
Swift with Hundreds
of Engineers
Tuomas Artman, Staff Engineer

May 13th, 2017

Motivation, Architecture, Learnings

Swift with Hundreds of Engineers

Uber’s mobile team 4 years ago

“Let’s just change everything”

Rider App Rewrite
Architectural goals

99.99% reliability of core flows
Enable global roll-back of core flows to a guaranteed 
working state

99.99% reliability of core flows

Enable global rollback of core flows to a guaranteed
working state

Support Uber’s growth for years to come

Narrow and decouple functionality as much as possible

Rider App Rewrite
Architectural goals

99.99% reliability of core flows

Enable global rollback of core flows to a guaranteed
working state

Support Uber’s growth for years to come

Narrow and decouple functionality as much as possible

Provide rails for both design and code

Guidelines for both architecture and design

Rider App Rewrite
Architectural goals

99.99% reliability of core flows

Enable global rollback of core flows to a guaranteed
working state

Support Uber’s growth for years to come

Narrow and decouple functionality as much as possible

Provide rails for both design and code

Guidelines for both architecture and design

Monitoring is a first-class citizen

Automatic analytics, logging, debugging, and tracing

Rider App Rewrite
Architectural goals

99.99% reliability of core flows

Enable global rollback of core flows to a guaranteed
working state

Support Uber’s growth for years to come

Narrow and decouple functionality as much as possible

Provide rails for both design and code

Guidelines for both architecture and design

Monitoring is a first-class citizen

Automatic analytics, logging, debugging, and tracing

De-risk experimentation

Application framework with plugin API

Rider App Rewrite
Architectural goals

99.99% reliability of core flows

Enable global rollback of core flows to a guaranteed
working state

Support Uber’s growth for years to come

Narrow and decouple functionality as much as possible

Provide rails for both design and code

Guidelines for both architecture and design

Monitoring is a first-class citizen

Automatic analytics, logging, debugging, and tracing

De-risk experimentation

Application framework with plugin API

Make magic

Performance second to none, graceful degradation on
low-end devices and networks

Rider App Rewrite
Architectural goals

Multiplatform Architecture
Double the effectiveness of your teams

Copyright Tsahi Levent-Levi

https://www.flickr.com/photos/86979666@N00/

“RIBs”

“RIBs”
Router Interaction Builder

June August November

Timeline

Core flow

Core architecture & framework

Everything else

February

Rider Application
A lot of files with a lot of lines of code

Over ten thousand Swift files

A million lines of Swift code

Subtitle

Lessons Learned

Swift — The good, the
bad, and the ugly

Readability

Swift - the good

Tuples
Functional programming

Type inference

Enumerations

It’s just a better

Less code

Default parameters

Protocol extensions

Explicit overrides

Explicit overrides

Guard
Defer

Optionals

Generics

Swift - the good
Reliability

Crash-free rate target:

99.99%

Swift - the good
Reliability

Swift beats Java by a factor of 3 in reliability*

99.97% 99.90%
Copyright Tsahi Levent-Levi

https://www.flickr.com/photos/86979666@N00/

Don’t unconditionally unwrap

Swift - the good
Reliability

Android engineers more welcome!

Swift - the good
Android™ engineers

The Android robot is reproduced or modified from work created and shared by Google and used according to terms described in the Creative Commons 3.0 Attribution License.

https://creativecommons.org/licenses/by/3.0/

The bad

Swift

Testing

Swift - the bad
Testing is hard

What can we do about it?

/// @CreateMock
public protocol Storing {
 /// Fetches the data associated with `key`.
 ///
 /// - parameter key: the key whose data should be fetched.
 /// - parameter nameSpace: the nameSpace to retrieve the data from
 /// - returns: the data associated with the key, or nil if no data could be found
 public func dataForKey(key: String, nameSpace: String) -> Data?
 /// Stores `data`, associating it with `key`.
 ///
 /// - parameter key: the key to associate with `data`
 /// - parameter nameSpace: the nameSpace in which the association between `key` and `data` should be made
 /// - parameter data: the data to store
 /// - returns: the result of the storage operation.
 public func storeDataForKey(key: String, nameSpace: String, data: Data) -> Storage.StorageResult
}

Testing is hard

What can we do about it?

artman@tuomas:~/Documents/ios$ script/generate-mocks

Mock generation:

/// @CreateMock
public protocol Storing {
 /// Fetches the data associated with `key`.
 ///
 /// - parameter key: the key whose data should be fetched.
 /// - parameter nameSpace: the nameSpace to retrieve the data from
 /// - returns: the data associated with the key, or nil if no data could be found
 public func dataForKey(key: String, nameSpace: String) -> Data?
 /// Stores `data`, associating it with `key`.
 ///
 /// - parameter key: the key to associate with `data`
 /// - parameter nameSpace: the nameSpace in which the association between `key` and `data` should be made
 /// - parameter data: the data to store
 /// - returns: the result of the storage operation.
 public func storeDataForKey(key: String, nameSpace: String, data: Data) -> Storage.StorageResult
}

Testing is hard

What can we do about it?

/// A StoringMock class used for testing.
class StoringMock: Storing {

 // Function Handlers
 var dataForKeyHandler: ((key: String, nameSpace: String) -> (Data?))?
 var dataForKeyCallCount: Int = 0
 var storeDataForKeyHandler: ((key: String, nameSpace: String, data: Data) -> (StorageResult))?
 var storeDataForKeyCallCount: Int = 0

 init() {
 }

 func dataForKey(key: String, nameSpace: String) -> Data? {
 dataForKeyCallCount += 1
 if let dataForKeyHandler = dataForKeyHandler {
 return dataForKeyHandler(key: key, nameSpace: nameSpace)
 }
 // Default return type
 return nil
 }

 func storeDataForKey(key: String, nameSpace: String, data: Data) -> StorageResult {
 storeDataForKeyCallCount += 1
 if let storeDataForKeyHandler = storeDataForKeyHandler {
 return storeDataForKeyHandler(key: key, nameSpace: nameSpace, data: data)
 }
 // Default return type
 return StorageResult.Success
 }
}

Testing is hard

Infinity indexing

Swift - the bad
Tooling issues

Swift - the bad
Tooling issues

What can we do about it?
Tooling issues

What can we do about it?

artman@tuomas:~/Documents/ios$ defaults write com.apple.dt.XCode IDEIndexDisable 1

Upgrade! Use alternatives More frameworks

Tooling issues

Any app’s budget

Swift - the bad

100MB

Binary size

Swift - the bad

100MB

Structs
Struct are allocated on the stack and can increase binary size

Optionals
Are implemented as enums and add code that you might be unaware of

Generic specialization
Generics are awesome, but speed comes at a cost

Swift runtime libraries
4.5 MB for three architectures

Binary size

Wait for Swift 4

Apple is working on decreasing binary size of value types

Play around with optimization settings

Sometimes whole module optimization will yield smaller binary sizes, often larger

Know where you are spending binary size

We use link-maps to map symbols back to files

Then we combine all of them and generate an interactive tool

What can we do about it?
Binary size

What can we do about it?
Binary size

Swift - the bad

 Post-mainPre-main

Startup speed

What can we do about it?

Pre-main

The number of dynamic libraries linearly affects pre-main startup speed
• Re-link all of the symbols in all of our dynamic libraries into the application binary

• But you can’t link in the Swift runtime libraries (that’s 250ms on an iPhone 6s)

Test all the time, although its hard
• The number of dev/enterprise provisioning profiles on your phone greatly affects startup speed

• Tooling is needed to graph pre-main times

Pre-main startup speed

What can we do about it?

Post-main

Reordering symbols in the app binary
• Use DTrace to probe which symbols are accessed in your startup sequence and in what order

• Re-link your application with that order

• 20% speedup on a 4s

Post-main startup speed

The Ugly

Swift

Swift - the ugly
Compile speeds

Image copyright (c) 2016 xkcd (CC BY-NC 2.5)

“Holistically considering all the positive and
negative experiences you've had with writing

code, which language do you think works
better for iOS development at Uber going

52%
48%

Swift Objective-C

June 2016

52%48%

Swift Objective-C

2% 10%

23%

48%

17%

Objective-C for life!
Swift with all its flaws
Swift, if it compiled faster
Swift, if it compiled & indexed faster
Swift, if it compiled faster & had better tooling

June 2016

What can we do about it?
Compile speeds

Contribute to Swift
• It’s open source

Add warnings on slow type inference
• Other Swift Flags: -warn-long-function-bodies=100 -solver-memory-threshold 300000

Combine files
• Merging 200 model files into 1 decreased compilation time from 1min 35sec to 17sec

What can we do about it?
Compile speeds

Buck

Superior dependency management

Reliable incremental builds

Remote build cache

https://buckbuild.com

https://buckbuild.com

Buck

Superior dependency management

Reliable incremental builds

Remote build cache

ObjC Android

Clean: 4x faster

Incremental: 20x faster

Clean: 6x faster

Incremental: 30x faster

Swift Support for Buck?

Swift support for Xcode project file generation
• Implemented (https://github.com/facebook/buck/tree/uber-pr)

Swift support for Buck builds
• Implemented (https://github.com/facebook/buck/tree/uber-pr)

Swift support for Buck builds in the Xcode IDE
• Work not yet started…

• Generate projects based on what targets you want to work on

• Local builds can use the remote build cache

It’s (almost) here

How did Swift help us?

Results

Rider app rewrite
Where does Swift help?

99.99% reliability of core flows

Enable global rollback of core flows to a guaranteed
working state

Support Uber’s growth for years to come

Narrow and decouple functionality as much as possible

Provide rails for both design and code

Guidelines for both architecture and design

Monitoring is a first-class citizen

Automatic analytics, logging, debugging, and tracing

De-risk experimentation

Application framework with plugin API

Make magic

Performance second to none, graceful degradation on
low-end devices and networks

“Holistically considering all the positive and
negative experiences you've had with writing

code, which language do you think works
better for iOS development at Uber going

22%

78%

Swift Objective-C

February 2017

Takeaways

• Keep an eye on compile times

• Monitor your binary sizes

• Figure out how to unit test

• Start using Buck

Takeaways
When growing your engineering team, make sure to:

• When you start running into problems, your team should already be big enough
to address these problems

uber.github.io

eng.uber.com
uber.github.io

Tuomas Artman

Mobile Platform, Uber
tuomas@uber.com

@artman

uber.github.io
eng.uber.com

Thank you!

mailto:tuomas@uber.com?subject=
http://uber.github.io
http://eng.uber.com

