
NS
nshipster

obscure topics
in cocoa &
objective-c

mattt thompson

first edition

!

Mattt Thompson

NSHipster: Obscure
Topics In Cocoa &
Objective-C

!

!
!
!
!
!
!
!
!
!
!
!
Copyright © 2013 Mattt Thompson 
All rights reserved

Illustrated by Conor Heelan

ISBN 978-0-9912182-1-9

NSHipster 
Portland, Oregon 
http://nshipster.com  

Table of Contents

Objective-C 10
#pragma 11

nil / Nil /  
NULL / NSNull 16

BOOL / bool /  
Boolean / NSCFBoolean 20

Equality 24

Type Encodings 35

C Storage Classes 41

@ 47

__attribute__ 61

instancetype 71

NS_ENUM &  
NS_OPTIONS 74

Foundation & 
CoreFoundation 79

Key-Value Coding  
Collection Operators 80

Key-Value Observing 86

NSError 99

NSOperation 108

NSSortDescriptor 115

NSPredicate 120

NSExpression 133

NSFileManager 141

NSValue 153

NSValueTransformer 156

NSDataDetector 160

CFBag 166

NSCache 171

NSIndexSet 174

NSOrderedSet 176

NSHashTable &  
NSMapTable 181

UIKit 188
UIMenuController 189

UILocalizedIndexedCollation 197

UIAppearance 204

Localization, 
Internationalization & 
Accessibility 209

NSLocale 210

NSLocalizedString 217

UIAccessibility 222

NSFormatter 232

CFStringTransform 241

NSLinguisticTagger 246

API Design 254
The Law of Demeter 255

The Principle of  
Least Surprise 265

Naming 269

Community 273
Stewardship 274

Empathy 284

Introduction

To be an NSHipster is to care deeply about the craft of writing
code. In cultivating a deep understanding and appreciation of
Objective-C, its frameworks and ecosystem, one is able to
create apps that delight and inspire users.

This book takes a structured approach to learning Objective-
C development, starting from the language and system
frameworks, and moving onto high-level concerns, like
internationalization, design, and community. It is as much a
technical manual as it is a meditation on the practice of
coding.

I hope that by reading this, you will share in the excitement of
discovering new insights, and taking pride in your work.  

 9

Objective-C

!

 10

#pragma

#pragma declarations are a mark of craftsmanship in
Objective-C. Although originally used to make source code
portable across different compilers, the Xcode-savvy coder
uses #pragma declarations to very different ends.

In this modern context, #pragma skirts the line between
comment and code. As a preprocessor directive, #pragma
evaluates at compile-time, but unlike other macros, #pragma
is not used to change the runtime behavior of an application.
Instead, #pragma declarations are used by Xcode to
accomplish two primary tasks: organizing code and inhibiting
compiler warnings.

Organizing Your Code

Code organization is a matter of hygiene. How you structure
your code is a reflection on you and your work. A lack of
convention and internal consistency indicates either
carelessness or incompetence—and worse, makes a project
difficult to maintain and collaborate on. 

 11

Good habits start with #pragma mark:

@implementation ViewController

- (id)init { 
 ... 
}

#pragma mark - UIViewController

- (void)viewDidLoad { 
 ... 
}

#pragma mark - IBAction

- (IBAction)cancel:(id)sender { 
 ... 
}

#pragma mark - UITableViewDataSource

- (NSInteger)tableView:(UITableView *)tableView

numberOfRowsInSection:(NSInteger)section  
{  
  
}

#pragma mark - UITableViewDelegate

- (void)tableView:(UITableView *)tableView

didSelectRowAtIndexPath:(NSIndexPath *)indexPath { 
 ... 
}

Use #pragma mark in your @implementation to divide code
into logical sections. Not only do these sections make it easier
to read through the code itself, but it also adds visual cues to
the Xcode source navigator.

 12

#pragma mark declarations starting with a dash (-) are preceded
with a horizontal divider.

Start by grouping methods according to their originating
class. For example, an NSInputStream subclass would have a
group marked NSInputStream, followed by a group marked
NSStream.

Things like IBAction outlets, or methods corresponding to
target / action, notification, or KVO selectors probably
deserve their own sections as well.

Finally, if a class conforms to any @protocols, group all of the
methods from each protocol together, and add a #pragma
mark header with the name of that protocol.

Your code should be clean enough to eat off of. So take the
time to leave your .m files better than how you found them.

Inhibiting Warnings

What's even more annoying than poorly-formatted code?
Code that generates warnings. Especially 3rd-party code.
There are few things as irksome as that one vendor library that
takes forever to compile, and finishes with 200+ warnings.
Even shipping code with a single warning is in poor form.

 13

Try setting the -Weverything flag and checking the "Treat Warnings
as Errors" box your build settings.  
This turns on Hard Mode in Xcode.

But sometimes there's no avoiding compiler warnings.
Deprecation notices and retain-cycle false positives are two
common examples where this might happen. In those rare
cases where you are absolutely certain that a particular
compiler warning should be inhibited, #pragma can be used
to suppress them:

#pragma clang diagnostic push

#pragma clang diagnostic ignored "-Wunused-variable"

 OSStatus status = SecItemExport(...);

 NSCAssert(status == errSecSuccess, @"%d", status);

#pragma clang diagnostic pop

This code sample is an example of an otherwise unavoidable
warning from the static analyzer. When compiling in Release
mode, assertions are ignored, so Clang warns that status is an
unused variable.

Using #pragma clang diagnostic push/pop, you can tell the
compiler to ignore certain warnings for a particular section of
code (the original diagnostic settings are restored with the
final pop).

Just don't use #pragma as a way to sweep legitimate warnings
under the rug—it will only come back to bite you later.

 14

You can read more about the LLVM's use of #pragma in the Clang
Compiler User's Manual.

Like a thrift store 8-track player turned into that lamp in the
foyer, #pragma remains a curious vestige of the past: Once the
secret language of compilers, it is now re-purposed to better-
communicate intent to other programmers.

How delightfully vintage!  

 15

nil / Nil /  
NULL / NSNull

Understanding the concept of nothingness is as much a
philosophical issue as it is a pragmatic one. We are inhabitants
of a universe made up of somethings, yet reason in a logical
universe with existential uncertainties. As a physical
manifestation of a logical system, computers are faced with
the intractable problem of how to represent nothing with
something.

In Objective-C, there are several different varieties of nothing.

C represents nothing as 0 for primitive values, and NULL for
pointers (which is equivalent to 0 in a pointer context).

Objective-C builds on C's representation of nothing by
adding nil. nil is an object pointer to nothing. Although
semantically distinct from NULL, they are equivalent to one
another.

 16

On the framework level, Foundation defines the NSNull class,
which defines a single class method, +null, which returns a
singleton NSNull instance. NSNull is different from nil or
NULL, in that it is an actual object, rather than a zero value.

Additionally, in Foundation/NSObjCRuntime.h, Nil is
defined as a class pointer to nothing. This lesser-known title-
case cousin of nil doesn't show up much very often, but it's at
least worth noting.

There's Something About nil

Newly-alloc'd NSObjects start life with their contents set to 0.
This means that all pointers an object has to other objects
begin as nil, so it's unnecessary to, for instance, set
self.association = nil in init methods.

Perhaps the most notable behavior of nil, though, is that it
handles messages sent to it.

In other languages, like C++, sending a message to a null
pointer would crash a program, but in Objective-C, invoking
a method on nil returns a zero value. This greatly simplifies
expressions, as it obviates the need to check for nil before
doing anything:

 17

// For example, this expression... 
if (name != nil && [name isEqualToString:@"Steve"])

{ ... } !
// ...can be simplified to: 
if ([name isEqualToString:@"steve"]) { ... }

Being aware of how nil works in Objective-C allows this
convenience to be a feature, rather than a source of hard-to-
find bugs.

Guard against cases where nil values are unwanted, either by
returning early, or adding a NSParameterAssert to throw an
exception.

NSNull: Something for Nothing

NSNull is used throughout Foundation and other system
frameworks to skirt around the limitations of collections like
NSArray and NSDictionary, which cannot contain nil values.
NSNull effectively boxes NULL or nil values, so that they can
be stored in collections:

 18

NSMutableDictionary *mutableDictionary =

[NSMutableDictionary dictionary]; !
mutableDictionary[@"someKey"] = [NSNull null];  
// Sets value of NSNull singleton for `someKey` !
NSLog(@"Keys: %@", [mutableDictionary allKeys]);  
// @[@"someKey"]

!
So to recap, here are the four values representing nothing that
every Objective-C programmer should know about:

Symbol Value Meaning

NULL (void *)0 literal null value for C pointers

nil (id)0 literal null value for Objective-C objects

Nil (Class)0 literal null value for Objective-C classes

NSNull [NSNull null] singleton object used to represent null

 19

BOOL / bool /  
Boolean /
NSCFBoolean

Truth, Vēritās: The entire charter of Philosophy is founded
upon the pursuit of it, and yet its exact meaning and
implications still elude us.

Does truth exist independently, or is it defined contingently? 
Can a proposition be at once both true and false?  
Is there absolute truth in anything, or is everything relative?

Once again, encoding our logical universe into the cold,
calculating bytecode of computers forces us to deal with these
questions one way or another. And as you'll see from our
discussion of boolean types in C & Objective-C, truth is
indeed stranger than fiction.

Objective-C defines BOOL to encode truth value. It is a
typedef of a signed char, with the macros YES and NO to
represent true and false, respectively.

 20

Boolean values are used in conditionals, such as if or while
statements, to conditionally perform logic or repeat
execution. When evaluating a conditional statement, the value
0 is considered "false", while any other value is considered
"true". Because NULL and nil have a value of 0, they are
considered "false" as well.

In Objective-C, use the BOOL type for parameters,
properties, and instance variables dealing with truth values.
When assigning literal values, use the YES and NO macros.

The Wrong Answer to the Wrong Question

Novice programmers often include an equality operator when
evaluating conditionals:

if ([a isEqual:b] == YES) { ... }

Not only is this unnecessary, but depending on the left-hand
value, it may also lead to unexpected results. Consider this
function, which returns whether two integers are different:

static BOOL different (int a, int b) {

 return a - b;

}

A programmer might take some satisfaction in the clever
simplicity of this approach: indeed, two integers are equal if
and only if their difference is 0.

 21

However, because BOOL is typedef 'd as a signed char on 32-
bit architectures, this will not behave as expected:

different(11, 10) // YES

different(10, 11) // NO (!)

different(512, 256) // NO (!)

Now, this might be acceptable for JavaScript, but Objective-C
don't suffer fools gladly.

On a 64-bit iOS, BOOL is defined as a bool, rather than signed char,
which precludes the runtime from these type conversion errors.

Deriving truth value directly from an arithmetic
operation is never a good idea. Use the == operator, or cast
values into booleans with the ! (or !!) operator.

The Truth About NSNumber and BOOL

Pop quiz: what is the output of the following expression?

NSLog(@"%@", [@(YES) class]);

The answer:

__NSCFBoolean

Wait, what?

 22

All this time, we've been led to believe that NSNumber boxes
primitives into an object representation. Any other integer or
float derived NSNumber object shows its class to be
__NSCFNumber. What gives?

NSCFBoolean is a private class in the NSNumber class cluster.
It is a bridge to the CFBooleanRef type, which is used to wrap
boolean values for Core Foundation collections and property
lists. CFBoolean defines the constants kCFBooleanTrue and
kCFBooleanFalse. Because CFNumberRef and
CFBooleanRef are different types in Core Foundation, it
makes sense that they are represented by different bridging
classes in NSNumber.

!
Wrapping things up, here is a table with the truth types and
values in Objective-C:

Name Type Header True False

BOOL signed char / bool objc.h YES NO

bool _Bool (int) stdbool.h TRUE FALSE

Boolean unsigned char MacTypes.h TRUE FALSE

NSNumber __NSCFBoolean Foundation.h @(YES) @(NO)

 23

Equality

The concept of equality is a central point of debate and
inquiry in philosophy and mathematics, with far-reaching
implications for matters of ethics, justice, and public policy.

From an empiricist perspective of the universe, two objects
are equal if they are indistinguishable from one another in
measurable observations. Egalitarians, operating on a human
scale, hold that individuals should be considered equal
members of the societal, economic, political, and judicial
systems they inhabit.

It is the task of programmers to reconcile our logical and
physical understanding of equality with the semantic
domains we model.

Equality & Identity

First and foremost, it is important to make a distinction
between equality and identity.

 24

Two objects may be equal or equivalent to one another, if they
share a common set of properties. Yet, those two objects may
still be thought to be distinct, each with their own identity.

In code, an object's identity is tied to its memory address.

NSObject tests equality with another object with the method
isEqual:. In its base implementation, an equality check is
essentially a test for identity:

@implementation NSObject (Approximate)

- (BOOL)isEqual:(id)object {

 return self == object;

}

@end

isEqual

Subclasses of NSObject implementing their own isEqual:
method are expected to do the following:

• Implement a new isEqualToClassName: method, which
performs the meaningful value comparison.

• Override isEqual: to make class and object identity checks,
falling back on the aforementioned class comparison
method.

• Override hash, which will be described in the next section.

 25

For container classes like NSArray, NSDictionary, and
NSString, equality deep equality comparison, testing equality
for each member in pairwise fashion:

@implementation NSArray (Approximate)

- (BOOL)isEqualToArray:(NSArray *)array {

 if (!array || [self count] != [array count]) {

 return NO;

 } !
 for (NSUInteger idx = 0; idx < [array count]; idx++) {

 if (![self[idx] isEqual:array[idx]]) {

 return NO;

 }

 } !
 return YES;

} !
- (BOOL)isEqual:(id)object {

 if (self == object) {

 return YES;

 } !
 if (![object isKindOfClass:[NSArray class]]) {

 return NO;

 } !
 return [self isEqualToArray:(NSArray *)object];

}

@end

!
 26

isEqualTo____:

The following NSObject subclasses in Foundation have
custom equality implementations, with the corresponding
method:

When comparing two instances of any of these classes, one is
encouraged to use these high-level methods rather than
isEqual:.

However, our theoretical implementation is yet incomplete.
Let's turn our attention now to hash, after a quick detour to
clear something up about NSString.

NSAttributedString -isEqualToAttributedString:

NSData -isEqualToData:

NSDate -isEqualToDate:

NSDictionary -isEqualToDictionary:

NSHashTable -isEqualToHashTable:

NSIndexSet -isEqualToIndexSet:

NSNumber -isEqualToNumber:

NSOrderedSet -isEqualToOrderedSet:

NSSet -isEqualToSet:

NSString -isEqualToString:

NSTimeZone -isEqualToTimeZone:

NSValue -isEqualToValue:

 27

The Curious Case of NSString Equality

As an interesting aside, consider the following:

NSString *a = @"Hello";

NSString *b = @"Hello";

BOOL wtf = (a == b); // YES (!)

To be perfectly clear: the correct way to compare two NSString
objects is -isEqualToString:. Under no circumstances should
NSString objects be compared with the == operator.

So what's going on here? Why does this work, when the same
code for NSArray or NSDictionary literals wouldn't do this?

It all has to do with an optimization technique known as
string interning, whereby one copy of immutable string
values. NSString *a and *b point to the same copy of the
interned string value @"Hello".

Again, this only works for statically-defined, immutable
strings. Constructing identical strings with NSString
+stringWithFormat: will objects with different pointers.

Interestingly enough, Objective-C selector names are also
stored as interned strings in a shared string pool.  

 28

Hashing

The primary use case of object equality tests for object-
oriented programming is to determine collection
membership. To keep this fast, subclasses with custom
equality implementations are expected to implement hash:

• Object equality is commutative  
([a isEqual:b] ⇒ [b isEqual:a])

• If objects are equal, their hash values must also be equal  
([a isEqual:b] ⇒ [a hash] == [b hash])

• However, the converse does not hold: two objects need not
be equal in order for their hash values to be equal  
([a hash] == [b hash] ¬⇒ [a isEqual:b])

Now for a quick flashback to Computer Science 101:

Hashing Fundamentals

A hash table is a fundamental data structure in programming,
and it's what enables NSSet & NSDictionary to have fast
(O(1)) lookup of elements.

We can best understand hash tables by contrasting them to
arrays.

 29

Arrays store elements in sequential indexes, such that an
Array of size n will have slots at positions 0, 1, up to n - 1. To
determine where an element is stored in the array (if at all),
each position would have to be checked one-by-one (unless
the array happens to be sorted, but that's another story).

Hash Tables take a slightly different approach. Rather than
storing elements sequentially (0, 1, ..., n-1), a hash table
allocates n positions in memory, and uses a function to
calculate a position within that range.

A hash function is deterministic, and a good hash function
generates values in a relatively uniform distribution without
being too computationally expensive. A hash collision occurs
when two different objects calculate the same hash value.
When this happens, the hash table will seek from the point of
collision and place the new object in the first open slot. As a
hash table becomes more congested, the likelihood of
collision increases, which leads to more time spent looking
for a free space.

One of the most common misconceptions about
implementing a custom hash function is that hash values
must be distinct. This often leads to needlessly complicated
implementations, with incantations copied from Java
textbooks. In reality, a simple XOR over the hash values of
critical properties is sufficient most of the time.

 30

The trick is in determining the critical values of an object.

For an NSDate, the time interval since a reference date would
be enough to go on:

@implementation NSDate (Approximate)

- (NSUInteger)hash {

 return abs([self timeIntervalSinceReferenceDate]);

}

For a UIColor, a bit-shifted sum of RGB components would
be a convenient calculation:

@implementation UIColor (Approximate)

- (NSUInteger)hash {

 CGFloat red, green, blue;

 [self getRed:&red green:&green blue:&blue alpha:nil];

 return ((NSUInteger)(red * 255) << 16) +  
 ((NSUInteger)(green * 255) << 8) + 
 (NSUInteger)(blue * 255);

}

@end

Implementing -isEqual: and hash  
in a Subclass

Bringing it all together, here's how one might override the
default equality implementation for a subclass: 

 31

Person.h

@interface Person

@property NSString *name;

@property NSDate *birthday; !
- (BOOL)isEqualToPerson:(Person *)person;

@end

Person.m

@implementation Person

- (BOOL)isEqualToPerson:(Person *)person {

 if (!person) {

 return NO;

 } !
 BOOL haveEqualNames = (!self.name && !person.name) ||

 [self.name isEqualToString:person.name];

 BOOL haveEqualBirthdays =

 (!self.birthday && !person.birthday) ||

 [self.birthday isEqualToDate:person.birthday];

 return haveEqualNames && haveEqualBirthdays;

} !

 32

#pragma mark - NSObject !
- (BOOL)isEqual:(id)object {

 if (self == object) {

 return YES;

 } !
 if (![object isKindOfClass:[Person class]]) {

 return NO;

 } !
 return [self isEqualToPerson:(Person *)object];

}

- (NSUInteger)hash {

 return [self.name hash] ^ [self.birthday hash];

}

@end

Don't Overthink It

While all of this has been an interesting exercise in
epistemology and computer science, there is one lingering
pragmatic detail:

You don't usually need to implement this.

There are many situations where the default identity check
(two variables point to the same address in memory) is
indeed desirable behavior. Such is a consequence of data
modeling being inherently limited.

 33

Take, for instance, the previous example of the Person class.
It's not inconceivable that two individuals would share a
common name and birthday. In reality, this crisis of identity
would be resolved by additional information, whether it's a
system-dependent identifier like a Social Security Number,
their parents' identities, or any other physical attributes.

Ultimately, it's up to the abstraction to isolate the significant,
identifying features that the system cares about, and disregard
the rest.

!
Hopefully, after all of this explanation, we all stand with equal
footing on this slippery subject.

As humans, we strive to understand and implement equality
in our society and economy; in the laws and leaders that
govern us; in the understanding that we extend to one
another as we journey through existence. May we continue
towards that ideal, where an individual is judged by the
contents of their character, just as we judge a variable by the
contents of its memory address.  

 34

Type Encodings

Number stations, numerology, hieroglyphs, hobo codes;  
there is something truly fascinating about information that
hides in plain sight. Though hidden messages are rarely useful
or particularly interesting in and of themselves, it's the thrill
of the hunt that piques our deepest curiosities.

The secret codes of Objective-C are Type Encodings.

!
@encode, one of the @ Compiler Directives, returns a C string
that encodes the internal representation of a given type, for

example, @encode(int) → i. This is similar to the ANSI C
typeof operator.

Apple's Objective-C runtime uses type encodings internally
to help facilitate message dispatching.

Here's a rundown of the Objective-C Type Encodings: 

 35

Code Meaning

c A char

i An int

s A short

l A longl is treated as a 32-bit quantity on 64-bit
programs.

q A long long

C An unsigned char

I An unsigned int

S An unsigned short

L An unsigned long

Q An unsigned long long

f A float

d A double

B A C++ bool or a C99 _Bool

v A void

* A character string (char *)

@ An object (whether statically typed or typed id)

A class object (Class)

: A method selector (SEL)

[array type] An array

{name=type...} A structure

(name=type...) A union

bnum A bit field of num bits

^type A pointer to type

? An unknown type (among other things, this code is
used for function pointers)

 36

Of course, charts are fine, but experimenting in code is even
better:

NSLog(@"int : %s", @encode(int));

NSLog(@"float : %s", @encode(float));

NSLog(@"float * : %s", @encode(float*));

NSLog(@"char : %s", @encode(char));

NSLog(@"char * : %s", @encode(char *));

NSLog(@"BOOL : %s", @encode(BOOL));

NSLog(@"void : %s", @encode(void));

NSLog(@"void * : %s", @encode(void *)); !
NSLog(@"NSObject * : %s", @encode(NSObject *));

NSLog(@"NSObject : %s", @encode(NSObject));

NSLog(@"[NSObject] : %s", @encode(typeof([NSObject

class])));

NSLog(@"NSError ** : %s", @encode(typeof(NSError **))); !
int intArray[5] = {1, 2, 3, 4, 5};

NSLog(@"int[] : %s", @encode(typeof(intArray))); !
float floatArray[3] = {0.1f, 0.2f, 0.3f};

NSLog(@"float[] : %s", @encode(typeof(floatArray))); !
typedef struct _struct {

 short a;

 long long b;

 unsigned long long c;

} Struct;

NSLog(@"struct : %s", @encode(typeof(Struct)));

!

 37

Result:

int : i

float : f

float * : ^f

char : c

char * : *

BOOL : c

void : v

void * : ^v !
NSObject * : @

NSObject : #

[NSObject] : {NSObject=#}

NSError ** : ^@ !
int[] : [5i]

float[] : [3f]

struct : {_struct=sqQ}

There are some interesting takeaways from this:

• Whereas the standard encoding for pointers is a preceding
^, char * gets its own code: *. This makes sense conceptually,
since C strings are thought to be entities in and of
themselves, rather than a pointer to something else.

• BOOL is c, rather than i, as one might expect. Reason
being, char is smaller than an int, and when Objective-C
was originally designed in the 80's, bits (much like the US
Dollar) were more valuable than they are today.

 38

• Passing NSObject directly yields #. However, passing
[NSObject class] yields a struct named NSObject with a
single class field. That is, of course, the isa field, which all
NSObject instances have to signify their type.

Method Encodings

As mentioned in Apple's "Objective-C Runtime
Programming Guide", there are a handful of type encodings
that are used internally, but cannot be returned with @encode.

These are the type qualifiers for methods declared in a
protocol:

Anyone familiar with NSDistantObject should recognize
these as a vestige of Distributed Objects.

Code Meaning

r const

n in

N inout

o out

O bycopy

R byref

V oneway

 39

Although it has fallen out of fashion in the age of iOS, DO is
an interprocess messaging protocol used to communicate
between Cocoa applications. Under these constraints, there
were benefits to be had from the additional context.

By default, parameters in distributed object messages were
passed as proxies, except in situations where proxying would
be unnecessarily inefficient; the bycopy qualifier could be
specified to make sure a full copy of the object was sent
instead.

Parameters were also inout by default, signifying that objects
needed to be sent back and forth when sending the message.
By specifying a parameter as just in or out instead, the
application could avoid the round-trip overhead.

!
So what do we gain from our newfound understanding of
Objective-C Type Encodings? Honestly, not that much.

But as we said from the very outset, there is wisdom in the
pursuit of deciphering secret messages. Looking at type
encodings reveals details about Objective-C runtime
internals, which is a noble pursuit in and of itself.  

 40

C Storage Classes

In C, the scope and lifetime of a variable or function is
determined by its storage class. Each variable has a lifetime, or
the context in which they store their value. Functions, along
with variables, also exist within a particular scope, or visibility,
which dictates which parts of a program know about them.

There are 4 storage classes in C: auto, register, static & extern.

auto

There's a good chance you've never seen this keyword in the
wild. That's because auto is the default storage class, and
therefore rarely needs to be specified explicitly.

Automatic variables have memory automatically allocated
when a program enters a block, and released when the
program leaves that block. Access to automatic variables is
limited to only the block in which they are declared, as well as
any nested blocks.

 41

register

Most Objective-C programmers probably aren't familiar with
register either, as it's not widely used in the NS world.

register behaves just like auto, except that instead of being
allocated onto the stack, they are stored in a register.

Registers offer faster access than RAM, but because of the
complexities of memory management, putting variables in
registers does not always guarantee a faster program—in fact,
it may very well end up slowing down execution by taking up
space on the register unnecessarily. As it were, using register is
no more than a mere suggestion to the compiler;
implementations may choose whether or not to honor this.

register's lack of popularity in Objective-C is instructive: it's
probably best not to bother with. It will sooner cause a
headache than any noticeable speedup.

static

Finally, one that everyone's sure to recognize: static.

As a keyword, static gets used in a lot of different ways, so it
can be confusing to figure out exactly what it means in every
instance. When it comes to storage classes, static means one of
two things.

 42

1. A static variable inside a method or function retains its
value between invocations.

2. A static variable declared globally can called by any
function or method, so long as those functions appear in
the same file as the static variable. The same goes for static
functions.

Static Singletons

A common pattern in Objective-C is the static singleton,
wherein a statically-declared variable is initialized and
returned in either a function or class method:

+ (instancetype)sharedInstance {

 static id _sharedInstance = nil;

 static dispatch_once_t onceToken;

 dispatch_once(&onceToken, ^{

 _sharedInstance = [[self alloc] init];

 // any further configuration

 }); !
 return _sharedInstance;

}

The singleton pattern is useful for creating objects that are
shared across the entire application, such as a notification
manager, or objects that may be expensive to create, such as
date formatters.

 43

extern

Whereas static makes functions and variables globally visible
within a particular file, extern makes them visible globally to
all files.

Global variables are not a great idea, generally speaking.
Having no constraints on how or when state can be mutated
is just asking for impossible-to-debug situations.

That said, there are two common and practical uses for extern
in Objective-C: constants and public functions.

Global String Constants

Any time your application uses a string constant in a public
interface, it should be declared as an external string constant.
This is especially true of NSNotification names, NSError
domains, and keys in userInfo dictionaries.

Declare an extern NSString * const in a public header, and
define that NSString * const in the implementation:

AppDelegate.h

extern NSString * const kAppErrorDomain; 

 44

AppDelegate.m

NSString * const kAppErrorDomain =

@"com.example.yourapp.error";

It doesn't particularly matter what the value of the string is, so
long as it's unique.

Public Functions

Some APIs may wish to expose helper functions publicly. The
pattern follows the same as in the previous example:

TransactionStateMachine.h

typedef NS_ENUM(NSUInteger, TransactionState) {

 TransactionOpened,

 TransactionPending,

 TransactionClosed,

}; !
extern NSString *

 NSStringFromTransactionState(TransactionState state); 

 45

TransactionStateMachine.m

NSString *

 NSStringFromTransactionState(TransactionState state) {

 switch (state) {

 case TransactionOpened: return @"Opened"

 case TransactionPending: return @"Pending";

 case TransactionClosed: return @"Closed";

 default: return nil;

 }

}

 
To understand anything is to make sense of its context. What
we may see as obvious and self-evident, is all but unknown to
someone outside our frame of reference. Our inability to truly
understand or appreciate the differences in perspective
between ourselves and others is perhaps our most basic
shortcoming.

That is why, in our constructed logical universe of 0's and 1's,
we take such care to separate contexts, and structure our
assumptions based on these explicit rules. C storage classes
are essential to understanding how a program operates. Take
heed of these simple rules of engagement and go forth to code
with confidence. 

 46

@

Birdwatchers refer to it as "Jizz": those indefinable
characteristics unique to a particular kind of thing.

This term can be appropriated to describe how seasoned
individuals might distinguish Rust from Go, or Ruby from
Elixir at a glance. Some just stick out like sore thumbs:

Perl, with all of its short variable names and special characters,
reads like Q*bert swearing.

Lisp's profusion of parentheses is best captured by that old
joke about a computer science student proving that they
actually finished their homework by showing the last page:

)))))

)))

))

))))))

))))))

)))

)

!

 47

So if one were to go code-watching for the elusive Objective-
C species, what would we look for?

• Square brackets

• Ridiculously-long method names

• @'s

@, or "at" sign compiler directives, are as central to
understanding Objective-C's gestalt as its ancestry and
infrastructure. It's the sugary glue that allows Objective-C to
be such a powerful, expressive language, and yet still compile
all the way down to C.

Its uses are varied and disparate, such that the only way to
accurately describe what @ means by itself is "shorthand for
something to do with Objective-C". @ compiler directives
cover a broad range in usefulness and obscurity, with staples
like @interface and @implementation, as well as ones a
developer go their whole career without running into, like
@defs and @compatibility_alias.

But to anyone aspiring to be an NSHipster, intimate
familiarity with @ directives is tantamount to a music lover's
ability to list all of The Beatles albums in chronological order
(and most importantly, having unreasonably strong opinions
about each of them).  

 48

Interface & Implementation

@interface and @implementation are the first things you
learn about when you start Objective-C:

• @interface...@end

• @implementation...@end

What you don't learn about until later on, are categories and
class extensions.

Categories allow you to extend the behavior of existing classes
by adding new methods. As a convention, categories are
defined in their own .{h,m} files, like so:

MyObject+CategoryName.h

@interface MyObject (CategoryName)

 + (BOOL)barWithBaz:(NSInteger)baz;

 - (void)foo;

@end 

 49

MyObject+CategoryName.m

@implementation MyObject (CategoryName)

 + (BOOL)barWithBaz:(NSInteger)baz {

 return baz < 42;

 } !
 - (void)foo {

 // ...

 }

@end

Categories are particularly useful for convenience methods
on standard framework classes (just don't go overboard with
your utility functions).

Rather than littering your code with random, arbitrary color values,
create an NSColor / UIColor category that defines class methods like
+appNameDarkGrayColor. You can then add a semantic layer on
top of that by creating method aliases like +appNameTextColor,
which returns +appNameDarkGrayColor.

Extensions look like categories, but omit the category name.
These are typically declared in the .m file before an
@implementation to specify a private interface, and even
override properties declared in the original @interface: 

 50

MyObject.m

@interface MyObject ()

@property (readwrite, nonatomic, strong) NSString *name;

- (void)doSomething;

@end !
@implementation MyObject

// ...

@end

Properties

Property directives are also learned early on:

• @property

• @synthesize

• @dynamic

As of Xcode 4.4, it is no longer necessary to explicitly
synthesize properties. Properties declared in an @interface are
automatically synthesized in the implementation with leading
underscore ivar name, i.e. @synthesize property = _property.  

 51

Forward Class Declarations

Occasionally, @interface declarations will reference an
external class in a property or as a parameter type. Rather
than adding #import statements for each class, it's good
practice to use forward class declarations in the header, and
import them in the implementation.

• @class

Shorter compile times, less clutter, reduced chance of cyclical
references; you should definitely get in the habit of doing this
if you aren't already.

Instance Variable Visibility

As a matter of general convention, classes provide accessor
and mutator interfaces through properties and methods,
rather than directly exposing ivars.

Although ARC makes working with ivars much safer, the
aforementioned automatic property synthesis removes the
one place where ivars would otherwise be declared.

Nonetheless, to accommodate cases where ivars must be
directly manipulated, there are the following visibility
directives: 

 52

• @public: instance variable can be read and written to
directly, using the notation person->age = 32"

• @package: instance variable is public, except outside of
the framework in which it is specified (64-bit
architectures only)

• @protected: instance variable is only accessible to its
class and derived classes

• @private: instance variable is only accessible to its class

Person.h

@interface Person : NSObject {

 @public

 NSString name;

 int age; !
 @private

 int salary;

}

Protocols

There's a critical point in an Objective-C programmer's
evolution, when one realizes that they can define their own
protocols.

The beauty of protocols is that they allow programmers to
create loosely-coupled APIs.

 53

It's the egalitarian mantra at the heart of the American
Dream: that it doesn't matter who you are, or where you come
from: anyone can achieve anything if they work hard enough.

...or at least that's idea, right?

• @protocol...@end: Defines a set of methods to be
implemented by any class conforming to the protocol,
as if they were added to the interface of that class.

Requirement Options

You can further tailor a protocol by specifying methods as
required or optional. Optional methods are stubbed in the
interface, but do not generate a warning if the method is not
implemented. Protocol methods are required by default.

The syntax for @required and @optional follows that of the
visibility macros:

CustomControlDelegate.h

@protocol CustomControlDelegate

 - (void)control:(CustomControl *)control

didSucceedWithResult:(id)result; !
@optional

 - (void)control:(CustomControl *)control

 didFailWithError:(NSError *)error;

@end 

 54

Exception Handling

Objective-C communicates unexpected state primarily
through NSError. Whereas other languages would use
exception handling for this, Objective-C relegates exceptions
to truly exceptional behavior, such as programmer error.

@ directives are used for the traditional convention of try/
catch/finally blocks:

@try{

 // attempt to execute the following statements

 [self getValue:&value error:&error]; !
 // if an exception is raised, or explicitly thrown...

 if (error) {

 @throw exception;

 }

} @catch(NSException *e) {

 // ...handle the exception here

} @finally {

 // always execute this at the end of either the @try

or @catch block

 [self cleanup];

}

!

 55

Literals

Literals are shorthand notation for specifying fixed values. As
a language feature, their existence is directly correlated with
programmer happiness. By this measure, Objective-C has
long been a language of programmer misery.

Object Literals

Until recently, Objective-C only had object literals for
NSString. But with the release of the Apple LLVM 4.0
compiler, literals for NSNumber, NSArray and NSDictionary
were added. And there was much rejoicing.

• @"Hello": Returns an NSString object initialized with the
Unicode content inside the quotation marks.

• @42, @3.14, @YES, @'Z': Returns an NSNumber object
initialized with pertinent class constructor, such that  
@42 → [NSNumber numberWithInteger:42], or  
@YES → [NSNumber numberWithBool:YES], or  
with suffixes to further specify type, like  
@42U → [NSNumber numberWithUnsignedInt:42U].

• @[]: Returns an NSArray object initialized with the
comma-delimited list of objects as its contents.  
 

 56

For example, @[@"A", @NO, @2.718] →  
[NSArray arrayWithObjects:@"A", @NO, @2.718, nil]  
(Note that sentinel nil is not required in the literal).

• @{}: Returns an NSDictionary object initialized with the
specified key-value pairs as its contents, in the format:
@{@"someKey" : @"theValue"}.

• @(): Dynamically evaluates the boxed expression and
returns the appropriate object literal based on its value  
(i.e. NSString for const char*, NSNumber for int, etc.).  
This is also the designated way to use number literals with
enum values.

Objective-C Literals

Although it's uncommon, selectors and protocols can be
passed as method parameters. @selector() and @protocol()
serve as pseudo-literal directives that return a pointer to a
particular selector (SEL) or protocol (Protocol *).

• @selector(): Returns an SEL pointer to a selector with the
specified name.  
Used in methods like -performSelector:withObject:.

• @protocol(): Returns a Protocol * pointer to the protocol
with the specified name.  
Used in methods like -conformsToProtocol:.

 57

C Literals

@ directives can also work the other way around,
transforming Objective-C objects into C values. These ones in
particular allow a peek underneath the Objective-C veil, to
begin to understand what's really going on.

Did you know that all Objective-C classes and objects are just
glorified structs? Or that the entire identity of an object
hinges on a single field in that struct?

For most of us, coming into this knowledge is but an
academic exercise. But for anyone venturing into low-level
optimizations, this is simply the jumping-off point.

• @encode(): Returns the type encoding of a type. This type
value can be used as the first argument encode in NSCoder
-encodeValueOfObjCType:at.

• @defs(): Returns the layout of an Objective-C class. For
example, to declare a struct with the same fields as an
NSObject, you would simply do:

struct {

 @defs(NSObject)

}

@defs is unavailable in the modern Objective-C runtime.

 58

Optimizations

There are two @ compiler directives specifically purposed for
providing shortcuts for common optimizations.

• @autoreleasepool{}: If your code contains a tight loop that
creates lots of temporary objects, you can use the
@autorelease directive to optimize by being more
aggressive about how for these short-lived, locally-scoped
objects are deallocated. @autoreleasepool replaces and
improves upon the old NSAutoreleasePool, which is
significantly slower, and unavailable with ARC.

• @synchronized(){}: This directive offers a convenient way
to guarantee safe execution of a particular code block
within a specified context (usually self). Locking in this
way is expensive, however, so for classes aiming for a
particular level of thread safety, a dedicated NSLock
property or the use of low-level locking functions like
OSAtomicCompareAndSwap32(3) are recommended.

Compatibility

Rounding out the list of @ directives is the most esoteric of all:

• @compatibility_alias: Allows existing classes to be aliased
by a different name.

 59

@compatibility_alias can be used to significantly improve the
experience of working with classes across major OS versions,
allowing developers to back-port their own custom
implementations of new functionality, without changing how
that class is used in the app.

!
@ is a versatile, power-packed character, that embodies the
underlying design and mechanisms of Objective-C. Knowing
its many uses is key to getting at the best parts of the language.  

 60

__attribute__

Like any craft, one's effectiveness as a practitioner is
contingent on how they treat their tools. Take good care of
them, and they'll take good care of you.

Of all of the tools on a programmer's workbench, there is
none more vital or powerful than the compiler.

__attribute__ is a compiler directive that specifies
characteristics on declarations. They allow the compiler to
perform advanced optimizations and enable new kinds of
warnings for the analyzer.

The syntax for this keyword is __attribute__ followed by two
sets of parentheses. __attribute__ directives are placed after
function, variable, and type declarations. Inside the
parentheses is a comma-delimited list of attributes.

 61

// Return the square of a number

int square(int n) __attribute__((const)); !
// Declare the availability of a particular API

void f(void)

__attribute__((availability(macosx,introduced=10.4,depre

cated=10.6))); !
// Send printf-like message to stderr and exit

extern void die(const char *format, ...)

 __attribute__((noreturn, format(printf, 1, 2)));

The double parentheses makes it easy to "macro out", especially with
multiple attributes.

If this reminds you of ISO C's #pragma, you're not alone.

In fact, when __attribute__ was first introduced to GCC, it
was faced with some resistance by some who suggested that
#pragma be used exclusively for the same purposes.

There are, however, two very good reasons why __attribute__
exists:

1. It is impossible to generate #pragma commands from
a macro.

2. There is no telling what the same #pragma might
mean in another compiler.

!
 62

Quoth the GCC Documentation for Function Attributes:

These two reasons applied to almost any application that
might have been proposed for #pragma. It was basically a
mistake to use #pragma for anything.

Indeed, if you look at modern Objective-C—in the headers of
Apple frameworks and well-engineered open-source projects
—__attribute__ is used for myriad purposes.

GCC

format

The format attribute specifies that a function takes format
arguments in the style of printf, scanf, strftime or strfmon.

extern int

my_printf (void *my_object, const char *my_format, ...)

 __attribute__((format(printf, 2, 3)));

Objective-C programmers can also use the __NSString__
format to enforce the same rules as format strings in NSLog()
NSString +stringWithFormat:.

!

 63

nonnull

The nonnull attribute specifies that some function parameters
should be non-null pointers.

extern void *

my_memcpy (void *dest, const void *src, size_t len)

 __attribute__((nonnull (1, 2)));

Using nonnull codifies expectations about values into an
explicit contract, which can help catch any NULL pointer
bugs lurking in any calling code.

Compile-time errors ≫ run-time errors.

noreturn

A few standard library functions, such as abort and exit,
cannot return. GCC knows this automatically. The noreturn
attribute specifies this for any other function that don't return.

For instance, a method could specify the noreturn attribute
for a thread entry point method, used when spawning a
dedicated NSThread, to ensure that the detached thread
continues execution for the lifetime of the application. 

 64

pure / const

The pure attribute specifies that a function has no effects
except the return value. That is to say, the return value of a
pure function depends only on the parameters and/or global
variables. Such a function can undergo the same
subexpression elimination and loop optimization as an
arithmetic operator.

The const attribute specifies that a function does not examine
any values except their arguments, and have no side-effects
except the return value. Note that a function with pointer
arguments or calls a non-const function usually should not be
const. It similarly doesn't make sense for a const function to
return void. const can be thought as a stricter form of pure
since it doesn't depend on global values or pointers.

int square(int n) __attribute__((const));

pure and const are both attributes that invoke the functional
programming paradigm to allow for significant performance
optimizations. For example, because the result of a function
declared const does not depend on anything other than the
arguments passed in, computed results can be cached and
returned the next time that combination of arguments is
passed.

!

 65

unused

This attribute, when attached to a function, denotes that the
function is not meant to be used. GCC will not produce a
warning for this function.

The same effect can be accomplished with the __unused keyword.

Declare this on parameters that are not used in the method
implementation. Knowing that little bit of context allows the
compiler to make optimizations accordingly. You're most
likely to use __unused in delegate method implementations,
since protocols frequently provide more context than is often
necessary, in order to satisfy a large number of potential use
cases.

LLVM

Like many features of GCC, Clang supports __attribute__,
adding its own small set of extensions.

To check the availability of a particular attribute, you can use
the __has_attribute directive.

!

 66

availability

Clang introduces the availability attribute, which can be
placed on declarations to availability for particular operating
system versions. Consider the function declaration for a
hypothetical function f:

void f(void) __attribute__((availability(macosx, 
introduced=10.4,deprecated=10.6,obsoleted=10.7)));

In this case, the attribute states that f was introduced in Mac
OS X 10.4, deprecated in Mac OS X 10.6, and obsoleted in
Mac OS X 10.7.

This information is used by Clang to determine when it is safe
to use f. If Clang is instructed to compile code for Mac OS X
10.5, a call to f() succeeds. If Clang is instructed to compile
code for Mac OS X 10.6, the call succeeds but Clang emits a
warning specifying that the function is deprecated. Finally, if
Clang is instructed to compile code for Mac OS X 10.7, the
call fails because f() is no longer available.

The availability attribute takes a comma-separated list or
arguments starting with the platform name, followed by
clauses specifying important milestones in the declaration's
lifetime, and other information. The order of these arguments
does not matter.

 67

• introduced: The first version in which this declaration was
introduced.

• deprecated: The first version in which this declaration was
deprecated, meaning that users should migrate away from
this API.

• obsoleted: The first version in which this declaration was
obsoleted, meaning that it was removed completely and
can no longer be used.

• unavailable: This declaration is never available on this
platform.

• message: Additional message text that Clang will provide
when emitting a warning or error about use of a
deprecated or obsoleted declaration. Useful for directing
users to replacement APIs.

Multiple availability attributes can be placed on a declaration,
with each used for a particular platform. Only the availability
attribute for the target platform will be used; any others will
be ignored. If no availability attribute is specified for the
current target platform, the availability attributes are ignored.

!

 68

Supported Platforms

• ios: Apple’s iOS operating system. The minimum
deployment target is specified by the -mios-version-
min=*version* or -miphoneos-version-min=*version*
command-line arguments.

• macosx: Apple’s Mac OS X operating system. The
minimum deployment target is specified by the -
mmacosx-version-min=*version* command-line
argument.

overloadable

Clang provides support for C++ function overloading in C
with the overloadable attribute. For example, one might
provide several overloaded versions of a tgsin function that
invokes the appropriate standard function computing the sine
of a value with float, double, or long double precision:

#include <math.h>

float __attribute__((overloadable)) tgsin(float x)

{ return sinf(x); }

double __attribute__((overloadable)) tgsin(double x)

{ return sin(x); }

long double __attribute__((overloadable)) tgsin(long

double x) { return sinl(x); }

!

 69

Overloadable only works for functions. One can overload method
declarations to some extent by using generic return and parameter
types, like id and void *.

!
Context is king when it comes to compiler optimizations. By
providing constraints on how to interpret code, the generated
assembly is likely to be more efficient. Meet the compiler half-
way, and you'll always be rewarded.

And __attribute__ isn't just for the compiler either: the next
person to see the code will appreciate the extra context, too.
So go the extra mile for the benefit of your collaborator,
successor, or just 2-years-from-now-(and-you've-forgotten-
everything-about–this-code) you.

Because in the end, the love you take is equal to the love you
make. 

 70

instancetype

Objective-C is evolving rapidly, in a way that you just don't
see in established programming languages.

ARC, object literals, subscripting, blocks: in the span of just
three years, so much of how we program in Objective-C has
been changed (for the better).

All of this innovation is a result of Apple's philosophy of
vertical integration. Just as Apple's investment in custom chip
design has allowed them to compete aggressively with their
mobile hardware, so their investment in LLVM have allowed
their software to keep pace.

Clang developments can range from the mundane to
paradigm-changing, but telling the difference takes practice.
Because we're talking about low-level language features, it's
difficult to understand what implications they may have for
high-level API design.

One such example is instancetype.

 71

In Objective-C, conventions aren't just a matter of best-
practices, they are implicit instructions to the compiler.

For example, alloc and init both have return types of id, yet in
Xcode, the compiler makes all of the correct type checks. How
is this possible?

In Cocoa, there is a convention that methods with names like
alloc, or init always return objects that are an instance of the
receiver class. These methods are said to have a related result
type.

Class constructor methods, although they similarly return id,
don't get the same type-checking benefit, because they don't
follow that naming convention.

You can try this out for yourself:

[[[NSArray alloc] init] mediaPlaybackAllowsAirPlay];

// ! "No visible @interface for `NSArray` declares the

selector `mediaPlaybackAllowsAirPlay`" !
[[NSArray array] mediaPlaybackAllowsAirPlay];

// (No error)

Because alloc and init follow the naming convention for
related result types, the correct type check against NSArray is
performed. However, the equivalent class constructor array
does not follow that convention, and is interpreted as a
generic id.

 72

id is useful for opting-out of type safety, but that's not the
objective here.

The alternative, of explicitly declaring the return type
((NSArray *) in the previous example) fixes the type safety
problem, but doesn't play nicely with subclasses.

This is where the compiler steps in to resolve the situation:

instancetype is a contextual keyword that can be used as a
result type to signal that a method returns a related result
type. For example:

@interface Person

+ (instancetype)personWithName:(NSString *)name;

@end

With instancetype, the compiler will correctly infer that the
result of +personWithName: is an instance of a Person.

instancetype, unlike id, can only be used as the result type in a
method declaration.

instancetype is just one of the many language extensions to
Objective-C, with more being added with each new OS &
Xcode release. Take it as an example of how paying attention
to the low-level details can give you insights into powerful
new ways to transform Objective-C.  

 73

NS_ENUM &  
NS_OPTIONS

When everything is an object, nothing is.

That is to say: sometimes it's nice to be able to drop down to
the C layer of things.

Yes, C—that non-objective part of our favorite Smalltalk-
inspired hybrid language—can be a great asset. It's fast, it's
battle-tested, it's the very foundation of modern computing.
But more than that, C is the escape hatch for when the Object-
Oriented paradigm cracks under its own cognitive weight.

• Static functions are nicer than class methods.

• Enums are nicer than string constants.

• Bitmasks are nicer than arrays of string constants.

• Preprocessor directives are nicer than runtime hacks.

Introduced in Foundation with iOS 6 / Mac OS X 10.8, the
NS_ENUM and NS_OPTIONS macros are the new,
preferred way to declare enum types.

 74

enum, or enumerated value types, are the C way to define
constants for fixed values, like days of the week, or available
styles of table view cells. In an enum declaration, constants
without explicit values will automatically be assigned values
sequentially, starting from 0.

There are several ways to declare enums. What's confusing is
that there are subtle functional differences between each
approach, and without knowing any better, someone is just as
likely to use them interchangeably.

For instance:

enum {

 UITableViewCellStyleDefault,

 UITableViewCellStyleValue1,

 UITableViewCellStyleValue2,

 UITableViewCellStyleSubtitle

};

...declares integer values, but no type.

Whereas:

typedef enum {

 UITableViewCellStyleDefault,

 UITableViewCellStyleValue1,

 UITableViewCellStyleValue2,

 UITableViewCellStyleSubtitle

} UITableViewCellStyle; 

 75

...defines the UITableViewCellStyle type, suitable for method
parameters or function arguments.

Apple had previously defined all of their enum types as:

typedef enum {

 UITableViewCellStyleDefault,

 UITableViewCellStyleValue1,

 UITableViewCellStyleValue2,

 UITableViewCellStyleSubtitle

}; !
typedef NSInteger UITableViewCellStyle;

...which ensures a fixed size for UITableViewCellStyle, but
does nothing to hint the relation between the aforementioned
enum and the new type to the compiler.

Thankfully, Apple has decided on "One Macro To Rule Them
All" with NS_ENUM.

NS_ENUM

Now, UITableViewCellStyle is declared with:

typedef NS_ENUM(NSInteger, UITableViewCellStyle) {

 UITableViewCellStyleDefault,

 UITableViewCellStyleValue1,

 UITableViewCellStyleValue2,

 UITableViewCellStyleSubtitle

};  

 76

The first argument for NS_ENUM is the storage type of the
new type. In a 64-bit environment, UITableViewCellStyle will
be 8 bytes long—same as NSInteger. If the specified size
cannot fit all of the defined values, an error will be generated
by the compiler. The second argument is the name of the new
type. Inside the code block, the values are defined as usual.

This approach combines the best of all of the aforementioned
approaches, and even provides additional hints to the
compiler for type-checking.

NS_OPTIONS

enum values can also be used to define a bitmask. Using a
convenient property of binary arithmetic, a single integer
value can simultaneously encode a combination of values all
at once using the bitwise OR (|), and decoded with bitwise
AND (&). Each subsequent value, rather than automatically
being incremented by 1 from 0, are manually given a value
with a bit offset: 1 << 0, 1 << 1, 1 << 2, and so on.

If you imagine the binary representation of a number, like
10110 for 22, each individual bit can be though to represent a
single boolean value.

Bitmasks are constructed with the NS_OPTIONS macro.

 77

In UIKit, for example, UIViewAutoresizing is a bitmask that
can represent any combination of flexible top, bottom, left,
and right margins, or width and height.

typedef NS_OPTIONS(NSUInteger, UIViewAutoresizing) {

 UIViewAutoresizingNone = 0,

 UIViewAutoresizingFlexibleLeftMargin = 1 << 0,

 UIViewAutoresizingFlexibleWidth = 1 << 1,

 UIViewAutoresizingFlexibleRightMargin = 1 << 2,

 UIViewAutoresizingFlexibleTopMargin = 1 << 3,

 UIViewAutoresizingFlexibleHeight = 1 << 4,

 UIViewAutoresizingFlexibleBottomMargin = 1 << 5

};

The syntax is exactly the same as NS_ENUM, but
NS_OPTIONS alerts the compiler that values can be
combined with bitmask |.

!
A skilled Objective-C developer is able to gracefully switch
between the Objective and Procedural paradigms, and use
each to their respective advantage.

NS_ENUM and NS_OPTIONS are handy additions to the
Objective-C development experience, and reaffirm the
healthy dialectic between its objective and procedural nature.
Keep this in mind as you move forward in your own journey
to understand the logical tensions that underpin everything
around us. 

 78

Foundation & 
CoreFoundation

!

 79

Key-Value Coding  
Collection Operators

Rubyists laugh at Objective-C's bloated syntax.

Although we lost a few pounds over the summer with our
sleek new object literals, those Red-headed bullies still taunt
us with their map one-liners and their fancy Symbol#to_proc.

A lot of how elegant a language is perceived to be comes
down to how well it avoids loops. for, while; even for-in fast
enumeration expressions are a drag. No matter how they're
sugar-coated, loops are a block of code that can be otherwise
expressed more simply in natural language:.

"get the average salary of these employees", versus:

double totalSalary = 0.0;

for (Employee *employee in employees) {

 totalSalary += [employee.salary doubleValue];

}

double averageSalary = totalSalary / [employees count]; 

 80

Meh.

Fortunately, Key-Value Coding provides a much more concise
—almost Ruby-like—way to do this:

[employees valueForKeyPath:@"@avg.salary"];

KVC Collection Operators allows actions to be performed on
a collection using key path notation in valueForKeyPath:. @'s
in a key path denote an aggregate function whose result can
be returned or chained, just like any other key path.

Collection Operators fall into one of three different
categories, according to the kind of value they return:

• Simple Collection Operators return strings, numbers,
or dates, depending on the operator.

• Object Operators return an array.

• Array and Set Operators return an array or set,
depending on the operator.

The best way to understand how these work is to see them in
action. Consider a Product class, and a products array with
the following data:  

 81

Product.h

@interface Product : NSObject

@property NSString *name;

@property double price;

@property NSDate *launchedOn;

@end

Simple Collection Operators

• @count: Returns the number of objects in the collection.

• @sum: Converts each object in the collection to a double,
computes the sum, and returns the sum.

• @avg: Takes the double value of each object in the
collection, and returns the average value.

• @max: Determines the maximum value using compare:.
Objects must support mutual comparison for this to work.

• @min: Same as @max, but returns the minimum value.

Name Price Launch Date

iPhone 5 $ 199 September 21, 2012

iPad mini $ 329 November 2, 2012

MacBook Pro $ 1,699 June 11, 2012

iMac $ 1,299 November 2, 2012

 82

Example  
!
[products valueForKeyPath:@"@count"]; // 4

[products valueForKeyPath:@"@sum.price"]; // 3526.00

[products valueForKeyPath:@"@avg.price"]; // 881.50

[products valueForKeyPath:@"@max.price"]; // 1699.00

[products valueForKeyPath:@"@min.launchedOn"];

// June 11, 2012

To get the aggregate value of an array or set of NSNumbers, simply
pass self as the key path after the operator,  
e.g. [@[@(1), @(2), @(3)] valueForKeyPath:@"@max.self "]

Object Operators

Consider another example, with an array representing the
current stock of a local Apple store (which is running low on
iPad Mini, and doesn't have the new iMac):

NSArray *inventory = @[iPhone5, iPhone5, iPhone5,

iPadMini, macBookPro, macBookPro];

• @unionOfObjects / @distinctUnionOfObjects: Returns an
array of the objects in the property specified in the key
path to the right of the operator. @distinctUnionOfObjects
removes duplicates, whereas @unionOfObjects does not.

 83

Example  
!
[inventory valueForKeyPath:@"@unionOfObjects.name"];

// "iPhone 5", "iPhone 5", "iPhone 5", "iPad mini",

"MacBook Pro", "MacBook Pro" !
[inventory

valueForKeyPath:@"@distinctUnionOfObjects.name"];

// "iPhone 5", "iPad mini", "MacBook Pro"

Array and Set Operators

Array and Set Operators are similar to Object Operators,
except that they work on collections of NSArray and NSSet.

• @distinctUnionOfArrays / @unionOfArrays: Returns an
array containing the combined values of each array in the
collection, as specified by the key path to the right of the
operator. The distinct version removes duplicate values.

• @distinctUnionOfSets: Similar to
@distinctUnionOfArrays, but it expects an NSSet
containing NSSet objects, and returns an NSSet. Because
sets can't contain duplicate values anyway, there is only the
distinct operator.

!

 84

Example  
!
telecomStoreInventory = @[iPhone5, iPhone5, iPadMini]; !
[@[appleStoreInventory, telecomStoreInventory]

valueForKeyPath:@"@distinctUnionOfArrays.name"];

// "iPhone 5", "MacBook Pro"

!
KVC Collection Operators are a must-know for anyone
wanting to save a few extra lines of code and look cool in the
process.

While scripting languages like Ruby boast considerably more
flexibility in its one-liner capability, perhaps we should take a
moment to celebrate the restraint built into Objective-C and
Collection Operators.  

 85

Key-Value
Observing

Ask anyone who's been around the NSBlock a few times:  
Key-Value Observing has the worst API in all of Cocoa.

It's awkward, verbose, and confusing. And worst of all, its
terrible API belies one of the most compelling features of the
framework.

When dealing with complicated stateful systems, dutiful
book-keeping is essential for maintaining sanity. Lest the right
hand not know what the left hand doeth, objects benefit from
a way to publish and subscribe to state changes over time.

In Objective-C and Cocoa, there are several ways that events
are communicated, each with varying degrees of formality
and coupling:

• NSNotification & NSNotificationCenter provide a
centralized hub through which any part of an application
may notify and be notified of changes from any other part

 86

of the application. The only requirement is to know what to
listen for, specifically the notification name. For example,
UIApplicationDidReceiveMemoryWarningNotification
signals a low memory environment in an application.

• Key-Value Observing allows for ad-hoc, evented
introspection between specific object instances by listening
for changes on a particular key path. For example, a
UIProgressView might observe the numberOfBytesRead
of a network request to derive and update its own progress
property.

• Delegates are a popular pattern for signaling events over a
fixed set of methods to a designated handler. For example,
UIScrollView sends scrollViewDidScroll: to its delegate
each time its scroll offset changes.

• Callbacks of various sorts. For example, block properties
like NSOperation -completionBlock, or C function
pointers passed as hooks into functions like
SCNetworkReachabilitySetCallback(3).

Of all of these methods, Key-Value Observing is arguably the
least well-understood. So this week, NSHipster will endeavor
to provide some much-needed clarification and notion of
best practices to this situation.

!

 87

<NSKeyValueObserving>, or KVO, is an informal protocol
that defines a common mechanism for observing and
notifying state changes between objects. Being an informal
protocol, classes don't advertise their conformance to it  
(it's just implicitly assumed for all subclasses of NSObject).

The main value proposition of KVO is rather compelling: any
object can subscribe to be notified about state changes in any
other object. Most of this is built-in, automatic, and
transparent.

Similar manifestations of this observer pattern are the secret sauce of
most modern Javascript frameworks, like Backbone.js and Ember.js.

Subscribing

Objects can have observers added for a particular key path,
those dot-separated keys that specify a sequence of properties.
Most of the time with KVO, these are just the top-level
properties on the object.

The method used to add an observer is
addObserver:forKeyPath:options:context:

 88

- (void)addObserver:(NSObject *)observer

 forKeyPath:(NSString *)keyPath

 options:(NSKeyValueObservingOptions)options

 context:(void *)context

• observer: The object to register for KVO notifications. The
observer must implement the key-value observing method
observeValueForKeyPath:ofObject:change:context:.

• keyPath: The key path, relative to the receiver, of the
property to observe. This value must not be nil.

• options: A combination of the
NSKeyValueObservingOptions values that specifies what
is included in observation notifications. For possible values,
see "NSKeyValueObservingOptions".

• context: Arbitrary data that is passed to observer in
observeValueForKeyPath:ofObject:change:context:.

Yuck. What makes this API so unsightly is the fact that those
last two parameters are almost always 0 and NULL,
respectively.

options refers to a bitmask of NSKeyValueObservingOptions.  

 89

NSKeyValueObservingOptions

• NSKeyValueObservingOptionNew: Indicates that the
change dictionary should provide the new attribute value.

• NSKeyValueObservingOptionOld: Indicates that the
change dictionary should contain the old attribute value.

• NSKeyValueObservingOptionInitial: If specified, a
notification should be sent to the observer immediately,
before the observer registration method even returns. The
change dictionary in the notification will always contain an
NSKeyValueChangeNewKey entry if
NSKeyValueObservingOptionNew is also specified but
will never contain an NSKeyValueChangeOldKey entry.
(In an initial notification the current value of the observed
property may be old, but it's new to the observer.) You can
use this option instead of explicitly invoking, at the same
time, code that is also invoked by the observer's
observeValueForKeyPath:ofObject:change:context:
method. When this option is used with
addObserver:forKeyPath:options:context: a notification
will be sent for each indexed object to which the observer
is being added.

• NSKeyValueObservingOptionPrior: Whether separate
notifications should be sent to the observer before and
after each change, instead of a single notification after the

 90

change. The change dictionary in a notification sent before
a change always contains an
NSKeyValueChangeNotificationIsPriorKey entry whose
value is @YES, but never contains an
NSKeyValueChangeNewKey entry. When this option is
specified the change dictionary in a notification sent after a
change contains the same entries that it would contain if
this option were not specified. You can use this option
when the observer's own key-value observing-compliance
requires it to invoke one of the -willChange... methods for
one of its own properties, and the value of that property
depends on the value of the observed object's property. (In
that situation it's too late to easily invoke -willChange...
properly in response to receiving an
observeValueForKeyPath:ofObject:change:context:
message after the change.)

As for context, this parameter is a value that can be used later
to differentiate between observations of different objects with
the same key path.

Responding

Another ugly aspect of KVO is the fact that there is no way to
specify custom selectors to handle observations, as one might
be used to from the Target-Action pattern used by controls.

 91

Instead, all changes for observers are funneled through a
single method:

- (void)observeValueForKeyPath:(NSString *)keyPath

 ofObject:(id)object

 change:(NSDictionary *)change

 context:(void *)context

Those parameters are the same as what were specified in –
addObserver:forKeyPath:options:context:, save for change,
which is populated from the NSKeyValueObservingOptions
options passed when the observer was originally added.

Here's a typical implementation of this method:

- (void)observeValueForKeyPath:(NSString *)keyPath

 ofObject:(id)object

 change:(NSDictionary *)change

 context:(void *)context

{

 if ([keyPath isEqualToString:@"state"]) {

 // ...

 }

}

Depending on how many kinds of objects are being observed
by a single class, this method may also introduce
isKindOfObject: or respondsToSelector: in order to
definitively identify the kind of event being passed.

 92

However, the safest method is to do an equality check to
context—especially when dealing with subclasses whose
parents observe the same keypath.

Correct Context Declarations

What makes a good context value? Here's a suggestion:

static void * XXContext = &XXContext;

It's that simple: a static value that stores its own pointer. It
means nothing on its own, which makes it rather perfect for
<NSKeyValueObserving>:

- (void)observeValueForKeyPath:(NSString *)keyPath

 ofObject:(id)object

 change:(NSDictionary *)change

 context:(void *)context

{

 if (context == XXContext) {

 if ([keyPath isEqualToString:@"isFinished"))]) {

 //...

 }

 }

}  

 93

Better Key Paths

Passing strings as key paths is strictly worse than using
properties directly, as any typo or misspelling will break
things, and can't be caught by the compiler.

A clever workaround to this is to use NSStringFromSelector
with a @selector literal value:

NSStringFromSelector(@selector(isFinished))

Since @selector looks through all available selectors in the
target, this won't prevent all mistakes, but it will catch most of
them—including breaking changes made by Xcode automatic
refactoring tool.

- (void)observeValueForKeyPath:(NSString *)keyPath

 ofObject:(id)object

 change:(NSDictionary *)change

 context:(void *)context

{

 if (context == XXContext) {

 if ([keyPath isEqualToString:

NSStringFromSelector(@selector(isFinished))]) {

 // ...

 }

 }

}

!

 94

Unsubscribing

When an observer is done listening for changes on an object,
it is expected to call removeObserver:forKeyPath:context:.
This will often either be called in dealloc, or a similar
finalization method.

Safe Unsubscribe with @try / @catch

Perhaps the most profound annoyance about KVO is that if
an object calls removeObserver:forKeyPath:context: when the
object is not registered as an observer (whether it was already
unregistered or not registered in the first place), an exception
is thrown. The kicker is that there's not built-in way to even
check if an object is registered!

Which causes one to rely on a rather unfortunate cudgel @try
with an unhandled @catch:

 95

- (void)observeValueForKeyPath:(NSString *)keyPath

 ofObject:(id)object

 change:(NSDictionary *)change

 context:(void *)context

{

 if ([keyPath

isEqualToString:NSStringFromSelector(@selector(isFinishe

d))]) {

 if ([object isFinished]) {

 @try {

 [object removeObserver:self

forKeyPath:NSStringFromSelector(@selector(isFinished))];

 }

 @catch (NSException * __unused exception) {}

 }

 }

}

Granted, not handling a caught exception, as in this example,
is waving the [UIColor whiteColor] flag of surrender. One
should only really use this technique when faced with
intermittent crashes which cannot be remedied by normal
book-keeping (whether due to race conditions or
undocumented behavior from a superclass).

!

 96

Automatic Property Notifications

KVO is made useful by its near-universal adoption. Much of
the setup is automatically taken care of by the compiler and
runtime.

Classes can opt-out of automatic KVO by overriding
+automaticallyNotifiesObserversForKey: and returning NO.

But what about compound or derived values? For example,
consider an object with a @dynamic, readonly address
property, which reads and formats its streetAddress, locality,
region, and postalCode?

One could implement keyPathsForValuesAffectingAddress
(or the generic +keyPathsForValuesAffectingValueForKey:):

+ (NSSet *)keyPathsForValuesAffectingAddress {

 return [NSSet setWithObjects:

NSStringFromSelector(@selector(streetAddress)),

NSStringFromSelector(@selector(locality)),

NSStringFromSelector(@selector(region)),

NSStringFromSelector(@selector(postalCode)), nil];

}

!

 97

So there you have it: some general observations and best
practices for KVO. To an enterprising NSHipster, KVO can be
a powerful substrate on top of which clever and powerful
abstractions can be built.

Use it wisely, and understand the rules and conventions to
make the most of it in your own application.  

 98

NSError

To err is human. 
To NSError is Cocoa.

All programs on a Unix system are a child process of another
process, forking all the way from the original process: pid 1
(which in the case of Mac OS X is launchd).

When an executable finishes, it communicates a status code
between 0 and 255 to its parent, as a way to communicate why
or how the process exited. 0 means "everything exited
normally; nothing to report here", while any non-zero value
indicates something that the parent process should be aware
of. Exit status codes may be used to indicate whether the
process crashed or terminated prematurely. By some
conventions, the higher the return value, the more dire the
circumstances.

In an OO paradigm, processes are abstracted away, leaving
only objects and the messages they pass between one another.
That distinction between success and failure (and between
different varieties of failure) is still useful in object-oriented

 99

programming. But considering that methods are often wont
to return values other than BOOL to indicate success or
failure, this can create something of a predicament.

Languages more drama-prone and trigger-happy than
Objective-C reconcile this by abusing the hell out of
exceptions, raising at even the slightest breach in contract. To
our good fortune as Cocoanauts, however, Objective-C takes
a more civilized approach when it comes to giving us bad
news, and that approach is NSError.

!
NSError is the unsung hero of the Foundation framework.
Passed gallantly in and out of perilous method calls, it is the
messenger by which we are able to contextualize our failures.

NSError is toll-free bridged with CFError, but it's unlikely to find a
reason to dip down to its Core Foundation counterpart.

Each NSError object encodes three critical pieces of
information: a status code, corresponding to a particular error
domain, as well as additional context provided by a userInfo
dictionary.

!

 100

code & domain

Like exit status codes, an NSError -code signals the nature of
the problem. These status codes are defined within a
particular error domain, in order to avoid overlap and
confusion. These status codes are generally defined by
constants in an enum.

For example, in the NSCocoaErrorDomain, the status code
for an error caused by NSFileManager attempting to access a
non-existent file is 4 (NSFileNoSuchFileError). However, 4 in
NSPOSIXErrorDomain refers to a POSIX EINTR, or
"interrupted function" error.

Now, anyone coming from a systems programming
background may have just had a vision of a switch statement
with smatterings of printf, to translate numeric constants into
something human-readable. NSError is way ahead of you.

userInfo

What gives NSError its particular charm is everyone's favorite
grab bag property: userInfo. As a convention throughout
Cocoa, userInfo is a dictionary that contains arbitrary key-
value pairs that, whether for reasons of subclassing or
schematic sparsity, are not suited to full-fledged properties.  

 101

In the case of NSError, there are several special keys that
correspond to readonly properties.

Three are generally useful:

• localizedDescription (NSLocalizedDescriptionKey):  
A localized description of the error.

• localizedRecoverySuggestion
(NSLocalizedRecoverySuggestionErrorKey):  
A localized recovery suggestion for the error.

• localizedFailureReason
(NSLocalizedFailureReasonErrorKey):  
A localized explanation of the reason for the error.

...whereas three others are specific to OS X:

• localizedRecoveryOptions
(NSLocalizedRecoveryOptionsErrorKey):  
An array containing the localized titles of buttons
appropriate for displaying in an alert panel

• recoveryAttempter (NSRecoveryAttempterErrorKey)

• helpAnchor (NSHelpAnchorErrorKey):  
Used by an alert panel by a help anchor button.

!

 102

Here's how to construct NSError with a userInfo dictionary:

NSDictionary *userInfo = @{

 NSLocalizedDescriptionKey: NSLocalizedString(

@"Operation was unsuccessful.", nil), !
 NSLocalizedFailureReasonErrorKey: NSLocalizedString(

@"The operation timed out.", nil), !
 NSLocalizedRecoverySuggestionErrorKey:

NSLocalizedString(@"Have you tried turning it off and on

again?", nil)

 }; !
NSError *error =

 [NSError errorWithDomain:NSHipsterErrorDomain

 code:-57

 userInfo:userInfo];

The advantage of encapsulating this information in an object
like NSError, as opposed to, say, throwing exceptions willy-
nilly, is that these error objects can be passed between
different objects and contexts.

For example, a controller that calls a method with an out
NSError ** parameter might pass that error into an alert view
on failure:

 103

[[[UIAlertView alloc]

 initWithTitle:error.localizedDescription

 message:error.localizedRecoverySuggestion

 delegate:nil

cancelButtonTitle:NSLocalizedString(@"OK", nil)

otherButtonTitles:nil, nil] show];

One clever hack used by C functions to communicate errors is to
encode 4-letter ASCII sequences in the 32 bit return type. It's no
localizedDescription, but it's better than cross-referencing error
codes from a table every time!

For sake of completeness: here is a list of the standard
NSError userInfo keys:

• NSLocalizedDescriptionKey

• NSLocalizedFailureReasonErrorKey

• NSLocalizedRecoverySuggestionErrorKey

• NSLocalizedRecoveryOptionsErrorKey
• NSFilePathErrorKey
• NSStringEncodingErrorKey
• NSUnderlyingErrorKey
• NSRecoveryAttempterErrorKey
• NSHelpAnchorErrorKey

!

 104

Using NSError

There are two ways in which you will encounter NSError: as a
consumer and as a producer.

Consuming

As a consumer, you are primarily concerned with methods
that have a final parameter of type NSError **. Again, this is to
get around the single return value constraint of Objective-C;
by passing a pointer to an uninitialized NSError *, that
variable will be populated with any error the method
populates:

NSError *error = nil;

BOOL success = [[NSFileManager defaultManager]

 moveItemAtPath:@"/path/to/target"

 toPath:@"/path/to/destination"

 error:&error];

if (!success) {

 NSLog(@"%@", error);

}

According to Cocoa conventions, methods returning BOOL to
indicate success or failure are encouraged to have a final NSError **
parameter if there are multiple failure conditions to distinguish.  
 
A good guideline is whether you could imagine that NSError
bubbling up, and being presented to the user. 

 105

Another way NSError objects are passed is by way of
completionHandler block arguments. This gets around both a
constraint on single value returns, as well as values being
returned synchronously. This has become especially popular
with newer Foundation APIs, like NSURLSession:

NSURL *URL =

 [NSURL URLWithString:@"http://example.com"]; !
NSURLRequest *request =

 [NSURLRequest requestWithURL:URL]; !
NSURLSession *session =

 [NSURLSession sessionWithConfiguration:

 [NSURLSessionConfiguration

 defaultSessionConfiguration]]; !
[[session dataTaskWithRequest:request

 completionHandler:

^(NSData *data, NSURLResponse *response, NSError *error)

{

 if (error) {

 NSLog(@"%@", error);

 } else {

 // ...

 }

}] resume];

!

 106

Producing

One would be well-advised to follow the same conventions
for error handling as other Foundation classes. In situations
where a custom method invokes a method with an NSError
** parameter, it is usually a good idea to similarly pass that
NSError ** parameter into the signature of the custom
method. More substantial apps or libraries are encouraged to
define their own error domains and error code constants as
suitable.

To pass an error to an NSError ** parameter, do the following:

- (BOOL)validateObject:(id)object

 error:(NSError *__autoreleasing *)error

{

 BOOL success = // ... !
 if (!success & error) {

 *error = [NSError

 errorWithDomain:NSHipsterErrorDomain

 code:-42

 userInfo:nil];

 return NO;

 } !
 return YES;

}

!

 107

NSOperation

Everyone knows that the secret to making an app snappy and
responsive is to offload computation to the background. The
modern Objective-C developer, thus has two options:  
Grand Central Dispatch & NSOperation.

Since GCD has gone pretty mainstream, let's focus on the
latter, object-oriented approach.

NSOperation represents a single unit of computation. It's an
abstract class that gives subclasses a useful, thread-safe way to
model aspects like state, priority, dependencies, and
cancellation.

If subclassing isn't your cup of tea, there's always NSBlockOperation,
a concrete subclass that wraps block in operations.

Examples of tasks that lend themselves well to NSOperation
include network requests, image resizing, linguistic
processing, or any other repeatable, structured, long-running
task that produces useful data.

 108

But simply wrapping computation into an object doesn't do
much without a little oversight. That's where
NSOperationQueue comes in.

NSOperationQueue regulates the concurrent execution of
operations. It acts as a priority queue, such that operations are
executed in a roughly First-In-First-Out manner, with higher-
priority ones getting to jump ahead of lower-priority ones.
NSOperationQueue can also executes operations
concurrently, with the option to limit the maximum number
to be executed simultaneously, with the
maxConcurrentOperationCount property.

To kick off an NSOperation, one can either call -start, or add
it to an NSOperationQueue, which will automatically start
the operation when it reaches the front of the queue.

State

NSOperation encodes a simple state machine to describe the
execution of an operation:

isReady → isExecuting → isFinished

In lieu of an explicit state property, state is determined
implicitly by KVO notifications on those keypaths. That is,
when an operation is ready to be executed, it sends a KVO

 109

notification for the isReady keypath, whose corresponding
property would then return YES.

Each property must be mutually exclusive from one-another
in order to encode a consistent state:

• isReady: Returns YES to indicate that the operation is
ready to execute, or NO if there are still unfinished
initialization steps on which it is dependent.

• isExecuting: Returns YES if the operation is currently
executing, or NO otherwise.

• isFinished: Returns YES if the operation finished execution
successfully, or if the operation was cancelled. An
NSOperationQueue does not dequeue an operation until
isFinished changes to YES, so it is critical to implement this
correctly in order to avoid deadlocks.

Cancellation

It may be useful to cancel operations early to prevent needless
work from being performed. Reasons for cancellation may
include explicit user action, or a failure in a dependent
operation.

!

 110

Similar to execution state, NSOperation communicates
cancellation state through KVO on the isCancelled keypath.
When an operation responds to the -cancel command, it
should clean up any internal details and arrive in an
appropriate final state as quickly as possible. Specifically, the
values for both isCancelled and isFinished need to become
YES, and the value of isExecuting to NO.

One thing to watch out for are the spelling peculiarities
around the word "cancel". Although spelling varies across
dialects, when it comes to NSOperation:

• cancel: use one L for the method (verb)

• isCancelled: use two L's for the property (adjective)

Priority

All operations may not be equally important. Setting the
queuePriority property will promote or defer an operation in
an NSOperationQueue according to the following ranking:

• NSOperationQueuePriorityVeryHigh

• NSOperationQueuePriorityHigh

• NSOperationQueuePriorityNormal

• NSOperationQueuePriorityLow

• NSOperationQueuePriorityVeryLow

 111

Additionally, operations may specify a threadPriority value
between 0.0 and 1.0, with 1.0 representing the highest priority.
Whereas queuePriority determine the order in which
operations are started, threadPriority specifies the allocation
of computation once an operation has been started.

But as with most threading details, if you don't know what
it does, you probably didn't need to know about it anyway.

Dependencies

Depending on the complexity of your application, it may
make sense to divide up large tasks into a series of
composable sub-tasks. You can do this using NSOperation
dependencies.

For example, to describe the process of of downloading and
resizing an image from a server, you would probably want to
divide up networking into one operation, and resizing into
another. Since, an image can't be resized until its downloaded.
Thus, the the networking operation is said to be a dependency
of the resizing operation, and must be finished before the
resizing operation can be started. Expressed in code:

[resizingOperation addDependency:networkingOperation];

[operationQueue addOperation:networkingOperation];

[operationQueue addOperation:resizingOperation]; 

 112

An operation will not be started until all of its dependencies
return YES to isFinished. Aperations involved in a
dependency graph should be added to the operation queue,
lest there be a gap somewhere along the way.

Also, make sure not to create a dependency cycle, such that  
A depends on B, and B depends on A, for example.  
This will create deadlock and sadness.

completionBlock

One useful feature that was added as part of the blocks
renaissance of iOS 4 / Mac OS X 10.6 is the completionBlock
property.

When an NSOperation finishes, it will execute its
completionBlock exactly once. This provides a convenient
way to customize the behavior of an operation when used in a
model or view controller. For example, you could set a
completion block on a network operation to do something
with the response data from the server once its finished
loading.

!

 113

NSOperation remains an essential tool in the modern
Objective-C programmers bag of tricks. Whereas GCD is
ideal for in-line asynchronous processing, NSOperation
provides a more comprehensive, object-oriented model of
computation, which is ideal for encapsulating all of the data
around structured, repeatable tasks in an application.

Add NSOperation to your next project and bring delight not
only to your users, but yourself as well.  

 114

NSSortDescriptor

Sorting: it's a mainstay of Computer Science 101 exams and
whiteboarding interview questions. But when was the last
time you actually needed to know how to implement
Quicksort yourself, anyway?

When making apps with high-level frameworks like Cocoa,
sorting is just something you can assume to be fast. As such, it
becomes a matter of convenience and clarity of intention, and
as far as those go, you'd be hard-pressed to find a better
implementation than Foundation's NSSortDescriptor.

!
NSSortDescriptor objects are constructed with the following
parameters:

• key: for a given collection, the key for the
corresponding value to be sorted on for each object in
the collection.

• ascending: a boolean specifying whether the collection
should be sorted in ascending (YES) or descending
(NO) order.

 115

There is an optional third parameter that relates to how
sortable values are compared to one another. By default, this is
a simple equality check, but this behavior can be changed by
passing either a selector (SEL) or comparator
(NSComparator).

Any time you're sorting user-facing strings, be sure to pass the
localizedStandardCompare: selector, which will sort according to the
language rules of the current locale (locales may differ on ordering of
case, diacritics, and so forth).

Collection classes like NSArray and NSSet have methods to
return sorted arrays given an array of sortDescriptors. Sort
descriptors are applied in order, so that if two elements
happen to be tied for a particular sorting criteria, the tie is
broken by any subsequent descriptors.

To put that into more concrete terms, consider a Person class
with properties for firstName & lastName of type NSString *,
and age, which is an NSUInteger.

Person.h

@interface Person : NSObject

@property NSString *firstName;

@property NSString *lastName;

@property NSNumber *age;

@end 

 116

Person.m

@implementation Person !
- (NSString *)description {

 return [NSString stringWithFormat:@"%@ %@",

self.firstName, self.lastName];

} !
@end

Given the following dataset:

Here are some of the different ways they can be sorted by
combinations of NSSortDescriptor:

NSArray *firstNames =

 @[@"Alice", @"Bob", @"Charlie", @"Quentin"]; !
NSArray *lastNames =

 @[@"Smith", @"Jones", @"Smith", @"Alberts"]; !
NSArray *ages = @[@24, @27, @33, @31]; 

index 0 1 2 3

firstName Alice Bob Charlie Quentin

lastName Smith Jones Smith Alberts

age 24 27 33 31

 117

NSMutableArray *people = [NSMutableArray array];

[firstNames enumerateObjectsUsingBlock:

^(id obj, NSUInteger idx, BOOL *stop)

{

 Person *person = [[Person alloc] init];

 person.firstName = [firstNames objectAtIndex:idx];

 person.lastName = [lastNames objectAtIndex:idx];

 person.age = [ages objectAtIndex:idx];

 [people addObject:person];

}]; !
NSSortDescriptor *firstNameSortDescriptor =

[NSSortDescriptor sortDescriptorWithKey:@"firstName"

 ascending:YES

 selector:@selector(localizedStandardCompare:)];

NSSortDescriptor *lastNameSortDescriptor =

[NSSortDescriptor sortDescriptorWithKey:@"lastName"

 ascending:YES

 selector:@selector(localizedStandardCompare:)];

NSSortDescriptor *ageSortDescriptor = [NSSortDescriptor

sortDescriptorWithKey:@"age"

 ascending:NO]; !
NSLog(@"By age: %@", [people

sortedArrayUsingDescriptors:@[ageSortDescriptor]]);

/* "Charlie Smith", "Quentin Alberts",

 "Bob Jones", "Alice Smith" */ !
NSLog(@"By first name: %@",

[people sortedArrayUsingDescriptors:

 @[firstNameSortDescriptor]]);

/* "Alice Smith", "Bob Jones",

 "Charlie Smith", "Quentin Alberts" */ 

 118

NSLog(@"By last name, first name: %@",

[people sortedArrayUsingDescriptors:

 @[lastNameSortDescriptor,

 firstNameSortDescriptor]]);

/* "Quentin Alberts", "Bob Jones",

 "Alice Smith", "Charlie Smith" */

!
NSSortDescriptor can be found throughout Foundation and
other system frameworks. Anytime your own classes need to
define sort ordering, follow the convention of specifying a
sortDescriptors parameter.

Because, in reality, sorting should be thought of in terms of
business logic, not mathematical formulas and map-reduce
functions. In this respect, NSSortDescriptor is a slam dunk,
and will have you pining for it anytime you venture out of
Objective-C and Cocoa.  

 119

NSPredicate

NSPredicate is a Foundation class that specifies how data
should be fetched or filtered. Its query language, something
between a SQL WHERE clause and a regular expression,
provides an expressive, natural language interface to define
logical conditions on which a collection is evaluated.

It's easier to show NSPredicate in use, rather than talk about it
in the abstract, so we're going to revisit the example data set
used in the NSSortDescriptor chapter:

!
NSArray *firstNames =

 @[@"Alice", @"Bob", @"Charlie", @"Quentin"];

NSArray *lastNames =

 @[@"Smith", @"Jones", @"Smith", @"Alberts"];

NSArray *ages = @[@24, @27, @33, @31]; 

index 0 1 2 3

firstName Alice Bob Charlie Quentin

lastName Smith Jones Smith Alberts

age 24 27 33 31

 120

NSMutableArray *people = [NSMutableArray array];

[firstNames enumerateObjectsUsingBlock:^(id obj,

NSUInteger idx, BOOL *stop) {

 Person *person = [[Person alloc] init];

 person.firstName = firstNames[idx];

 person.lastName = lastNames[idx];

 person.age = ages[idx];

 [people addObject:person];

}]; !
NSPredicate *bobPredicate = [NSPredicate

 predicateWithFormat:@"firstName = 'Bob'"];

NSPredicate *smithPredicate = [NSPredicate

 predicateWithFormat:@"lastName = %@", @"Smith"];

NSPredicate *thirtiesPredicate = [NSPredicate

 predicateWithFormat:@"age >= 30"]; !
NSLog(@"Bobs: %@",

[people filteredArrayUsingPredicate:bobPredicate]);

// ["Bob Jones"] !
NSLog(@"Smiths: %@",

[people filteredArrayUsingPredicate:smithPredicate]);

// ["Alice Smith", "Charlie Smith"] !
NSLog(@"30's: %@",

[people filteredArrayUsingPredicate:thirtiesPredicate]);

// ["Charlie Smith", "Quentin Alberts"] 

 121

Using NSPredicate with Collections

Foundation provides methods to filter arrays, sets, and
dictionaries with predicates.

NSArray & NSSet, have the methods
filteredArrayUsingPredicate: and filteredSetUsingPredicate:
which return an immutable collection by evaluating a
predicate on the receiver. Their mutable counterparts have the
method filterUsingPredicate:, which removes any objects that
evaluate to NO when running the predicate on the receiver.

NSDictionary can use predicates by filtering its keys or values,
which are both NSArray objects.

NSOrderedSet can either create new ordered sets from a
filtered NSArray or NSSet, or alternatively,
NSMutableOrderedSet can simply removeObjectsInArray:,
passing objects filtered with the negated predicate.

Using NSPredicate with Core Data

NSFetchRequest has a predicate property, which specifies the
conditions by which managed objects should be retrieved.

!

 122

The same rules apply as before, except that predicates are
evaluated by the persistent store coordinator within a
managed object context, rather than collections being filtered
in-memory.

Predicate Syntax

Substitutions

• %@ is a var arg substitution for an object value—often a
string, number, or date.

• %K is a var arg substitution for a key path.

NSPredicate *ageIs33Predicate = [NSPredicate

 predicateWithFormat:@"%K = %@", @"age", @33]; !
NSLog(@"Age 33: %@",

[people filteredArrayUsingPredicate:ageIs33Predicate]);

// ["Charlie Smith"] !
• $VARIABLE_NAME is a value that can be substituted

with NSPredicate -predicateWithSubstitutionVariables:.

 123

NSPredicate *namesBeginningWithLetterPredicate =

[NSPredicate predicateWithFormat:@"(firstName

BEGINSWITH[cd] $letter) OR (lastName BEGINSWITH[cd]

$letter)"]; !
NSLog(@"'A' Names: %@",

 [people filteredArrayUsingPredicate:

 [namesBeginningWithLetterPredicate

 predicateWithSubstitutionVariables:

 @{@"letter": @"A"}

]]);

// ["Alice Smith", "Quentin Alberts"]

Basic Comparisons

• =, ==: The left-hand expression is equal to the right-hand
expression.

• >=, =>: The left-hand expression is greater than or equal to
the right-hand expression.

• <=, =<: The left-hand expression is less than or equal to the
right-hand expression.

• >: The left-hand expression is greater than the right-hand
expression.

• <: The left-hand expression is less than the right-hand
expression.

 124

• !=, <>: The left-hand expression is not equal to the right-
hand expression.

• BETWEEN: The left-hand expression is between, or equal
to either of, the values specified in the right-hand side. The
right-hand side is a two value array (an array is required to
specify order) giving upper and lower bounds. For
example, 1 BETWEEN { 0 , 33 }, or $INPUT BETWEEN
{ $LOWER, $UPPER }.

Basic Compound Predicates

• AND, &&: Logical AND.

• OR, ||: Logical OR.

• NOT, !: Logical NOT.

String Comparisons

String comparisons are case and diacritic sensitive, by default.
One can modify an operator using the key characters c and d
within square braces to specify case and diacritic insensitivity
respectively. For example, firstName BEGINSWITH[cd]
$FIRST_NAME.

• BEGINSWITH: The left-hand expression begins with
the right-hand expression.

• CONTAINS: The left-hand expression contains the
right-hand expression.

 125

• ENDSWITH: The left-hand expression ends with the
right-hand expression.

• LIKE: The left hand expression equals the right-hand
expression: ? and * are allowed as wildcard characters,
where ? matches 1 character and * matches 0 or more
characters.

• MATCHES: The left hand expression equals the right
hand expression using a regex-style comparison
according to ICU v3 (for more details see the ICU
User Guide for Regular Expressions).

Aggregate Operations

Relational Operations

• ANY, SOME: Specifies any of the elements in the
following expression. For example, ANY children.age <
18.

• ALL: Specifies all of the elements in the following
expression. For example, ALL children.age < 18.

• NONE: Specifies none of the elements in the following
expression. For example, NONE children.age < 18.
This is logically equivalent to NOT (ANY ...).

• IN: Equivalent to an SQL IN operation, the left-hand
side must appear in the collection specified by the
right-hand side. For example, name IN { 'Ben',
'Melissa', 'Nick' }.

!

 126

Array Operations

• array[index]: Specifies the element at the specified
index in array.

• array[FIRST]: Specifies the first element in array.

• array[LAST]: Specifies the last element in array.

• array[SIZE]: Specifies the size of array.

• Boolean Value Predicates

• TRUEPREDICATE: A predicate that always evaluates
to TRUE.

• FALSEPREDICATE: A predicate that always evaluates
to FALSE.

NSCompoundPredicate

AND & OR can be used in predicate format strings to create
compound predicates. However, the same can be
accomplished using an NSCompoundPredicate.

For example, the following predicates are equivalent:

 127

[NSCompoundPredicate

 andPredicateWithSubpredicates:@[

 [NSPredicate predicateWithFormat:@"age > 25"],

 [NSPredicate predicateWithFormat:

 @"firstName = %@", @"Quentin"]

]

]; !
[NSPredicate predicateWithFormat:@"(age > 25) AND

 (firstName = %@)", @"Quentin"];

While the syntax string literal is certainly easier to type, there
are occasions where you may need to combine existing
predicates. In these cases, NSCompoundPredicate -
andPredicateWithSubpredicates: & -
orPredicateWithSubpredicates: is the way to go.

NSComparisonPredicate

Like NSCompoundPredicate, NSComparisonPredicate
constructs an NSPredicate from subcomponents—in this
case, NSExpressions on the left and right hand sides.
Analyzing its class constructor provides a glimpse into the
way NSPredicate format strings are parsed:

 128

+ (NSPredicate *)predicateWithLeftExpression:

(NSExpression *)lhs

rightExpression:(NSExpression *)rhs

 modifier:(NSComparisonPredicateModifier)modifier

 type:(NSPredicateOperatorType)type

 options:(NSUInteger)options

Parameters

• lhs: The left hand expression.

• rhs: The right hand expression.

• modifier: The modifier to apply. (ANY or ALL)

• type: The predicate operator type.

• options: The options to apply. For no options, pass 0.

!

 129

NSComparisonPredicate Types

!
enum {

 NSLessThanPredicateOperatorType = 0,

 NSLessThanOrEqualToPredicateOperatorType,

 NSGreaterThanPredicateOperatorType,

 NSGreaterThanOrEqualToPredicateOperatorType,

 NSEqualToPredicateOperatorType,

 NSNotEqualToPredicateOperatorType,

 NSMatchesPredicateOperatorType,

 NSLikePredicateOperatorType,

 NSBeginsWithPredicateOperatorType,

 NSEndsWithPredicateOperatorType,

 NSInPredicateOperatorType,

 NSCustomSelectorPredicateOperatorType,

 NSContainsPredicateOperatorType,

 NSBetweenPredicateOperatorType

};

typedef NSUInteger NSPredicateOperatorType;

NSComparisonPredicate Options

• NSCaseInsensitivePredicateOption: A case-insensitive
predicate. You represent this option in a predicate format
string using a [c] following a string operation (for example,
"NeXT" like[c] "next").

• NSDiacriticInsensitivePredicateOption: A diacritic-
insensitive predicate. You represent this option in a

 130

predicate format string using a [d] following a string
operation (for example, "naïve" like[d] "naive").

• NSNormalizedPredicateOption: Indicates that the strings
to be compared have been preprocessed. This option
supersedes NSCaseInsensitivePredicateOption and
NSDiacriticInsensitivePredicateOption, and is intended as
a performance optimization option. You represent this
option in a predicate format string using a [n] following a
string operation (for example, "WXYZlan" matches[n]
".lan").

• NSLocaleSensitivePredicateOption: Indicates that strings
to be compared using <, <=, =, =>, > should be handled in a
locale-aware fashion. You represent this option in a
predicate format string using a [l] following one of the <,
<=, =, =>, > operators (for example, "straße" >[l] "strasse").

Block Predicates

Can't be bothered to learn the NSPredicate format syntax?  
Go through the motions with +predicateWithBlock:

 131

NSPredicate *shortNamePredicate = [NSPredicate

predicateWithBlock:

^BOOL(id evaluatedObject, NSDictionary *bindings)

{

 return [[evaluatedObject firstName] length] <= 5;

}]; !
NSLog(@"Short Names: %@", [people

 filteredArrayUsingPredicate:shortNamePredicate]);

// ["Alice Smith", "Bob Jones"]

Since blocks can encapsulate any kind of calculation, there is a
whole class of queries that can't be expressed with the
NSPredicate format string (such as evaluating against values
dynamically calculated at run-time). And while its possible to
accomplish the same using an NSExpression with a custom
selector, blocks provide a convenient interface to get the job
done.

NSPredicates created with predicateWithBlock: cannot be used for
Core Data fetch requests backed by a SQLite store.

NSPredicate is truly one of the jewels of Cocoa. Other
languages would be lucky to have something with half of its
capabilities in a third-party framework—let alone the
standard library. Having it as a standard-issue component
affords us as application and framework developers an
incredible amount of leverage in working with data. 

 132

NSExpression

Cocoa is the envy of other standard libraries when it comes to
querying and arranging information. With NSPredicate,
NSSortDescriptor, and an occasional NSFetchRequest, even
the most complex data tasks can be reduced into just a few,
extremely-understandable lines of code.

If we take a closer look at NSPredicate, we see that it's actually
made up of smaller, atomic parts: two NSExpressions (a left-
hand value & a right-hand value), compared with an operator
(e.g. <, IN, LIKE, etc.).

Because most developers only use NSPredicate by means of
+predicateWithFormat:, NSExpression is a relatively obscure
class... which is a shame, because NSExpression is quite an
incredible piece of functionality in its own right.

!

 133

Evaluating Math

The first thing one should know about NSExpression is that it
lives to reduce terms. If you think about the process of
evaluating an NSPredicate, there are two terms and a
comparator. Those two terms need to simplify into something
that the operator can handle—very much like the process of
compiling a line of code.

Which leads us to NSExpression's first trick: doing math.

NSExpression *expression =

 [NSExpression expressionWithFormat:@"4 + 5 - 2**3"];

id value =

 [expression expressionValueWithObject:nil

 context:nil];

// 1

Boom. Calculator.app in a single line of code.

Functions

But this is only scratching the surface with NSExpression.

Not impressed by a computer doing primary-school maths?
How about high school statistics, then?

 134

NSArray *numbers = @[@1, @2, @3, @4, @4, @5, @9, @11];

NSExpression *expression =

 [NSExpression expressionForFunction:@"stddev:"

 arguments:@[[NSExpression

 expressionForConstantValue:numbers]]]; !
id value =

 [expression expressionValueWithObject:nil

 context:nil];

// 3.21859...

NSExpression functions take a given number of sub-
expression arguments. For instance, in the example above, in
order to get the standard deviation of the collection, the array
of numbers had to be wrapped with
+expressionForConstantValue:. It's a minor inconvenience,
enough to trip up anyone trying things out for the first time.

Found the Key-Value Coding Simple Collection Operators
(@avg, @sum, et al.) lacking? NSExpression's statistical,
arithmetic, and bitwise functions are sure to impress.

According to Apple's documentation for NSExpression, there is
apparently no overlap between the availability of functions between
Mac OS X & iOS. It would appear that recent versions of iOS do,
indeed, support functions like stddev:, but this is not reflected in
headers or documentation.

!

 135

Statistics

• average:

• sum:

• count:

• min:

• max:

• median:

• mode:

• stddev:

Basic Arithmetic

These functions take two NSExpression objects representing
numbers.

• add:to:

• from:subtract:

• multiply:by:

• divide:by:

• modulus:by:

• abs:

!

 136

Advanced Arithmetic

• sqrt:

• log:

• ln:

• raise:toPower:

• exp:

Bounding Functions

• ceiling: - the smallest integral value not less than the
value in the array

• trunc: - the integral value nearest to but no greater
than the value in the array

Functions Shadowing math.h Functions

So mentioned, because ceiling is easily confused with ceil(3).
Whereas ceiling acts on an array of numbers, while ceil(3)
takes a double (and doesn't have a corresponding built-in
NSExpression function). floor: acts the same as floor(3).

• floor:

!

 137

Random Functions

Two variations—one with and one without an argument.
Taking no argument, random returns an equivalent of
rand(3), while random: takes a random element from the
NSExpression of an array of numbers.

• random

• random:

Binary Arithmetic

• bitwiseAnd:with:

• bitwiseOr:with:

• bitwiseXor:with:

• leftshift:by:

• rightshift:by:

• onesComplement:

Date Functions

• now

String Functions

• lowercase:

• uppercase:

 138

Custom Functions

In addition to the built-in functions, it's possible to invoke
custom functions in an NSExpression.

First, define the corresponding method in a category:

@interface NSNumber (Factorial)

- (NSNumber *)factorial;

@end !
@implementation NSNumber (Factorial)

- (NSNumber *)factorial {

 return @(tgamma([self doubleValue] + 1));

}

@end

!
Then, use the function thusly:

NSExpression *expression = [NSExpression

expressionWithFormat:@"FUNCTION(4.2, 'factorial')"];

id value = [expression expressionValueWithObject:nil

context:nil]; // 32.578...

The FUNCTION() macro in +expressionWithFormat: is shorthand
for the process of building out with -expressionForFunction:

 139

The advantage here, over calling -factorial directly is the
ability to invoke the function in an NSPredicate query.

For example, a location:withinRadius: method might be
defined to easily query managed objects that are nearby a
user's current location.

The use cases are rather marginal, but it's certainly an
interesting trick to have in your repertoire.

!
Together with NSPredicate, NSExpression reminds us what a
treat Foundation is: a framework that is not only incredibly
useful, but meticulously architected and engineered, to be
taken as inspiration for how we should write our own code.  

 140

NSFileManager

File systems are a complex topic, with decades of history,
vestigial complexities, and idiosyncrasies, and is well outside
the scope of this book. And since most applications don't
often interact with the file system much beyond simple file
operations, one can get away with only knowing the basics.

NSFileManager is Foundation's high-level API for working
with file systems. It abstracts Unix and Finder internals,
providing a convenient way to create, read, move, copy, and
delete files & directories on local or networked drives, as well
as iCloud ubiquitous containers.

What follows are some code samples for your copy-pasting
pleasure. Use them as a starting point for understanding how
to adjust parameters to your particular use case:

!

 141

Common Tasks

Throughout these code samples is a magical incantation:  
 
NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
NSUserDomainMask, YES).  
 
This may be tied with KVO as one of the worst APIs in Cocoa.  
Just know that it returns an array containing the user documents
directory at index 0. Thank goodness for NSArray -firstObject.

Determining If A File Exists 
!
NSFileManager *fileManager =

 [NSFileManager defaultManager]; !
NSString *documentsPath =

 [NSSearchPathForDirectoriesInDomains(

 NSDocumentDirectory, NSUserDomainMask, YES)

 firstObject]; !
NSString *filePath = [documentsPath

 stringByAppendingPathComponent:@"file.txt"]; !
BOOL fileExists = [fileManager

 fileExistsAtPath:filePath];

!

 142

Listing All Files In A Directory  
!
NSFileManager *fileManager =

 [NSFileManager defaultManager];

NSURL *bundleURL = [[NSBundle mainBundle] bundleURL];

NSArray *contents =

 [fileManager contentsOfDirectoryAtURL:bundleURL

 includingPropertiesForKeys:@[]

 options:NSDirectoryEnumerationSkipsHiddenFiles

 error:nil]; !
NSPredicate *predicate =

 [NSPredicate predicateWithFormat:

 @"pathExtension ENDSWITH '.png'"]; !
for (NSString *path in

 [contents filteredArrayUsingPredicate:predicate])

{

 // Enumerate each .png file in directory

}

!

 143

Recursively Enumerating Files In A Directory  
!
NSFileManager *fileManager =

 [NSFileManager defaultManager];

NSURL *bundleURL = [[NSBundle mainBundle] bundleURL]; !
NSDirectoryEnumerator *enumerator =

 [fileManager enumeratorAtURL:bundleURL

 includingPropertiesForKeys:@[NSURLNameKey,

 NSURLIsDirectoryKey]

 options:NSDirectoryEnumerationSkipsHiddenFiles

 errorHandler:^BOOL(NSURL *url, NSError *error)

{

 NSLog(@"[Error] %@ (%@)", error, url);

}]; !
NSMutableArray *mutableFileURLs =

 [NSMutableArray array]; !
for (NSURL *fileURL in enumerator)

{

 NSString *filename;

 [fileURL getResourceValue:&filename

 forKey:NSURLNameKey

 error:nil]; !
 NSNumber *isDirectory;

 [fileURL getResourceValue:&isDirectory

 forKey:NSURLIsDirectoryKey

 error:nil]; !

 144

 // Skip directories with '_' prefix, for example

 if ([isDirectory boolValue] &&

 [filename hasPrefix:@"_"])

 {

 [enumerator skipDescendants];

 continue;

 } !
 if (![isDirectory boolValue]) {

 [mutableFileURLs addObject:fileURL];

 }

}

Creating a Directory 
!
NSFileManager *fileManager =

 [NSFileManager defaultManager];

NSString *documentsPath =

 [NSSearchPathForDirectoriesInDomains(

 NSDocumentDirectory, NSUserDomainMask, YES)

 firstObject]; !
NSString *imagesPath = [documentsPath

 stringByAppendingPathComponent:@"images"]; !
if (![fileManager fileExistsAtPath:imagesPath])

{

 [fileManager createDirectoryAtPath:imagesPath

 withIntermediateDirectories:NO

 attributes:nil

 error:nil];

}  

 145

Deleting a File 
!
NSFileManager *fileManager =

 [NSFileManager defaultManager];

NSString *documentsPath =

 [NSSearchPathForDirectoriesInDomains(

 NSDocumentDirectory, NSUserDomainMask, YES)

 firstObject]; !
NSString *filePath = [documentsPath

 stringByAppendingPathComponent:@"image.png"]; !
NSError *error = nil;

if (![fileManager removeItemAtPath:filePath

 error:&error])

{

 NSLog(@"[Error] %@ (%@)", error, filePath);

}

!

 146

Determine the Creation Date of a File  
!
NSFileManager *fileManager =

 [NSFileManager defaultManager];

NSString *documentsPath =

 [NSSearchPathForDirectoriesInDomains(

 NSDocumentDirectory, NSUserDomainMask, YES)

 firstObject]; !
NSString *filePath = [documentsPath

 stringByAppendingPathComponent:@"Document.pages"]; !
NSDate *creationDate = nil;

if ([fileManager fileExistsAtPath:filePath]) {

 NSDictionary *attributes =

 [fileManager attributesOfItemAtPath:filePath

 error:nil];

 creationDate = attributes[NSFileCreationDate];

}

There are a number of file attributes that are made accessible
through NSFileManager, which can be fetched with -
attributesOfItemAtPath:error:, and other methods:

!

 147

File Attribute Keys

• NSFileAppendOnly: whether the file is read-only.

• NSFileBusy: whether the file is busy.

• NSFileCreationDate: the file's creation date.

• NSFileOwnerAccountName: the name of the file's
owner.

• NSFileGroupOwnerAccountName: the group name of
the file's owner.

• NSFileDeviceIdentifier: the identifier for the device on
which the file resides.

• NSFileExtensionHidden: whether the file's extension is
hidden.

• NSFileGroupOwnerAccountID: the file's group ID.

• NSFileHFSCreatorCode: the file's HFS creator code.

• NSFileHFSTypeCode: the file's HFS type code.

• NSFileImmutable: whether the file is mutable.

• NSFileModificationDate: the file's last modified date.

• NSFileOwnerAccountID: the file's owner's account ID.

• NSFilePosixPermissions: the file's Posix permissions.

• NSFileReferenceCount: the file's reference count.

• NSFileSize: the file's size in bytes.

• NSFileSystemFileNumber: the file's filesystem file
number.

• NSFileType: the file's type.

 148

NSFileManagerDelegate

NSFileManager may optionally set a delegate to verify that it
should perform a particular file operation. This allows the
business logic, like which files to protect from deletion, to be
factored out of a controller.

There are four kinds of methods in the
<NSFileManagerDelegate> protocol, each with a variation for
working with paths, as well as methods for error handling.

• -fileManager:shouldMoveItemAtURL:toURL:

• -fileManager:shouldCopyItemAtURL:toURL:

• -fileManager:shouldRemoveItemAtURL:

• -fileManager:shouldLinkItemAtURL:toURL:

Wondering when one might alloc init an NSFileManager,
rather than using the shared instance? This is it.

As per the documentation:

If you use a delegate to receive notifications about the status
of move, copy, remove, and link operations, you should
create a unique instance of the file manager object, assign
your delegate to that object, and use that file manager to
initiate your operations.

!

 149

NSFileManager *fileManager =

 [[NSFileManager alloc] init];

fileManager.delegate = delegate; !
NSURL *bundleURL = [[NSBundle mainBundle] bundleURL];

NSArray *contents = [fileManager

 contentsOfDirectoryAtURL:bundleURL

includingPropertiesForKeys:@[]

 options:NSDirectoryEnumerationSkipsHiddenFiles

 error:nil]; !
for (NSString *filePath in contents) {

 [fileManager removeItemAtPath:filePath error:nil];

}

CustomFileManagerDelegate.m

#pragma mark - NSFileManagerDelegate !
- (BOOL)fileManager:(NSFileManager *)fileManager

shouldRemoveItemAtURL:(NSURL *)URL

{

 // Don't delete PDFs

 return ![[[URL lastPathComponent] pathExtension]

isEqualToString:@"pdf"];

}

!

 150

Ubiquitous Storage

Documents can also be moved to iCloud. If you guessed that
this would be anything but straight forward, you'd be 100%
correct.

Because URLForUbiquityContainerIdentifier: and
setUbiquitous:itemAtURL:destinationURL:error: are
blocking calls, this entire operation needs to be dispatched off
the main queue.

This is another occasion when one would create a new
NSFileManager rather than using the shared instance.

Move Item to Ubiquitous Storage 
!
dispatch_async(dispatch_get_global_queue(

 DISPATCH_QUEUE_PRIORITY_BACKGROUND, 0), ^

{

 NSFileManager *fileManager =

 [[NSFileManager alloc] init];

 NSString *documentsPath =

 [NSSearchPathForDirectoriesInDomains(

 NSDocumentDirectory, NSUserDomainMask, YES)

 firstObject];

 NSURL *fileURL =

 [NSURL fileURLWithPath:[documentsPath

 stringByAppendingPathComponent:@"Document.pages"]]; !
 151

 // Defaults to first listed in entitlements if nil

 // Should be replaced with real identifier

 NSString *identifier = nil; !
 NSURL *ubiquitousContainerURL = [fileManager

 URLForUbiquityContainerIdentifier:identifier];

 NSURL *ubiquitousFileURL = [ubiquitousContainerURL

 URLByAppendingPathComponent:@"Document.pages"];

 NSError *error = nil;

 BOOL success = [fileManager setUbiquitous:YES

 itemAtURL:fileURL

 destinationURL:ubiquitousFileURL

 error:&error];

 if (!success) {

 NSLog(@"[Error] %@ (%@) (%@)", error, fileURL,

ubiquitousFileURL);

 }

});

You can find more information about ubiquitous document storage
in Apple's "iCloud File Management" document.

There's a lot to know about file systems, but as an app
developer, it's mostly an academic exercise. Academic
exercises are great, but they don't ship code.

NSFileManager allows you to leave studying for another day,
and just get things done. 

 152

NSValue

What makes Objective-C such a curiosity is the way it merges
the old, procedural world of C with the modern Object-
Oriented influences of Smalltalk. When done correctly, this
tension can be exploited to craft semantically rich software
without sacrificing performance. But bridging that gap
between old and new is a miasma of casts, bridges, and boxes.

Boxing is the process of encapsulating scalars (int, double,
BOOL, etc.) and value types (struct, enum) inside an object
container. It is primarily used to store those values in
collection objects.

NSNumber is often used to box scalars, but in Foundation,
the reigning featherweight champion of boxing is NSValue.

!
NSValue is a container for a single C or Objective-C data
values. It can hold scalars and value types, as well as pointers
and object IDs.

 153

While boxing is an admittedly dry subject matter, there are
two methods in particular that are worth calling out:
+valueWithBytes:objCType:, which serves as a primer for
working with NSValue, and +valueWithNonretainedObject:,
which is surprisingly useful, despite being relatively unknown.

valueWithBytes:objCType:

+valueWithBytes:objCType: Creates and returns an NSValue
object containing a value of a specified Objective-C type.

• value: the value for the new NSValue object.

• type: the Objective-C type of value. type should be
created with the Objective-C @encode() compiler
directive; it should not be hard-coded as a C string.

@encode was discussed in the @ Compiler Directives chapter:

• @encode(): returns the type encoding of a type. This
type value can be used as the first argument encode in
NSCoder -encodeValueOfObjCType:at.

valueWithNonretainedObject:

+valueWithNonretainedObject: Creates and returns an
NSValue object that contains a given object.

 154

In short, valueWithNonretainedObject: allows objects to be
added to a collection, without the need for satisfying
<NSCopying>.

This comes up occasionally when working with objects that
can't be directly added to an NSArray or NSDictionary.
Without knowing about this method, this break in the
abstraction is a show-stopper—especially for anyone just
starting out in Objective-C.

!
Having unpacked all of this wisdom about NSValue, you can
now face that cruel divide between procedural and object-
oriented; C and Smalltalk.  

 155

NSValueTransformer

Of all the Foundation classes, NSValueTransformer is perhaps
the one that fared the worst in the shift from OS X to iOS.

Why? Well, there are two reasons:

The first and most obvious reason is that
NSValueTransformer was mainly used with Cocoa bindings,
to automatically transform values from one property to
another without the need of intermediary glue code. iOS, of
course, doesn't have bindings.

The second reason has less to do with iOS than Objective-C
itself. With the introduction of blocks, it got much easier to
pass behavior between objects—significantly easier than, say
using NSValueTransformer or NSInvocation. Even if iOS
were to get bindings tomorrow, it's uncertain as to whether
NSValueTransformer would play a significant role this time
around.

But you know what? NSValueTransformer is ripe for a
comeback.

 156

With a little bit of re-tooling and some recontextualization,
this blast from the past could be the next big thing in your
application.

!
NSValueTransformer is an abstract class that transforms one
value into another. A typical implementation would look
something like this:

@interface ClassNameTransformer: NSValueTransformer {} 
@end 
 
#pragma mark - 
 
@implementation ClassNameTransformer

+ (Class)transformedValueClass {  
 return [NSString class];  
} !
+ (BOOL)allowsReverseTransformation {  
 return NO; 
} !
- (id)transformedValue:(id)value { 
 return (value == nil) ? nil :

NSStringFromClass([value class]); 
}  
 
@end 

 157

NSValueTransformer is rarely initialized directly. Instead, it
follows a pattern similar to NSPersistentStore or
NSURLProtocol, wherein a class is registered, and instances
are created from a manager—except in this case, instances are
registered with a particular name:

NSString * const ClassNameTransformerName =

 @"ClassNameTransformer"; !
// Set the value transformer 
[NSValueTransformer setValueTransformer:

 [[ClassNameTransformer alloc] init]

 forName:ClassNameTransformerName]; !
// Get the value transformer 
NSValueTransformer *valueTransformer =

 [NSValueTransformer valueTransformerForName:

 ClassNameTransformerName];

Register subclass instances in the +initialize method, so it could be
used without any further configuration.

At this point, NSValueTransformer's fatal flaw is abundantly
clear: it's a pain in the ass to set up!

Create a class, implement a handful of simple methods, define
a constant, and register it in an +initialize method? No thanks.

 158

In this age of blocks, we want—nay, demand—a way to declare
functionality in one (albeit gigantic) line of code.

Nothing a little metaprogramming can't fix. Behold:

NSString * const TKCapitalizedStringTransformerName =

 @"TKCapitalizedStringTransformerName"; !
[NSValueTransformer

 registerValueTransformerWithName:

 TKCapitalizedStringTransformerName

 transformedValueClass:[NSString class]

returningTransformedValueWithBlock:^id(id value)

{

 return [value capitalizedString];

}];

!
NSValueTransformer, far from a vestige of AppKit, remains
Foundation's purest connection to that mantra of
computation: input goes in, output comes out.

Although it hasn't aged very well on its own, a little
modernization restores NSValueTransformer to that highest
esteem of NSHipsterdom: the solution that we didn't know
we needed, but was there all along. 

 159

NSDataDetector

Machines speak in binary, while humans speak in riddles,
half-truths, and omissions. And until humanity embraces
RDF for all of their daily interactions, a large chunk of
artificial intelligence is going to go into figuring out what the
heck we're all talking about.

In the basic interactions of our daily lives—meeting people,
making plans, finding information online—there is immense
value in automatically converting from implicit human
language to explicit structured data, so that it can be easily
added to our calendars, address books, maps, and reminders.

Fortunately for Cocoa developers, there's an easy solution:
NSDataDetector.

!
NSDataDetector is a subclass of NSRegularExpression, but
instead of matching on an ICU pattern, it detects semi-
structured information: dates, addresses, links, phone
numbers and transit information.

 160

It does all of this with frightening accuracy. NSDataDetector
will match flight numbers, address snippets, oddly formatted
digits, and even relative deictic expressions like "next Saturday
at 5".

Think of it as a regexp matcher with incredibly complicated
expressions that extract information from natural language
(though its actual implementation details may be somewhat
more oblique than that).

NSDataDetector objects are initialized with a bitmask of
which types of information to check, and then passed strings
to match on. Like NSRegularExpression, each match found in
a string is represented by a NSTextCheckingResult, which
includes details like character range and match type. However,
NSDataDetector-specific types may also contain metadata
such as address or date components.

 161

NSError *error = nil;

NSDataDetector *detector =

 [NSDataDetector dataDetectorWithTypes:

 NSTextCheckingTypeAddress |

 NSTextCheckingTypePhoneNumber

 error:&error]; !
NSString *string = @"123 Main St. / (555) 555-5555";

[detector enumerateMatchesInString:string

 options:kNilOptions

 range:NSMakeRange(0, [string length])

 usingBlock:^(NSTextCheckingResult *result,

NSMatchingFlags flags, BOOL *stop)

{

 NSLog(@"Match: %@", result);

}];

When initializing NSDataDetector, be sure to specify only the types
you're interested in. With each additional type to be checked comes a
nontrivial performance cost.

Data Detector Match Types

NSTextCheckingResult is used for many different purposes
across Foundation, so it may not be immediately clear which
properties are specific to NSDataDetector. Here is a table of
the different NSTextCheckingTypes for NSDataDetector
matches, and their associated properties:

 162

Data Detection on iOS

Rather confusingly, iOS also defines UIDataDetectorTypes. A
bitmask of these values can be set as the dataDetectorTypes of
a UITextView to have detected data automatically linked in
the displayed text.

UIDataDetectorTypes is distinct from
NSTextCheckingTypes. Equivalent enum constants, such as
UIDataDetectorTypePhoneNumber and

Type Properties

NSTextCheckingTypeDate date!
duration!
timeZone

NSTextCheckingTypeAddress addressComponents* !
• NSTextCheckingNameKey!
• NSTextCheckingJobTitleKey!
• NSTextCheckingOrganizationKey!
• NSTextCheckingStreetKey!
• NSTextCheckingCityKey!
• NSTextCheckingStateKey!
• NSTextCheckingZIPKey!
• NSTextCheckingCountryKey!
• NSTextCheckingPhoneKey

NSTextCheckingTypeLink url

NSTextCheckingType  
PhoneNumber

phoneNumber

NSTextCheckingType  
TransitInformation

components*!
• NSTextCheckingAirlineKey!
• NSTextCheckingFlightKey

 163

NSTextCheckingTypePhoneNumber, do not have the same
integer value, and not all values in one are found in the other.

Converting from UIDataDetectorTypes to
NSTextCheckingTypes can be accomplished with a function:

static inline NSTextCheckingType

 NSTextCheckingTypesFromUIDataDetectorTypes(

 UIDataDetectorTypes dataDetectorType)

{

 NSTextCheckingType textCheckingType = 0;

 if (dataDetectorType & UIDataDetectorTypeAddress) {

 textCheckingType |= NSTextCheckingTypeAddress;

 }

 if (dataDetectorType &

UIDataDetectorTypeCalendarEvent) {

 textCheckingType |= NSTextCheckingTypeDate;

 }

 if (dataDetectorType & UIDataDetectorTypeLink) {

 textCheckingType |= NSTextCheckingTypeLink;

 } if (dataDetectorType &

UIDataDetectorTypePhoneNumber) {

 textCheckingType |=

NSTextCheckingTypePhoneNumber;

 } !
 return textCheckingType;

}

!

 164

Do I detect some disbelief of how easy it is to translate
between natural language and structured data? This should
not be surprising, given how insanely great Cocoa's linguistic
APIs are.

Don't make your users re-enter information by hand because
of a programming oversight. Take advantage of
NSDataDetector in your app to unlock the structure of
information.

!

 165

CFBag

Objective-C is a language caught between two worlds.

On one side, it follows the thoughtful, object-oriented
philosophy of Smalltalk, which brings ideas like message
sending and named parameters. On the other, are the
inescapable vestiges of C, which brings power and a dash of
chaos.

It's an identity crisis borne out through the relationship
between the Foundation and Core Foundation frameworks,
particularly with the toll-free bridged collection class clusters:
NSArray / CFArray, NSDictionary / CFDictionary, and NSSet
/ CFSet. These collections can be passed back and forth
between C functions and Objective-C methods without
conversion. A leak in the abstraction, but a useful way to
optimize the most critical parts of an application nonetheless.

Caught in the middle of this war of abstraction is the least-
assuming of all collection types: CFBag.  

 166

Take a look at the second row, and note that NSCountedSet
and CFBag, unlike the other Foundation / Core Foundation
correspondence, are not toll-free bridged. No real explanation
for this is provided, aside from it being acknowledged in the
NSCountedSet documentation.

Bags, in the Abstract

In the pantheon of collection data types within computer
science, bag doesn't really have the same clout as lists, sets,
associative arrays, trees, graphs, or priority queues.

In fact, it's pretty obscure. You've probably never heard of it.

Foundation Core Foundation Toll-Free Bridged

NSArray* CFArray* ✓

NSCountedSet CFBag*

N/A CFBinaryHeap

N/A CFBitVector*

NSDictionary* CFDictionary* ✓

NSIndexSet* N/A

NSMapTable N/A

NSOrderedSet N/A

NSPointerArray N/A

NSPointerFunctions N/A

NSSet* CFSet* ✓

 167

A bag, or multi-set, is a variant of a set, where members can
appear more than once. A count is associated with each
unique member of the collection, representing the number of
times it has been added. Like with sets, order does not matter.

Its practical applications are... limited.

Tallying votes in a general election?  
Simulating homework problems an intro probability class?
Implementing a game of Yahtzee?

If so, then bag is your new bicycle!

Working with CFMutableBag

As an implementation of the bag data type, CFBag and its
mutable counterpart, CFMutableBag, are pretty slick.

Although it lacks the object-oriented convenience of
NSCountedSet, CFMutableBag makes up for it with a
number of ways to customize its behavior. When a bag is
created, it can be initialized with a number of callbacks, which
specify the way values are inserted, removed, and compared:

 168

struct CFBagCallBacks {

 CFIndex version;

 CFBagRetainCallBack retain;

 CFBagReleaseCallBack release;

 CFBagCopyDescriptionCallBack copyDescription;

 CFBagEqualCallBack equal;

 CFBagHashCallBack

typedef struct CFBagCallBacks CFBagCallBacks;

• retain: callback used to retain values as they're added
to the collection

• release: callback used to release values as they're
removed from the collection

• copyDescription: callback used to create a string
description of each value in the collection

• equal: callback used to compare values in the
collection for equality

• hash: callback used to compute hash codes for values
in the collection

For example, if one were to implement a vote tallying
application, one could specify a normalizing function for
retain to ensure that votes for mixed-case or misspelled
names went to the right candidate... or ensure that the
"correct" candidate is shown to be the winner when all the
votes are in, with the equal callback.

CFMutableBag also has CFBagApplyFunction, which has the
ability to transform values over the collection, to "smooth out"
vote counts.

 169

Basically, if you need to rig an election, CFBag is your best bet.

But seriously, CFBag is useful in its own right, and serves as a
reminder of the hidden gems to be found within the standard
frameworks and libraries. 

 170

NSCache

Poor NSCache, always being overshadowed by
NSMutableDictionary. It's as if no one knew how it provides
all of that garbage collection behavior that developers take
great pains to re-implement themselves.

That's right: NSCache is effectively an NSMutableDictionary
that automatically evicts objects to free up space in memory
as necessary. No need to respond to memory warnings or
contrive a cache-clearing timer mechanism. The only other
difference is that keys aren't copied as they are in an
NSMutableDictionary, which is actually to its advantage (no
need for keys to conform to <NSCopying>).

If developers only knew...

But you're not like the others, right?  
You won't overlook NSCache, will you?

That's not to say that there aren't a few warts and inexplicable
caveats—far from it. NSCache is kind of a hot mess.

 171

Take setObject:forKey:cost:, for example. It's the same
setObject:forKey: method as before, but with this cost
parameter. What is that, you ask? Well, even the
documentation isn't quite sure:

The cost value is used to compute a sum encompassing the
costs of all the objects in the cache. When memory is limited
or when the total cost of the cache eclipses the maximum
allowed total cost, the cache could begin an eviction process
to remove some of its elements.

Alright, so far so good...

However, this eviction process is not in a guaranteed order.
As a consequence, if you try to manipulate the cost values to
achieve some specific behavior, the consequences could be
detrimental to your program.

Huh? So what's the point, then?

Typically, the obvious cost is the size of the value in bytes. If
that information is not readily available, you should not go
through the trouble of trying to compute it, as doing so will
drive up the cost of using the cache.

So wait, what's a non-obvious cost value? Any guidelines for
what a memory limit should be? Order of magnitude, even?
"Arbitrarily guess wrong and suffer bad performance" doesn't
sound so compelling...

 172

Pass in 0 for the cost value if you otherwise have nothing
useful to pass, or simply use the setObject:forKey: method,
which does not require a cost value to be passed in.

Read: don't use this method unless you work at Apple and
know the original author personally.

There's also a whole section about controlling whether objects
are automatically evicted with
evictsObjectsWithDiscardedContent &
<NSDiscardableContent>, but it will probably just cause
heartache and sorrow.

!
Despite all of this, developers should be using NSCache a lot
more than they currently are. Anything in a project named
"cache" that isn't NSCache would be ripe for replacement. Just
be sure to stick to the basics: objectForKey:, setObject:forKey:
& removeObjectForKey:. 

 173

NSIndexSet

NSIndexSet is a sorted collection of unique unsigned integers.
Think of it like an NSRange that supports non-contiguous
series. It has wicked fast operations for set intersections, and
comes with all of the convenience methods you'd expect in a
Foundation collection class.

It's used throughout the Foundation framework, whenever a
method gets multiple elements from a sorted collection, such
as an array or a table view's data source.

Squint hard enough, and aspects of a data model may start to
look NSIndexSet-shaped. For example, an index set could be
used to represent HTTP response status codes, such that
"acceptable" codes (in the 2XX range), can be checked with
containsIndex:.

Here are a couple more ideas:

• Have a list of user preferences, and want to store which
ones are switched on or off? Use a single NSIndexSet in
combination with an enum typedef.

 174

• Filtering a list of items by a set of composable conditions?
Ditch the NSPredicate; instead, cache the indexes of objects
that fulfill each condition, and then get the union or
intersection of those indexes as conditions are added and
removed.

!
Overall, NSIndexSet is a solid class. A fair bit nerdier than its
collection class siblings, but it has its place. At the very least,
it's a prime example of the great functionality to be discovered
by paying attention to what Foundation uses in its own APIs.  

 175

NSOrderedSet

Why isn't NSOrderedSet a subclass of NSSet?

It seems perfectly logical, after all, for NSOrderedSet—a class
that enforces the same uniqueness constraint of NSSet—to be
a subclass of NSSet. It has the same methods as NSSet, with
the addition of some NSArray-style methods like
objectAtIndex:. By all accounts, it would seem to perfectly
satisfy the requirements of the Liskov substitution principle,
that:

If S is a subtype of T, then objects of type T in a program
may be replaced with objects of type S without altering any
of the desirable properties of that program.

So why is NSOrderedSet a subclass of NSObject and not
NSSet or even NSArray?

To answer this, one must understand class clusters. 

 176

Mutable / Immutable Class Clusters

Class Clusters are a design pattern at the heart of the
Foundation framework; the essence of Objective-C's
simplicity in everyday use.

But class clusters offer simplicity at the expense of
extensibility, which becomes especially tricky when it comes
to mutable / immutable class pairs like NSSet / NSMutableSet.

The method -mutableCopy creates an inconsistency that is
inherent to Objective-C's constraint on single inheritance.

Here's how -mutableCopy is supposed to work in a class
cluster:

NSSet* immutable = [NSSet set];

NSMutableSet* mutable = [immutable mutableCopy];

[mutable isKindOfClass:[NSSet class]]; // YES

[mutable isKindOfClass:[NSMutableSet class]]; // YES

Suppose that NSOrderedSet was indeed a subclass of NSSet:

// @interface NSOrderedSet : NSSet

NSOrderedSet* immutable = [NSOrderedSet orderedSet];

NSMutableOrderedSet* mutable = [immutable mutableCopy];

[mutable isKindOfClass:[NSSet class]]; // YES

[mutable isKindOfClass:[NSMutableSet class]]; // NO (!)

That's no good, since NSMutableOrderedSet couldn't be used
as a method parameter of type NSMutableSet.

 177

So what happens if NSMutableOrderedSet is made a subclass
of NSMutableSet as well?

// @interface NSOrderedSet : NSSet

// @interface NSMutableOrderedSet : NSMutableSet !
NSOrderedSet* immutable = [NSOrderedSet orderedSet];

NSMutableOrderedSet* mutable = [immutable mutableCopy];

[mutable isKindOfClass:[NSSet class]]; // YES

[mutable isKindOfClass:[NSMutableSet class]]; // YES

[mutable isKindOfClass:[NSOrderedSet class]]; // NO (!)

This is perhaps even worse, as now NSMutableOrderedSet
couldn't be used as a method parameter expecting an
NSOrderedSet.

No matter how one approaches it, a mutable / immutable
class pair can't be stacked on top of another existing mutable /
immutable class pair. It just won't work in Objective-C.

Protocols offer a way to get us out of this pickle. Indeed,
Foundation's collection classes could become more aspect-
oriented by adding protocols:

• NSArray : NSObject <NSOrderedCollection>

• NSSet : NSObject <NSUniqueCollection>

• NSOrderedSet : NSObject  
<NSOrderedCollection, NSUniqueCollection>

 178

However, to reap any benefit from this arrangement, all of the
existing APIs would have to be restructured to have
parameters accept id <NSOrderedCollection> instead of
NSArray. However, the transition would be painful, and
would likely open up a whole can of edge cases... which would
mean that it would never be fully adopted... which would
mean that there's less incentive for developers to adopt this
approach when defining your own APIs... which are less fun
to write because there's now two incompatible ways to do
something instead of one... which...

...wait, why would anyone use NSOrderedSet in the first
place, anyway?

!
NSOrderedSet was introduced in iOS 5 & Mac OS X 10.7.
The only APIs changed to add support for NSOrderedSet,
though, were part of Core Data.

This was fantastic news for anyone using Core Data at the
time, as it solved one of the long-standing annoyances of not
having a way to arbitrarily order relationship collections.
Previously, one would have to add a position attribute, which
would be re-calculated every time a collection was modified.
There wasn't a built-in way to validate that your collection
positions were unique or that the sequence didn't have any
gaps.

 179

In this way, NSOrderedSet is the class everyone had been
waiting for.

Unfortunately, its very existence in Foundation creates
something between an attractive nuisance and a red herring
for API designers.

Although it is perfectly suited to that one particular use case
in Core Data, NSOrderedSet is probably not a great choice for
the majority of APIs that might use it. In cases where a simple
collection of objects is passed as a parameter, a simple
NSArray does the trick. If uniqueness does matter, or the
semantics of sets makes sense for a particular method, NSSet
has and remains a great choice.

!
So, as a general rule: NSOrderedSet is useful for intermediary
and internal representations, but one probably shouldn't
introduce it as a method parameter unless it's particularly
well-suited to the semantics of the data model.

If nothing else, NSOrderedSet illuminates some of the
fascinating implications of Foundation's use of the class
cluster design pattern. Investigating these implications allows
us better understand the trade-off between simplicity and
extensibility as we make these choices in our own application
designs.  

 180

NSHashTable &  
NSMapTable

NSSet and NSDictionary, along with NSArray are the
workhorse collection classes of Foundation. Unlike other
standard libraries, implementation details are hidden from
developers, allowing them to write simple code and trust that
it will be (reasonably) performant.

However, even the best abstractions break down; their
underlying assumptions overturned. In these cases,
developers either venture further down the abstraction, or, if
available use a more general-purpose solution.

For NSSet and NSDictionary, a common breaking
assumption is how memory is managed when storing objects
in the collection. For NSSet, objects are a strongly referenced,
as are NSDictionary values. Keys, on the other hand, are
copied by NSDictionary.

If a developer wants to store a weak value, or use a non-
<NSCopying>-conforming object as a key, they could be

 181

clever and use NSValue +valueWithNonretainedObject.  
Or, as of iOS 6 (and as far back as Mac OS X 10.5), one could
use NSHashTable or NSMapTable—the more general-case
counterparts to NSSet or NSDictionary, respectively.

NSHashTable

NSHashTable is a general-purpose analogue of NSSet.
Contrasted with the behavior of NSSet / NSMutableSet,
NSHashTable has the following characteristics:

• NSSet / NSMutableSet holds strong references to members,
which are tested for hashing and equality using the
methods hash and isEqual:.

• NSHashTable is mutable, without an immutable
counterpart.

• NSHashTable can hold weak references to its members.

• NSHashTable can optionally copy members on input.

• NSHashTable can contain arbitrary pointers, and use
pointer identity for equality and hashing checks. 

 182

Usage

Instances where one might use NSHashTable include storing
weak objects or copies.

!
NSHashTable *hashTable = [NSHashTable

hashTableWithOptions:NSPointerFunctionsCopyIn];

[hashTable addObject:@"foo"];

[hashTable addObject:@"bar"];

[hashTable addObject:@42];

[hashTable removeObject:@"bar"];

NSLog(@"Members: %@", [hashTable allObjects]);

NSHashTable objects are initialized with an option for any of
the following behaviors:

• NSHashTableStrongMemory: equal to
NSPointerFunctionsStrongMemory. This is default
behavior, equivalent to NSSet member storage.

• NSHashTableWeakMemory: equal to
NSPointerFunctionsWeakMemory. Uses weak read and
write barriers. Using NSPointerFunctionsWeakMemory
object references will turn to NULL on last release.

• NSHashTableZeroingWeakMemory: this option has been
deprecated. Instead use the NSHashTableWeakMemory
option.

 183

• NSHashTableCopyIn: use the memory acquire function to
allocate and copy items on input (see NSPointerFunction -
acquireFunction). Equal to NSPointerFunctionsCopyIn.

• NSHashTableObjectPointerPersonality: use shifted pointer
for the hash value and direct comparison to determine
equality; use the description method for a description.
Equal to NSPointerFunctionsObjectPointerPersonality.

Deprecated enum values are due to NSHashTable being ported from
Garbage-Collected Mac OS X to ARC-ified iOS.

NSMapTable

NSMapTable is a general-purpose analogue of NSDictionary.
Contrasted with the behavior of NSDictionary /
NSMutableDictionary, NSMapTable has the following
characteristics:

• NSDictionary / NSMutableDictionary copies keys, and
holds strong references to values.

• NSMapTable is mutable, without an immutable
counterpart.

 184

• NSMapTable can hold keys and values with weak
references, in such a way that entries are removed when
either the key or value is deallocated.

• NSMapTable can optionally copy its values on input.

• NSMapTable can contain arbitrary pointers, and use
pointer identity for equality and hashing checks.

Usage

Instances where one might use NSMapTable include non-
copyable keys and storing weak references to keyed delegates
or another kind of weak object.

id delegate = ...;

NSMapTable *mapTable = [NSMapTable

mapTableWithKeyOptions:NSMapTableStrongMemory

valueOptions:NSMapTableWeakMemory];

[mapTable setObject:delegate forKey:@"foo"];

NSLog(@"Keys: %@", [[mapTable keyEnumerator]

allObjects]);

NSMapTable objects are initialized with options specifying
behavior for both keys and values, using the following enum
values:

• NSMapTableStrongMemory: Specifies a strong reference
from the map table to its contents.

 185

• NSMapTableWeakMemory: Uses weak read and write
barriers appropriate for ARC or GC. Using
NSPointerFunctionsWeakMemory object references will
turn to NULL on last release. Equal to
NSMapTableZeroingWeakMemory.

• NSHashTableZeroingWeakMemory: This option has been
superseded by the NSMapTableWeakMemory option.

• NSMapTableCopyIn Use the memory acquire function to
allocate and copy items on input (see acquireFunction (see
NSPointerFunction -acquireFunction). Equal to
NSPointerFunctionsCopyIn.

• NSMapTableObjectPointerPersonality: Use shifted pointer
hash and direct equality, object description. Equal to
NSPointerFunctionsObjectPointerPersonality.

Subscripting

After looking at a few code examples, clever readers may have
thought "why aren't we using object subscripting?".
Particularly enterprising readers may have even gotten a few
lines of code into implementing a subscripting category for
NSMapTable!

So why doesn't NSMapTable implement subscripting? Take a
look at these method signatures:

 186

- (id)objectForKeyedSubscript:(id <NSCopying>)key;

- (void)setObject:(id)obj 
forKeyedSubscript:(id <NSCopying>)key;

Notice that the key argument is of type <NSCopying>. This is
great for NSDictionary NSMutableDictionary, but the same
assumption can't be made for NSMapTable.

And so we arrive at an impasse: with an id <NSCopying>
type, we can't implement for NSMapTable. However, if object
subscripting methods were to drop the <NSCopying>
constraint, then we'd miss out on the compiler check in
NSMutableDictionary -setObject:forKeyedSubscript:.

So it goes. Honestly, in a situation where NSMapTable is
merited, syntactic sugar is probably the least of one's
concerns.

!
As always, it's important to remember that programming is
not about being cleve. One should always approach a problem
from the highest viable level of abstraction.

NSSet and NSDictionary are great classes; for 99% of
situations, they are undoubtedly the correct tool for the job.  
If, however, your problem has any of the particular memory
management constraints described above, then NSHashTable
& NSMapTable may be worth a look.  

 187

UIKit 

 188

UIMenuController

Mobile usability today is remarkable—especially considering
how far it's come in just the last decade.

What was once a clumsy technology relegated to the tech elite
has now become the primary mode of computation for the
general population.

Yet despite its advances, one can't help but feel occasionally...
trapped.

All too often, there will be information on the screen that you
just can't access. Whether its flight information stuck in a table
view cell or an unlinked URL, users are forced to solve
problems creatively for lack of a provided solution.

What's crazy is that iOS provides that solution with
UIMenuController and edit actions, and still, very few
developers take advantage of it. By the end of this chapter,
you'll have all of the knowledge and wherewithal to be the
change mobile usability so desperately craves.  

 189

Copy, Cut, Paste, Delete, Select

iOS 3's killer feature was undoubtedly push notifications, but
the ability to copy-paste is a close second. For how much it's
used everyday, it's difficult to imagine how anyone got along
without it. And yet, it remains a relatively obscure feature for
3rd-party apps.

This may be due to how cumbersome it is to implement:

HipsterLabel.{h,m}

@interface HipsterLabel : UILabel

@end !
@implementation HipsterLabel

- (BOOL)canBecomeFirstResponder {

 return YES;

}

- (BOOL)canPerformAction:(SEL)action

 withSender:(id)sender {

 return (action == @selector(copy:));

}

#pragma mark - UIResponderStandardEditActions

- (void)copy:(id)sender {

 [[UIPasteboard generalPasteboard] setString:self.text];

}

@end 

 190

ViewController.m

- (void)viewDidLoad {

 HipsterLabel *label = ...;

 label.userInteractionEnabled = YES;

 [self.view addSubview:label]; !
 UIGestureRecognizer *gestureRecognizer =

[[UILongPressGestureRecognizer alloc]

initWithTarget:self

action:@selector(handleLongPressGesture:)];

 [label addGestureRecognizer:gestureRecognizer];

} !
#pragma mark - UIGestureRecognizer !
- (void)handleLongPressGesture:(UIGestureRecognizer

*)recognizer {

 UIMenuController *menuController = [UIMenuController

sharedMenuController];

 [menuController setTargetRect:recognizer.view.frame

inView:recognizer.view.superview];

 [menuController setMenuVisible:YES animated:YES]; !
 [recognizer.view becomeFirstResponder];

}

Just to be clear—in order to allow a label's text to be copied,
the following must happen:

 191

• UILabel must be subclassed to implement
canBecomeFirstResponder &
canPerformAction:withSender:

• Each performable action must implement a corresponding
method that interacts with UIPasteboard

• When instantiated by a controller, the label must have
userInteractionEnabled set to YES (it is not recommended
that this be hard-coded into the subclass implementation)

• A UIGestureRecognizer must be added to the label, or
UIResponder methods must be implemented.

• In the method implementation corresponding to the
gesture recognizer action, UIMenuController must be
positioned and made visible

• Finally, the label must become first responder

Why, oh why, isn't this just built into UILabel?  
That's a very good question.

UIMenuController

UIMenuController is responsible for presenting menu items
for edit action. Each app has its own singleton instance,
sharedMenuController.

 192

By default, a menu controller will show commands for any
methods in the UIResponderStandardEditActions informal
protocol for which the responder returns YES in
canPerformAction:withSender:.

Handling Copy, Cut, Delete, and Paste
Commands

Each command travels from the first responder up the
responder chain until it is handled. If a responder doesn't
handle the command in the current context, it should be
passed to the next responder. It is ignored if no responder
handles it

• copy: This method is invoked when the user taps the Copy
command of the editing menu. Using the methods of the
UIPasteboard class, it should convert the selection into an
appropriate object (if necessary) and write that object to a
pasteboard.

• cut: This method is invoked when the user taps the Cut
command of the editing menu. Using the methods of the
UIPasteboard class, it should convert the selection into an
appropriate object (if necessary) and write that object to a
pasteboard. It should also remove the selected object from
the user interface and, if applicable, from the application's
data model.

 193

• delete: This method is invoked when the user taps the
Delete command of the editing menu. This is typically
implemented by removing the selected object from the
user interface and, if applicable, from the application's data
model. It should not write any data to the pasteboard.

• paste: This method is invoked when the user taps the Paste
command of the editing menu. Using the methods of the
UIPasteboard class, it should read the data in the
pasteboard, convert the data into an appropriate internal
representation (if necessary), and display it in the user
interface.

Handling Selection Commands

• select: This method is invoked when the user taps the Select
command of the editing menu. This command is used for
targeted selection of items in the receiving view that can be
broken up into chunks. This could be, for example, words
in a text view. Another example might be a view that puts
lists of visible objects in multiple groups; the select:
command could be implemented to select all the items in
the same group as the currently selected item.

• selectAll: This method is invoked when the user taps the
Select All command of the editing menu.

 194

In addition to these basic editing commands, there are commands
that deal with rich text editing (toggleBoldface:, toggleItalics:, and
toggleUnderline:) and writing direction changes
(makeTextWritingDirectionLeftToLeft: &
makeTextWritingDirectionLeftToRight:).

UIMenuItem

As of iOS 3.2, developers can add their own commands to the
menu controller. Familiar, but as-yet-unmentioned
commands like "Define" or spell check suggestions take
advantage of this.

UIMenuController has a menuItems property, which is an
NSArray of UIMenuItem objects. Each UIMenuItem object
has a title and action. In order to have a menu item command
display in a menu controller, the responder must implement
the corresponding selector.

Just as a skilled coder designs software to be flexible and
adaptable to unforeseen use cases, any app developer worth
their salt understands the need to accommodate users with
different needs from themselves.

!

 195

Take to heart the following guidelines:

• For every control, think about what a user would
expect a right-click (control-click) to do if used from
the desktop.

• Any time information is shown to the user, consider
whether it should be copyable.

• With formatted or multi-faceted information, consider
whether multiple kinds of copy commands are
appropriate.

• When implementing copy: make sure to copy only
valuable information to the pasteboard.

• For editable controls, ensure that your implementation
paste: can handle a wide range of valid and invalid
input.

!
If mobile is to become the dominant computing paradigm,
the least we can do is make our best effort to allow users to be
more productive. Your thoughtful use of UIMenuController
will not go unnoticed. 

 196

UILocalizedIndexedCollation

UITableView starts to become unwieldy after a few hundred
rows. If users are reduced to frantically scratching at the
screen like a cat playing Fruit Ninja in order to get at what
they want... one may want to rethink your UI approach.

So, what are the options?

Data could be organized into a hierarchy, which could
dramatically reduce the number of rows displayed on each
screen in fashion, based on its branching factor.

A UISearchBar could be added to the top of the table view,
allowing users to filter on keywords to get exactly what they're
looking for.

There is also a third approach, which is woefully under-
utilized in iOS applications: section index titles. These are the
vertically flowing letters found along the right side of table
views in an Address Book contacts list or Music library.

 197

As the user scrolls their finger down the list, the table view
jumps to the corresponding section. Even the most tiresome
table view is rendered significantly more usable as a result.

Section index titles can be enabled by implementing the
following UITableViewDataSource delegate methods:

• -sectionIndexTitlesForTableView: - Returns an array of the
section index titles to be displayed along the right hand
side of the table view, such as the alphabetical list "A...Z" +
"#". Section index titles are short—generally limited to 2
Unicode characters.

• -tableView:sectionForSectionIndexTitle:atIndex: - Returns
the section index that the table view should jump to when
the user touches a particular section index title.

However, the process of generating that alphabetical list is not
something that one would want to have to generate
themselves. What it means for something to be alphabetically
sorted, or even what is meant by an "alphabet" varies wildly
across different languages and locales.

Coming to the rescue is UILocalizedIndexedCollation.

!
!

 198

UILocalizedIndexedCollation is a class that helps to organize
table view sections in a locale-aware manner. Rather than
creating the object directly, a shared instance corresponding
to the current locale is accessed, with
UILocalizedIndexedCollation +currentCollation

The first task for UILocalizedIndexedCollation is to
determine which section index titles to display for the current
locale, which are can be read from the sectionIndexTitles
property.

Here's an example of how index titles vary between locales:

Aren't you glad you don't have to do this yourself?

Locale Section Index Titles

en_US A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T,
U, V, W, X, Y, Z, #

ja_JP A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T,
U, V, W, X, Y, Z, あ, か, さ, た, な, は, ま, や, ら, わ, #

sv_SE A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T,
U, V, W, X, Y, Z, Å, Ä, Ö, #

ko_KO A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T,
U, V, W, X, Y, Z, ㄱ, ㄴ, ㄷ, ㄹ, ㅁ, ㅂ, ㅅ, ㅇ, ㅈ, ㅊ, ㅋ, ㅌ,
ㅍ, ㅎ, #

ar_SA A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T,
U, V, W, X, Y, Z, ,آ, ب, ت, ث, ج, ح, خ, د, ذ, ر, ز, س, ش, ص
,ض, ط, ظ, ع, غ, ف, ق, ك, ل, م, ن, ه, و, ي

 199

The next step is to determine what section index each object
should be assigned to. This is accomplished with -
sectionForObject:collationStringSelector:, which returns the
NSInteger index corresponding to the string derived by
performing the specified selector. This selector might be
something like localizedName, title, or even description.

So, as it stands, a table view data source has a NSArray
property corresponding to the number of sections in the table
view, with each element of the array containing an array
representing each row in the section. Since collation was
handled by UILocalizedIndexedCollation,it should be able to
sort the rows in each section as well. -sortedArrayFromArray:  
collationStringSelector: does this in similar fashion to  
-sectionForObject:collationStringSelector:, sorting objects in
each section by their respective localized title.

Finally, the table view should implement -tableView: 
sectionForSectionIndexTitle:atIndex:, so that touching a
section index title jumps to the corresponding section in the
table view. UILocalizedIndexedCollation  
-sectionForSectionIndexTitleAtIndex: does the trick.

All told, here's what a typical table view data source
implementation looks like:

 200

- (void)setObjects:(NSArray *)objects {

 SEL selector = @selector(localizedTitle)

 NSInteger index, sectionTitlesCount =

[[[UILocalizedIndexedCollation currentCollation]

sectionTitles] count]; !
 NSMutableArray *mutableSections = [[NSMutableArray

alloc] initWithCapacity:sectionTitlesCount];

 for (idx = 0; idx < sectionTitlesCount; idx++) {

 [mutableSections addObject:[NSArray array]];

 } !
 for (id object in objects) {

 NSInteger sectionNumber =

[[UILocalizedIndexedCollation currentCollation]

sectionForObject:object

collationStringSelector:selector];

 [[mutableSections objectAtIndex:sectionNumber]

addObject:object];

 } !
for (idx = 0; idx < sectionTitlesCount; idx++) {

 NSArray *objectsForSection = [mutableSections

objectAtIndex:idx];

 [mutableSections replaceObjectAtIndex:idx

withObject:[collation

sortedArrayFromArray:objectsForSection

collationStringSelector:selector]];

 }

 self.sections = mutableSections;

 [self.tableView reloadData];

} !

 201

- (NSString *)tableView:(UITableView *)tableView

titleForHeaderInSection:(NSInteger)section

{

 return [[[UILocalizedIndexedCollation

currentCollation] sectionTitles] objectAtIndex:section];

} !
- (NSArray *)sectionIndexTitlesForTableView:(UITableView

*)tableView {

 return [[UILocalizedIndexedCollation

currentCollation] sectionIndexTitles];

} !
- (NSInteger)tableView:(UITableView *)tableView

sectionForSectionIndexTitle:(NSString *)title

 atIndex:(NSInteger)index

{

 return [[UILocalizedIndexedCollation

currentCollation]

sectionForSectionIndexTitleAtIndex:index];

}

UITableViewIndexSearch

There is one special section index title worth mentioning, and
that's UITableViewIndexSearch. It's common to have both a
search bar and section indexes. For convenience and visual
consistency, a search icon is usually included as the first
section index title. Touching it brings up the UISearchBar in
the header of the table view.

 202

To add the search icon in a table view, simply prepend the
NSString constant UITableViewIndexSearch to the return
value of -sectionIndexTitlesForTableView:, and adjust -
tableView:sectionForSectionIndexTitle:atIndex: to account
for the single element shift.

!
If you see an excessively long table view, kill it with fire!

Which is to say, refactor unwieldily content with a
combination of hierarchies, a search bar, and section indexes.
And when implementing section index titles, take advantage
of UILocalizedIndexedCollation.

Together, we can put an end to scroll view-induced repetitive
stress injuries, and spend more time enjoying the finer things
in life... like watching videos of pets playing with iPads. 

 203

UIAppearance

Style vs. Substance. 
Message vs. Medium. 
Rhetoric vs. Dialectic.

Is beauty merely skin deep,  
or is it somehow informed by deeper truths? 
What does it mean for something to possess good design? 
Are aesthetic judgments relative or absolute?

These are deep questions that have been pondered by
philosophers, artists, and makers for millennia.

And while we all continue our search for beauty and
understanding in the universe, the app marketplace has been
rather clear on this subject:

Users will pay a premium for good-looking software.

When someone purchases an iPhone, they are buying into
Apple's philosophy: what works well should look good, too.

 204

It used to be that even trivial UI customization on iOS
required AppStore-approval-process-taunting juju like
method swizzling. Fortunately, with iOS 5, developers are
given an easier way: UIAppearance.

!
UIAppearance allows the appearance of views and controls to
be consistently customized across the entire application.

In order to have this work within the existing structure of
UIKit, Apple devised a rather clever solution: UIAppearance
is a protocol that returns a proxy which forwards any
configuration to every instance of a particular class.

Why a proxy instead of a property or method on UIView directly?
Because there are non-UIView objects like UIBarButtonItem that
render their own composite views.

Appearance can be customized for all instances, or scoped to
particular view hierarchies:

• +appearance: Returns an appearance proxy for the receiver.

• +appearanceWhenContainedIn:(Class
<UIAppearanceContainer>)ContainerClass,...: Returns an
appearance proxy for the receiver in a given containment
hierarchy.

 205

To customize the appearance of all instances of a class, you
use appearance to get the appearance proxy for the class. For
example, to modify the tint color for all instances of
UINavigationBar:

[[UINavigationBar appearance] setTintColor:myColor];

To customize the appearances in a way that adjusts for being
contained within an instance of a container class, or instances
in a hierarchy, you use appearanceWhenContainedIn: to get
the appearance proxy for the class:

[[UIBarButtonItem appearanceWhenContainedIn:

[UINavigationBar class], nil]

 setTintColor:myNavBarColor];

[[UIBarButtonItem appearanceWhenContainedIn:

 [UINavigationBar class], nil]

 setTintColor:myPopoverNavBarColor];

[[UIBarButtonItem appearanceWhenContainedIn:

 [UIToolbar class], nil] setTintColor:myToolbarColor];

[[UIBarButtonItem appearanceWhenContainedIn:

 [UIToolbar class], [UIPopoverController class], nil]

 setTintColor:myPopoverToolbarColor];

!

 206

Determining Which Properties Work With
UIAppearance

The major downside to UIAppearance's proxy approach is
that it's difficult to determine which selectors are compatible.
Because +appearance returns an id, Xcode can't provide any
code-completion information. This is a major source of
confusion and frustration with this feature.

In order to find out what methods work with UIAppearance,
one is forced to grep through the headers:

$ cd /Applications/Xcode.app/Contents/Developer/

Platforms/iPhoneOS.platform/Developer/SDKs/

iPhoneOS*.sdk/System/Library/Frameworks/UIKit.framework/

Headers

$ grep -H UI_APPEARANCE_SELECTOR ./* | sed 's/

__OSX_AVAILABLE_STARTING(__MAC_NA,__IPHONE_5_0)

UI_APPEARANCE_SELECTOR;//'

UIAppearance looks for the UI_APPEARANCE_SELECTOR macro
in method signatures. Any method with this annotation can be used
with the appearance proxy.

!

 207

Implementing <UIAppearance> in Custom
UIView Subclasses

Having custom UI classes conform to UIAppearance is not
only a best-practice, but it demonstrates a certain level of care
being put into its implementation.

!
Cocoa developers have a long history of obsessing about
visual aesthetics—often going to extreme lengths to achieve
their desired effects. Recall the Delicious Generation of Mac
developers, and applications like Disco, which went so far as
to emit virtual smoke when burning a disc.

Thankfully, this obsession for making things look good is
alive and well in iOS. As a community and ecosystem, we have
relentlessly pushed the envelope in terms of what users
should expect from their apps. And though this makes our
jobs more challenging, it ultimately makes the experience of
developing for iOS all the more enjoyable.

Settle for nothing less than the whole package. 
Make your apps beautiful from interface to implementation. 

 208

Localization, 
Internationalization & 
Accessibility

!

 209

NSLocale

Internationalization is like flossing: everyone knows they
should do it, but probably don't.

And like any habit, it becomes second-nature with practice, to
the point that you couldn't imagine not doing it. All it takes is
for someone to show you the way.

i18n versus l10n

As is necessary in any discussion about Internationalization
(i18n) or Localization (l10n), we must take some time to
differentiate the two:

• Localization is the process of adapting your application for
a specific market, or locale.

• Internationalization is the process of preparing your app to
be localized.

Therefore, internationalization is a necessary, but not
sufficient condition for localization.

 210

What makes internationalization difficult is having to think
outside of your cultural context. All of the assumptions you
have about the way things are supposed to work must be
acknowledged and reconsidered. You have to fight the urge to
write off things that may seem trivial, like sorting and
collation, and empathize with the pain and confusion even
minor differences may cause.

Fortunately for us, we don't have to do this alone.  
Meet NSLocale:

NSLocale

NSLocale is a Foundation class that encapsulates cultural and
linguistic conventions for a particular locale, including:

• Language

• Keyboards

• Number, Date, and Time Formats

• Currency

• Collation and Sorting

• Use of Symbols, Colors, and Iconography

Each locale corresponds to a locale identifier, such as en_US,
fr_FR, ja_JP, and en_GB, which include a language code (e.g.
en for English) and a region code (e.g. US for United States).

 211

Locale identifiers can encode more explicit preferences for
currency, calendar system, or number formats, such as in the
case of de_DE@collation=phonebook,currency=DDM,
which specifies German spoken in Germany, using
phonebook collation, and using the pre-Euro Deutsche Mark.

Users can change their locale settings in the "Langauge & Text"
System Preferences on the Mac, or "General > International"  
in iOS Settings.

-objectForKey:

NSLocale typifies Foundation's obsession with domain-
specific pedantry, and nowhere is this more visible than in -
objectForKey:.

Among the available values are:

• NSLocaleIdentifier

• NSLocaleLanguageCode

• NSLocaleCountryCode

• NSLocaleScriptCode

• NSLocaleVariantCode

• NSLocaleExemplarCharacterSet

• NSLocaleCalendar

 212

• NSLocaleCollationIdentifier

• NSLocaleUsesMetricSystem

• NSLocaleMeasurementSystem

• NSLocaleDecimalSeparator

• NSLocaleGroupingSeparator

• NSLocaleCurrencySymbol

• NSLocaleCurrencyCode

• NSLocaleCollatorIdentifier

• NSLocaleQuotationBeginDelimiterKey

• NSLocaleQuotationEndDelimiterKey

• NSLocaleAlternateQuotationBeginDelimiterKey

• NSLocaleAlternateQuotationEndDelimiterKey

While this all may seem fairly esoteric, one may be surprised
by the number of opportunities an application has to use this
information to improve user experience.

It's the small things, like knowing that quotation marks vary
between locales:

English “I can eat glass, it doesn't harm me.”
German „Ich kann Glas essen, das tut mir nicht weh.“
Japanese 「私はガラスを食べられます。それは私を

傷つけません。」

 213

So, if one were building a component that added quotations
around arbitrary text, they should use
NSLocaleQuotationBeginDelimiterKey and
NSLocaleAlternateQuotationEndDelimiterKey rather than
hard-coding English quotation marks (@"\"").

-displayNameForKey:value:

Another impressive method is -displayNameForKey:value:,
which can return the display name of a locale identifier
(NSLocaleIdentifier):

NSLocale *frLocale = [[NSLocale alloc]

 initWithLocaleIdentifier:@"fr_FR"];

NSLog(@"fr_FR: %@", [frLocale

 displayNameForKey:NSLocaleIdentifier value:@"fr_FR"]);

// frFR: français (France) !
NSLog(@"en_US: %@", [frLocale

 displayNameForKey:NSLocaleIdentifier value:@"en_US"]);

// enUS: anglais (États-Unis)

One should use this method any time information about the
user's current or available locales is displayed

!

 214

+preferredLanguages

One final method worth mentioning is NSLocale
+preferredLanguages, which returns an array of IETF BCP 47
language identifiers, in order of user preference.

An app that communicates with a web server can use these
values to define the Accept-Language HTTP header, such that
the server has the option to return localized resources:

NSMutableURLRequest *request = ...;

[request setValue:[NSString stringWithFormat:@"%@",

[[NSLocale preferredLanguages]

componentsJoinedByString:@", "]],

forHTTPHeaderField:@"Accept-Language"];

Even if a server doesn't yet localize its resources, putting this
in place now will allow it to be changed with the flip the
switch—no update to the client required!

!
Internationalization is often considered to be an un-sexy
topic in programming—just another chore that most projects
don't have to worry about. In actuality, designing software for
other locales is a valuable exercise, and not just for the
economic benefits of expanding your software into other
markets.

 215

One of the greatest joys and challenges in programming is in
designing systems that can withstand change. The only way
designs can adapt is by identifying and refactoring
assumptions about the system that may not always hold.

In this way, internationalization represents the greatest
challenge, making us question everything about our own
cultural identity. And in doing so, we become not just better
programmers, but better people, too.

So go and be a better person: make NSLocale part of your
daily ritual.  

 216

NSLocalizedString

Strings are perhaps the most versatile data type in computing.
They're passed around as symbols, used to encode numeric
values, associate values to keys, represent resource paths, store
linguistic content, and format information.

Having a strong handle on user-facing strings, in particular, is
essential to making a great user experience. In Foundation,
there is a convenient macro for denoting strings as user-
facing: NSLocalizedString.

NSLocalizedString provides string localization in "compile-
once / run everywhere" fashion, replacing all localized strings
with their respective translation at runtime.

!
NSLocalizedString takes two arguments: key, which uniquely
identifies the string to be localized, and comment, a string that
is used to provide sufficient context for accurate translation.

 217

In practice, the key is often just the base translation string to
be used, while comment is usually nil, unless there is an
ambiguous context:

textField.placeholder = NSLocalizedString(@"User", nil);

NSLocalizedString can also be used as a format string in
NSString +stringWithFormat:. In these cases, it's important to
use the comment argument to provide enough context to be
properly translated.

self.title =

 [NSString stringWithFormat:NSLocalizedString(

 @"%@'s Profile",

 @"{User First Name}'s Profile"),

 user.name];

label.text =

 [NSString stringWithFormat:NSLocalizedString(

 @"Showing %lu of %lu items",

 @"Showing {number} of {total number} items"),

 [page count], [items count]];

NSLocalizedString & Co.

There are four varieties of NSLocalizedString, with increasing
levels of control (and obscurity):

NSString * NSLocalizedString(

 NSString *key,

 NSString *comment

)  

 218

NSString * NSLocalizedStringFromTable(

 NSString *key,

 NSString *tableName,

 NSString *comment

) !
NSString * NSLocalizedStringFromTableInBundle(

 NSString *key,

 NSString *tableName,

 NSBundle *bundle,

 NSString *comment

) !
NSString * NSLocalizedStringWithDefaultValue(

 NSString *key,

 NSString *tableName,

 NSBundle *bundle,

 NSString *value,

 NSString *comment

)

For an app, NSLocalizedString is almost always the correct
choice. Within a library or shared component,
NSLocalizedStringFromTable should be used instead.

Localizable.strings

At runtime, NSLocalizedString determines the preferred
language, and finds a corresponding Localizable.strings file in
the app bundle. For example, if the user prefers French, the file
fr.lproj/Localizable.strings will be consulted.

 219

Here's what that looks like:

/* No comment provided by engineer. */

"Username"="nom d'utilisateur"; !
/* {User First Name}'s Profile */

"%@'s Profile"="profil d'%1$@";

Localizable.strings files are initially generated with genstrings.

The genstrings utility creates a .strings file based on whatever
C or Objective-C (.c or .m) source code files are passed as the
argument.

genstrings goes through each of the selected source files, and
for each use of NSLocalizedString, appends the key and
comment into a target file. It's up to the developer to then
create a copy of that file for each targeted locale and have a
translator localize it.

No Madlibs

After reading that part about localized format strings, one
may be tempted to take a clever, DRY approach by creating
reusable grammar templates like `@"{Noun} {Verb} {Noun}",
and localizing each word individually...

!

 220

DON'T. This cannot be stressed enough: don't subdivide
localized strings. Context will be lost, grammatical
constructions will be awkward and unidiomatic, verbs will be
incorrectly conjugated, and you'll have missed the point
entirely—taking great effort to make something worse than if
you hadn't bothered in the first place.

For additional guidelines, see Localizing String Resources from
Apple's Internationalization Programming guide.

!
NSLocalizedString is a remarkably reliable indicator of code
quality. Those who care enough to take a few extra seconds to
internationalize are very likely to be just as thoughtful when it
comes to design and implementation.

Always wrap user-facing strings with
NSLocalizedString.

Even if you don't plan to localize your app into any other
languages, there is immense utility in being able to easily
review all of the strings that a user will see.

And if localization is in the cards, it's significantly easier to
NSLocalize your strings as you go along the first time, then try
to find all of them after-the-fact.  

 221

UIAccessibility

iPhones and iPads—magical as they are—become downright
life-changing for individuals with disabilities (and their
families) because of Apple's commitment to accessibility.

Look no further than the WWDC 2012 Introduction Video,
which opens with a blind man who walks the woods of
Germany with the aid of a GPS app. It's a lovely reminder of
the kind of impact our work can have on others.

Accessibility, like internationalization, is one of those topics
that's difficult to get developers excited about.

!
UIAccessibility is an informal protocol in UIKit that provides
accessibility information for user interface elements. This
information is used by VoiceOver and other assistive
technologies to help users with disabilities interact with your
application.

 222

All of the standard views and controls in UIKit implement
UIAccessibility, so applications are nearly accessible by
default. As a result, the task of improving the accessibility of
an application is one of minor adjustments rather than
wholesale re-implementation.

Here's a list of all of the properties in UIAccessibility:

• accessibilityLabel

• accessibilityHint

• accessibilityValue

• accessibilityLanguage

• accessibilityTraits

• accessibilityFrame

• accessibilityActivationPoint

• accessibilityElementsHidden

• accessibilityViewIsModal

Enabling Accessibility

Before going any further, take a couple minutes to play with
VoiceOver, and understand how accessibility information is
conveyed to the user. Open the Settings app, tap General,
scroll to the bottom and tap Accessibility. In Accessibility,
you'll see settings for assistive technologies grouped by
category: Vision, Hearing, Learning, and Physical & Motor.

 223

Tap VoiceOver, and then tap the VoiceOver switch to turn it
on. Dismiss the alert that pops up, and VoiceOver will now be
enabled on your device.

Unlike setting your device to another language, there's no real risk of
not being able to figure out how to turn VoiceOver off.

Using the device in VoiceOver mode is a bit different than one
might be used to:

• Tap once to select an item

• Double-Tap to activate the selected item

• Swipe with three fingers to scroll

Press the Home button and start exploring!

All of the stock Apple apps—Messages, Calendar, Weather— is
fully usable in VoiceOver mode. Heck, even Camera is
accessible, with the system telling you about faces detected in
the camera's viewport!

By contrast (perhaps), try some 3rd-party apps from the App
Store. However disappointing, some of the most visually-
stunning apps, with all of their custom controls and
interactions, are completely unusable in this mode.

 224

With a clear idea of what we're working with, let's talk about
implementation:

Label & Hint

The most immediate and straightforward way to improve the
accessibility of an app is to ensure that each usable element
has a reasonable accessibility label.

Accessibility labels and hints tell VoiceOver what to say when
selecting user interface elements. This information should be
helpful, yet concise.

• accessibilityLabel identifies a user interface element. Every
accessible view and control must supply a label.

• accessibilityHint describes the results of interacting with a
user interface element. A hint should be supplied only if
the result of an interaction is not obvious from the
element's label.

The Accessibility Programming Guide provides the following
guidelines for labels and hints:

!

 225

Guidelines for Creating Labels

If you provide a custom control or view, or if you display a
custom icon in a standard control or view, you need to
provide a label that:

• Very briefly describes the element. Ideally, the label consists
of a single word, such as Add, Play, Delete, Search, Favorites,
or Volume.

• Does not include the type of the control or view. The type
information is contained in the traits attribute of the
element and should never be repeated in the label.

• Begins with a capitalized word. This helps VoiceOver read
the label with the appropriate inflection.

• Does not end with a period. The label is not a sentence and
therefore should not end with a period.

• Is localized. Be sure to make your application available to as
wide an audience as possible by localizing all strings,
including accessibility attribute strings. In general,
VoiceOver speaks in the language that the user specifies in
International settings.

!

 226

Guidelines for Creating Hints

The hint attribute describes the results of performing an
action on a control or view. You should provide a hint only
when the results of an action are not obvious from the
element’s label.

• Very briefly describes the results. Even though few controls
and views need hints, strive to make the hints you do need
to provide as brief as possible. Doing so decreases the
amount of time users must spend listening before they can
use the element.

• Begins with a verb and omits the subject. Be sure to use the
third-person singular declarative form of a verb, such as
“Plays,” and not the imperative, such as “Play.” You want to
avoid using the imperative, because using it can make the
hint sound like a command.

• Begins with a capitalized word and ends with a period.
Even though a hint is a phrase, not a sentence, ending the
hint with a period helps VoiceOver speak it with the
appropriate inflection.

• Does not include the name of the action or gesture. A hint
does not tell users how to perform the action, it tells users
what will happen when that action occurs.

 227

• Does not include the name of the control or view. The user
gets this information from the label attribute, so you should
not repeat it in the hint.

• Is localized. As with accessibility labels, hints should be
available in the user’s preferred language.

Traits

For custom controls, or creative re-purposing of standard
controls, one should ensure that the correct accessibility traits
are specified.

Accessibility traits describe a set of traits that characterize
how a control behaves or should be treated.

These include distinctions like:

• Button

• Link

• Search Field

• Keyboard Key

• Static Text

• Image

• Plays Sound

• Selected

 228

• Summary Element

• Updates Frequently

• Causes Page Turn

• Not Enabled

The accessibilityTraits property takes a bitmask of
UIAccessibilityTraits values.

For example, if a custom button control displays an image and
plays a sound when tapped, one should define the traits for
"Button", "Image", and "Plays Sound". Or, if one were to use a
UISlider for purely decorative purposes, the "Not Enabled"
trait should be specified.

Frame & Activation Point

As a general rule, the cleverness of a custom UI element is
directly proportional to how gnarly its implementation is.
Overlapping & invisible views, table view hacks, first
responder shenanigans: sometimes it's better not to ask how
something works.

However, when it comes to accessibility, it's important to set
the record straight.

 229

accessibilityFrame and accessibilityActivationPoint are used
to define the accessible portions and locations of UI elements,
without changing their outward appearance.

As you try out your app in VoiceOver mode, try interacting with all
of the elements on each screen. If the selection target is not what you
expected, you can use accessibilityFrame and
accessibilityActivationPoint to adjust accordingly.

Value

Accessibility value corresponds to the content of a user
interface element. For a label, the value is its text. For a
UISlider, it's the current numeric value represented by the
control.

Want to know a quick way to improve the accessibility of
table views? Try setting the accessibilityValue property for
cells to be a localized summary of the cell's content. For
example, for a table view that shows status updates, one might
set the accessibilityLabel to "Update from #{User Name}", and
the accessibilityValue to the content of that status update.

!
Apple has done a great service to humanity in making
accessibility a first-class citizen in its hardware and software.

 230

You're really missing out on some of the best engineering,
design, and technical writing that Apple has ever done if you
ignore UIAccessibility. Do yourself a favor and read the
Accessibility Programming Guide for iOS.

Who knows? You may end up changing someone's life
because of it. 

 231

NSFormatter

Conversion is the tireless errand of software development.
Most programming tasks boil down to some variation of
transforming data into something more useful.

In the case of user-facing software, converting data into
human-readable form is an essential task, and a complex one
at that. A user's preferred language, locale, calendar, or
currency can all factor into how information should be
displayed. So can other constraints, like a label's dimensions
or location on the screen.

All of this is to say that sending -description to an object just
isn't going to cut it in most circumstances. Even
+stringWithFormat: is ultimately going to disappoint.  
No, the real tool for this job is NSFormatter.

!
NSFormatter is an abstract class for transforming data into a
textual representation. It can also interpret valid textual
representations back into data.

 232

Its origins trace back to NSCell, which is used to display
information and accept user input from tables, form fields,
and other AppKit views. Much of the API design of
NSFormatter reflects this.

Foundation provides three concrete subclasses for
NSFormatter: NSNumberFormatter, NSDateFormatter, and
NSByteCountFormatter. As some of the oldest members of
the Foundation framework, these classes are astonishingly
well-suited to their respective domains, in that way only
decade-old software can.

NSNumberFormatter

NSNumberFormatter handles every aspect of number
formatting imaginable, from mathematical and scientific
notation, to currencies and percentages. Nearly everything
about the formatter can be customized, whether its the
grouping separator, currency symbol, number of significant
digits, rounding behavior, fractions, character for infinity,
string representation for 0, or maximum / minimum values. It
can even write out numbers in several languages!

Number Styles

When using an NSNumberFormatter, the first order of
business is to determine what kind of information its

 233

displaying. Is it a price? Is this a whole number, or should
decimal values be shown?

NSNumberFormatter can be configured for any one of the
following formats, with -setNumberStyle::

To illustrate the differences between each style, here is how
the number 12345.6789 would be displayed for each:

• NSNumberFormatterNoStyle: 12346

• NSNumberFormatterDecimalStyle: 12345.6789

• NSNumberFormatterCurrencyStyle: $12345.68

• NSNumberFormatterPercentStyle: 1234567%

• NSNumberFormatterScientificStyle: 1.23456789E4

• NSNumberFormatterSpellOutStyle: twelve thousand
three hundred forty-five point six seven eight nine

Locale Awareness

By default, NSNumberFormatter will format according to the
current locale settings, like for currency symbol ($, £, €, etc.)
or whether to use "," or "." as the decimal separator.

 234

NSNumberFormatter *numberFormatter =

 [[NSNumberFormatter alloc] init];

[numberFormatter setNumberStyle:

 NSNumberFormatterCurrencyStyle]; !
for (NSString *identifier in @[@"en_US", @"fr_FR"]) {

 numberFormatter.locale =

 [NSLocale localeWithLocaleIdentifier:identifier];

 NSLog(@"%@: %@", identifier,

 [numberFormatter stringFromNumber:@(1234.5678)]);

}

 

All of those settings can be overridden on an individual basis,
but for most apps, the best strategy would be deferring to the
locale's default settings.

Rounding & Significant Digits

In order to prevent numbers from getting annoyingly
pedantic ("thirty-two point three three, repeating, of
course..."), make sure get a handle on NSNumberFormatter's
rounding behavior.

The easiest way to do this, would be to do
setUsesSignificantDigits: to YES, and then set minimum and
maximum number of significant digits appropriately. For
example, a number formatter used for approximate distances

en_US $ 1234.57

fr_FR 1 234,57 €

 235

in directions, would do well with significant digits to the
tenths place for miles or kilometers, but only the ones place
for feet or meters.

For anything more advanced, an NSDecimalNumberHandler object
can be set as the roundingBehavior property of a number formatter.

NSDateFormatter

NSDateFormatter is the be all and end all of getting textual
representations of both dates and times.

Date & Time Styles

The most important properties for a NSDateFormatter object
is its dateStyle and timeStyle. Like NSNumberFormatter -
numberStyle, these properties provide common preset
configurations for common formats. In this case, the formats
are distinguished by their specificity (more specific ⇒ longer).

Both properties share a single set of enum values: 

 236

dateStyle and timeStyle are set independently. For example, to
display just the time, an NSDateFormatter would be
configured with a dateStyle of NSDateFormatterNoStyle:

NSDateFormatter *formatter =

 [[NSDateFormatter alloc] init];

[formatter setDateStyle:NSDateFormatterNoStyle];

[formatter setTimeStyle:NSDateFormatterMediumStyle];

NSLog(@"%@", [formatter stringFromDate:[NSDate date]]);

// 12:11:19pm

Whereas setting both to NSDateFormatterLongStyle yields
the following:

Style Description Examples

Date Time

NSDateFormatter 
NoStyle

Specifies no
style.

NSDateFormatter 
ShortStyle

Specifies a
short style,
typically
numeric only.

11/23/37 3:30pm

NSDateFormatter 
MediumStyle

Specifies a
medium style,
typically with
abbreviated
text.

Nov 23,
1937

3:30:32pm

NSDateFormatter 
LongStyle

Specifies a long
style, typically
with full text.

November
23, 1937

3:30:32pm

NSDateFormatter 
FullStyle

Specifies a full
style with
complete
details.

Tuesday,
April 12,
1952 AD

3:30:42pm
PST

 237

NSDateFormatter *formatter =

 [[NSDateFormatter alloc] init];

[formatter setDateStyle:NSDateFormatterLongStyle];

[formatter setTimeStyle:NSDateFormatterLongStyle];

NSLog(@"%@", [formatter stringFromDate:[NSDate date]]);

// Monday, November 11, 2013 12:11:19pm PST

As one might expect, each aspect of the date format can
alternatively be configured individually, a la carte. For any
aspiring time wizards NSDateFormatter has a bevy of
different knobs and switches to play with.

Relative Formatting

As of iOS 4 / OS X 10.6, NSDateFormatter supports relative
date formatting for certain locales with the
doesRelativeDateFormatting property. Setting this to YES
would format the date of [NSDate date] to "Today".

Re-Using Formatter Instances

Perhaps the most critical detail to keep in mind when using
formatters is that they are extremely expensive to create. Even
just an alloc init of an NSNumberFormatter within a tight
loop is enough to bring an app to its knees.

Therefore, it's strongly recommended that formatters be
created once, and re-used as much as possible.

 238

If it's just a single method using a particular formatter, a static
instance is a good strategy:

- (void)fooWithNumber:(NSNumber *)number {

 static NSNumberFormatter *_formatter = nil;

 static dispatch_once_t onceToken;

 dispatch_once(&onceToken, ^{

 _formatter = [[NSNumberFormatter alloc] init];

 [_formatter setNumberStyle:

 NSNumberFormatterDecimalStyle];

 }); !
 NSString *string =

 [_formatter stringFromNumber:number]; !
 // ...

}

dispatch_once guarantees that the specified block is called only the
first time it's encountered.

If the formatter is used across several methods in the same
class, that static instance can be refactored into a singleton
method:

 239

+ (NSNumberFormatter *)numberFormatter {

 static NSNumberFormatter *_formatter = nil;

 static dispatch_once_t onceToken;

 dispatch_once(&onceToken, ^{

 _formatter = [[NSNumberFormatter alloc] init];

 [_formatter setNumberStyle:

 NSNumberFormatterDecimalStyle];

 }); !
 return _formatter;

}

If the same formatter is privately implemented across several
classes, one could either expose it publicly in one of the
classes, or implement the singleton method in a category on
NSNumberFormatter.

!
Presenting useful information to users is as much about
content as presentation. Invest in learning all of the secrets of
NSFormatter to get every detail exactly how you want them.

And if you find yourself with formatting logic scattered across
your app, consider creating your own NSFormatter subclass
to consolidate all of that business logic in one place.  

 240

CFStringTransform

Everything you ever need to know about how nice a language
is to use can be determined by two indicators:

1. API Consistency

2. Quality of String Implementation

NSString is the crown jewel of Foundation. In an age where
other languages still struggle to handle Unicode correctly,
NSString can not only handle anything you throw at it, but it
can turn around and parse that input into linguistic tags. It's
unfairly good.

But as powerful as NSString / NSMutableString are, one
would be remiss not to mention their toll-free bridged cousin,
CFMutableString. Or more specifically, CFStringTransform.

As denoted by the CF prefix, CFStringTransform is part of
Core Foundation, making it a C, rather than Objective-C API.
The function returns a Boolean for whether or not the
transform was successful, and takes the following arguments:

 241

• string: The string to be transformed.  
Since this argument is a CFMutableStringRef, an
NSMutableString can be passed using toll-free bridging.

• range: The range of the string over which the
transformation should be applied. Pass NULL for the
transformation to be applied over the entire string.

• transform: The ICU transform to apply.

• reverse: Whether to run the transform in reverse, where
applicable.

CFStringTransform covers a lot of ground with its transform
argument. Here's a rundown of what it can do:

Stripping Accents and Diacritics

Énġlišh långuãge läcks iñterêßţing diaçrïtičş, so it can be
useful to normalize extended Latin characters into ASCII-
friendly representations. Get rid of the squiggly bits using the
kCFStringTransformStripCombiningMarks transform.

!

 242

Naming Unicode Characters

kCFStringTransformToUnicodeName allows one to finally
determine the Unicode standard name for special characters,
including Emoji. For instance, " " becomes "{PIG FACE}".

Transliterating Between Orthographies

With the exception of English (with its complicated spelling
inconsistencies), writing systems encode speech sounds into
phonetic, written representations. European languages
generally use the Latin alphabet (with a few added diacritics),
Russian uses Cyrillic, Japanese uses Hiragana & Katakana,
and Thai, Korean, & Arabic each have their own scripts.

Although each language has a particular inventory of sounds
that other languages may not have, the overlap across all of
the major writing systems is remarkably high—enough so that
one can rather effectively transliterate from one to another.

CFStringTransform can transliterate between Latin and
Arabic, Cyrillic, Greek, Korean (Hangul), Hebrew, Japanese
(Hiragana & Katakana), Mandarin Chinese, and Thai. And
not only that, but those transformations are all reversible:  

 243

Normalize User-Generated Content

One of the more practical applications for all of this is to
normalize unpredictable user input. Even if an application
doesn't specifically deal with languages, it should be able to
intelligently process anything the user types.

For example, to build a searchable index of greetings from
around the world, one could do the following:

First, apply the kCFStringTransformToLatin transform to
transliterate all non-English text into a phonetic Latin
alphabetic representation.

Transformation Input Output

kCFStringTransformLatinArabic mrḥbạ مرحبا

kCFStringTransformLatinCyrillic privet привет

kCFStringTransformLatinGreek geiá sou γειά σου

kCFStringTransformLatinHangul annyeonghaseyo 안녕하세요

kCFStringTransformLatinHebrew şlwm שלום

kCFStringTransformLatinHiragana hiragana ひらがな

kCFStringTransformLatinKatakana katakana カタカナ

kCFStringTransformLatinThai sw̄ạsd̄ī สวัสดี

kCFStringTransform 
HiraganaKatakana

にほんご ニホンゴ

kCFStringTransformMandarinLatin 中文 zhōng wén

 244

Hello! こんにちは! สวัสด!ี مرحبا! 您好! → 
Hello! kon'nichiha! s̄wạs̄dī! mrḥbạ! nín hǎo!

Next, apply the kCFStringTransformStripCombiningMarks
transform to remove any diacritics or accents.

Hello! kon'nichiha! swasdi! mrhba! nin hao!

Finally, downcase the text and use CFStringTokenizer to split
the text into tokens, and index on them.

(hello, kon'nichiha, swasdi, mrhba, nin, hao)

Doing the same to search text entered by the user allows for
content to be searched phonetically, regardless of either the
language of the search string or the content.

!
CFStringTransform is an insanely powerful way to bend
language to your will. And it's but one of many powerful APIs
that await you if you're brave enough to explore outside of
Objective-C's warm OO embrace. 

 245

NSLinguisticTagger

NSLinguisticTagger is a veritable Swiss Army Knife of
linguistic functionality, with the ability to tokenize natural
language strings into words, determine their part-of-speech &
stem, extract names of people, places, & organizations, and
determine the languages & respective writing system.

For most developers, this is far more power than anyone
knows what to do with. But perhaps this is just for lack
sufficient opportunity to try. After all, almost every
application deals with natural language in one way or
another... perhaps NSLinguisticTagger could add a new level
of polish, or enable brand new features entirely.  
!
Introduced with iOS 5, NSLinguisticTagger is a contemporary
to Siri, raising speculation that it was a byproduct of the
personal assistant's development.

Consider a typical question one might ask Siri:

What is the weather in San Francisco?

 246

Computers are a long ways off from "understanding" this
question literally, but with a few simple tricks, they can do a
reasonable job determining the intention of the question with
to reasonable degree of confidence:

NSString *question =

 @"What is the weather in San Francisco?";

NSLinguisticTaggerOptions options =

 NSLinguisticTaggerOmitWhitespace |

 NSLinguisticTaggerOmitPunctuation |

 NSLinguisticTaggerJoinNames; !
NSLinguisticTagger *tagger =

 [[NSLinguisticTagger alloc] initWithTagSchemes:

 [NSLinguisticTagger

 availableTagSchemesForLanguage:@"en"]

 options:options];

tagger.string = question; !
NSRange range = NSMakeRange(0, [question length])

[tagger enumerateTagsInRange: range

 scheme:NSLinguisticTagSchemeNameTypeOrLexicalClass

 options:options

 usingBlock:

^(NSString *tag, NSRange tokenRange, NSRange, BOOL *) {

 NSString *token =

 [question substringWithRange:tokenRange];

 NSLog(@"%@: %@", token, tag);

}];

!

 247

This code would print the following:

What: Pronoun 
is: Verb 
the: Determiner 
weather: Noun 
in: Preposition 
San Francisco: PlaceName

Filtering on nouns, verbs, and place name, yields:

[is, weather, San Francisco]

Based on this (perhaps in conjunction with something like
the Latent Semantic Mapping framework) an app can
conclude that a reasonable course of action would be making
an API request to determine the current weather conditions
in the city of San Francisco.

Tagging Schemes

NSLinguisticTagger can be configured to tag different kinds
of information by specifying any of the following tagging
schemes:

• NSLinguisticTagSchemeTokenType: Classifies tokens
according to their broad type: word, punctuation,
whitespace, etc.

 248

• NSLinguisticTagSchemeLexicalClass: Classifies tokens
according to class: part of speech for words, type of
punctuation or whitespace, etc.

• NSLinguisticTagSchemeNameType: Classifies tokens as to
whether they are part of named entities of various types or
not.

• NSLinguisticTagSchemeNameTypeOrLexicalClass:
Follows NSLinguisticTagSchemeNameType for names, and
NSLinguisticTagSchemeLexicalClass for all other tokens.

Here's a list of the various token types associated with each
scheme:

NSLinguisticTagSchemeNameTypeOrLexicalClass, as the name
suggests, is the union between NSLinguisticTagSchemeNameType &
NSLinguisticTagSchemeLexicalClass 

 249

NSLinguisticTagSchemeTokenType

NSLinguisticTagWord!
NSLinguisticTagPunctuation!
NSLinguisticTagWhitespace!
NSLinguisticTagOther

NSLinguisticTagSchemeLexicalClass

NSLinguisticTagNoun!
NSLinguisticTagVerb!
NSLinguisticTagAdjective!
NSLinguisticTagAdverb!
NSLinguisticTagPronoun!
NSLinguisticTagDeterminer!
NSLinguisticTagParticle!
NSLinguisticTagPreposition!
NSLinguisticTagNumber!
NSLinguisticTagConjunction!
NSLinguisticTagInterjection!
NSLinguisticTagClassifier!
NSLinguisticTagIdiom!
NSLinguisticTagOtherWord!
NSLinguisticTagSentenceTerminator!
NSLinguisticTagOpenQuote!
NSLinguisticTagCloseQuote!
NSLinguisticTagOpenParenthesis!
NSLinguisticTagCloseParenthesis!
NSLinguisticTagWordJoiner!
NSLinguisticTagDash!
NSLinguisticTagOtherPunctuation!
NSLinguisticTagParagraphBreak!
NSLinguisticTagOtherWhitespace

NSLinguisticTagSchemeNameType

NSLinguisticTagPersonalName!
NSLinguisticTagPlaceName!
NSLinguisticTagOrganizationName

 250

For basic tokenization, use
NSLinguisticTagSchemeTokenType, which will distinguishes
between words and whitespace or punctuation.

For information like part-of-speech, go with
NSLinguisticTagSchemeLexicalClass.

Continuing with the tagging schemes:

• NSLinguisticTagSchemeLemma: This tag scheme supplies
a stem forms of the words, if known.

• NSLinguisticTagSchemeLanguage: Tags tokens according
to their script. The tag values will be standard language
abbreviations such as "en", "fr", "de", etc., as used with the
NSOrthography class. Note that the tagger generally
attempts to determine the language of text at the level of an
entire sentence or paragraph, rather than word by word.

• NSLinguisticTagSchemeScript: Tags tokens according to
their script. The tag values will be standard script
abbreviations such as "Latn", "Cyrl", "Jpan", "Hans", "Hant",
etc.

As demonstrated in the example above, first initialize an
NSLinguisticTagger with an array of all of the different
schemes that you wish to use, specify the input string, and
enumerate each of the tags.  

 251

Tagging Options

In addition to the available tagging schemes, there are several
options that can be passed to NSLinguisticTagger (combined
with bitwise OR, |) to slightly change its behavior:

• NSLinguisticTaggerOmitWords

• NSLinguisticTaggerOmitPunctuation

• NSLinguisticTaggerOmitWhitespace

• NSLinguisticTaggerOmitOther

Each of these options omit the broad categories of tags
described. For example, NSLinguisticTagSchemeLexicalClass,
which would otherwise distinguish between different kinds of
punctuation, would have all of those ignored with
NSLinguisticTaggerOmitPunctuation. This is preferable to
manually filtering these tag types in enumeration blocks or
with predicates.

The last option is specific to
NSLinguisticTagSchemeNameType:

• NSLinguisticTaggerJoinNames

By default, each token in a name is treated separately. In many
circumstances, it makes sense to treat names like "San
Francisco" as a single token, rather than two. Passing this
option makes it so. 

 252

Natural language is under-utilized in user interface design—
especially on mobile devices. When implemented effectively, a
single utterance from the user can achieve the equivalent of a
handful of touch interactions, in a fraction of the time.

It's not easy, but if we spent a fraction of the time we use to
make our visual interfaces pixel-perfect, we could completely
re-imagine how users interact with apps and devices. And
with NSLinguisticTagger, it's never been easier to get started.  

 253

API Design 

 254

The Law of Demeter

Information is power. 
Power corrupts. 
Good fences make good neighbors.

Also known as the "principle of least knowledge", The Law of
Demeter is a design guideline that advocates for functionality
to be loosely coupled across a system. Essentially: objects are
best when they know least about one another.

Limiting the number of incoming & outgoing connections
between components in a system is the only viable strategy
for managing complexity as an application scales.

Everything should be ruthlessly modularized.

Central to this design philosophy is the practice of
"information hiding". By playing things close to the vest, a
developer affords themselves the flexibility to change
implementation details later.

 255

Languages in the C family are naturally aligned with this
philosophy, because of their explicit separation of interface (.h
files) from implementation (.c / .cpp / .m / .mm / .cs files).

Files #import the headers of other files they want to interact
with, but are limited to seeing only the methods, functions,
and constants exposed in those headers. Anything could be
going on behind the scenes... and that's sort of the point,
actually. Single-responsibility objects can't be bothered to
worry about how state is stored internally, or which sorting
strategy is being used—it's just not in the job description.

Objective-C has a handful of unique language features that
can be used to hide information. All professional developers
should know them well and use them often.

Class Continuations

Class continuations, or class extensions, are anonymous
categories that allow an implementation to privately re-
declare parts of the original interface.

For example, to add a private property to a Person class,
declare it in a class continuation before the @implementation:  

 256

!
Person.h

@interface Person

@property (nonatomic, strong) NSString *name;

@property (nonatomic, strong) NSDate *birthday;

@end

Person.m

@interface Person ()

@property (readwrite, nonatomic, strong) NSString

*gossip;

@end

Redeclaring readonly Properties

All properties should start out as publicly readonly, granting
readwrite access only after considering how and whether a
user should be able to mutate that particular aspect of state.

One common example is an object with an array-backed
collection. Rather than exposing a readwrite interface or its
mutable counterpart, the backing array is provided as
readonly, with a method for adding a new item.

 257

Although Objective-C lacks generics, this approach provides
a workable type-safe solution to managing collections. It also
provides a single code path for modifying the collection:

Order.h

@interface Order

@property (readonly, nonatomic, strong) NSArray *items; !
- (void)addItem:(Item *)item;

Order.m

@interface Order ()

@property (readwrite, nonatomic, strong) NSArray *items;

@end !
@implementation Order

- (void)addItem:(Item *)item {

 self.items = [self.items arrayByAddingObject:item];

}

@end

A variation of this approach has an NSMutableArray mutableItems
readwrite property in the implementation that is @synthesize'd in
place of the readonly items property.

!
 258

extern & static

Constant variables should not publicly expose their values.
This is for the safety of both API provider and consumer.

Revealing a magic constant can tempt users to pass the literal
value in place of the reference. Keeping the value secret allows
that value change in subsequent releases without breaking any
code that references the constant.

The same goes for functions, whose implementation details
would be out of place in the interface, though more for
reasons of clutter rather than security.

Only variables or functions make sense to be shared should
be declared extern in the interface. All internal or private
members should use the static storage type in the
implementation.

Post.h

extern NSString * const XXPublicationName; !
extern NSString * XXBylineForPerson(Person *person); 

 259

Post.m

NSString * const XXPublicationName =

 @"NSHipster Times-Picayune" !
static NSString * const XXPublicationBylineFormat =

 @"by %@"; !
NSString * XXBylineForPerson(Person *person) {

 return [NSString stringWithFormat:

 XXPublicationBylineFormat, person.name];

}

Delegates & Protocols

No part of an app should require special knowledge of any
other part of the app in order to make things work.

Consider a table view that displays a list of posts, with a +
button in the navigation bar, which presents a modal for
creating a new post. Once the form is submitted, the modal is
dismissed and the new post is added to the list.  

 260

Anti-Patterns

• On submit:, the form view controller creates a post and
adds the post to the collection, either through a reference
to the list view controller, or by introspecting its presenting
view controller. This strongly couples the form to the list,
when the form might be useful to other view controllers,
such as one for displaying a single post.

• A notification is posted when the form is submitted, which
is then listened for by the list view controller. When the
notification is received, its object is added to the data
source. This approach is not terrible, but notifications are
more appropriate when more than one component needs
to know about a particular event. A more centralized state
coordinator like Core Data would be appropriate to keep
track of insertions, updates, and deletes of domain objects
across an application.

• The list view controller keeps a reference to a form view
controller, and adds a condition to viewWillAppear: that
introspects the contents of the form, and adds a post from
the contents if present. This way leads to madness.

!

 261

Correct Approach

The delegate pattern allows for a loose coupling between
components through a protocol. In this particular case, it
makes sense for EditPostViewController to be responsible for
serializing fields into properties on a Post object itself.

Another thing to note is that PostsViewController conforms
to EditPostViewControllerDelegate in its class extension,
rather than its original @interface declaration. This helps to
cut down on the semantic clutter of the public interface.

CreatePostViewController.h

@protocol EditPostViewControllerDelegate

- (void)viewController:(EditPostViewController

*)viewController

 didCreatePost:(Post *)post;

@end !
@interface EditPostViewController : UIViewController

// ...

@end

PostsViewController.m

@interface PostsViewController () \

 <EditPostViewControllerDelegate>

@end !

 262

@implementation PostsViewController !
- (IBAction)create:(id)sender {

 EditPostViewController *viewController =

[[EditPostViewController alloc] init];

 viewController.delegate = self;

 UINavigationController *navigationController =

[[UINavigationController alloc]

initWithRootViewController:viewController]; !
 [self presentModalViewController:navigationController

animated:YES];

} !
#pragma mark - EditPostViewControllerDelegate !
- (void)viewController:(EditPostViewController

*)viewController

 didCreatePost:(Post *)post

{

 self.posts = [self.posts arrayByAddingObject:post];

 [self.tableView reloadData]; !
 [self dismissModalViewControllerAnimated:YES];

}

@end

The Law of Demeter teaches us that what you don't know
can't hurt you. Building your app around know-nothing
components is the only way to ensure that a codebase will be
able to grow and evolve over time.

 263

Approach API design from the perspective of the consumer,
and you'll find that you'll have a much better time as a
consumer yourself. 

 264

The Principle of  
Least Surprise

Unlike other disciplines, where a hard day's work is rewarded
with a physical manifestation of one's efforts, software is
invisible, intangible, and—in many ways—imaginary. Things
happen in a millionth of a second, on top of a dozen layers of
abstraction. By all accounts, modern software just shouldn't
be possible. The fact that any of this works is a miracle.

It's the least we can do to salvage any semblance of causality
we can muster in our own operational domain.

"The Principle of Least Surprise" describes a general approach
to software that celebrates sanity over cleverness: clear intent,
reasonable defaults, and providing a sense of control to the
developer.

Side Effects & Unintended Consequences

State is the enemy of logical consistency. To mix idiomatic
metaphors, it's the wrench in the machine that gums up the

 265

works. Anything a language or framework can do to reduce or
eliminate the occasions for state change, the more robust an
application built on it will be.

It is therefore useful to make a distinction between methods
that change state, "mutators", and those that don't, "accessors".
@synthesize generates an accessor / mutator pair for
@properties in the form of a getter and setter.

In most cases, accessors act as wrappers for direct ivar access.
Alternatively, accessors may memoize a computed result,
provide a lazily-initialized default value, or keep track of when
a value is accessed, but that's about as complicated as they
should get.

Mutators range in complexity from directly setting an ivar
value to performing a series of destructive actions across a
system. Methods that create large amounts of entropy should
be wielded with caution. Remember: predictable systems are
always preferable to clever ones.

For lack of language features to enforce this distinction,
Objective-C must rely on conventions to communicate the
difference: 

 266

• Accessors are named with a Noun Phrase (NP),  
(e.g., name, attributedString), with the exception of
methods with a BOOL return type, which can precede with
is (e.g. isDirectory)

• Mutators are named with a Verb Phrase (VP),  
(e.g. setName:, resetCache, performSelector:)

Too Clever By Half

The mark of an "expert beginner" programmer is the desire to
be clever, by invoking obscure design patterns, elaborate
meta-programming, or runtime manipulations that teeter on
the brink of calamity.

In reality, most programs just aren't that interesting. There's no
reason to get fancy.

...but of course, everyone would like to think that they are the
exception. The sooner you can start thinking of the project in
front of you in terms of engineering rather than performance
art, the better off you'll be as a professional.

Objective-C provides a number of avenues for creative
hackery, from method swizzling and associated objects, to
forward invocations and compiler directives.

 267

Powerful, though they are, these advanced tricks should be
seen as a last resort, reserved for cases when no reasonable
alternative exists.

What scares the hell out of veteran programmers is code that
messes with underlying system assumptions. Re-ordering
internal view hierarchies? Stomping on top of private
methods in subclass implementations? Swizzling a base
implementation on NSObject? This is the stuff of nightmares
and App Store rejections.

!
Good code is pretty boring on the atomic level. Don't make
things too complicated for yourself (or others).

Follow the example of a bistro restaurant: simple dishes with
good ingredients, well-executed. Good taste is rooted in
restraint. 

 268

Naming

There are only 2 hard things in programming:  
naming, cache invalidation, and off-by-one-errors.

wokka wokka wokka

Names bring ideas into focus. What a programmer calls a
variable, method, function, class, or even the project itself is
often one of the most important decisions they make.

Good names establishes intention, informing how something
should be used. They unite a codebase around a set of shared
concepts. Often, the best way to reduce or eliminate bugs is to
refactor how things are named (an exercise, which may reveal
some faulty assumptions along the way).

What makes a good name? Well, it must be descriptive, but
not overly so. It must avoid ambiguity among other similarly
named modules, while being both memorable and easy to
spell. A good name builds on an existing vocabulary, using
known words in a way most people agree upon within the
particular domain.

 269

Naming is a subjective exercise. Each community—and
indeed each project—has its own milieu of standards and
conventions. What follows are guidelines representative of
Objective-C code written today.

Leading By Example

Make no mistake: Objective-C is Apple's language. If you are
writing Objective-C, you are almost necessarily developing on
their platform. Whatever they say goes.

In practice, this has worked out pretty well for us as
developers. Apple's code is, more often than not, of
exceptional quality. System frameworks are remarkably well-
designed, reasonably documented, and relatively self-
consistent. That's not to say that Apple doesn't make mistakes,
or is immune from critique, but in all fairness, they really do a
great job with the technology we use everyday.

As a consequence of this opinionated, top-down leadership,
the rules for naming things in Objective-C is pretty simple:
follow Apple's example.

Apple summarizes their own API naming conventions as
follows:

• Clarity and brevity are both important, but clarity should
never be sacrificed for brevity.

 270

• Avoid names that are ambiguous.

• Use verbs in the names of methods or functions that
represent actions.

• Use prefixes for class names and for symbols associated
with the class, such as functions and data types.

When designing a new class, peruse the documentation for
related functionality, and take note of the patterns and
conventions used in the standard frameworks. Every iOS and
OS X developer is familiar with how Apple does things, so the
closer one can follow their example, the easier it will be for
others to get up to speed.

Design Patterns

What is perhaps most striking about Apple's naming
methodologies is their usage of design patterns: MVC,
delegates, target-action, observers, the responder chain,
facades (viz. class clusters), enumerators, decorators,
serializers... the Gang of Four is well represented in Cupertino.

It helps to call things what they are. And while Apple has
taken certain, how you say, liberties in denoting certain
design patterns, they've otherwise set an excellent example.

 271

By thinking about problems in terms of architecture, one can
arrive at a viable solution more quickly than if they were to
take a bottom-up approach. Design patterns provide a
common vocabulary for describing those decisions made in
the design process. When appropriate, design patterns offer
both clarity and brevity to names, so look for opportunities to
apply them in your own code.

!
Names are something to agonize over. However, the strong
examples found within Objective-C system frameworks
provide a solid semantic precedent that makes the job easier.

Programming is the craft of conveying structured meaning
through designed language, so take time to refine each word
to maximum efficacy.  

 272

Community

!

 273

Stewardship

Open Source communities function within what economists
describe as a Gift Economy. Rather than paying one another
for goods or services through barter or currency, everyone
shares freely with one another, and gains social currency
based on their generosity. It's similar to how friends tend to
take turns inviting one another over for dinner or a party.

With the negligible cost of distributing software over the
Internet, developers are able to participate with millions of
others around the world. And as a result, we have been able to
collaboratively build amazing software.

In terms of open source participation, releasing code is only
one aspect—and arguably not even the most important one.
Developing an open source project requires equal parts
engineering, product design, communication, and
community management. But the true deciding factor for
whether an open source project succeeds is stewardship.

!

 274

Stewardship is an old word. It evokes the ethic of public
service and duty. To be a steward is to embody the
responsibilities that come with ownership. It is an act that
justifies authority through continued accountability; both the
greatest challenge and reward of creating and maintaining a
project.

Creating

It's not enough to dump a pile of source code somewhere and
declare it "open source". To do so misses the point entirely. The
first step of stewardship is to clearly explain the goal and value
proposition of the project, and establish clear expectations
going forward.

README

A README is the most important part of any open source
project. It describes why someone would want to use the code,
and how they may start to do so.

All good READMEs have the following:

• A short, one or two sentence introduction that clearly
explains what the project is in simple, understandable
language.

 275

• A section describing the basic usage of the primary tasks of
the project. For example, a UI component would provide
sample code of how to create, configure, and add itself to a
view.

• A list of requirements and instructions on how to install
the code into one's own project.

• Links to documentation and resources for additional
information.

• Contact information for the author or current maintainer.

• A quick statement about the licensing terms of the project.

LICENSE

All open source code should be released under an appropriate
license. Unless you have a really good reason not to, choose
from any of the licenses approved by the Open Source
Initiative, like MIT, Apache 2.0, or GPL.

If you're unsure which license to choose, there are several
resources online that you can use to learn more. Most open
source Objective-C projects are released under an MIT
license, which is known to be compatible with the terms of
distribution for the App Store.

 276

Screenshot

For projects with any kind of user interface, such as a custom
control, view, or animation, posting a screenshot should be
considered a requirement.

Buying anything "sight unseen" is a bad idea, and the same
goes for consumers of open source. Although there are no
monetary costs involved, evaluating a project requires a
nontrivial investment in time and energy. A screenshot helps
potential consumers decide if your code is worth checking
out.

Demo

Actions speak louder than words. And no matter how
comprehensive a README file is, any open source project
can be improved with a working example.

There's just something about seeing the code in a real context
that allows developers to grok what's going on. It's also nice to
have a starting point for tinkering around.

At the very least, an example can be used to bootstrap the
process of fixing bugs or developing new features, both for
you and for anyone who wants to contribute. It's also a great
place to incorporate any testing infrastructure for the project.

 277

Distribution

One of the great developments in the Objective-C open
source community—and in many ways, what has allowed it to
flourish as it has recently—is CocoaPods.

CocoaPods is the de facto dependency manager for
integrating third party code in iOS and Mac OS X projects. At
this point, it's pretty much expected that any library worth
using salt is distributed with a .podspec:

NSHipsterKit.podspec

Pod::Spec.new do |s|

 s.name = 'NSHipsterKit'

 s.version = '1.0.0'

 s.license = 'MIT'

 s.summary = "A pretty obscure library.

 You've probably never heard of it."

 s.homepage = 'http://nshipster.com'

 s.authors = { 'Mattt Thompson' =>

 'mattt@nshipster.com' }

 s.source = { :git => 'https://github.com/nshipster/

NSHipsterKit.git', :tag => '1.0.0' }

 s.source_files = 'NSHipsterKit'

end

!

 278

Once the .podspec has been submitted to the CocoaPods
specs repository, a consumer would be able to add it to their
own project with a Podfile:

Podfile

platform :ios, '7.0'

pod 'NSHipsterKit', '~> 1.0'

Maintaining

Once the initial thrill of releasing a library has passed, the real
work begins. The thing to remember is that a flurry of stars,
watchers, and tweets may be exciting, but they don't amount
to anything of real importance. Only when users start to come
with their questions, issues, and pull requests does code
become software.

Versioning

Versioning is a contract that library authors make to
consumers in how software will be changed over time.

The prevailing convention is Semantic Versioning, in which a
release has a major, minor, and patch version, with each level
signifying particular usage implications.

 279

• A patch, or bugfix, release changes only implementation,
keeping the public API and thus all documented intact.
Consumers should be able to update between patch
versions without any change to their own code.

• A minor, or point, release changes the public API in non-
breaking ways, such as adding a new feature. Again,
developers should expect to have consumer code between
minor versions work pretty much as expected.

• A major release is anything that changes the public API in a
backwards-incompatible way. Updating between major
versions effectively means migrating consumer code to a
new library.

A comprehensive set of guidelines for semantic versioning can be
found at http://semver.org

By following a few basic rules for versioning, developers are
able to set clear expectations for how changes affect will affect
shipping code.

Deviating from these conventions as an author is
disrespectful to anyone using the software, so take this
responsibility seriously.

!

 280

Answering Questions

One of our greatest flaws as humans is our relative inability to
comprehend not knowing or understanding something that
we ourselves do. This makes is extremely difficult to diagnose
(and at times empathize with) misunderstandings that
someone else might be having.

There's also a slight sadistic tendency for developers to lord
knowledge over anyone who doesn't know as much as they
do. We had to figure it out for ourselves (uphill both ways, in
the snow) so why shouldn't they have to as well?

We must learn how to do better than this. RTFM is a lame
answer to any question. It's also a dead-end to a potential
learning experience for yourself.

Rather than disdaining questions, take them as an
opportunity to understand what you can do better. Each
question is a data point for what could be clarified or
improved within your own software and documentation. And
one thing to consider: for each person who asks a question,
there are dozens of others who don't and get frustrated and
give up. Answering one question on a mailing list or
developer forum helps many more people than just the asker.

!

 281

Transitioning

The fate of any successful enterprise is to outgrow its original
creators. While this may be a troubling or unwelcome notion,
it is nevertheless something that any responsible creator
should keep in mind.

If anything, the reminder that all of this is fleeting gives
reason to find enjoyment in even the minutia of a
preoccupation.

Recruiting & Delegating

As a project grows, natural leaders will emerge. If you see
someone consistently answering questions in issues or
sending pull requests with bug fixes, ask if they would like
some more responsibility.

Co-maintainers don't come pre-baked; individuals must grow
into that role. And that role is something that must be defined
over time by everyone involved. Avoid drama and hard
feelings by communicating honestly and often with
collaborators.

Sunsetting

All software has a lifecycle. At some point, all things must
come to an end. Libraries outgrow their usefulness, or

 282

supplanted by another piece of software, or simply fall out of
favor.

In any case, there will come a time when the lights need to be
turned off, and it is the responsibility of the maintainer to
wrap things up.

• Announce the ending of the project, offering suggestions
for how to migrate to another solution.

• Keep the project around, but make a commit that removes
source files from the master branch.  
(Git will keep everything safe in history)

• Thank everyone involved for their help and contributions.

The alternative is to become a liability, an attractive nuisance...
a mockery of what once was a respectable code base.

!
Creating is one of the most fulfilling experiences in life, and
it's something that's only improved by sharing with others. As
software developers, we have a unique opportunity to be
unbounded by physical limitations to help one another.

On the occasion that you do have the opportunity to
participate in the community, be sure to make the most of it—
you'll be happy you did. 

 283

Empathy

Great software is created to scratch one's own itch. Being close
to a problem provides not only insight for how to solve it, but
the motivation to actually follow through.

It's the better angels of our nature that compel us to share
these solutions with one other. And in the open source world,
we do so freely, with only a karmic expectation of paying the
favor forward.

We naturally want to help one another, to explain ideas, to be
generous and patient. However, on the Internet, human
nature seems to drop a few packets. Practicing empathy
online becomes a feat of moral athleticism. Lacking many of
the faculties to humanize and understand one another (facial
expressions, voice tonality, non-verbal cues) we can lose sight
of who we're talking to, and become less human ourselves.

!

 284

Before engaging with someone, take a moment to visualize
how that encounter would play out in real life. Would you be
proud of how you conducted yourself?

Rather than responding defensively to snark or aggression,
stop to consider what could have motivated that reaction. Is
there something you could be doing better as a programmer
or community member? Or are they just having a bad day?
(We've all had our bad days).

And let it never be that someone is marginalized for their
ability to communicate in English. Be patient and ask
questions. Respond simply and clearly.

!
Everything you need to succeed as a software developer
extends from a conscious practice of empathy. 

 285

!

About NSHipster

NSHipster is a journal of the overlooked bits in Objective-C
and Cocoa. Updated weekly.

Launched in the Summer of 2012, NSHipster has become an
essential resource for iOS and Mac developers around the
world.

Colophon

The text is set in Minion, by Robert Slimbach, with code
excerpts set in Menlo, by Jim Lyles.

The cover is set in Trajan by Carol Twombly, in an homage to
The C Programming Language by Brian Kernighan and
Dennis Ritchie. 

About the Author

Mattt Thompson is the creator &
maintainer of AFNetworking and other
popular open-source projects, including
Postgres.app, Induction, Helios, and
Nomad.

Previously, Mattt has worked as Mobile Lead at Heroku, an
iPhone & iPad Developer at Gowalla, and a Rails and Front-
End Engineer at Cerego.

His work has taken him across the United States and around
the world, to speak at conferences and meetups about topics
in Objective-C, Ruby, Javascript, web development, design,
linguistics, and philosophy.

Mattt holds a Bachelor's degree in Philosphy and Linguistics
from Carnegie Mellon University.

