP) as well as vector and matrix math, including those covered by
the Linear Algebra Package (LAPACK) and the Basic Linear Algebra
Subprograms (BLAS) standard. vimage contains a wide range of image
manipulation functionality, including alpha compositing, conversion,

convolution, morphology, transformation, and histogram generation.

Learning to use Accelerate can be overwhelming just in terms of the
volume of APIs. And for anyone not coming from a math or high
performance computing background, the conceptual overhead alone is

enough to send most people running.

SIMD

If there is a single, unifying concept for Accelerate, it's SIMD, or "single
instruction, multiple data". SIMD means that a computer can perform
the same operation on several data points simultaneously using a

single command.

For example, given an array of unsigned integers, the maximum value
could be found using a single, optimized hardware instruction (e.g.,
PMAXUB for SSE).

138

The hardware found in iPhones, iPads, and Macs boast impressive
capabilities. On x86 architectures (Mac), the key technologies are SSE,
AVX, and AVX2; for AMD (iPhone & iPad), it's NEON.

Accelerate provides a single, unified set of APIs that adapt to provide
the same behavior across all of these different architectures and
hardware environments to ensure maximum performance and

stability without any compilation flags or platform hacks.

Benchmarking Performance

How much of a difference do these advanced routines make in
practice? Consider the following benchmarks for common arithmetic

operations:

Populating an Array

NSUInteger count = 10000000;
float *array = malloc(count * sizeof(float));

Baseline

139

for (NSUInteger i = @; i < count; i++) {

array[i]l = i;

Accelerate

float initial = 0;
float increment = 1;

vDSP_vramp(&initial, &increment, array, 1, count);

Baseline Accelerate A
20.664600 msec 2.495000 msec 10x
Multiplying an Array
Baseline

for (NSUInteger i = @; i < count; i++) {
array[i] *= 2.0f;

Accelerate

cblas_sscal(count, 2.0f, array, 1);

140

Baseline Accelerate A

19.969440 msec 2.541220 msec 10x
Summing an Array
Baseline

float sum = 0;

for (NSUInteger i = @; i < count; i++) {

sum += array[il;

}
Accelerate

float sum = cblas_sasum(count, array, 1);

Baseline Accelerate A

41.704483 msec 2.165160 msec 20x
Searching

Create random array

141

for (NSUInteger i = @; i < count; i++) {

array[i] = (float)arc4random();

Baseline

NSUInteger maxLocation = 0;
for (NSUInteger i = @; i < count; i++) {
if (array[i]l > arrayl[maxLocation]) {

maxLocation = i;

Accelerate

NSUInteger maxLocation = cblas_isamax(count, array, 1);

Baseline Accelerate A
22.339838 msec 5.110880 msec 4x

From these benchmarks, it’s clear that for Accelerate can have huge
performance benefits for operations on large data sets. Of course, like
any optimization, not all situations will benefit equally. The best
approach is always to use Instruments to find bottlenecks in your

code, and measure alternative implementations.

142

In order to understand and identify situations that might benefit from

Accelerate, though, we need to get a sense of everything it can do.

vecLib

vecLib is comprised of the following 9 headers:

cblas.h/ Interface for BLAS functions

VBLAS. h

clapack.h Interface for LAPACK functions

vectorOps.h Vector implementations of the BLAS routines.

vBasicOps.h Basic algebraic operations. 8-, 16-, 32-, 64-, 128-bit
division, saturated addition / subtraction, shift /
rotate, etc.

vfp.h Transcendental operations (sin, cos, log, etc.) on

single vector floating point quantities.

vForce.h Transcendental operations on arrays of floating

point quantities.

vBigNum. h Operations on large numbers (128-, 256-, 512-,
1024-bit quantities)

vDSP. h Digital signal processing algorithms including

FFTs, signal clipping, filters, and type conversions.

143

vDSP.h

Fast-Fourier Transform (FFT) is the fundamental digital signal
processing algorithm. It decomposes a sequence of values into

components with different frequencies.

Although they have wide-ranging applications across mathematics
and engineering, most application developers encounter FFTs for
audio or video processing, as a way of determining the critical values

in a noisy signal.
Fast-Fourier Transform
int x = 8;
int y = 8;
int dimensions = x * y;

int log2_x = (int)log2((double)x);
int log2_y = (int)log2((double)y);

DSPComplex *xdata = (DSPComplex *x)malloc(sizeof(DSPComplex) * dimensions);
for (NSUInteger i = @; i < dimensions; i++) {

datalil.real = (float)i;

datalil.imag = (float)(dimensions - i) - 1.0f;

DSPSplitComplex input = {

144

.realp = (float *)malloc(sizeof(float) * dimensions),
.imagp = (float *)malloc(sizeof(float) * dimensions),
¥
vDSP_ctoz(data, 2, &input, 1, dimensions);
FFTSetup weights = vDSP_create_fftsetup(fmax(log2_x, log2_y), kFFTRadix2);
vDSP_fft2d_zip(weights, &input, 1, @, log2_x, log2_y, FFT_FORWARD);
vDSP_destroy_fftsetup(fft_weights);
vDSP_ztoc(&input, 1, data, 2, dimensions);
for (NSUInteger i = @; i < dimensions; i++) {

NSLog(@"%g %g", datalil.real, datalil.imag);

free(input.realp);
free(input.imagp);
free(data);

vlmage

vimage is comprised of 6 headers:

Alpha.h Alpha compositing functions.

Conversion.h Converting between image format (e.g. Planar8 to

PlanarF, ARGB8888 to Planars).

Convoluton.h Image convolution routines (e.g. blurring and edge

detection).

145

Geometry.h

Geometric transformations (e.g. rotate, scale, shear,

affine warp).

Histogram.h

Functions for calculating image histograms and

image normalization.

Morphology.h

Image morphology procedures (e.g. feature

detection, dilation, erosion).

Tranform.h

Image transformation operations (e.g. gamma

correction, colorspace conversion).

Planar8

The image is a single channel (one color or alpha
value). Each pixel is an 8-bit unsigned integer value.

The data type for this image format is Pixel _8.

PlanarF

The image is a single channel (one color). Each
pixel is a 32-bit floating-point value. The data type

for this image format is Pixel F.

ARGB8888

The image has four interleaved channels, for alpha,
red, green, and blue, in that order. Each pixel is 32
bits, an array of four 8-bit unsigned integers. The

data type for this image format is Pixel 8888.

ARGBFFFF

The image has four interleaved channels, for alpha,
red, green, and blue, in that order. Each pixel is an
array of four floating-point numbers. The data type

for this image format is Pixel FFFE

146

RGBA8888 The image has four interleaved channels, for red,
green, blue, and alpha, in that order. Each pixel is
32 bits, an array of four 8-bit unsigned integers. The

data type for this image format is Pixel 8888.

RGBAFFFF The image has four interleaved channels, for red,
green, blue, and alpha, in that order. Each pixel is

an array of four floating-point numbers. The pixel

data type for this image format is Pixel FFFF.

Alpha.h

Alpha compositing is a process of combining multiple images
according to their alpha components. For each pixel in an image, the
alpha, or transparency, value is used to determine how much of the

image underneath it will be shown.

vimage functions are available for blending or clipping. The most

common operation is compositing a top image onto a bottom image:

Compositing Two Images

UIImage *topImage, *bottomImage = ...;
CGImageRef topImageRef = [topImage CGImagel;
CGImageRef bottomImageRef = [bottomImage CGImagel;

147

CGDataProviderRef topProvider = CGImageGetDataProvider(topImageRef);
CFDataRef topBitmapData = CGDataProviderCopyData(topProvider);

size_t width = CGImageGetWidth(topImageRef);
size_t height = CGImageGetHeight(topImageRef);
size_t bytesPerRow = CGImageGetBytesPerRow(topImageRef);

vImage_Buffer topBuffer = {
.data = (void *)CFDataGetBytePtr(topBitmapData),
.width = width,
.height = height,
.rowBytes = bytesPerRow,
b

CGDataProviderRef bottomProvider = CGImageGetDataProvider(bottomImageRef);
CFDataRef bottomBitmapData = CGDataProviderCopyData(bottomProvider);

vImage_Buffer bottomBuffer = {
.data = (void *)CFDataGetBytePtr(bottomBitmapData),
.width = width,
.height = height,
. rowBytes = bytesPerRow,
}i

void xoutBytes = malloc(height * bytesPerRow);
vImage_Buffer outBuffer = {

.data = outBytes,

.width = width,

.height = height,

.rowBytes = bytesPerRow,
i

vImage_Error error = vImagePremultipliedAlphaBlend_ARGB8888(&topBuffer, & <—
bottomBuffer, &outBuffer, kvImageDoNotTile);

148

if (error) {
NSLog(@"Error: %ld", error);

Conversion.h

Images are comprised of pixels, each of which have a color represented
by a combination of discrete values for red, green, and blue intensities.
Altogether, these intensity values comprise a channel for each color, as

well an alpha channel, representing transparency.

There are two ways that images encode this information: interleaved,
such that each pixel has its red, green, blue, and alpha values
represented together, or planar, where all of the values in a channel are

set, followed by the values in the next channel, and so on.

vImage provides functions for exchanging the intensities from one

channel to another, for a given image format:

Permuting Color Channels

UIImage *ximage = ...;

CGImageRef imageRef = [image CGImagel;

149

size_t width = CGImageGetWidth(imageRef);
size_t height = CGImageGetHeight(imageRef);
size_t bitsPerComponent = CGImageGetBitsPerComponent(imageRef);

size_t bytesPerRow = CGImageGetBytesPerRow(imageRef);

CGDataProviderRef sourceImageDataProvider = CGImageGetDataProvider(imageRef);
CFDataRef sourceImageData = CGDataProviderCopyData(sourceImageDataProvider);
vImage_Buffer sourceImageBuffer = {

.data = (void x)CFDataGetBytePtr(sourceImageData),

.width = width,

.height = height,

.rowBytes = bytesPerRow,
b

uint8_t *destinationBuffer = malloc(CFDataGetLength(sourceImageData));
vImage_Buffer destinationImageBuffer = {

.data = destinationBuffer,

.width = width,

.height = height,

. rowBytes = bytesPerRow,
};

const uint8_t channels[4] = {0, 3, 2, 1}; // ARGB —> ABGR
vImagePermuteChannels_ARGB8888(&sourceImageBuffer, &destinationImageBuffer, <

channels, kvImageNoFlags);

CGColorSpaceRef colorSpaceRef = CGColorSpaceCreateDeviceRGB();
CGContextRef destinationContext =
CGBitmapContextCreateWithData(destinationBuffer,
width,
height,
bitsPerComponent,
bytesPerRow,

colorSpaceRef,

150

kCGBitmapByteOrderDefault |
kCGImageAlphaPremultipliedFirst,
NULL,

NULL) ;

CGImageRef permutedImageRef = CGBitmapContextCreateImage(destinationContext);
UIImage xpermutedImage = [UIImage imageWithCGImage:permutedImageRef];

CGImageRelease(permutedImageRef);
CGContextRelease(destinationContext);

CGColorSpaceRelease(colorSpaceRef);

Convolution.h

Image convolution is the process of multiplying each pixel and its
adjacent pixels by a kernel, or square matrix with a sum of 1.
Depending on the kernel, a convolution operation can either blur,

sharpen, emboss, or detect edges.

Except for specific situations where a custom kernel is required,
convolution operations would be better-served by the Core Image
framework, which utilizes the GPU. However, for a straightforward

CPU-based solution, vimage delivers:

Blurring an Image

151

UIImage *inImage = ...;

CGImageRef inImageRef = [inImage CGImagel;

CGDataProviderRef inProvider = CGImageGetDataProvider(inImageRef);

CFDataRef inBitmapData = CGDataProviderCopyData(inProvider);

vImage_Buffer inBuffer = {
.data = (void x)CFDataGetBytePtr(inBitmapData),
.width = CGImageGetWidth(inImageRef),
.height = CGImageGetHeight(inImageRef),
.rowBytes = CGImageGetBytesPerRow(inImageRef),
Y

void xoutBytes = malloc(CGImageGetBytesPerRow(inImageRef) * CGImageGetHeight(<—
inImageRef));
vImage_Buffer outBuffer = {
.data = outBytes,
.width = inBuffer.width,
.height = inBuffer.height,
. rowBytes = inBuffer.rowBytes,
)5

uint32_t length = 5; // Size of convolution
vImage_Error error =
vImageBoxConvolve_ARGB8888(&inBuffer,
&outBuffer,
NULL,
0,
0,
length,
length,
NULL,
kvImageEdgeExtend) ;
if (error) {

152

NSLog(@"Error: %ld", error);

CGColorSpaceRef colorSpaceRef = CGColorSpaceCreateDeviceRGB();
CGContextRef c =
CGBitmapContextCreate(outBuffer.data,

outBuffer.width,

outBuffer.height,

8,

outBuffer.rowBytes,

colorSpaceRef,

kCGImageAlphaNoneSkipLast);
CGImageRef outImageRef = CGBitmapContextCreateImage(c);
UIImage *outImage = [UIImage imageWithCGImage:outImageRef];

CGImageRelease(outImageRef);
CGContextRelease(c);
CGColorSpaceRelease(colorSpaceRef);
CFRelease(inBitmapData);

Geometry.h

Resizing an image is another operation that is perhaps more suited for
another, GPU-based framework, like Image I/O. For a given vimage
buffer, it might be more performant to scale with Accelerate using
vImageScale_x rather than convert back and forth between a
CGImageRef:

Resizing an Image

153

double scaleFactor = 1.0 / 5.0;
void xoutBytes = malloc(trunc(inBuffer.height * scaleFactor) *x inBuffer.
rowBytes);
vImage_Buffer outBuffer = {
.data = outBytes,
.width = trunc(inBuffer.width *x scaleFactor),
.height = trunc(inBuffer.height * scaleFactor),
.rowBytes = inBuffer.rowBytes,
};

vImage_Error error =
vImageScale_ARGB8888(&inBuffer,
&outBuffer,
NULL,
kvImageHighQualityResampling);
if (error) {
NSLog(@"Error: %ld", error);

Histogram.h

Detecting if an Image Has Transparency

UIImage *ximage;

CGImageRef imageRef = [image CGImagel;

CGDataProviderRef dataProvider = CGImageGetDataProvider(imageRef);
CFDataRef bitmapData = CGDataProviderCopyData(dataProvider);

vImagePixelCount a[256], r([256], g[256], b[256];

154

vImagePixelCount xhistogram[4] = {a, r, g, b};
vImage_Buffer buffer = {
.data = (void x)CFDataGetBytePtr(bitmapData),
.width = CGImageGetWidth(imageRef),
.height = CGImageGetHeight(imageRef),
.rowBytes = CGImageGetBytesPerRow(imageRef),
I

vImage_Error error =
vImageHistogramCalculation_ARGB8888(&buffer,
histogram,
kvImageNoFlags);
if (error) {

NSLog(@"Error: %ld", error);

BOOL hasTransparency = NO;
for (NSUInteger i = @; !hasTransparency && i < 255; i++)

hasTransparency = histogram[3][i] == 0;

CGDataProviderRelease(dataProvider);
CFRelease(bitmapData);

Morphology.h

Dilating an Image

size_t width = image.size.width;

size_t height = image.size.height;

155

size_t bitsPerComponent = 8;

size_t bytesPerRow = CGImageGetBytesPerRow([image CGImagel);

CGColorSpaceRef colorSpaceRef = CGColorSpaceCreateDeviceRGB();
CGContextRef sourceContext = CGBitmapContextCreate(NULL,
width,
height,
bitsPerComponent,
bytesPerRow,
colorSpaceRef,
kCGBitmapByteOrderDefault |
kCGImageAlphaPremultipliedFirst);

CGContextDrawImage(sourceContext,
CGRectMake(0.0f, 0.0f, width, height), [image CGImagel);

void xsourceData = CGBitmapContextGetData(sourceContext);
vImage_Buffer sourceBuffer = {

.data = sourceData,

.width = width,

.height = height,

. rowBytes = bytesPerRow,
}i

size_t length = height * bytesPerRow;
void xdestinationData = malloc(length);
vImage_Buffer destinationBuffer = {
.data = destinationData,
.width = width,
.height = height,
. rowBytes = bytesPerRow,
)5

static unsigned char kernel[9] = {

156

=R e
=R e
[

¥

vImageDilate_ARGB8888(&sourceBuffer,
&destinationBuffer,
o,
0,
kernel,
9,
9,
kvImageCopyInPlace);

CGContextRef destinationContext =

CGBitmapContextCreateWithData(destinationData,
width,
height,
bitsPerComponent,
bytesPerRow,
colorSpaceRef,
kCGBitmapByteOrderDefault |
kCGImageAlphaPremultipliedFirst,
NULL,
NULL) ;

CGImageRef dilatedImageRef = CGBitmapContextCreateImage(destinationContext);
UIImage *dilatedImage = [UIImage imageWithCGImage:dilatedImageRef];

CGImageRelease(dilatedImageRef);
CGContextRelease(destinationContext);
CGContextRelease(sourceContext);

CGColorSpaceRelease(colorSpaceRef);

157

Chapter 10

Security

In this era of widespread surveillance, diminishing privacy, and
ubiquitous connectivity, security is no longer the pet subject of

paranoids—it’s something everyone would do well to understand.

As if the concepts in cryptography weren't difficult enough to navigate,
the alphabet soup of technologies one must understand to do it
correctly makes things nearly incomprehensible. SHA, HMAC, AES,
PBKDE, NIST, RSA, NSA, FIPS, DES, ...a career in infosec would be
just as serviced by a degree in computer science as it would be political

science.

Seeing things in code does a lot to help clarify these concepts, though.
For anyone prone to squeamishness when it comes to cryptographic
acronyms, just take a deep breath and read carefully. All of the really

hard stuff is taken care of by the Security framework.

The Security framework can be divided up into Keychain Services,
Cryptographic Message Syntax, Security Transform Services, and

CommonCrypto.

Keychain Services

Keychain is the password management system on iOS & OS X. It
stores certificates and private keys, as well as passwords for websites,

servers, wireless networks, and other encrypted volumes.

159

Using the Security framework, applications can access the keychain
programmatically, allowing protected access to user data, without
constantly being prompted for authentication. ** *°

Unfortunately, convenience for the end user comes at the expense of
the developer, for there are few APIs as cuambersome in Cocoa as those

for interacting with the Keychain.

Interactions with the Keychain are mediated through queries, rather
than direct manipulation. The queries themselves can be quite

complicated, and cumbersome with a C APL
A query is a dictionary consisting of the following components:

o The class of item to search for, either "Generic Password", "Internet
Password", "Certificate”, "Key", or "Identity".

o The return type for the query, either "Data”, "Attributes",
"Reference", or "Persistent Reference".

+ One or more attribute key-value pairs to match on.

« One or more search key-value pairs to further refine the results,
such as whether to match strings with case sensitivity, only match

trusted certificates, or limit to just one result or return all.

44 Made even more convenient with iCloud Keychain, which syncs credentials to all connected devices.
45 ...which used to be available with MobileMe, but was disabled in 2011 when iCloud was introduced.

160

String constants are used for nearly all of the keys, and many of the
values, which makes for a lot of __bridge id casts and

documentation lookups.

Getting Keychain Items

To get a keychain item, construct a query, and pass it to

SecItemCopyMatching:

NSString *service = @"com.example.app";

NSString *account = @"username";

NSDictionary xquery = @{
(__bridge id)kSecClass: (__bridge id)kSecClassGenericPassword,
(__bridge id)kSecAttrService: service,
(__bridge id)kSecAttrAccount: key,
(__bridge id)kSecMatchLimit: kSecMatchLimitOne,
i

CFTypeRef result;
0SStatus status =
SecItemCopyMatching((__bridge CFDictionaryRef)query, &result);

In this example, the query tells the keychain to find all generic
password items for the service com.example.app with the matching

username. kSecAttrService defines the scope of credentials, while

161

kSecAttrAccount acts as a unique identifier. The search option
kSecMatchLimitOne is passed to ensure that only the first match is

returned, if any.

If status is equal to errSecSuccess (@), then result should be

populated with the matching credential.

Adding and Updating Keychain Items

Perhaps the main sticking point of the Keychain Services APIs,
however, is that in order to write to the keychain, one must read from
it first. There are two write functions: SecItemAdd and
SecItemUpdate. Calling SecItemAdd with attributes that already
match an existing item returns the status code errSecDuplicateItem.
Calling SecItemUpdate with attributes that do not match an existing
item returns the status code errSecItemNotFound. For lack of an
UPSERT-type command, one is resigned to respond conditionally each

time:

NSData *xdata = ...;
if (status == errSecSuccess) {
NSDictionary xupdatedAttributes =
@{(__bridge id)kSecValueData: data};

162

SecItemUpdate((__bridge CFDictionaryRef)query,
(__bridge CFDictionaryRef)updatedAttributes);
} else {
NSMutableDictionary *attributes = [query mutableCopyl;
attributes[(__bridge id)kSecValueData] = data;
attributes[(__bridge id)kSecAttrAccessible] =
(__bridge id)kSecAttrAccessibleAfterFirstUnlock;

SecItemAdd((__bridge CFDictionaryRef)attributes, NULL);

Following from the previous example, arbitrary data is being set on the
item using the kSecValueData attribute key. The original query is
copied and merged into the additional attributes for SecItemAdd,

whereas on the updated attributes are passed for SecItemUpdate.

Cryptographic Message Syntax

Cryptographic Message Syntax is the IETF’s standard for public key
encryption and digital signatures for S/MIME messages. Apple’s
Cryptographic Message Syntax Services in the Security framework

provide APIs that implement these industry standard algorithms.

As described in the Core Services chapter, MIME is the internet

standard that makes email, well, useful. Without it, email wouldn’t

163

support non-ASCII characters or attachments. the S in S/MIME refers

to how these messages are sent and received securely.

Messages can either be signed, encrypted, or both, by any number of
signers or recipients. To sign a message is to allow the recipient to
verify its sender. To encrypt a message is to ensure that it kept secret
from everyone but the recipients, who alone are able to decrypt the
message’s content. These two operations are orthogonal, but

cryptographically related.

Encoding a Message

NSData *data;

SecCertificateRef certificateRef;

CMSEncoderRef encoder;

CMSEncoderCreate(&encoder) ;

// Encrypt
CMSEncoderUpdateContent(encoder, [data bytes], [data lengthl);

CMSEncoderAddRecipients(encoder, certificateRef);

// Sign

SecIdentityRef identityRef = nil;
SecIdentityCreateWithCertificate(nil, certificateRef, &identityRef);
CMSEncoderUpdateContent(encoder, [data bytes], [data lengthl);
CMSEncoderAddSigners(encoder, identityRef);

CFRelease(identityRef);

CMSEncoderUpdateContent(encoder, [data bytes], [data lengthl);

164

CMSEncoderAddSignedAttributes(encoder, kCMSAttrSmimeCapabilities);
CFDataRef encryptedDataRef;

CMSEncoderCopyEncodedContent(encoder, &encryptedDataRef);

NSData *encryptedData = [NSData dataWithData:(__bridge NSData *) <

encryptedDataRef];

CFRelease(encoder);

Decoding a Message
CMSDecoderRef decoder;
CMSDecoderCreate(&decoder) ;
CMSDecoderUpdateMessage(decoder, [encryptedData bytes], [encryptedData length]) <
CMSDecoderFinalizeMessage(decoder);
CFDataRef decryptedDataRef;
CMSDecoderCopyContent(decoder, &decryptedDataRef);
NSData *decryptedData = [NSData dataWithData:(__bridge NSData *) <=

decryptedDataRef];

CFRelease(decryptedDataRef);

CFRelease(decoder);

Certificate, Key, and Trust Services

A digital certificate is used to verify the identity of its holder or sender.

165

The best way to understand certificates is to open one up and see

what’s inside:

$ openssl x509 -in certificate.pem -noout -text

Certificate:
Data:
Version: 1 (0x0)
Serial Number: 4919 (0x1337)
Signature Algorithm: md5WithRSAEncryption
Issuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consulting cc,
OU=Certification Services Division,
CN=Thawte Server CA/emailAddress=server-certs@thawte.com
Validity
Not Before: Jun 2 18:00:00 2014 GMT
Not After : Jun 2 18:00:00 2015 GMT
Subject: C=US, ST=0regon, L=Portland, O=Mattt Thompson,
O0U=NSHipster, CN=nshipster.com/emailAddress=mattt@nshipster.com
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)
Modulus (1024 bit):
cb:1c:00:aa:bb:89:a0:4c:26:cd:8c:4b:0b:13:88:...
Exponent: 65537 (0x10001)
Signature Algorithm: md5WithRSAEncryption
f5:5¢c:d6:a0:bf:39:95: fb:fa:ba: f5:f5:5a:d5:d9:f8:42:6b:...

Contrary to their unwieldy reputation, certificates are remarkably easy
to parse and understand—even for someone who doesn’t have a strong

grasp on cryptography in general.

166

Scanning through the plain text output, several pieces of information

come to the surface:

o Certificate issuer
« Validity period
Certificate holder

Public key of the owner

Digital signature from the certification authority

Each certificate is verified by its issuing certificate, thus establishing
trust along a chain of certificates all the way up to a root certificate

issued by a certificate authority.

Certificates are the basis for the cryptographic infrastructure used to
secure the internet. One of the most common interactions an iOS or
OS X developer has certificates is an authentication challenge from a
URL request:

NSURLAuthenticationChallenge *challenge = ...;

SecTrustRef trust = challenge.protectionSpace.serverTrust;

SecPolicyRef X509Policy = SecPolicyCreateBasicX509();

SecTrustSetPolicies(serverTrust, (__bridge CFArrayRef)@[(__bridge id)X509Policy <
1);

SecTrustResultType result;

assert(SecTrustEvaluate(trust, &result) == errSecSuccess);

167

SecTrustEvaluate validates a certificate by verifying its signature,
along with the signatures of the certificates in its certificate chain—all
the way up to the anchor certificate. A certificate chain is created for
each specified policy, starting with the leaf certificate, and checking
each certificate in the chain until an invalid certificate is encountered,
no more certificates remain, or a certificate with a non-default trust

setting is found. *°

Validating the identity of the certificate holder during an
authentication challenge is critical, as it ensures that the server is who

it claims to be, and can be trusted with sensitive information.

Security Transform Services

The fundamental concern of cryptography is to preserve the meaning
of a message from the time it’s encrypted by the sender until it’s
decrypted by the receiver. When that message is raw binary data, it’s
sometimes necessary to take an additional step of encoding that data

into a text representation. *7 *®

46 Usually, this an anchor certificate, or one explicitly trusted or distrusted by the user. After evaluation,
the result is stored in the trust management object.

47 Alot can go wrong when sending raw binary: characters could be mis-interpreted as control commands,
line endings could be misinterpreted, bytes could be sent in the wrong order, or any number of other
bizarre possibilities.

48 'This is known colloquially as "ASCII Armor".

168

Base64 encoding maps binary data into 8bit chunks, which are then
represented by 64 printable ASCII characters. It’s a popular choice
because of how it hits a sweet spot between efficiency and practicality.
It encodes data with just a 33% overhead, doesn't rely on esoteric
characters, and has a relatively straightforward implementation. It’s

sort of the UTF-8 of binary-to-text encoding.

Base64 is used for everything from HTTP basic authorization to
embedded data-uri assets in CSS documents, to visually comparing
fixed-size byte sequences, like MD5 or SHA-1 checksums.

The security framework provides built in support for Base64 (as well
as Base32) encoding and decoding, using the SecTransformExecute

function.

To encode data, create an instance of SecTransformRef with the

kSecBase64Encoding option and do SecTransformExecute:

Base64 Encoding
SecTransformRef transform =
SecEncodeTransformCreate(kSecBase64Encoding, NULL);
SecTransformSetAttribute(transform,

kSecTransformInputAttributeName,
(__bridge CFDataRef)data,

169

NULL);

NSData *encodedData =

(__bridge_transfer NSData x)SecTransformExecute(transform, NULL);

CFRelease(transform);

The reverse is nearly identical, except passing kSecBase64Decoding to

SecEncodeTransformCreate:

Base64 Decoding

SecTransformRef transform =
SecEncodeTransformCreate(kSecBase64Decoding, NULL);
NSData *decodedData =

(__bridge_transfer NSData x)SecTransformExecute(transform, NULL);

CFRelease(transform);

Randomization Services

Cryptography is predicated on unpredictable, random values. Without

such a guarantee, it’s all just security theater.

SecRandomCopyBytes reads from /dev/random, which generates

cryptographically-secure random bytes. /dev/random is a special file

170

on Unix systems that streams entropy based on the environmental

noise of the device.

NSUInteger length = 1024;

NSMutableData *mutableData =
[NSMutableData dataWithLength:lengthl;

0SStatus success =
SecRandomCopyBytes (kSecRandomDefault,
length,

mutableData.mutableBytes);

__Require_noErr(success, exit);

CommonCrypto

CommonCrypto offers convenient APIs to common cryptographic

operations, and is available on OS X 10.5+, and iOS 5.0+.

Digests

Cryptographic hash functions play an important role in information

security. Referred to as checksums, fingerprints, or digests, the output

171

of a cryptographic hash function cannot practically be reversed to find

the input. *°

For example, the SHA-1 checksum of "NSHipster" is
7¢33b28cb6fe3515548ee58812131ded7afeeflb, whereas performing
the same hash function on "CFHipsterRef" generates
"342924012ebde06234135698b372e10c5b86c5b2".

To calculate a checksum in code, use the CC_SHA1 function:

NSData *data = ...;

uint8_t output[CC_SHA1_DIGEST_LENGTHI;
CC_SHA1(data.bytes, data.length, output);

NSData xdigest = [NSData dataWithBytes:output
length:CC_SHA1_DIGEST_LENGTHI;

There are many cryptographic hashing functions out there, each with
different security characteristics and use cases. It is the developer’s

responsibility to evaluate the requirements of their own product to

49 Small changes in the source often cause chaotic differences in generated hash values.

172

determine the most appropriate security technologies to incorporate.

HMAC

A keyed-hash message authentication code (HMAC) uses
cryptographic hash function and secret key to generate a code that can
be used to simultaneously verify both the integrity and the
authenticity of a message. The strength of an HMAC is contingent on
the strength of the cryptographic hash function as well as the size of
the secret key. HMACs are often used by web services to ensure that

protected calls are only accessible to verified users.

Common Crypto provides the CCHmac for generating HMAC:s:
NSData *xdata, *key;

unsigned int length = CC_SHA1_DIGEST_LENGTH;
unsigned char output[lengthl;

CCHmac (kCCHmacAlgSHAL, key.bytes, key.length, data.bytes, data.length, output);

Symmetric Encryption

At the time of writing, AES-128 & PBKDEF2 is a reasonable approach

for secure symmetric encryption—that is, encrypting and decrypting

173

messages.

The Advanced Encryption Standard (AES) is an encryption
specification established by the U.S. National Institute of Standards
and Technology (NIST). PBKDEF2 is a way of using a hash function
that is commonly used to generate the key for a block or stream
cypher, like AES.

The Security framework provides the building blocks to do symmetric
encryption, but requires developers to roll their own specific

implementation.

The first step is to create a function that generates a PBKDF2 key from
a salted password. A salt is random data used as an additional input to

a one-way function performed on a password.

static NSData * AES128PBKDF2KeyWithPassword(NSString *password,
NSData *salt,

NSError * __autoreleasing *error)

NSCParameterAssert(password);
NSCParameterAssert(salt);

NSMutableData *mutableDerivedKey = [NSMutableData dataWithLength: <=
kCCKeySizeAES128];

174

CCCryptorStatus status = CCKeyDerivationPBKDF(kCCPBKDF2, [password <—
UTF8String], [password lengthOfBytesUsingEncoding:NSUTF8StringEncoding], <
[salt bytes], [salt length], kCCPRFHmacAlgSHA256, 1024, [<
mutableDerivedKey mutableBytes], kCCKeySizeAES128);

NSData *derivedKey = nil;
if (status != kCCSuccess) {

if (error) {

*error = [[NSError alloc] initWithDomain:nil code:status userInfo: <=
nill;

}
} else {

derivedKey = [NSData dataWithData:mutableDerivedKey];

return derivedKey;

Next, a function to encrypt the data can be created, which takes the
data to encrypt and password, and returns the generated salt and
initialization, as well as any error encountered in performing the

operation, as out arguments:

static NSData *x AES128EncryptedDataWithData(NSData *data,
NSString *password,
NSData * __autoreleasing *salt,
NSData * __autoreleasing * <=
initializationVector,

NSError x __autoreleasing *error)

NSCParameterAssert(initializationVector);

175

NSCParameterAssert(salt);

uint8_t *saltBuffer = malloc(8);
SecRandomCopyBytes (kSecRandomDefault, 8, saltBuffer);
*salt = [NSData dataWithBytes:saltBuffer length:8];

NSData *key = AES128PBKDF2KeyWithPassword(password, *salt, error);

uint8_t *initializationVectorBuffer = malloc(kCCBlockSizeAES128);

SecRandomCopyBytes (kSecRandomDefault, kCCBlockSizeAES128, <=
initializationVectorBuffer);

kinitializationVector = [NSData dataWithBytes:initializationVector length:
kCCBlockSizeAES128];

size_t size = [data length] + kCCBlockSizeAES128;

void *buffer = malloc(size);

size_t numberOfBytesEncrypted = 0;

CCCryptorStatus status = CCCrypt(kCCEncrypt, kCCAlgorithmAES128, <—
kCCOptionPKCS7Padding, [key bytes], [key lengthl, [xinitializationVector
bytes], [data bytes], [data lengthl, buffer, size, & +
number0fBytesEncrypted);

NSData *encryptedData = nil;
if (status != kCCSuccess) {
if (error) {
xerror = [[NSError alloc] initWithDomain:nil code:status userInfo:
nill;
}
} else {
encryptedData = [[NSData alloc] initWithBytes:buffer length: <—
number0fBytesEncrypted];
}

return encryptedData;

176

Finally, to decrypt the data, do the same process in reverse, this time
passing the data and password along with the salt and initialization

vector generated from the encryption function:

static NSData * AES128DecryptedDataWithData(NSData xdata, NSString *password, <—
NSData *salt, NSData *initializationVector, NSError * __autoreleasing x <>
error) {
NSData xkey = AES128PBKDF2KeyWithPassword(password, salt, error);

size_t size = [data length] + kCCBlockSizeAES128;
void xbuffer = malloc(size);

size_t numberOfBytesDecrypted = 0;

CCCryptorStatus status = CCCrypt(kCCDecrypt, kCCAlgorithmAES128, <—
kCCOptionPKCS7Padding, [key bytes], [key lengthl, [initializationVector <=
bytes], [data bytes], [data length], buffer, size, & <
number0fBytesDecrypted) ;

NSData *encryptedData = nil;
if (status != kCCSuccess) {
if (error) {
*error = [[INSError alloc] initWithDomain:nil code:status userInfo: <
nill;
+
} else {
encryptedData = [[NSData alloc] initWithBytes:buffer length: <=
number0fBytesDecrypted];
}

177

return encryptedData;

178

Chapter 11

System
Configuration

System Configuration contains C APIs for determining hardware

configuration and network status.

Most developers' exposure to the framework comes by way of a piece
of Apple sample code, known simply as "Reachability”. What was
intended to demonstrate the use of System Configuration calls to
determine internet connectivity, has instead become a part of
thousands of shipping applications. In this way, one could argue that
Reachability is a victim of its own success. Rather than documenting

System Configuration API, it has inadvertently made them obsolete.

The unfortunate consequence is that most developers have a poor
understanding of what reachability is, and how it should be used. As a
result, many of those applications with Reachability.m in their
source tree may actually be making the user experience worse than if

nothing had been done at all.

Reachability

"Am I connected to the internet?" is a deceptively hard question to

answer.

From the user’s perspective, it should be pretty easy, right? Just type
http://apple.com into Safari, and see if anything loads. Nope.

180

Networking is so impossibly ad-hoc and idiosyncratic, that it’s

honestly a surprise that any of this works at all.

Determining Network Reachability Synchronously

Like any networking, establishing reachability should not be done
synchronously. However, for the purposes of building up to the more

complicated asynchronous usage, here’s what that would look like:

@import SystemConfiguration;

SCNetworkReachabilityRef networkReachability =
SCNetworkReachabilityCreateWithName (kCFAllocatorDefault,
[@"www.apple.com" UTF8Stringl);
SCNetworkReachabilityFlags flags =
SCNetworkReachabilityGetFlags (networkReachability, &flags);

// Use flags to determine reachability

CFRelease(networkReachability);

SCNetworkReachabilityRef is the data type responsible for
determining network reachability. It can be created by either passing

host name, like in the previous example, or a sockaddr address:

181

BOOL ignoresAdHocWiFi = NO;

struct sockaddr_in ipAddress;
bzero(&ipAddress, sizeof(ipAddress));
ipAddress.sin_len = sizeof(ipAddress);
ipAddress.sin_family = AF_INET;
ipAddress.sin_addr.s_addr =
htonl(ignoresAdHocWiFi ? INADDR_ANY : IN_LINKLOCALNETNUM);

SCNetworkReachabilityRef networkReachability =
SCNetworkReachabilityCreateWithAddress(kCFAllocatorDefault,

(struct sockaddr x)ipAddress);

SCNetworkReachabilityFlags is a synchronous call that determines
the reachability of the available network interfaces. Because there are
so many different factors that affect reachability, the returned value of

this function is not a simple YES / NO, but a bitmask of characteristics:

Reachability Flag Values

Reachable The specified node name or address can be reached

using the current network configuration.

Transient The specified node name or address can be reached
Connection via a transient connection, such as PPP.
Connection The specified node name or address can be reached
Required using the current network configuration, but a

connection must first be established.

182

Connection On
Traffic

(continued)

The specified node name or address can be reached
using the current network configuration, but a
connection must first be established. Any traffic
directed to the specified name or address will

initiate the connection.

Connection On

Demand

The specified node name or address can be reached
using the current network configuration, but a

connection must first be established.

Intervention

Required

The specified node name or address can be reached
using the current network configuration, but a
connection must first be established. In addition,
some form of user intervention will be required to
establish this connection, such as providing a

password, an authentication token, etc.

Is Local Address

The specified node name or address is one that is
associated with a network interface on the current

system.

Is Direct

Network traffic to the specified node name or
address will not go through a gateway, but is routed

directly to one of the interfaces in the system.

183

While the intricacies of network interfaces are interesting, they are
little more than an academic exercise for app developers, who, like

their users, would honestly prefer a YES or NO answer.

Here’s how to boil down a complex truth:

BOOL isReachable =
((flags & kSCNetworkReachabilityFlagsReachable) != 0);

BOOL needsConnection =
((flags & kSCNetworkReachabilityFlagsConnectionRequired) != 0);

BOOL canConnectionAutomatically =
(((flags & kSCNetworkReachabilityFlagsConnectionOnDemand) != @) ||
((flags & kSCNetworkReachabilityFlagsConnectionOnTraffic) != 0));

BOOL canConnectWithoutUserInteraction =
(canConnectionAutomatically &&

(flags & kSCNetworkReachabilityFlagsInterventionRequired) == 0);
BOOL isNetworkReachable =

(isReachable &&

(!needsConnection || canConnectWithoutUserInteraction));

Taking it a step further, reachability flags can also be used to

determine which network interface is being used:

if (isNetworkReachable == NO) {
// Not Reachable

184

#if TARGET_O0S_IPHONE

else if ((flags & kSCNetworkReachabilityFlagsISWWAN) != @) {
// Reachable via WWAN

}

#endif

else {
// Reachable via WiFi

Calling SCNetworkReachabilityFlags on the main thread invokes a
DNS lookup with a 30 second timeout. *° This is bad. Don’t make
blocking, synchronous calls to SCNetworkReachabilityFlags.

Determining Network Reachability Asynchronously

Thankfully, the System Configuration framework provides a set of

APIs for monitoring reachability changes asynchronously.

First, define a static callback function, which takes the network
reachability reference, the flags, and any additional context to be

passed.

50 To put this into a perspective: an app can expect to be killed by the system watchdog process after 20
seconds.

185

static void ReachabilityCallback(
SCNetworkReachabilityRef target,
SCNetworkConnectionFlags flags,

void *context)

/] ees

Once the callback function is declared, it can be set on an

SCNetworkReachabilityRef, which is then scheduled on a runloop:

SCNetworkReachabilityContext context = {@, NULL, NULL, NULL, NULL};

SCNetworkReachabilitySetCallback(networkReachability,
ReachabilityCallback,
&context));

SCNetworkReachabilityScheduleWithRunLoop(reachability,
CFRunLoopGetMain(),
kCFRunLoopCommonModes)) ;

Now, whenever the network reachability of the device changes, the
ReachabilityCallback function will be called. This information can
be then communicated to the application by posting to
NSNotificationQueue, or by invoking a block passed into the

186

SCNetworkReachabilityContext argument.

Network Configuration Settings

One would be forgiven for thinking that System Configuration was a
one-trick pony. Almost every mention to the framework is made in
reference to network reachability—which itself, is a topic dominated

by that darned Reachability sample.

The more obscure swathe of functionality has to do with querying the
dynamic store of a system: SCDynamicStore. These APIs are, alas, only
available on OS X.

Querying

SCDynamicStoreRef provides a key-value interface to the current

system configuration, which is managed by the configd daemon.

A list of available keys can be divined using

SCDynamicStoreCopyKeyList:

187

SCDynamicStoreContext context = { @, NULL, NULL, NULL, NULL };
SCDynamicStoreRef store = SCDynamicStoreCreate(NULL, NULL, nil, &context);
NSArray *xkeys =
(__bridge_transfer NSArray x)
SCDynamicStoreCopyKeyList(store, CFSTR(".+"));

e Setup:/Network/Service/.../IPv4,

e Setup:/Network/Service/.../IPv6,

e ... 100+ Items ...

o State:/Network/Interface/p2p@/Link,

e State:/Network/Interface/100/IPv6,

e State:/IOKit/LowBatteryWarning,

e State:/Network/MulticastDNS,

e State:/Network/Global/Proxies,

e State:/Network/Interface/bridge@/Link

For a complete list of keys, see Apple’s System Configuration Pro-

gramming Guide. ¢

a https://developer.apple.com/

With a list of keys in hand, the purpose of SCDynamicStore becomes a
little clearer. An application can be notified of changes in IP address,

network interfaces, or even when the device’s battery is running low.

188

https://developer.apple.com/

The semantics here are the same as what’s used for monitoring

network reachability.

As an example, a list of available network interfaces can be found with
the State:/Network/Interface key:

SCDynamicStoreContext context = { @, NULL, NULL, NULL, NULL };
SCDynamicStoreRef store = SCDynamicStoreCreate(NULL, NULL, nil, &context);
CFPropertyListRef propertylList =
SCDynamicStoreCopyValue(store, CFSTR("State:/Network/Interface"));
NSArray xinterfaces =
(__bridge NSArray *)
CFDictionaryGetValue(propertyList, CFSTR("Interfaces"));

e 100

e gifo

o stf0O

e enod

e enl

e en2

e bridge0
e p2p0

e utuno

189

Monitoring

The real utility of the dynamic store is being able to monitor changes,
so that an application can immediately respond to things like Airport

being turned on or the local IP address changing.

In a way, this is just a more generalized formulation of monitoring
network reachability. Create a dynamic store, listen on a particular

network service entity key, and set a callback function pointer:

static void Callback(SCDynamicStoreRef store,
CFArrayRef changedKeys,

void *info)

if (info) {
((void (#)())info) (changedKeys);

id callback = ~(NSArray *changedKeys){
/] «an

SCDynamicStoreContext context =
{0, (__bridge void *)callback, NULL, NULL, NULL};

SCDynamicStoreRef store =
SCDynamicStoreCreate (NULL,
CFSTR("IPv4AddressMonitor"),
Callback,

190

&context);

NSString *ipv4 =
(NSString *)SCDynamicStoreKeyCreateNetworkServiceEntity(NULL,
kSCDynamicStoreDomainState,
kSCCompAnyRegex,
kSCEntNetIPv4);

SCDynamicStoreSetNotificationKeys(store, NULL, @[ipv4])

SCDynamicStoreSetDispatchQueue(store, dispatch_get_main_queue());

191

Chapter 12

International
Components
for Unicode

Language is the essence of our very consciousness. It's how we reason.

It's why we can reason at all.

We understand the world in terms of nouns, and navigate through it
with verbs. Adjectives focus discrete observations into feelings and

judgements. We progress as a society through the written records of
our fore-bearers. And it will be our own words that outlast us, in the

end.

That we can communicate at all is a miracle. That ideas can travel from
one mind to another is beyond belief—and yet is so well-understood
that it barely registers a second thought. By communicating, we create
understanding among one another. We evoke empathy, and expand
the boundaries of our moral consideration to others. Our world gets

bigger.

However, when linguistic distance is too much to overcome and
communication breaks down, it becomes difficult to empathize. A
sense of otherness forms. Whether interpersonally or internationally,

failure to communicate remains the primary cause of conflict.

As a technology that has done so much to eliminate linguistic and
cultural distance, there is a strong case to be made that Unicode is one

of the most important technologies ever created for our species.

193

At least in terms of Apple’s SDKs, the role Unicode plays is difficult to
over-state. This chapter will look at how one aspect of Unicode in
particular, the ICU, or International Components for Unicode, are

used in Foundation and Core Foundation.

Unicode

Unicode is the bedrock of international computing. It all started in
1987 with three individuals: Joe Becker from Xerox, and Lee Collins &
Mark Davis from Apple.

Their goals for Unicode were simple, yet ambitious:

 Be universal, addressing the needs of world languages.
« Be uniform, with fixed-width codes for efficient access.

« Be unique, such that each bit sequence has only one interpretation.

Since its inception, Unicode has succeeded in creating a
universally-adopted standard, with over 100,000 characters

represented for languages used by billions of people.

ICU

ICU, or International Components for Unicode, is the industry

standard for providing Unicode and globalization support in software.

194

It was was created by IBM in the 90’s, and has been continuously

maintained since then.

ICU4C, its C/C++ libraries, form the backbone of Apple’s operating
systems, in the form of libicucore, a private-ish framework used
extensively by Core Foundation and Foundation, but unavailable for
public consumption. While it is possible to vendor libicucore, there is
little practical advantage over simply using the public SDK APIs built

on top of it, such as NSLocale, NSCalendar, and CFStringTransform.

As such, this chapter will investigate ICU as a way to better
understanding how those higher-level APIs work, and how this

information can be used to exploit undocumented API features.

CLDR

The CLDR, or Common Locale Data Repository, is what makes ICU
so compelling as a technology. Weighing in at over 400MB of JSON
data, the CLDR contains the authoritative encoding for all of

humanity’s cultural conventions.

The CLDR is available for download in both XML and JSON formats

from the Unicode website. ¢

a http://cldr.unicode.org/index/downloads

195

http://cldr.unicode.org/index/downloads

The main directory of the CLDR contains a multitude of
subdirectories—one for each available locale. Within each locale
directory are a collection of files describing a particular aspect of that

locale:

Calendars

There are 18 different calendars represented in the CLDR, from the
standard Gregorian, to all manners of ancient, religious, and obscure

systems.

 Calendar

o Buddhist

o Chinese

« Coptic (a.k.a Alexandrian)
« Dangi

« Ethiopic

o Ethiopic (Amete Alem)

o Hebrew

« Indian

o Islamic

o Islamic (Civil)

196

Islamic (Saudi Arabia)

Islamic (Tabular)

e Islamic (Um al-Qura)
« Minguo (Republic of China)
 Japanese

e Persian

Each calendar is represented in a separate file for each locale. Each file
is several hundred lines long, and contains the months of the year and
days of the week in various levels of abbreviation, as well as the

formatting rules for dates and time intervals.

NSCalendar and NSDateFormatter use this information to parse and

format dates into locale-appropriate formats: °!

Characters

For each language spoken within a locale, an inventory of characters is

provided, along with collation indexes and formatting rules for ellipsis.

51 Due to their differing release schedules, changes in the CLDR are leading indicators of the next version
of iOS & OS X. For example, the CLDR v25 added information about the Coptic and Ethiopic calendars,
which were then added to NSCalendar in iOS 8 & OS X 10.10.

197

Character inventories are likely used by NSLinguisticTagger as a low
pass for evaluating the NSLinguisticTagSchemeLanguage of a string.
A string with characters beyond the orthographic inventory of a
language is unlikely to match. Conversely, the relative frequencies of
exemplar characters may be informative in deciding between two

likely candidates.

Exemplar characters for an NSLocale can be retrieved with the

NSLocaleExemplarCharacterSet key.

Collation indexes are used by UILocalizedIndexedCollation to
segment linguistic records appropriately for the current locale.
American English uses the Latin alphabet to collate information like

names:

[ABCDEFGHIJKLMNOPQRSTUVWXY Z]

However, Swedish extends the Latin alphabet, with a few extra

characters of its own: °2

[NABCCDDPEEFGHIJKLMNNDOPQRSSTFUVWXYZZ@ARADOII

52 Order indeed matters! Putting A entries immediately after A in Swedish would be as jarring and non-
sensical as clustering b, d, p, and q together in English because they happen to look the same.

198

Ellipsis rules specify how truncated text should be formatted, which,
depending on whether the truncation, is to be done in the initial,
medial, or final position, and whether there’s a word boundary at that

point:

Example Ellipsis Rules

Initial
Medial

Final

Word Initial
Word Medial
Word Final

Currencies

Forget music or Esperanto; money is the real universal language. Each
currency is listed according to its ISO 4217 code (USD, EUR, GBP,
etc.), and includes its locale-specific symbol ($, €, £, etc.). Most of this
information is consistent across various locales, but there is built-in

redundancy to accommodate things like count-specific display names.

199

NSLoca'le uses this information to lookup the appropriate currency
code and symbol for a specified locale. This information is, in turn,
passed into NSNumberFormatter when presenting numbers with

NSNumberFormatterCurrencyStyle.

Date Fields

In addition to calendar details, each locale has rules for how to do
relative date formatting, such as "now", "yesterday" or "last week".
Idiomatic deictics vary between different languages. For example,
German has the word "vorgestern" to describe “the day before
yesterday". Along with idiomatic phrases, there are formats for
conventional / formulaic past and future deictics, such as "1 week ago"

and "in 4 seconds".

This information is used by NSDateFormatter when

doesRelativeDateFormatting is set to YES.

Delimiters

Each language has its own take on how to delimit quotations:

200

Quotation Delimiters

English “I can eat glass, it doesn’t harm me.”

German ,Ich kann Glas essen, das tut mir nicht weh.“

« »

The CLDR specifies primary (“ ”) and optional alternate (“’) quotation

start and end delimiters for each language used by a locale.

Quotation delimiters for an NSLocale can be retrieved with the
NSLocaleQuotationBeginDelimiterKey /
NSLocaleAlternateQuotationBeginDelimiterKey and
NSLocaleQuotationEndDelimiterKey /
NSLocaleAlternateQuotationEndDelimiterKey keys.

Languages
This one is kinda meta. The languages file specifies its respective
locale’s way to refer to that language. **

As an example, NSLocale uses this information for

displayNameForKey when passed the NSLocaleLanguageCode key:

53 Throughout the CLDR, the canonical identifier for a language is its ISO 639 code.

201

NSLocale xfrLocale = [[NSLocale alloc] initWithLocaleIdentifier:@"fr_FR"];
NSLog(@"fr: %@",
[frLocale displayNameForKey:NSLocalelLanguageCode
value:@"fr"]);
NSLog(@"en: %@",
[frLocale displayNameForKey:NSLocalelLanguageCode

value:@"en"]);

NSLocaleLanguageCode
fr francais
en anglais

Layout

Layout details for a locale are pretty simple: they specify the character
order (left-to-right or right-to-left) and line order (top-to-bottom or

bottom-to-top) for each language.

202

List Patterns

Lists are the heart, body, and soul of the accusative case. Rules for how
items in a list are delimited vary between locales and languages, and all

of those differences are enumerated in the CLDR.

From an implementation perspective, it’s interesting to see how these
rules are codified. Instead of specifying, for example, delimiting
character and conjunction, which would make sense at least for
English, the CLDR specifies formats for start, middle, and end
patterns. Languages may, in turn, have unique sets of patterns to

accommodate different contexts, like units.

In practice, the main differences between locales are whether to use
the standard or full-width comma, whether to use inter-item spacing,

and whether to use a conjunction at the end. **

Foundation does not currently make use of this information, as it does

not provide anything along the lines of an NSArrayFormatter.

54 Conjunctive list patterns also offer an alternative to accommodate the terminal delimiter, a.k.a. Oxford
Comma.

203

Locale Display Names

Like languages, the localeDisplayNames file defines locale-specific
display names for different types of information. Sort order, number
systems, writing systems, calendars, and collation schemes are all

represented here.

This information is used throughout iOS and OS X any time locale
preferences are provided. However, not all of the information
provided by the CLDR can be accessed through system APIs.

Measurement System Names

The world is so close to making this information irrelevant. If only we
could get the USA on the SI train to metric town... what a world it

would be.

Anyway, the measurementSystemNames file specifies the localized

name of each measurement system (Metric, US, & UK).

To determine if a given NSLocale uses the metric system, use the

NSLocaleUsesMetricSystem key in —objectForKey:.

204

Numbers

This file codifies all of the rules about number formatting for a locale:
number system, formats for decimal, scientific, percent, and currency
styles; preferred symbols for decimal (.), group (,), list (;), plus sign
(+), minus sign (-), percent sign (%), per mille sign (%o), exponential
(E), infinity (o), and not a number (NaN); and patterns for number

ranges. >°

As you might expect, this is where NSNumberFormatter derives its

formatting rules.

POSIX

This one is actually quite interesting—not something most

English-speaking computer users probably have considered.

When Unix commands prompt for confirmation, they are expecting a

yes or no answer. In English, it’s pretty clear: yes /y or no / no.

But what about other languages?

55 Unicode nerds will be delighted by the fact that the generic currency symbol, "a", is put to good use here.

205

In Italian, the options are si/si/s or no/n. In Russian, na/ o or Het

/ H are the acceptable answers.

The CLDR has rules for each language, making it straightforward for
software developers using ICU to make agreeable software in all

locales.

Since most iOS and OS X apps prefer GUIs to CLIs, this is not a
prescient matter, and as such, is not supported by the SDKs.

Scripts

There is a many-to-many relationship between scripts and languages.
Some languages have multiple scripts. Most scripts are used by more

than one language.

ISO 15924 is the standard for identifying scripts. Each script is

assigned both a 4 character and a numeric identifier.

For example, Latn is Latin script, Hira is Japanese Hiragana, and Brai

is Braille.

For each locale in the CLDR, there are localized names for each script.

NSLoca'le can tap into this by fetching the NSLocaleScriptCode key.

206

Territories

Here’s where things start to become a little tense. A locale’s
territories file includes names for countries (according to ISO 3166)

and world region, according to their United Nations geoscheme ID.

The difficulty here is how politically contentious names and geography
can be. Some countries may not be recognized by other countries, or

may have territory annexed as part of an armed conflict.

Since programmers don’t have a dog in most geopolitical fights,
adopting ICU standards is a smart choice, which minimizes the

possibility of unintentionally sparking an international crisis.

Only country codes are exposed by NSLocale, with the
NSLocaleCountryCode key. However, AddressBook and other
frameworks harness the CLDR database to localize country names

throughout the operating system.

Time Zone Names

Any programmer who knows enough about time zones knows that

they want nothing to do with coding any of that themselves.

207

Timezones range from UTC-12 to UTC+14—spanning a total of 26
hours, which is weird, considering that a day only has 24. Some time
zones observe daylight savings time, while others don’t. And of the
ones that do, some of them use partial offsets, £30 or 45 minutes in
some cases. Certain countries that sweep across a wide arc of
longitude, like the United States and Canada, are split up across a
number of different time zones. Other countries, like China, are
standardized to only a single timezone for an equivalent span,
meaning that by the time the sun rises in the western city of Kashgar at

8AM, it’s nearly mid-day in Beijing.

With so many edge cases, it’s as if every time zone is an exception to
the rule. As such, each timezones file is several thousand lines long,
and includes listings for hundreds of regions, countries, and cities

around the world.

Thankfully, NSTimeZone makes its calculations based on this

information so you don't have to.

Transform Names

A transform is the process by which text in one script or writing

standard is converted into another. For major scripts, there are

208

standardized conventions for transforms. BGN is used to transform
Russian Cyrillic into Latin, Jamo for Korean Hangul to Latin, and
Pinyin for Chinese to Latin. There are transforms for CJK (Chinese,
Japanese, Korean) characters to go between half- and full-width
representations. There is also the UNGEGN (United Nations Group of
Experts on Geographical Names) transform, which standardizes the

transliteration of toponyms, or place names.

Each of these standard transforms has a name associated with them,
which vary across locales. The CLDR has correspondences for each

language.

Units

There are many different types of units, each representing a particular
physical quantity, like acceleration, angle, area, duration, length, mass,
power, pressure, speed, temperature, or volume. Since a locale can

have slightly different standards for how to format and represent these

units, the CLDR provides patterns for each.

With the introduction of HealthKit, Foundation added formatters for
energy, mass, and length. MapKit also provides a formatter for
distance in miles and kilometers. Each of these take advantage of the

unit formatting rules in the CLDR.

209

Variants

The variants records of a locale are a grab bag of localized names for
BCP 47 subtags, which include dialects, orthographies, and
transliteration schemes. These are significant alternatives to the
accepted standards of a particular language, like, for example, the
Wade-Giles and Hepburn romanization strategies for Mandarin
Chinese and Japanese, which were made obsolete by Pinyin and

Romaji, respectively.

Even for Unicode, many of these are pretty obscure. A tag for
specifying the Late Middle French dialect based on Jean Nicot’s 1606
foundational lexicographic text Thresor de la langue francoyse? Yeah,

probably not going to be relevant for the next big social networking

app.

Supplemental

Finally, in a totally separate top-level directory exists a supplemental
directory of records. There’s almost as much going on in here as in the
individual locale records, but since not as much of it is currently

available through Objective-C APIs, we'll just skim through:

210

Calendar Data: Epochs of calendar system eras, and whether the
calendar was based on the lunar or solar cycles.

Calendar Preference Data: Ordered list of calendars supported in
each locale, sorted by preference.

Character Fallbacks: Simpler alternatives for less well-supported
characters, such as (C) for "©" or 1/2 for "%2", as well as currency
symbols, ligatures, and compound characters in Korean and Hebrew.
Code Mappings: Top-level domain code mappings.

Currency Data: Histories of currencies used by different countries,
including start and end date of usage.

Day Periods: Various schemes for dividing up the hours of a day,
from simple: "a.m. / p.m.", to excessively precise: "wee hours / early
morning / morning / late morning / noon / mid day / afternoon /
evening / late evening / night".

Gender Rules for Plurals: Rules for how to gender plurals. *°
Language Data: A list of languages and their respective scripts and
territories.

Language Matching: Rules for how similar languages can be
interchanged, such as Kazakh and Russian.

Likely Subtags: Given a BCP 47 language tag, the most likely subtags

to be associated.

56

In some languages, like Arabic, the addition of a single male-gendered word "taints" a collection of
female-gendered words, making the entire collection male-gendered. Other languages do not have such
a rule—or better yet, lack gendered nouns completely.

211

Measurement Data: Which countries use metric vs. imperial units,
or A4 vs. US-Letter for paper sizes. >’

Metadata: There be dragons.

Metazones: Records establishing a regional hierarchy for localities.
Numbering Systems: Inventory and rules for alternative numbering
systems, like Arabic, Roman, full-width CJK, and spelled out
English numerals.

Ordinals: Rules or ordinal numbers for each language (i.e. 1st, 2nd,
3rd, etc.).

Parent Locale: Establishes a directed graph relationship from
regions to parent locale.

Plural Rules: Each language uses any of the 6 distinct Unicode
counting rules: zero, one, two, few, many, and other.

Postal Code Data: Regular expressions describing the postal code
rules for each country.

Primary Zones: The primary time zones.

References: A bibliography of sources used to determine all of these
different rules. *®

Telephone Code Data: International dialing codes for each country.
Territory Containment: Establishes the spatial relationships for the

geographic areas of territories.

57

The rule "001", the UN geographic region code for the world, is used as a catch-all, such that only the
exceptions need be defined.

A significant percentage of citations are for Wikipedia or the CIA World Factbook.

212

o Territory Information: A breakdown of regional statistics, including
population, GDP, literacy rate, and language populations.

o Time Data: tl;dr - {"_allowed":"H h", "_preferred":"h"}.

o Week Data: For each locale, the minimum number of days in a
week, and which day is the start of the week.

« Windows Zones: Legacy mapping of timezone information to

however Microsoft did things in the past.

Transforms

Originally designed to convert text in one script to another, ICU
transforms have evolved into a powerful tool for working with
Unicode text, with case and width conversion, composite character

sequence normalization, and removal of accents and diacritics.

ICU transforms are exposed through the CFStringTransform
function in Core Foundation. About a dozen or so string constants are
defined for common operations, like kCFStringTransformToLatin,
which conveniently transliterates text into its corresponding Latin
alphabet representation. Unfortunately, these constants have opaque
values, which ends up obscuring the fact that CFStringTransform will

accept any valid ICU transform.

213

An ICU transform consists of 1 or more semicolon-delimited
mappings. Each mapping is either unidirectional or bidirectional

between the left-hand side and right-hand side values.

For example, a bidirectional transform between a copyright symbol

and its ASCII representation could be expressed as:

(c) <= ©;

The } operand constrains a rule to a particular context, like in this
unidirectional mapping that only removes hyphens after lowercase

letters:

[:lowercase letter:] } '-' > '!

Each mapping is evaluated in order, and therefore should be listed

starting with the most specific rules and ending with the most general.

A complete reference for ICU transform rule syntax can be found

on the ICU project website. ¢

a http://userguide.icu-project.org/transforms/general/rules

214

http://userguide.icu-project.org/transforms/general/rules

ICU provides a number of built-in transliterations for common and
useful operations, which can be combined with other rules to

accomplish virtually any automated text transformation task.

Text Processing

ICU has transliterations for basic text processing tasks like changing

case or normalization:

Text Processing Transforms

Any-Null Has no effect; leaves input text unchanged.

Any-Remove Deletes input characters. This is useful
when combined with a filter that restricts

the characters to be deleted.

Any-Lower, Any-Upper, Converts to the specified case. See Case
Any-Title Mappings for more information.

Any-NFD, Any-NFC, Any— Converts to the specified normalized form.
NFKD, Any—-NFKC, Any—FCD,

Any-FCC

Any-Publishing Converts between real punctuation and

typewriter punctuation.

215

Accent and Diacritic Stripping

One of the most common normalization tasks is the removal of

accents and diacritics. ICU transforms provide a flexible solution to

this problem.
Normalization Transforms
"NFD; [:Mn:] Remove; Removes all accents and diacritics.
NEC"

Using this transform, "English language licks ifiterésting diagritics"

becomes "English language lacks interesting diacritics"

The kCFStringTransformStripCombiningMarks constant can also be

used to the same effect.

Unicode Symbol Naming

Every code point in the Unicode standard has an official name, which

can be retrieved using an ICU transform:

216

Unicode Symbol Naming Transforms

Any-Name Replaces each character with its Unicode

name.

Applying this transform to "a" yields "{LATIN SMALL LETTER A
WITH RING ABOVE}". *? ¢

Script Transliteration

Script transliterations are a killer feature of ICU, to put it mildly. For
the billions of people in the world who can only read or write in the
scripts of their native languages, the ability to transform any text into

something pronounceable is itself transformative to humanity.
The ICU includes the following transliterations:

o Latin <—> Arabic, Armenian, Bopomofo, Cyrillic, Georgian, Greek,
Han, Hangul, Hebrew, Hiragana, Indic (Devanagari, Gujarati,
Gurmukhi, Kannada, Malayalam, Oriya, Tamil, & Telegu), Jamo,
Katakana, Syriac, Thaana, & Thai.

59 This transformation is especially useful (or at least entertaining) for Emoji.
60 Any-Name is equivalent to using the kCFStringTransformToUnicodeName constant defined in Core
Foundation.

217

e Indic <—> Indic

« Hiragana <-> Katakana

« Simplified Chinese (Hans) <-> Traditional Chinese (Hant)

Source and target specifiers can be be script identifiers ("Latin" /

"Latn"), Unicode language identifiers (fr, en_US, zh_Hant), or special

tags (Any, Hex).

Here are some examples of transliterations chained together in useful

ways:

Script Transliteration Transforms

Any-Latin

Transliterate text into Latin script, perhaps
in order to make it pronounceable by

English speakers.

Any-Latin;Latin-
Hangul

Transliterate text into Hangul, using Latin

as an intermediate representation

Any-Latin;Latin-
ASCII; [:"ASCII:]

Remove

Transliterate text to ASCII from
intermediate Latin representation,
removing any non-ASCII characters in the

process.

218

[:Latin:];NFKD;Lower;
Latin-Katakana;
Fullwidth-Halfwidth

(continued)

For all Latin characters, normalize
according to Normalization Form
Compatibility Decomposition, change to
lowercase, transliterate into Katakana, and
then convert into the halfwidth

representation.

Any-Latin;Latin-

NumericPinyin

Transliterate text into Latin, changing
Pinyin accents into their numeric

equivalents .

219

Chapter 13

Dictionary
Services

Though widely usurped of their "go-to reference" status by the
Internet, dictionaries and word lists serve an important role behind
the scenes. A vast array of functionality relies on this information,
ranging from spell check, grammar check, and auto-correct to

auto-summarization and semantic analysis.

So, as a reference, here’s a look at the ways and means by which
computers give meaning to the world through words, in Unix, OS X,
and iOS.

Unix

Nearly all Unix distributions include a small collection of
newline-delimited lists of words. On OS X, these can be found at /

usr/share/dict:

$ ls /usr/share/dict
README
connectives
propernames
web?2
web2a

words@ —> web2

Symlinked to words is the web2 word list, which, though not

exhaustive, is still a sizable corpus:

221

$ wc /usr/share/dict/words
235886 235886 2493109

Skimming with head shows what fun lies herein. Such excitement is

n.n

rarely so palpable as it is among words beginning with "a":

$ head /usr/share/dict/words
A
a
aa
aal
aalii
aam
Aani
aardvark
aardwolf

Aaron

These giant, system-provided text files make it easy to grep crossword
puzzle clues, generate mnemonic pass phrases, and seed databases, but
from a user perspective, /usr/share/dict 's monolingualism and lack

of associated meaning render it pretty useless.

OS X builds upon this with its own system dictionaries. Never one to

disappoint, the operating system’s penchant for extending Unix

222

functionality through strategically placed bundles and plist files is in

full force with how dictionaries are distributed.

OS X

The OS X analog to /usr/share/dict can be found in /Library/
Dictionaries. A quick peek into the directory demonstrates one
immediate improvement over Unix, by acknowledging the existence of

languages other than English:

$ ls /Library/Dictionaries/

Apple Dictionary.dictionary/

Diccionario General de la Lengua Espan”ola Vox.dictionary/
Duden Dictionary Data Set I.dictionary/

Dutch.dictionary/

Italian.dictionary/

Korean - English.dictionary/

Korean.dictionary/

Multidictionnaire de la langue francaise.dictionary/

New Oxford American Dictionary.dictionary/

Oxford American Writer's Thesaurus.dictionary/

Oxford Dictionary of English.dictionary/

0xford Thesaurus of English.dictionary/

Sanseido Super Daijirin.dictionary/

Sanseido The WISDOM English-Japanese Japanese-English Dictionary.dictionary/
Simplified Chinese — English.dictionary/

The Standard Dictionary of Contemporary Chinese.dictionary/

223

OS X ships with dictionaries in Chinese, English, French, Dutch,
Italian, Japanese, and Korean, as well as an English thesaurus and a

special dictionary for Apple-specific terminology.

Diving deeper into the rabbit hole, we peruse the .dictionary

bundles to see them for what they really are:

$ 1s "/Library/Dictionaries/New Oxford American Dictionary.dictionary/Contents"

Body.data
DefaultStyle.css
EntryID.data
EntryID.index
Images/
Info.plist
KeyText.data
KeyText.index
Resources/
_CodeSignature/

version.plist

A filesystem autopsy reveals some interesting implementation details.
In the case of the New Oxford American Dictionary in particular,

contents include:

« Binary-encoded KeyText.data, KeyText.index, & Content.data
o CSS for styling entries
« 1207 images, from A-Frame to Zither

224

o Preference to switch between US English Diacritical Pronunciation
and International Phonetic Alphabet (IPA)

 Manifest & signature for dictionary contents

Normally, proprietary binary encoding would mean the end of what
one could reasonably do with data, but luckily, Core Services provides

APIs to read this information.

Getting Definition of Word

To get the definition of a word on OS X, one can use the
DCSCopyTextDefinition function, found in the Core Services

framework:

#import <CoreServices/CoreServices.h>
NSString *word = @"apple";
NSString xdefinition = (__bridge_transfer NSString *)DCSCopyTextDefinition(NULL <=

, (__bridge CFStringRef)word, CFRangeMake(@, [word lengthl));
NSLog(@"%@", definition);

Wait, where did all of those great dictionaries go?

Well, they all disappeared into that first NULL argument. One might
expect to provide a DCSCopyTextDefinition type here, as prescribed

225

by the function definition. However, there are no public functions to
construct or copy such a type, making NULL the only available option.

The documentation is as clear as it is stern:

"This parameter is reserved for future use, so pass NULL. Dictionary

Services searches in all active dictionaries.”

"Dictionary Services searches in all active dictionaries”, you say?

Sounds like a loophole!

Setting Active Dictionaries

Now, there’s nothing programmers love to hate to love more than the
practice of exploiting loopholes to side-step Apple platform
restrictions. Behold: an entirely error-prone approach to getting, say,
thesaurus results instead of the first definition available in the standard

dictionary:

NSUserDefaults xuserDefaults = [NSUserDefaults standardUserDefaults];

NSMutableDictionary *dictionaryPreferences = [[userDefaults <
persistentDomainForName:@"com.apple.DictionaryServices"] mutableCopyl;

NSArray xactiveDictionaries = [dictionaryPreferences objectForKey:@" <
DCSActiveDictionaries"];

dictionaryPreferences[@'DCSActiveDictionaries"] = @[@"/Library/Dictionaries/ <

Oxford American Writer's Thesaurus.dictionary"];

226

[userDefaults setPersistentDomain:dictionaryPreferences forName:@"'com.apple. <

DictionaryServices"];

{
NSString *xword = @"apple";
NSString xdefinition = (__bridge_transfer NSString *)DCSCopyTextDefinition(<
NULL, (__bridge CFStringRef)word, CFRangeMake(@, [word lengthl));
NSLog(@"%@", definition);
}
dictionaryPreferences[@'DCSActiveDictionaries"] = activeDictionaries;

[userDefaults setPersistentDomain:dictionaryPreferences forName:@"com.apple. <

DictionaryServices"];

"But this is OS X, a platform whose manifest destiny cannot be
contained by meager sandboxing attempts from Cupertino!”, you cry.

"Isn’t there a more civilized approach? Like, say, private APIs?"

Why yes, yes there are.

Private APIs

Not publicly exposed, but still available through Core Services are a
number of functions that cut closer to the dictionary services that we

crave:

extern CFArrayRef DCSCopyAvailableDictionaries();
extern CFStringRef DCSDictionaryGetName(DCSDictionaryRef dictionary);

227

extern CFStringRef DCSDictionaryGetShortName(DCSDictionaryRef dictionary);

extern DCSDictionaryRef DCSDictionaryCreate(CFURLRef url);

extern CFStringRef DCSDictionaryGetName(DCSDictionaryRef dictionary);

extern CFArrayRef DCSCopyRecordsForSearchString(DCSDictionaryRef dictionary, <
CFStringRef string, void *, void x);

extern CFDictionaryRef DCSCopyDefinitionMarkup(DCSDictionaryRef dictionary, <=
CFStringRef record);

extern CFStringRef DCSRecordCopyData(CFTypeRef record);

extern CFStringRef DCSRecordCopyDataURL(CFTypeRef record);

extern CFStringRef DCSRecordGetAnchor(CFTypeRef record);

extern CFStringRef DCSRecordGetAssociatedObj(CFTypeRef record);

extern CFStringRef DCSRecordGetHeadword(CFTypeRef record);

extern CFStringRef DCSRecordGetRawHeadword(CFTypeRef record);

extern CFStringRef DCSRecordGetString(CFTypeRef record);

extern CFStringRef DCSRecordGetTitle(CFTypeRef record);

extern DCSDictionaryRef DCSRecordGetSubDictionary(CFTypeRef record);

Private as they are, these functions aren’t about to start documenting

themselves, so let’s take a look at how they’re used:

Getting Available Dictionaries

NSMapTable *availableDictionariesKeyedByName =
[NSMapTable mapTableWithKeyOptions:NSPointerFunctionsCopyIn

valueOptions:NSPointerFunctionsObjectPointerPersonality];

for (id dictionary in (__bridge_transfer NSArray *)DCSCopyAvailableDictionaries <
) {

228

NSString *name = (__bridge NSString *)DCSDictionaryGetName((__bridge <
DCSDictionaryRef)dictionary);

[availableDictionariesKeyedByName setObject:dictionary forKey:name];

Getting Definition for Word

With instances of the elusive DCSDictionaryRef type available at our
disposal, we can now see what all of the fuss is about with that first

argument in DCSCopyTextDefinition:

NSString *word = @"apple";

for (NSString *name in availableDictionariesKeyedByName) {

id dictionary = [availableDictionariesKeyedByName objectForKey:name];

CFRange termRange = DCSGetTermRangeInString((__bridge DCSDictionaryRef) <=
dictionary, (__bridge CFStringRef)word, 0);
if (termRange.location == kCFNotFound) {

continue;

NSString xterm = [word substringWithRange:NSMakeRange(termRange.location, <
termRange. length)];

NSArray *records = (__bridge_transfer NSArray *x) <
DCSCopyRecordsForSearchString((__bridge DCSDictionaryRef)dictionary, (<=
__bridge CFStringRef)term, NULL, NULL);

if (records) {

229

for (id record in records) {
NSString xheadword = (__bridge NSString *)DCSRecordGetHeadword((<
__bridge CFTypeRef)record);
if (headword) {

NSString xdefinition = (__bridge_transfer NSStringk) <=
DCSCopyTextDefinition((__bridge DCSDictionaryRef)dictionary, (__bridge <
CFStringRef)headword, CFRangeMake(@, [headword lengthl));

NSLog(@"%@: %@", name, definition);

NSString *HTML = (__bridge_transfer NSStringx)DCSRecordCopyData <
((__bridge DCSDictionaryRef)dictionary, (__bridge CFStringRef)headword, <—
CFRangeMake (@, [headword lengthl));

NSLog(@"%@: %@", name, definition);

Most surprising from this experimentation is the ability to access the
raw HTML for entries, which combined with a dictionary’s bundled

CSS, produces what is shown in Dictionary.app.

i0S
iOS development is a decidedly more by-the-books affair, so

attempting to reverse-engineer the platform would be little more than

an academic exercise. Fortunately, a good chunk of functionality is

230

available (as of iOS 5) through the obscure UIKit class

UIReferencelLibraryViewController.

UIReferenceLibraryViewController is similar to an
MFMessageComposeViewController, in that provides a
minimally-configurable view controller around system functionality,

intended to be presented modally.

Simply initialize with the desired term and present modally:

UIReferenceLibraryViewController xreferenceLibraryViewController =
[[UIReferenceLibraryViewController alloc] initWithTerm:@"apple"]l;
[viewController presentViewController:referenceLibraryViewController
animated:YES

completion:nill;

This is the same behavior that one might encounter by tapping the
"Define" UIMenuItem on a highlighted word in a UITextView.

UIReferenceLibraryViewController also provides the class method
dictionaryHasDefinitionForTerm:. A developer would do well to
call this before presenting a dictionary view controller that will

inevitably have nothing to display. *'

61 In both cases, it appears that UIReferenceLibraryViewController will do its best to normalize the
search term, so stripping whitespace or changing to lowercase should not be necessary.

231

[UIReferenceLibraryViewController dictionaryHasDefinitionForTerm:@"apple"];

From Unix word lists to their evolved .dictionary bundles on OS X
(and presumably iOS), words are as essential to application
programming as mathematical constants and the "Sosumi" alert noise.
Consider how the aforementioned APIs can be integrated into your
own app, or used to create a kind of app you hadn’t previously
considered. There are a wealth of linguistics technologies baked into

Apple’s platforms, so take advantage of them.

232

Chapter 14

Xcode
Toolchain

Though we all come from different backgrounds, with different
perspectives that shape our experiences; though we do what we do
with various motivations, with beliefs and biases and opinions that sets

us apart from one another, there is one thing that brings us together:
We all have to use Xcode. One way or another. For better or worse.

As far as common causes go, honestly, things could be far more
desperate. With a few notable exceptions, Xcode seems to get better

with each release.

But of course, Xcode is not really just one application. Underneath the
GUI lies a confederation of applications and command line tools,

which are just as central to a developer’s workflow as the editor itself.

Xcode Tools

xcode-select

As if to prove, definitively, that irony is not dead in Cupertino,
everyone’s journey with Xcode begins with a choice. xcode-select
offers that choice, albeit one along the lines of the eternal question:
"Cake or Death?"

234

As of Mavericks, getting started as a developer on the Mac takes a

single command:

xcode-select ——install

This will install the Command Line Tools, which are necessary for

compiling Objective-C code.

Xxcrun

xcrun is the fundamental Xcode command line tool. With it, all other

tools are invoked.

$ xcrun xcodebuild

In addition to running commands, xcrun can find binaries and show
the path to an SDK:

$ xcrun —find clang
$ xcrun ——sdk iphoneos ——find pngcrush

$ xcrun ——sdk macosx ——show-sdk-path

235

Because xcrun executes in the context of the active Xcode version (as
set by xcode-select), it is easy to have multiple versions of the Xcode

toolchain co-exist on a single system. *?

Using xcrun in scripts and other external tools has the advantage of
ensuring consistency across different environments. For example,
Xcode ships with a custom distribution of Git. By invoking $ xcrun
git rather than just $ git, a build system can guarantee that the

correct distribution is run.

xcodebuild

The second most important Xcode tool is xcodebuild, which, as the

name implies, builds Xcode projects and workspaces.

Without passing any build settings, xcodebuild defaults to the scheme

and configuration most recently used by Xcode.app:

$ xcodebuild

However, everything from scheme, targets, configuration, destination,

SDK, and derived data location can be configured:

62 Such as when working with a Developer Preview.

236

$ xcodebuild -workspace NSHipster.xcworkspace \

—-scheme "NSHipster"

There are six build actions that can be invoked in sequence:

build

Build the target in the build root (SYMROOT). This is
the default build action.

analyze

Build and analyze a target or scheme from the build

root (SYMROOT). This requires specifying a scheme.

archive

Archive a scheme from the build root (SYMROOT).

This requires specifying a scheme.

test

Test a scheme from the build root (SYMROOT). This
requires specifying a scheme and optionally a

destination.

installsrc

Copy the source of the project to the source root
(SRCROOT).

install

Build the target and install it into the target’s
installation directory in the distribution root
(DSTROOT).

clean

Remove build products and intermediate files from
the build root (SYMROOT).

237

genstrings

The genstrings utility generates a . strings file from the specified C
or Objective-C source files. A .strings file is used for localizing an
application in different locales, as described under

"Internationalization” in Apple’s Cocoa Core Competencies. *

$ genstrings -a \

/path/to/source/files/*.m

For each use of the NSLocalizedString macro in a source file,
genstrings will append the key and comment into the target file. It’s
up to the developer to then create a copy of that file for each targeted

locale and have that file translated.

frlproj/Localizable.strings

/* No comment provided by engineer. x/
"Username"="nom d'utilisateur";

/* {User First Namel}'s Profile x/
"%@'s Profile"="profil de %1$@";

63 https://developer.apple.com/library/mac/documentation/general/conceptual/devpedia-cocoacore/-
Internationalization.html

238

https://developer.apple.com/library/mac/documentation/general/conceptual/devpedia-cocoacore/Internationalization.html
https://developer.apple.com/library/mac/documentation/general/conceptual/devpedia-cocoacore/Internationalization.html

ibtool

genstrings is to source code as ibtool is to XIB files.

$ ibtool --generate-strings-file \
Localizable.strings \

en. lpoj/Interface.xib

Although localization is its primary use case, ibtool boasts several
other features for working with Interface Builder documents. It can
change all references to a class name with the ——convert flag. It can
upgrade a document to the latest version, with the ——upgrade flag. It
can even enable Auto Layout, and update frames & constraints with
the ——enable-auto-layout, ——update-frames, and ——update-

constraints flags, respectively. **

iprofiler

iprofiler measure an apps performance without launching

Instruments.app:

64 One might imagine integrating these commands into a Git pre-commit hook in a large project, to ensure
consistency across developers and versions.

239

$ iprofiler -allocations \
-leaks \
-T 15s \
-0 perf \
—-a NSHipster

The preceding command will attach to the NSHipster app, run it for 15
seconds, instrument allocations and leaks, and then write the results to
perf. This output can then be read and visualized by Instruments.app

later.

xed

This command simply opens Xcode.

$ xed NSHipster.xcworkspace

By passing the -w flag, xed will wait until all opened windows are
closed. This is useful for scripting user interactions, such as prompting

a user to edit a file and continuing once finished.

240

agvtool

agvtool can be used to version Xcode projects, by reading and writing

the appropriate values in the Info.plist file.

$ agvtool what-version

...returns the current version of the project.

$ agvtool next-version

...increments CURRENT_PROJECT_VERSION and
DYLIB_CURRENT_VERSION. Passing the —all option will also update the
CFBundleVersion key in Info.plist. *

Other Tools

In addition to the aforementioned Xcode tools, there are a score of

other executables that can be invoked with xcrun:

65 Integrate agvtool into a build system to automatically track consecutive builds.

241

Compilation & Assembly

 clang: Compiles C, C, Objective-C, and Objective-C source
files.

o 1ldb: Debugs C,C, Objective-C, and Objective-C programs

 nasm: Assembles files.

 ndisasm: Disassembles files.

 symbols: Displays symbol information about a file or process.

 strip: Removes or modifies the symbol table attached to the output
of the assembler and link editor.

« atos: Converts numeric addresses to symbols of binary images or

processes.

Processors

e unifdef: Removes conditional #ifdef macros from code.

o ifnames: Finds conditionals in C++ files.

Libraries

« 1d: Combines object files and libraries into a single file.

242

« otool: Displays specified parts of object files or libraries.

o ar: Creates and maintains library archives.

« libtool: Creates a library for use with the link editor, 1d.
« ranlib: Updates the table of contents of archive libraries.
o mksdk: Makes and updates SDKs.

o lorder: Lists dependencies for object files.

Scripting

« sdef: Scripting definition extractor.
e sdp: Scripting definition processor.
« desdp: Scripting definition generator.

o amlint: Checks Automator actions for problems.

Packages

 installer: Installs OS X packages.
 pkgutil: Reads and manipulates OS X packages.

o lsbom: List contents of a bom (Bill of Materials).

243

Documentation

+ headerdoc: Processes header documentation.

 gatherheaderdoc: Compiles and links headerdoc output.

o+ headerdoc2html: Generates HTML from headerdoc output.

o hdxm12manxml: Translates from headerdoc XML output to a file for
use with xm12man

« xm12man: Converts Man Page Generation Language (MPGL) XML

files into manual pages.

Core Data

« momc: Compiles Managed Object Model (.mom) files
« mapc: Compiles Core Data Mapping Model (. xcmappingmodel) files

244

Chapter 15

Party
Tools

Third

appledoc

There’s an adage among Cocoa developers that Objective-C’s verbosity
lends itself to self-documenting code. Between
longMethodNamesWithNamedParameters: and the explicit typing of
those parameters, Objective-C methods don’t leave much to the

imagination.

But even self-documenting code can be improved with
documentation, and just a small amount of effort can yield significant
benefit to others.

In Objective-C, the documentation tool of choice is appledoc *.
Using a Javadoc-like syntax, appledoc is able to generate HTML and
Xcode-compatible .docset docs from . h files that look nearly

identical Apple’s official documentation.

Objective-C documentation is designated by a /*x */ comment block
(note the extra initial star) preceding any @interface or @protocol,
as well as any method or @property declarations. Documentation may
also contain labels for systematic fields, like parameters or return

value:

66 http://gentlebytes.com/appledoc/

246

http://gentlebytes.com/appledoc/

@param [param] [Description]: Describes what value should be

passed or this parameter
e @return [Description]: Describes the return value of a method
e @see [selector]: Provide "see also” reference to related item
» @discussion [Discussion]: Provide additional background
o @warning [description]: Call out exceptional or potentially

dangerous behavior

appledoc can be installed by following the latest installation

instructions provided on the project page, or with Homebrew °’:

$ brew install appledoc

To generate documentation, execute the appledoc command within
the root directory of an Xcode project, passing metadata such as

project and company name:

$ appledoc ——project-name CFHipsterRef \
——project—company "NSHipster" \
——company-id com.nshipster \

—-—output ~/Documents \

67 http://brew.sh

247

http://brew.sh

This will generate and install an Xcode .docset file from the

documentation in the headers found within the target directory.

Additional configuration options, including HTML output, can be
found by passing ——help:

$ appledoc —-help

xctool

xctool is a drop-in replacement for xcodebuild, the utility

underlying Xcode.app itself.

Every step of the build process is neatly organized and reported in a
way that is understandable and visually appealing, with ANSI
colorization and a splash of Unicode ornamentation, but xctool's
beauty is not just skin-deep: build progress can also be reported in

formats that can be read by other tools:

$ xctool -reporter plain:output.txt build

o pretty: (default) a text-based reporter that uses ANSI colors and

unicode symbols for pretty output.

248

o plain: like pretty, but with with no colors or Unicode.

 phabricator: outputs a JSON array of build/test results which can
be fed into the Phabricator code-review tool.

e junit: produces a JUnit / xUnit compatible XML -ile with test
results.

e json-stream: a stream of build/test events as JSON dictionaries,
one -er line (example output).

e json-compilation-database: outputs a JSON Compilation
Database of build events which can be used by Clang Tooling based
tools, e.g. OCLint.

Another improvement over xcodebuild is that xctool will run

application tests in your project in the same way Xcode.app does. *®

For this reason alone, xctool has great implications for the emerging
discipline of continuous integration testing within the Objective-C

community.

To install xctool, run the following command:

$ brew install xctool

68 xcodebuild can’t discern which targets in your scheme are test targets, let alone run them in the simu-
lator

249

OClLint

OClLint is a static code analyzer that inspects C code for common
sources of problems, like empty if/else/try/catch/finally
statements,unused local variables and parameters, complicated code
with high NCSS (Non Commenting Source Statements) or cyclomatic
/ NPath complexity, redundant code, code smells, and other bad

practices.

The best way to install OCLint is by using Homebrew Cask: *

$ brew cask install oclint

Remember xctool’s json-compilation-database reporter option?
Use that with the oclint-json-compilation-database helper
executable to kick off OCLint:

$ xctool -workspace NSHipster.xcworkspace \
—scheme "NSHipster" \
—-reporter json-compilation-database \

build > compile_commands.json

$ oclint-json-compilation-database

69 http://caskroom.io

250

http://caskroom.io

xcpretty

xcpretty is similar to xctool in that it improves on xcodebuild build
output, but instead of attempting to replace xcodebuild, xcpretty

augments and improves it.

In fact, xcpretty exemplifies the Unix philosophy of composability by
taking the piped output of xcodebuild, rather than instead of being
invoked directly:

$ xcodebuild [flags] | xcpretty -c

One major benefit to this approach is that it’s really fast—indeed, in
some cases, xcpretty is actually a bit faster than invoking xcodebuild

directly, as it saves on the amount of time spent printing to the console.

Another commonality with xctool is the reporters feature, which
features formatted output into JUnit-style XML, HTML, or the
aforementioned OCTool-compatible json-compilation-database

format.

251

xcpretty can be installed using RubyGems ”°, which is installed by
default on OS X:

$ gem install xcpretty

Nomad

Nomad is a collection of world-class command-line utilities for iOS
and OS X development. It automates the common administrative

tasks, so that developers can focus on building and shipping software.

Each tool can be installed individually, or all together with a single

command:

$ gem install nomad-cli

Cupertino "

The process of application provisioning is universally loathed by all

Apple developers. "

70 http://rubygems.org
71 Named after Cupertino, CA: home to Apple, Inc.'s world headquarters.
72 The only thing even close to evoking that much vitriol is being prompted by Xcode to enable Snapshots.

252

http://rubygems.org

Aside from the entire process being a nightmare from start to finish,

many of the operations require interacting through a web interface.

This not only requires a lot of extra clicking, but makes it very difficult

to automate.

Cupertino provides a CLI for managing devices, provisioning profiles,

app IDs, and certificates. 7*

$ ios devices:list

| Listing 2 devices. You can register 98 additional devices. |

| Device Name | Device Identifier |
| Johnny Appleseed iPad | ©0123456789012345678901234567890123abcdef |
Johnny Appleseed iPhone | abcdef0123456789012345678901234567890123 |

hoid

ios devices:add "iPad 1"=abc123
ios devices:add "iPad 2"=def456 "iPad 3'"=ghi789 ...

hoid

Shenzhen 7*

73

74

In lieu of an actual API for the Apple Provisioning Profile, Cupertino accomplishes this by mechanizing
the browser actions and scraping the results. It's a messy business, but it gets the job done.

Named for the Chinese city famous for its role as the center of manufacturing for a majority of consumer
electronics, including iPhones and iPads.

253

One thing web developers have on their iOS counterparts is the ability
to continuously deploy code within seconds, as opposed to waiting a

few days for Cupertino to approve (and sometimes reject!) an update.

Fortunately, a cottage industry has sprung up around development
and enterprise distribution. Third party like HockeyApp, DeployGate,
and TestFlight ”° offer developers an easier way to sign up test users
and send out the latest builds for QA.

Shenzhen is a tool for further automating this process, by building an
. ipa file and then distributing to an FTP/SFTP server, S3 bucket, or

any of the aforementioned third party services.

$ cd /path/to/i0S Project/
$ ipa build
$ ipa distribute:sftp —-host HOST -u USER -p PASSWORD -P FTP_PATH

Houston ”¢

Houston is a simple tool for sending Apple Push Notifications. Pass

credentials, construct a message, and send it to a device.

75 TestFlight's parent company, Burstly, was acquired by Apple in February of 2014.

76 Named for Houston, TX, the metonymical home of NASA’s Johnson Space Center, as in "Houston, We
Have Liftoff!".

254

$ apn push "<token>" \
—-c /path/to/apple_push_notification.pem \

-m "Hello from the command line!"

This tool is especially useful for testing remote

notifications—especially when implementing the feature in a new app.

Venice 7’

In-app purchases have, for better or worse, become the most profitable
business model for app developers. With so much on the line, ensuring

the validity of these purchases is paramount to one’s livelihood.

Venice is a CLI for verifying Apple In-App Purchase receipts, and

retrieving the information associated with receipt data.

$ iap verify /path/to/receipt

| Receipt |
| app_item_id | |
| bid | com.foo.bar

| bvrs | 20120427 |

77 Venice is named for Venice, Italy—or more specifically, Shakespeare’s The Merchant of Venice.

255

original_purchase_date Sun, 01 Jan 2013 12:00:00 GMT |

original_transaction_id 1000000000000001

product_id com.example.product
quantity

transaction_id 1000000000000001

version_external_identifier

|

|

| |
purchase_date | Sun, @1 Jan 2013 12:00:00 GMT |

| 1 |

| |

I |

Like Houston, Venice has a client library component to it, allowing it
to be deployed in a Rails or Sinatra application. Verifying receipts on
the server allows one to keep their own records of past purchases,
which is useful for up-to-the-minute metrics and historical analysis.

As such, it is recommended practice for anyone serious about IAPs.

Dubai 8

Passbook manages boarding passes, movie tickets, retail coupons, &
loyalty cards. Using the PassKit API, developers can register web
services to automatically update content on the pass, such as gate

changes on a boarding pass, or adding credit to a loyalty card.

Dubai makes it easy to generate . pkpass file from a script or the
command line, allowing one to rapidly iterate on the design and

content of your passes, or generate one-offs on the fly.

78 Dubai is named for Dubai, UAE, a center of commerce and trade

256

$ pk generate Example.pass -T boarding-pass

Once a pass is generated, it can be served locally over HT TP with

Dubai, allowing for passes to be previewed live in the iOS Simulator:

$ pk serve Example.pass —c /path/to/certificate.pl2
$ open http://localhost:4567/pass.pkpass

257

Chapter 16

CocoaPods

Civilization is built on infrastructure: roads, bridges, canals, sewers,
pipes, wires, fiber. When well thought-out and implemented,
infrastructure is a multiplying force that drives growth and
development. But when such formative structures are absent or ad

hoc, it feels as if progress is made in spite of the situation.
It all has to do with solving the problem of scale.

No matter what the medium, whether it's accommodating millions of
families into a region, or integrating a large influx of developers into a

language ecosystem, the challenges are the same.

In the case of Objective-C, CocoaPods provided a much-needed tool
for channeling and organizing open source participation, and served
as a rallying point for the community at a time of rapid growth and

evolution.

A Look Back

For the first twenty or so years of its existence, Objective-C was not a
widely known language—NeXT and later OS X were marginal
platforms, with a comparatively small user base and developer

community. Like any community, there were local user groups and

259

mailing lists and websites, but open source collaboration was not a
widespread phenomenon. Granted, Open Source was only just
starting to pick up steam at that time, but there was no contemporary
Objective-C equivalent to, for example, CPAN, the Comprehensive
Perl Archive Network. Everyone took SDKs from Redwood City and
Cupertino as far as they could, (maybe sprinkling in some code
salvaged from a forum thread), but ultimately rolling their own

solutions to pretty much everything else.

Objective-C and the iPhone

This went on until the summer of 2008, when iPhone OS was first
opened up to third party developers. Almost overnight, Objective-C
went from being an obscure C++/C# also-ran to the one of the most
sought-after programmer qualifications. Millions of developers
flocked from all walks of code, bringing an influx of new ideas and

influences to the language.

Around this same time, GitHub had just launched, and was starting to
change the way we thought about open source by enabling a new

distributed, collaborative workflow.

In those early years of iPhone OS, we started to see the first massively

adopted open source projects, like ASTHTTPRequest and Facebook’s

260

Three20. These first libraries and frameworks were built to fill in the
gaps of app development on iPhone OS 2.0 and 3.0, and although
largely made obsolete by subsequent OS releases or other projects,
they demonstrated a significant break from the tradition of "every

developer for themselves".

Of this new wave of developers, those coming from a Ruby
background had a significant influence on the code and culture of
Objective-C. Ruby, a spiritual successor to Perl, had its own package

manager similar to CPAN: RubyGems.

As open source contributions in Objective-C began to get some
traction, the pain points of code distribution were starting to become

pretty obvious:

Lacking frameworks, code for iOS could be packaged as a static
library, but getting that set up and keeping code and static

distributions in sync was an arduous process.

Another approach was to use Git submodules, and include the source
directly in the project. But getting everything working, with linked

frameworks and build flags configured, was not great

261

either—especially at a time when the body of code was split between
ARC and non-ARC.

Enter CocoaPods
CocoaPods was created by Eloy Duran on August 12, 2011.

Taking inspiration from Bundler and RubyGems, CocoaPods was
designed to resolve a list of dependencies, download the required
sources, and configure the existing project in such a way to be able to
use them. Considering the challenges of working with a sparsely
documented Xcode project format and build system, it’s pretty

amazing that this exists at all.

Another notable decision made early on was to use a central Git
repository as the database for all of the available libraries. Although
there were certain logistical considerations with this approach,
bootstrapping on GitHub provided a stable infrastructure, that

allowed the team to iterate on building out the tool chain.

Since its initial proof-of-concept, the project has grown to include over
a dozen core contributors along with over 100 additional contributors.
There are thousands of open source projects available for anyone to

add to their project.

262

A significant portion of these prolific contributions from the open
source community for Objective-C has been directly enabled and
encouraged by increased ownership around tooling. Everyone

involved should be commended for their hard work and dedication.

Using CocoaPods

CocoaPods is easy to get started with both as a consumer and a library

author. It should only take a few minutes to get set up.

Installing CocoaPods

CocoaPods is installed through RubyGems, the Ruby package

manager, which comes with a standard OS X install.

To install, open Terminal.app and enter the following command:

$ sudo gem install cocoapods

263

Now you should have the pod command available in the terminal.

Managing Dependencies

A dependency manager resolves a list of software requirements into a

list of specific tags to download and integrate into a project.

Declaring requirements in such a way allows for project setup to be
automated, which is general best practice for software development
practice, no matter what the language. Even if you don't include
third-party libraries, CocoaPods is still an invaluable tool for

managing code dependencies across projects.

Podfile

A Podfile is where the dependencies of a project are listed. It is
equivalent to Gemfile for Ruby projects using Bundler, or package.

json for JavaScript projects using npm.

To create a Podfile, cd into the directory of your .xcodeproj file and

enter the command:

264

$ pod init

Podfile

platform :ios, '7.0'
target "AppName" do

end

Dependencies can have varying levels of specificity. For most libraries,
pegging to a minor or patch version is the safest and easiest way to

include them in your project.

pod 'X', '~> 1.1'
To include a library not included in the public specs database, a Git,

Mercurial, or SVN repository can be used instead, for which a commit,

branch, or tag can be specified.

pod 'Y', :git => 'https://github.com/NSHipster/Y.git', :commit => 'b4dcOffee'’

Once all of the dependencies have been specified, they can be installed
with:

265

$ pod install

When this is run, CocoaPods will recursively analyze the
dependencies of each project, resolving them into a dependency

graph, and serializing into a Podfile. lock file.

CocoaPods will create a new Xcode project that creates static library
targets for each dependency, and then links them all together into a
LibPods. a target. This static library becomes a dependency for your
original application target. An xcworkspace file is created, and should
be used from that point onward. This allows the original xcodeproj

file to remain unchanged.

Subsequent invocations of pod install will add new pods or remove
old pods according to the locked dependency graph. To update the
individual dependencies of a project to the latest version, do the

following:

$ pod update

Trying Out a CocoaPod

One great, but lesser-known, feature of CocoaPods is the try

command, which allows you to test-drive a library before you add it to

266

your project.

Invoking $ pod try with the name of a project in the public specs

database opens up any example projects for the library:

$ pod try Ono

Creating a CocoaPod

Being the de facto standard for Objective-C software distribution,
CocoaPods is pretty much a requirement for open source projects with

the intention of being used by others

Yes, it raises the barrier to entry for sharing your work, but the effort is
minimal, and more than justifies itself. Taking a couple minutes to
create a . podspec file saves every user at least that much time

attempting to integrate it into their own projects.

Remember: raising the bar for contribution within a software

ecosystem lowers the bar for participation.
Specification

A .podspec file is the atomic unit of a CocoaPods dependency. It

specifies the name, version, license, and source files for a library, along

267

with other metadata.

NSHipsterKit.podspec

Pod::Spec.new do |s|

S.name = 'NSHipsterKit'

s.version = '1.0.0'

s.license = 'MIT'

s.summary = "A pretty obscure library.

You've probably never heard of it."

[}

.homepage = 'http://nshipster.com’

%)

.authors = { 'Mattt Thompson' =>

'mattt@nshipster.com' }

[0}

.social_media_url = "https://twitter.com/mattt"

[0}

.source = { :git => 'https://github.com/nshipster/NSHipsterKit.git', :tag <>
= '1.0.0' }

[0}

.source_files = 'NSHipsterKit'

end

Once published to the public specs database, anyone could add it to
their project, specifying their Podfile thusly:

Podfile

pod 'NSHipsterKit', '~> 1.0'

A .podspec file can be useful for organizing internal or private

dependencies as well:

268

pod 'Z', :path => 'path/to/directory/with/podspec'

Publishing a CocoaPod

Although it worked brilliantly at first, the process of using Pull
Requests on GitHub for managing new pods became something of a
chore, both for library authors and spec organizers. Sometimes
podspecs would be submitted without passing $ pod lint, causing
the specs repo build to break. Other times, rogue commits from
people other than the original library author would break things

unexpectedly.

The CocoaPods Trunk service, introduced in CocoaPods 0.33, solves a
lot of this, making the process nicer for everyone involved. Being a
centralized service, it also has the added benefit of being able to get

analytics for library usage, and other metrics.

To get started, you must first register your machine with the Trunk
service. This is easy enough, just specify your email address (the one

you use for committing library code) along with your name.

$ pod trunk register mattt@nshipster.com "Mattt Thompson"

269

Now, all it takes to publish your code to CocoaPods is a single
command. The same command works for creating a new library or

adding a new version to an existing one:

$ pod trunk push NAME.podspec

A Look Forward

CocoaPods exemplifies the compounding effect of infrastructure on a
community. In a few short years, the Objective-C community has

turned into something that we can feel proud to be part of.

CocoaPods is a good thing for Objective-C. And it’s only getting better.

270

About NSHipster

NSHipster is a journal of the overlooked bits in Swift, Objective-C, and
Cocoa. Updated weekly.

Launched in the Summer of 2012, NSHipster has become an essential
resource for iOS and Mac developers around the world.

Colophon

The text is set in Minion Pro, by Robert Slimbach, with code excerpts set in
Source Code Pro, by Paul D. Hunt.

The cover is set in Open Sans by Steve Matteson, with illustrations by
Conor Heelan, in homage to Structure and Interpretation of Computer
Programs, by Harold Abelson, Gerald Jay Sussman, and Julie Sussman.

http://en.wikipedia.org/wiki/Harold_Abelson
http://en.wikipedia.org/wiki/Gerald_Jay_Sussman

About the Author

Mattt Thompson is the creator & maintainer of
AFNetworking and other popular open-source
projects, including Postgres.app, ASClIwwdc, and
Nomad.

Previously, Mattt has worked as a software engineer
at Panic, Heroku, and Gowalla.

His work has taken him across the United States and around the world, to
speak at conferences and meetups about topics in Swift, Objective-C, Ruby,
Javascript, web development, design, linguistics, and philosophy.

Mattt holds a Bachelor's degree in Philosophy and Linguistics from
Carnegie Mellon University.

