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Abstract—While the move to smaller transistors has been a
boon for performance it has dramatically increased the cost to
fabricate chips using those smaller transistors. This forces the
vast majority of chip design companies to trust a third party—
often overseas—to fabricate their design. To guard against ship-
ping chips with errors (intentional or otherwise) chip design
companies rely on post-fabrication testing. Unfortunately, this
type of testing leaves the door open to malicious modifications
since attackers can craft attack triggers requiring a sequence
of unlikely events, which will never be encountered by even
the most diligent tester.

In this paper, we show how a fabrication-time attacker can
leverage analog circuits to create a hardware attack that is
small (i.e., requires as little as one gate) and stealthy (i.e.,
requires an unlikely trigger sequence before effecting a chip’s
functionality). In the open spaces of an already placed and
routed design, we construct a circuit that uses capacitors to
siphon charge from nearby wires as they transition between
digital values. When the capacitors fully charge, they deploy
an attack that forces a victim flip-flop to a desired value. We
weaponize this attack into a remotely-controllable privilege
escalation by attaching the capacitor to a wire controllable
and by selecting a victim flip-flop that holds the privilege bit
for our processor. We implement this attack in an OR1200
processor and fabricate a chip. Experimental results show that
our attacks work, show that our attacks elude activation by a
diverse set of benchmarks, and suggest that our attacks evade
known defenses.

Keywords-analog; attack; hardware; malicious; security;
Trojan;

I. INTRODUCTION

Hardware is the base of a system. All software executes

on top of a processor. That software must trust that the

hardware faithfully implements the specification. For many

types of hardware flaws, software has no way to check if

something went wrong [1], [2]. Even worse, if there is an

attack in hardware, it can contaminate all layers of a system

that depend on that hardware—violating high-level security

policies correctly implemented by software.

The trend of smaller transistors while beneficial for in-

creased performance and lower power, has made fabricating

a chip expensive. With every generation of transistor comes

the cost of retooling for that smaller transistor. For example,

it costs 15% more to setup the fabrication line for each

successive process node and by 2020 it is expected that

setting-up a fabrication line for the smallest transistor size

will require a $20,000,000,000 upfront investment [3]. To

amortize the cost of the initial tooling required to support

a given transistor size, most hardware companies outsource

fabrication.

Outsourcing of chip fabrication opens-up hardware to

attack. The most pernicious fabrication-time attack is the

dopant-level Trojan [4], [5]. Dopant-level Trojans convert

trusted circuitry into malicious circuitry by changing the

dopant ratio on the input pins to victim transistors. This

effectively ties the input of the victim transistors to a

logic level 0 or 1—a short circuit. Converting existing

circuits makes dopant-level Trojans very difficult to detect

since there are no added or removed gates or wires. In

fact, detecting dopant-level Trojans requires a complete

chip delayering and comprehensive imaging with a scan-

ning electron microscope [6]. Unfortunately, this elusiveness

comes at the cost of expressiveness. Dopant-level Trojans are

limited by existing circuits, making it difficult to implement

sophisticated attack triggers [5]. The lack of a sophisticated

trigger means that dopant-level Trojans are more detectable

by post-fabrication functional testing. Thus, dopant-level

Trojans represent an extreme on a tradeoff space between

detectability during physical inspection and detectability

during testing.

To defend against malicious hardware inserted during

fabrication, researchers have proposed two fundamental de-

fenses: 1) use side-channel information (e.g., power and

temperature) to characterize acceptable behavior in an effort

to detect anomalous (i.e., malicious) behavior [7]–[10] and

2) add sensors to the chip that measure and characterize fea-

tures of the chip’s behavior (e.g., signal propagation delay)

in order to identify dramatic changes in those features (pre-

sumably caused by activation of a malicious circuit) [11]–

[13]. Using side channels as a defense works well against

large Trojans added to purely combinational circuits where it

is possible to test all inputs and there exists a reference chip

to compare against. While this accurately describes most

existing fabrication-time attacks, we show that it is possible

to implement a stealthy and powerful processor attack using

only a single added gate. Adding sensors to the design would

seem to adapt the side-channel approach to more complex,

combinational circuits, but we design an attack that operates

in the analog domain until it directly modifies processor
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state, without affecting features measured by existing on-

chip sensors.
We create a novel fabrication-time attack that is con-

trollable, stealthy, and small. To make our attack control-

lable and stealthy we borrow the idea of counter-based

triggers commonly used to hide design-time malicious hard-

ware [14], [15] and adapt it to fabrication-time. To make

our attack small, we replace the hundreds of gates required

by conventional counter-based triggers implemented using

digital logic with analog components—a capacitor and a

few transistors wrapped-up in a single gate. Our attack

works by siphoning charge from a target wire every time

it toggles and storing that charge in a capacitor. If the wire

toggles infrequently, the capacitor voltage stays near zero

volts due to natural charge leakage. When the wire toggles

frequently, charge accumulates on the capacitor—faster than

it leaks away, eventually fully charging the capacitor. When

the voltage on the capacitor rises above a threshold, it

deploys the payload—whose output is attached to a flip-flop

changing that victim flip-flop to any desired value.
To demonstrate that our attack works for real chips, we

implement a privilege escalation attack in the OR1200 [16]

open source processor. We attach our capacitor to a signal

that infrequently toggles with normal software, but toggles

at a high rate with specially-crafted, usermode trigger pro-

grams. For our victim flip-flop, we select the privilege bit

(i.e., user or supervisor mode). Because the attack taps into

both the digital layer and the analog layer, it is unable to

be simulated completely using existing tools that operate

at only a single layer. As such, we fabricate our malicious

processor to verify its end-to-end operation. Experiments

with our fabricated malicious processor show that it is trivial

for a knowing attacker to activate the attack and escalate the

privilege of their unprivileged process—all from usermode

code, without operating system intervention. Experiments

with an array of embedded systems benchmarks [17] show

that it is unlikely that arbitrary software will trigger our

attack.
This paper presents three contributions:

1) We design and implement the first fabrication-time

processor attack that mimics the triggered attacks often

added during design time. As a part of our imple-

mentation, we are the first to show how a fabrication-

time attacker can leverage the empty space common to

Application-Specific Integrated Circuit (ASIC) layouts

to implement malicious circuits.

2) We are the first to show how an analog attack can

be much smaller and more stealthy than its digital

counterpart. Our attack diverts charge from unlikely

signal transitions to implement its trigger, thus, it is

invisible to all known side-channel defenses. Addition-

ally, as an analog circuit, our attack is below the digital

layer and missed by functional verification performed

on the hardware description language. Moreover, our
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Figure 1: Typical IC design process with commonly-research

threat vectors highlighted in red. Thu blue text and brackets

highlights the party in control of the stage(s).

attack relies on a complex and unlikely analog trigger

sequence, thus, it is impractical to simulate at the

analog level—which motivated us to fabricate a chip

to verify that our attacks worked.

3) We fabricate the first openly malicious processor and

then evaluate the behavior of our fabricated attacks

across many chips and changes in environmental con-

ditions. We compare these results to SPICE simulation

models 1.

II. BACKGROUND

The focus of this paper is fabrication-time attacks that

leverage analog characteristics of integrated circuits as a

trigger. In this section, we start with an overview of the

integrated circuit (IC) design process and possible malicious

attacks at different phases. Then we discuss the threat model

of our proposed attack.

1We make both the software and hardware code pertaining to A2 publicly
available [18].

1919



A. Integrated Circuit Design Process

Figure 1 shows the typical design process of integrated

circuits [19]. This process often involves collaboration be-

tween different parties all over the world and each step is

likely done by different teams even if they are in same

company, which makes it vulnerable to malicious attacks

by rogue engineers involved in any of the above steps.

B. Threat Model

It is possible to implement our attack at either the back-

end phase or at the fabrication phase. Since it is strictly more

challenging to implement attacks at the fabrication phase

due to limited information and ability to modify the design

compared to the back-end phase, we focus on that threat

model.

The attacker starts with a Graphic Database System II

(GDSII) file that is a polygon representation of the com-

pletely laid-out and routed circuit. This is a very restrictive

threat model as it means that the attacker can only modify

existing circuits or—as we are the first to show in this

paper—add attack circuits to open spaces in the laid-out

design. The attacker can not increase the dimensions of the

chip or move existing components around. This restrictive

threat model also means that the attacker must perform

some reverse engineering to select viable victim flip-flops

and wires to tap. As detailed in Section VI-C, a public

specification of the chip to be fabricated makes this pro-

cess easier. After the untrusted fabrication house completes

fabrication, it sends the fabricated chips off to a trusted party

for post-fabrication testing. Our threat model assumes that

the attacker has no knowledge of the test cases used for post-

fabrication testing, which dictates the use of a sophisticated

trigger to hide the attack.

Leading up to the attacker getting a GDSII file, our threat

model assumes that a design house correctly implements

the specification for the chip’s behavior in some hardware

description language (HDL). Once the specification is im-

plemented in an HDL and that implementation has been

verified, the design is passed to a back-end house. Our

threat model assumes that the back-end house—who places

and routes the circuit—is also trusted. This means that the

delivered GDSII file represents a perfect implementation—at

the digital level of abstraction—of the chip’s specification.

The attacker is free to modify the design at both the digital

level by adding, removing, or altering circuits and at the

analog level (e.g., increasing electromagnetic coupling of

wires through layout or adding analog components).

Note that the chip vendor is free to run any additional tests

on the fabricated chip. We assume that the attacker has no

knowledge or control about post-fabrication testing. We only

assume that testing is bound by the limits of practicality.

III. ATTACK METHODS

A hardware attack is composed of a trigger and a payload.

The trigger monitors wires and state within the design and

activates the attack payload under very rare conditions such

that the attack stays hidden during normal operation and test-

ing. Previous research has identified that evading detection

is a a critical property for hardware Trojans designers [20].

Evading detection involves more than just avoiding attack

activation during normal operation and testing though, it

includes hiding from visual/side-channel inspection. There is

a tradeoff at play between the two in that the more complex

the trigger (i.e., the better that it hides at run time), the larger

the impact that trigger has on the surrounding circuit (i.e.,

the worse that it hides from visual/side-channel inspection).

We propose A2, a fabrication-time attack that is small,

stealthy, and controllable. To achieve these outcomes, we

develop trigger circuits that operate in the analog domain;

circuits based on charge accumulating on a capacitor from

infrequent events inside the processor. If the charge-coupled

infrequent events occur frequently enough, the capacitor will

fully charge and the payload is activated, which deploys

a privilege escalation attack. We target the privilege bit

in a processor, as privilege escalation constitutes a simple

payload with maximum capability provided to the attacker.

Our analog trigger similar to the counter-based triggers often

used in digital triggers, except using the capacitor has the

advantage of a natural reset condition due to leakage.

We create the trigger using a custom analog circuit that

a fabrication-time attacker inserts after the entire design has

been placed and routed. Compared to traditional digitally

described hardware Trojans, our analog trigger maintains a

high level of stealth and controllability, while dramatically

reducing the impact on area, power, and timing due to

the attack. An added benefit of a fabrication-time attack

compared to a design time attack (when digital-only triggers

tend to get added) is that the fabrication-time attack has to

pass through few verification stages.

To highlight the design space of our analog trigger

technique, we show how an attacker can connect several

simple trigger circuits to create arbitrary trigger patterns

to improve secrecy and/or controllability. In addition to the

number of stages, we show how an attacker can tune several

design parameters to achieve trade-offs between the ease

of triggering the payload and its stealthiness, even to the

point of creating triggers that can only be expressed under

certain process variation and/or environmental conditions.

This trade-off space is only possible through the use of an

analog-based trigger.

In the following sections, we describe the design and

working principles of our analog trigger. We present the

designs of both a base single-stage trigger and a more

complex, but flexible, multi-stage trigger. We also describe

our privilege escalation attack which also has analog com-
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Figure 2: Behavior model of proposed analog trigger circuit.

ponents. We conclude with an analysis of how an attacker,

bounded by our threat model, would go about attacking a

processor.

A. Single Stage Trigger Circuit

Based on our threat model, the high-level design objec-

tives of our analog trigger circuit are as follows:

1) Functionality: The trigger circuit must be able to detect

toggling events of a target victim wire similar to a

digital counter and the trigger circuit should be able

to reset itself if the trigger sequence is not completed

in a timely manner.

2) Small area: The trigger circuit should be small enough

to be inserted into the empty space of an arbitrary

chip layout after placement and routing of the entire

design. Small area overhead also implies better chance

to escape detection.

3) Low power: The trigger circuit is always actively

monitoring its target signals, therefore power con-

sumption of the design must be minimized to hide it

within the normal fluctuations of entire chip’s power

consumption.

4) Negligible timing perturbation: The added trigger cir-

cuit must not affect the timing constraints for common

case operation and timing perturbations should not

be easily separable from the noise common to path

delays.

5) Standard cell compatibility: Since all digital designs

are based on standard cells with fixed cell height,

our analog trigger circuit should be able to fit into

the standard cell height. In addition, typical standard

cells use only metal layer 1 2 for routing while higher

2Several layers of metal wires are used in modern CMOS technologies
to connect cells together, lower level metal wires are closer to transistors at
bottom and have smaller dimensions for dense but short interconnections,
while higher metal layers are used for global routing. The lowest layer of
metal is usually assigned as metal layer 1 and higher metal layers have
correspondingly larger numbers.

metal layers are reserved for connections between

cells, therefore it is desirable for the trigger circuit

to use only metal layer 1 for easier insertion into final

layout and detection more difficult.

To achieve these design objectives, we propose an attack

based on charge accumulation inside capacitors. A capacitor

acts as a counter which performs analog integration of

charge from a victim wire while at the same time being

able to reset itself through natural leakage of charge. A

behavior model of charge accumulation based trigger circuits

comprises 2 parts.

1) Charge accumulation: Every time the victim wire

that feeds the trigger circuit’s capacitor toggles (i.e.,

changes value), the capacitor increases in voltage by

some ΔV . After a number of toggles, the capacitor’s

voltage exceeds a predefined threshold voltage and

enables the trigger’s output—deploying the attack pay-

load. The time it takes to activate fully the trigger is

defined as trigger time as shown in Figure 2. Trigger
time equals toggling frequency of input victim wire

multiplied by the number of consecutive toggles to

fill the capacitor.

2) Charge leakage: A leakage current exists over all

time that dumps charge from the trigger circuit’s

capacitor, reducing the capacitor’s voltage. The at-

tacker systematically designs the capacitor’s leakage

and accumulation such that leakage is weaker than

charge accumulation, but just enough to meet some

desired trigger time. When the trigger input is inactive,

leakage gradually reduces the capacitor’s voltage even

eventually disabling an already activated trigger. This

mechanism ensures that the attack is not expressed

when no intentional attack happens. The time it takes

to reset trigger output after trigger input stops toggling

is defined as retention time as shown in Figure 2.

Because of leakage, a minimum toggling frequency must

be reached to successfully trigger the attack. At minimum

toggling frequency, charge added in each cycle equals

charge leaked away. trigger time is dependent on toggling

frequency, lower toggling rate requires more cycles to

trigger because more charge is leaked away each cycle,

meaning less charge accumulated on the capacitor each

cycle. retention time is only dependent on the strength of

leakage current. Trigger time and retention time are the

two main design parameters in our proposed analog trigger

attack circuits that we can make use of to create flexible

trigger conditions and more complicated trigger pattern as

discussed in Section III-B. A stricter triggering condition

(i.e., faster toggling rate and more toggling cycles) reduces

the probability of a false trigger during normal operation

or post-fabrication testing, but non-idealities in circuits and

process, temperature and voltage variations (PVT variations)

can cause the attack to fail—impossible to trigger or trivial
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to accidentally trigger—for some chips. As a result, a

trade-off should be made here between a reliable attack

that can be expressed in every manufactured chip under

varying environmental conditions and a more stealthy attack

that can only be triggered for certain chips, under certain

environmental conditions, and/or very fast toggling rate of

trigger inputs generated by software.

To find a physical implementation of the function de-

scribed previously, we first try a charge pump widely used

in phase locked loop (PLL) designs as shown in Figure 3.

Clk in the figure represents some toggling wire that adds

charge to Cap capacitor during positive phase of Clk. The

voltage step added to Cap during one positive phase can be

calculated as,

ΔV =
Iref × Tpositive

Cap
(1)

This implies that the voltage on the cap can exceed a

threshold in Vthreshold/ΔV cycles. Due to our area and

power requirements, we need to minimize Iref and Cap size

while maintaining an acceptable number of cycles to trigger

the attack. There are 3 common methods to implement

capacitors in CMOS technology: transistor gate oxide cap

(MOS cap), metal-insulator-metal cap (MIM cap) and metal-

oxide-metal (MOM cap). The other 2 options require higher

metal layers and have less capacitance density, therefore we

select the MOS cap option. Given the area constraints, our

MOS cap can be at most tens of fF , which means the

current reference should be in nA range. Such a current

reference is nontrivial to design and varies greatly across

process, temperature, and voltage variations. Therefore, we

need a new circuit design to solve these problems for a more

reliable and stealthy attack. However, the circuit in Figure 3

is useful for attacks that wish to impact only a subset of

manufactured chips or for scenarios where the attacker can

cause the victim wire to toggle at a high rate for hundreds

of cycles.

A new charge pump circuit specifically designed for

the attack purpose is shown in Figure 4. Instead of using

VDD

Cunit Cmain

Clk Clk

Time

VDD

Clk

Cap 
Voltages

Cunit

Cmain

Figure 4: Design concepts of analog trigger circuit based on

capacitor charge sharing.

reference current and positive phase period of Clk to control

ΔV , the new scheme uses one additional small unit capacitor

Cunit to better control the amount of charge dumped on

main capacitor each time. During the negative phase of Clk,

Cunit is charged to V DD. Then during positive phase of

Clk, the two capacitors are shorted together, causing the

two capacitors to share charges. After charge sharing, final

voltage of the two capacitors is the same and ΔV on Cmain
is as,

ΔV =
Cunit× (V DD − V0))

Cunit+ Cmain
(2)

where V0 is initial voltage on Cmain before the transition

happens. As can be seen, ΔV is decreasing as the voltage

ramps up and the step size solely depends on the ratio of the

capacitance of the two capacitors. We can achieve different

trigger time values by sizing the two capacitors. Compared

to the design in Figure 3, the new scheme is edge triggered

rather than level triggered so that there is no requirement on

the duty cycle of trigger inputs, making it more universal.

The capacitor keeps leaking over time and finally ΔV equals

the voltage drop due to leakage, which sets the maximum

capacitor voltage.

A transistor level schematic of the proposed analog trigger

circuit is shown in Figure 5. Cunit and Cmain are imple-

mented with MOS caps. M0 and M1 are the 2 switches in

Figure 4. A detector is used to compare cap voltage with

a threshold voltage and can be implemented in two simple

ways as shown in Figure 6. One option is an inverter, which

has a switching voltage depending on sizing of the two

transistors and when the capacitor voltage is higher than

the switching voltage, the output is 0; otherwise, the output

is 1. The other option is a Schmitt trigger, which is a simple

comparator with hysteresis. It has a large threshold when

input goes from low to high and a small threshold when

input goes from high to low. The hysteresis is beneficial for

our attack, because it extends both trigger time and retention
time.

In practice, all transistors have leakage currents even in

their off state and our capacitors are very small, therefore

the cap voltage is affected by leakage currents as well.
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To balance the leakage current through M0 and M1, an

additional leakage path to ground (NMOS M2 in Figure 5)

is added to the design. An attacker must carefully calculate

all leakage paths flowing to and out of the capacitor node in

order to balance their effects to achieve the trigger time and

retention time targets. There are three major leakage paths

in our analog trigger design: sub-threshold leakage current

through switch M1, transistor M2, and gate tunneling leak-

age current (as shown in Figure 5). Because leakage currents

are sensitive to process, voltage and temperature variations,

balancing all the leakage paths is the most challenging part

in the implementation of a reliable trigger analog trigger.

For the trigger circuit to work, capacitor voltage without

any toggling on its input wire should be low enough to not,

in any manufacturing or environmental corner case, be self-

triggering. Also, the maximum voltage under the fastest rate

of toggling by the victim wire that the attacker can produce

must be enough to have a good margin for successful attack,

allowing a wider range of acceptable toggling rates that

will eventually trigger the attack. These conditions should

be met under all PVT variations for a reliable attack, or

under certain conditions if attacker only want the attack to

be successful under these conditions. No matter what the

design target is, minimum voltage should always be kept

lower than threshold voltage to avoid exposing the attack in

normal use.
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Figure 7: SPICE simulation waveform of analog trigger

circuit.

A SPICE simulation waveform is shown in Figure 7 to

illustrate the desired operation of our analog trigger circuit

after optimization. The operation is same as the behavioral

model that we proposed in Figure 2, indicating that we can

use the behavior model for system-level attack design.

B. Multi-stage Trigger Circuit

The one-stage trigger circuit described in the previous

section takes only one victim wire as an input. Using only

one trigger input limits the attacker in two ways:

1) False trigger activations: Because fast toggling of one

signal for tens of cycles triggers the single stage attack,

there is still a chance that normal operations or certain

benchmarks can expose the attack. We can imagine

cases where there is only a moderately controllable

wire available. A single-stage trigger might be prone

to false activations in such a scenario, but a multi-stage

trigger could use wires that normally have mutually-

exclusive toggle rates as inputs, making it stealthy and

controllable.

2) Software flexibility: Certain instructions are required

to cause fast toggling of the trigger input and there is

not much room for flexible and stealthy implementa-

tion of the attack program. For example, some types

of multi-stage triggers could support a wide range

of attack programs. This would allow the attacker to

repeatedly compromised a victim system.

To make the attack even more stealthy, we note that

an attacker can make a logical combination of two or

more single-stage trigger outputs to create a variety of

more flexible multi-stage analog trigger. Basic operations to

combine two triggers together are shown in Figure 8. When

analyzing the behavior of logic operations on single stage

trigger output, it should be noted that the single-stage trigger

outputs 0 when trigger condition is met. Thus, for AND
operation, the final trigger is activated when either A or B
triggers fire. For OR operation, the final trigger is activated

when both A and B triggers fire. It is possible for an attacker

to combine these simple AND and OR-connected single-

stages triggers into an arbitrarily complex multi-level multi-

stage trigger. Figure 8 show what such a trigger could look
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like, creating a two level multi-stage trigger with the logical

expression (OA&OB)|OC. This third trigger fires when

trigger C and one of triggers A or B fire. Lastly, it is

important to note that not only can the inputs A, B, and

C be different, but the internal circuit parameters for each

single-stage trigger can also be different (even though we

treat them as identical for simplicity).

Due to the analog characteristics of the trigger circuits,

timing constraints limit the construction of multi-stage trig-

gers, but also make accidental trigger probability vanishingly

rare. A single-stage trigger circuit has two timing parame-

ters, trigger time and retention time. For AND operation,

the timing constraint is same as for a single-stage trigger,

because only one of the triggers must activate. For OR
operation, there are two methods to trigger the attack: 1)

alternatively run the instructions to toggle victim wires A
and B or 2) run the instructions to toggle A first for enough

cycles to activate the trigger and then run the instructions

to trigger B. For the first method, the timing constraint

is minimum toggling frequency, because adding n stages

reduces the toggling frequency for each trigger circuit by n
times. For the second method, the timing constraint is that

retention time of the stage n should be larger than the total

trigger time of the following stages stages.

C. Triggering the Attack

Once the trigger circuit is activated, payload circuits

activate hidden state machines or overwrite digital values

directly to cause failure or assist system-level attacks. The

payload can also be extra delay or power consumption of

target wires to leak information or cause failure. For A2, the

payload design is independent of the trigger mechanism, so

our proposed analog trigger is suitable for various payload

designs to achieve different attacks. Since the goal of this

work is to achieve a Trojan that is nearly invisible while

providing a powerful foothold for a software-level attacker,

we couple our analog triggers to a privilege escalation

attack [21]. We propose a simple design to overwrite se-

curity critical registers directly as shown in Figure 9. In

any practical chip design, registers have asynchronous set

or/and reset pins for system reset. These reset signals are

D

CK
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RN

rst
trigger

D

CK
Q

S

rst
trigger

Figure 9: Design of payload to overwrite register value.

Gates in blue lines are inserted for attack.

asynchronous with no timing constraints so that adding one

gate into the reset signal of one register does not affect

functionality or timing constraints of the design. Since the

analog trigger circuit output is 0 when activated, we insert

an AND gate between the existing reset wire and our victim

flip-flop for active-low reset flops and we insert a NOR gate

for for active-high set flops. Moreover, because there are

no timing constraints on asynchronous inputs, the payload

circuit can be inserted manually after final placement and

routing together with the analog trigger circuits in a manner

consistent with our threat model.

D. Selecting Victims

It is important that the attacker validate their choice of

victim signal; this requires showing that the victim wire has

low baseline activity and its activity level is controllable

given the expected level of access of the attacker. To validate

that the victim wire used in A2 has a low background

activity, we use benchmarks from the MiBench embedded

systems benchmark suite. We select these benchmarks due

to their diverse set of workload characteristics and because

they run on our resource-limited implementation. We expect

that in a real-world attack scenario, the attacker will validate

using software and inputs that are representative of the

common case given the end use for the attacked processor.

For cases where the attacker does not have access to such

software or the attacked processor will see a wide range of

use, the attacker can follow A2’s example and use a multi-

stage trigger with wires that toggle in a mutually-exclusive
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Figure 10: Distribution of paths toggling rate when running

a benchmark program.

fashion and require inputs that are unlikely to be produced

using off-the-shelf tools (e.g., GCC).

Validating that the victim wire is controllable requires

that the attacker reason about their expected level of access

to the end user system for the attacked processor. In A2,

we assume that the attacker can load and execute any un-

privileged instruction. This allows us to create hand-crafted

assembly sequences that activate the attack—remember that

we selected victim wires that off-the-shelf tools will not

produce code significantly activates. While this model works

for attackers that have an account on the system, attackers in

a virtual machine, or even attackers that can convince users

to load code, we did not explore the challenges of less con-

trollable attack scenarios. Two examples are triggering the

attack from Javascript and triggering the attack situationally

(e.g., radar containing the attacked chip senses a certain type

of plane). We expect that our attack supports such triggering

scenarios as there is no fundamental difference from running

handcrafted unprivileged code: executable code contains a

multitude of different instructions and different instructions

activate different sets of wires in the processor. The dif-

ference is just an extra layer of abstraction. One challenge

that we anticipate is the extra layer of abstraction will likely

reduce the range of activity on potential victim wires. Our

experimental results show that the attacker can deal with

this by changing parameters of the analog trigger or even

through careful use of a multi-stage trigger.

IV. IMPLEMENTATION

To experimentally verify A2, we implement and fabricate

it inside an open source processor with the proposed analog

Trojans inserted in 65nm General Purpose (GP) CMOS

technology. Because of the time and monetary cost of

hardware fabrication, we include multiple attacks in each

chip. One set of attacks are Trojans aimed at exposing

A2’s end-to-end operation, while the other set of attacks

are implemented outside the processor, directly connected to

IO pins so that we can investigate trigger behavior directly.

In this section, we detail the selection of the trigger and

attack payload in an OR1200 processor, the activity trigger

insertion flow, and analog trigger testing structures.

A. Attacking a Real Processor

We implemented a complete open source OR1200 pro-

cessor [16] to verify our complete attack including software

triggers, analog triggers and payload. The OR1200 CPU

is an implementation of the 32-bit OR1K instruction set

with 5-stage pipeline. The implemented system in silicon

consists of OR1200 core with 128B instruction cache and an

embedded 128KB main program memory connected through

a Wishbone bus. Standard JTAG interface and custom scan

chain are implemented to load program, control and monitor

the processor.

The OR1K instruction set specifies the existence of a

privileged register called the Supervision Register (SR). The

SR contains bits that control how the processor operates

(e.g., MMUs and caches enabled) and flags (e.g., carry flag).

One particular bit is interesting for security purposes; SR[0]

controls the privilege mode of user, with 0 denoting user

mode and 1 denoting supervisor mode. By overwriting the

value of this register, an attacker can escalate a usermode

process to supervisor mode as a backdoor to deploy various

high-level attacks [20], [21]. Therefore, we make the payload

of our attack setting this bit in the SR to 1 to give a usermode

process full control over the processor. In order to evaluate

both the one-stage and two-stage triggers described earlier,

we have our two-stage triggered attack target SR[1]. Nor-

mally, this register bit controls whether timer-tick exceptions

are enabled, but since our system does not use the timer and

it SR[1] requires privileged software to change its value, it

is a simple way to know if our two-stage attack works.

Our analog trigger circuits require trigger inputs that

can have a high switching activity under certain (attacker)

programs, but are almost inactive during testing or common

case operation so that the Trojan is not exposed 3. To search

for suitable victim wires to serve as trigger inputs, we run

a series of programs on the target processor in a HDL

simulator, capturing the toggling rates of all wire. Figure 10

shows a histogram of wire toggling rates for the basicmath

benchmark from MiBench (see Section V). As the figure

shows, approximately 3% of total wires in the OR1200

have nearly zero activity rate, which provides a wide range

of options for an attacker. The target signals must also be

easy to control by attack programs. To find filter the low

activity wires for attacker controllability, we simulate our

3Exposing the attack during normal operation may be acceptable as non-
malicious software does not attempt to access privileged processor state.
Additionally, current operating systems blindly trust the processor, so they
are likely to miss sporadic privilege escalations.
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{r0 is a non-zero register but reads as zero in user mode}
Initialize SR[0]=0 {initialize to user mode}
while Attack Success==0 do
i← 0
while i < 500 do

z ← 1/0
i← i+ 1

end while
if read(special register r0) �= 0 then

Attack Success← 1
end if

end while

Figure 11: Program that activates the single-stage attack.

attack program in the same setup and identify the wires

whose toggle rates increased dramatically. In our attack,

we select divide by zero flag signal as the trigger for one-

stage attack, because it is unlikely for normal programs to

continuously perform division-by-zero while it is simple for

an attacker to deliberately perform such operations in a tight

loop. Fortunately, the OR1200 processor only sets a flag in

the SR when a division-by-zero occurs. For the two-stage

trigger, we select wires that report whether the division was

signed or unsigned as trigger inputs. The attack program

alternatively switches the two wires by performing signed,

then unsigned division, until both analog trigger circuits are

activated, deploying the attack payload. Pseudo codes for

both the one-stage and two-stage attack triggering software

sequences are shown in Figure 11 and Figure 12.

Triggering the attack in usermode-only code that does not

alert the operating system is only the first part of a successful

attack. For the second part, the attacker must be able to

verify that there triggering software worked—without risk of

alerting the operating system. To check whether the attack

is successful, we take advantage of a special feature of some

registers on the OR1200: some privileged registers are able

to be read by usermode code, but the value reported has

some bits redacted. We use this privilege-dependent read

behavior as a side-channel to let the attacker’s code know

whether it has privileged access to the processor or not.

B. Analog Activity Trigger

Here we cover the implementation details of our analog

triggers. To verify the first-order behavior of our analog

trigger circuits, we implement, optimize, and simulate them

using a SPICE simulator. Once we achieve the desired

trigger behavior in simulation, we implement both the one-

stage and two-stage trigger circuits in 65nm GP CMOS

technology. Both trigger circuits are inserted into the proces-

sor to demonstrate our proposed attack. To fully characterize

the performance of the trigger circuits, standalone testing

structures are added to the test chip.

{r0 is a non-zero register but reads as zero in user mode}
Initialize SR[0]=0 {initialize to user mode}
while Attack Success==0 do
i← 0
while i < 500 do

z ← a/b {signed division}
z ← c/d {unsigned division}
i← i+ 1

end while
if read(special register r0) �= 0 then

Attack Success← 1
end if

end while

Figure 12: Program that activates the two-stage attack.

1) Implementation in 65nm GP technology: For proto-

type purposes, we optimize the trigger circuit towards a

reliable version because we can only get a limited number of

chips for measurement with no control of process variation

and building a reliable circuit under process, temperature,

and voltage (PVT) variations is always more challenging

than only optimizing for a certain PVT range—i.e., we

construct our attacks so that they work in all fabricated

processors at all corner-case environments. For robustness,

the Schmitt trigger shown in Figure 6 is used as detector

circuit. Out of the three leakage paths shown in Figure 5,

gate leakage causes most trouble because it has an exponen-

tial dependence on gate voltage, making the leakage much

stronger when capacitor voltage ramps up. The gate leakage

also has exponential dependence on gate oxide thickness of

the fabrication technology, because gate leakage is physi-

cally quantum tunneling through gate oxide. Unfortunately,

65nm CMOS technology is not a favorable technology for

our attack, because the gate oxide is thinner than older

technologies due to dimension scaling and also thinner than

latest technologies because high-κ metal gate techniques

now being employed to reduce gate leakage (we use 65nm
due to its cost savings and it is still a popular process node).

Through careful sizing, it’s still possible to design a circuit

robust across PVT variations, but this requires trading-off

trigger time and retention time as shown in in the simulation

waveform of our analog activity trigger depicted in Figure 7.

To reduce gate leakage, another solution is to use thick

oxide transistors commonly used in IO cells as the MOS

cap for Cmain, which shows negligible gate leakage. This

option provides larger space for configuration of trigger time
and retention time, but requires larger area due to design

rules. SPICE simulation results of the trigger circuits are

shown in Figure 13. A zoomed waveform of the trigger

operation is shown in the upper waveform, while the entire

operation, including trigger and decay, is shown in the lower
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Figure 13: SPICE simulation waveform of analog trigger

circuit using IO devices in 65nm CMOS.

plot. A trigger time of 300ns and retention time of 25μs are

marked on the waveforms. Trigger circuit using IO device

is implemented for two-stage attack and the one without IO

device is used for one-stage attack in the system.

We also performed exploratory simulations of our trigger

circuits in 65nm Low Power technology, which has signif-

icantly less leakage current which is better suited for low

power applications. In Low Power technology, no IO device

is needed to achieve robust trigger circuits with large trigger
time and retention time. Thus, from an attackers perspective,

Low Power technology makes implementing A2 easier and,

as detailed in Section V-C, harder to detect.

2) Inserting A2 into existing chip layouts: Since A2’s

analog trigger circuit is designed to follow sizing and routing

constraints of standard cells and have occupy the area

comparable to a single standard cell, inserting the trigger

circuit to the layout at fabrication time is not complicated.

All digital designs nowadays are based on standard cells

and standard cells are placed in predefined rows. In typical

placement and routing cases, around 60% to 70% of total

area is used for standard cells, otherwise routing can not

complete due to routing congestion (our chip is more chal-

lenging to attack as it has 80% area utilization). Therefore,

in any layout of digital designs, empty space exists. This

empty space presents an opportunity for attackers as they

can occupy the free space with their own malicious circuit.

In our case, we requires as little space as one cell. There

are 4 steps to insert a trigger into layout of a design:

1) The first step is to locate the signals chosen as trigger

inputs and the target registers to attack. The insertion

of A2 attack can be done at both back-end placement

and routing stage and fabrication stage. Our attack

model focuses on the fabrication stage because it

is significantly more challenging and more stealthy

compared to attack at back-end stage. The back-end

stage attacker has access to the netlist of the design,

so locating the desired signal is trivial. But an attack

inserted at back-end stage can still be discovered

by SPICE simulation and layout checks, though the

chance is extremely low if no knowledge about the

attack exists and given the limits of current SPICE

simulators. In contrast, fabrication time attacks can

only be discovered by post-silicon testing, which is

believed to be very expensive and difficult to find small

Trojans. To insert an attack at during chip fabrication,

some insights about the design are needed, which can

be extracted from layout or from a co-conspirator

involved in design phase, even split manufacturing

technique may not prevent the attacker from finding

the target wires, as discussed in Section VI-C.

2) Once the attacker finds acceptable victim wires for

trigger inputs and attack payload target registers, the

next step is to find empty space around the victim

wire and insert the analog trigger circuit. Unused

space is usually automatically filled with filler cells

or capacitor cells by placement and routing tools.

Removing these cells will not affect the functionality

or timing, because they are inserted as the last step

after all connectivity and timing checks. Because the

layout of trigger circuit only uses metal 1, inserting it

to unused space will not block routed signals because

metal 1 is barely used for global routing.

3) To insert the attack payload circuit, the reset wire

needs to be cut as discussed in Section III-C. It has

been shown that timing of reset signal is flexible,

so the AND or OR gate only need to be placed

somewhere close to the reset signal. Because the added

gates can be a minimum strength cell, their area is

small and finding space for them is trivial.

4) The last step is to manually do the routing from trigger

input wires to analog trigger circuit and then to the

payload circuits. There is no timing requirement on

this path so that the routing can go around existing

wires at same metal layer (jogging) or jump over

existing wires by going to another metal layer (jump-

ing), in order to ensure connection without shorting

or design rule violation. If long and high metal wires

become a concern of the attacker due to potential

easier detection, repeaters (buffers) can be added to

break long wire into small sections. Adding repeaters

also reduces loading on the trigger input wire so that

impacts on timing of original design is minimized.

Furthermore, it is also possible that the attacker can

choose different trigger input wires and/or payload

according to the existing layout of the target design.
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Function Drive Strength Width† AC Power† Standby Power†
NAND2 X1 1 1 1

NAND2 X4 3 3.7 4.1

NAND2 X8 5.75 7.6 8.1

DFF with Async Set X1 6.25 12.7 2.9

DFF with Async Set X4 7.25 21.8 6.8

DFF with Async Reset X1 6 12.7 2.6

DFF with Async Reset X4 7.75 21.8 7.2

DFF with Async Set and Reset X1 7.5 14.5 3.3

DFF with Async Set and Reset X4 8.75 23.6 8.1

Trigger w/o IO device - 8 7.7 2.2
Trigger w/ IO device - 13.5 0.08 0.08
* DFF stands for D Flip Flop. † Normalized values

Table I: Comparison of area and power between our implemented analog trigger circuits and commercial standard cells in

65nm GP CMOS technology.

This is possible because the proposed attack can be

used to build variants of system level attacks.

In our OR1200 implementation, finding free space to

insert the charge pump is trivial, even with the design’s 80%

area utilization, because the charge pump is small and there

is no timing requirement on the attack circuits, affording

us the freedom to distribute our attack components over a

wide area of the chip. In our implementation, the distance

between trigger and victim flip-flop is in near the mean of

all interconnects. Connecting our attack components does

require some jogging and jumping for the connections, but

this is a common routing technique in commercial settings,

so the information leaked by such wires is limited.

In A2, we select the victim processor and we also synthe-

size the chip. This means that we can bridge the semantic

gap between names (and by extension functionality) at the

hardware description level and traces in the mask. This level

of information is representative of what back-end design

house attackers would have. We also expect that it is possible

for a foundry-level attacker to implement A2. This is more

difficulty because a foundry-level attacker only has access to

the chip layout. To accomplish the attack, the attacker must

be able to identify a victim wire and to identify the victim

flip-flop. Viable victim wires must have a low baseline rate

of activity (given the expected use of the processor) and be

controllable by the attacker to have a high enough activity

to fill the trigger’s capacitor. We observe that for processors,

the existence of such a wire is not an issue. For the attacker

to identify the wire, they must convert the chip layout

back in to a purely digital representation, i.e., the structural

netlist. Fortunately, this is an existing part of the back-end

house design process known as Physical Verification. Thus,

a foundry-level attacker can also use such a tool to obtain

a netlist of the chip suitable for digital simulation. Once an

attacker can simulate a chip, finding a suitable victim wire

is a matter of simulating the expected workload and possible

attack triggers; this is how we found viable victims for

A2. Identifying the desired victim flip-flop in the generated

netlist is challenging due to the lack of meaningful names.

For A2, we are able to identify the victim flip-flop in a netlist

with no meaningful names by writing test cases that expose

the flip-flop by making it change value at a series of specific

clock cycles.

3) Side-channel information: For the attack to be stealthy

and defeat existing protections, the area, power and timing

overhead of the analog trigger circuit should be minimized.

High accuracy SPICE simulation is used to characterize

power and timing overhead of implemented trigger cir-

cuits. Comparisons with several variants of NAND2 and

Dflip − flop standard cells from commercial libraries are

summarized in Table I. The area of the trigger circuit not

using IO device is similar to a X4 strength Dflip − flop.

Using an IO device increases trigger circuit size significantly,

but area is still similar to the area of 2 standard cells,

which ensures it can be inserted to empty space in final

design layout. AC power is the total energy consumed by

the circuits when input changes, the power numbers are

simulated by doing SPICE simulation on a netlist with

extracted parasitics from our chip layout. Standby power is

the power consumption of the circuits when inputs are static

and comes from leakage current of CMOS devices.

In A2, the analog trigger circuit is directly feeds off of the

victim wire, which is the only part in the attack that creates

a timing disturbance to the original design. Before and after

inserting the A2, we extract parasitics from the layouts to do

high accuracy simulation of the victim wire’s delay. Results

show that rising and falling delay before trigger insertion are

19.76ps and 17.18ps while those after trigger insertion are

20.66ps and 18.45ps. Extra delay is 1.2ps on average, which

is the timing overhead of the attack. 1.2ps is only 0.33%

of 4ns clock period and well below the process variation

and noise range. Besides, in practical measurement, 1.2ps
is nearly impossible to measure. unless high resolution time

to digital converter is included on chip, which is impractical
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Figure 14: Testing structure to characterize the trigger time
and retention time of implemented analog trigger circuits.

due to its large area and power overhead.

4) Comparison to digital-only attacks: If we look at a

previously proposed, digital only and smallest implemen-

tation of a privilege escalation attack [20], it requires 25

gates and 80μm2 while our analog attack requires as little

as one gate for the same effect. Our attack is also much

more stealthy as it requires dozens of consecutive rare

events, where the other attack only requires two. We also

implement a digital only, counter-based attack that aims to

mimic our A2. The digital version of A2 requires 91 cells

and 382μm2, almost two orders-of-magnitude more than the

analog counterpart. These results demonstrate how analog

attacks can provide attackers the same power, control, and

more stealthiness as existing digital attacks, but at a much

lower cost.

5) Trigger characterization: To fully characterize the fab-

ricated trigger circuit, a standalone testing structure as shown

in Figure 14 is included in the test chip. A digital clock

divider and duty cycle controller takes parameters from the

scan chain to generate a simulated victim wire for the trigger.

A feedback loop connected to an AND gate is used to

stop the trigger input when the trigger output is activated. A

counter counts the number of transitions of the trigger input.

It stops when the trigger output is activated. The counter

value is read out using the scan chain. Combining the count,

clock frequency and clock divider ratio (i.e., the toggle rate

of the victim wire), we can calculate the trigger time. After

the trigger activates and victim wire stops toggling due to

the AND gate, the capacitor voltage will slowly leak away

until the trigger is deactivated. Once it is deactivated, the

counter will restart. By taking readings fast, we can roughly

measure the time interval between counter stops and restarts,

which is the retention time of the trigger circuit.

V. EVALUATION

We perform all experiments with our fabricated malicious

OR1200 processor. We implement the processor using 65nm
CMOS technology in an area of 2.1mm2. Figure 15 shows

this processor, including where the different functional

blocks are located within the processor. Figure 15 also shows

where we add A2, with two levels of zoom to aide in

understanding the challenge of identifying A2 in a sea of

non-malicious logic. In fact, A2 occupies less than 0.08%

Main Memory
128KB SRAM

OR1200
Core I$ Testing 
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Scan 
chain

IO Drivers and Pads

CLK
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Figure 15: Die micrograph of analog malicious hardware

test chip with a zoom-in layout of inserted A2 trigger.
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Testing PCB
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Digital IO

Figure 16: Testing setup for test chip measurement.

of the chip’s area. Our fabricated chip actually contains two

sets of attacks: the first set of attacks are one and two-stage

triggers baked-in to the processor that we use to assess the

end-to-end impact of A2. The second set of attacks exist

outside of the processor and are used to fully characterize

A2’s operation.

We use the testing setup shown in Figure 16 to evaluate

our attacks’ response to changing environmental conditions

and a variety of software benchmarks. The chip is packaged

and mounted on a custom testing PCB to interface with

personal computer. We use the LabVIEW program to control

a digital interface card that reads and writes from the chip

through a custom scan chain interface. The scan chain

interface enables us to load programs to the processor’s

memory and also to check the values of the processor’s

registers. The testing board is kept in a temperature chamber

to evaluate our attacks under temperature variations. To

clock the processor, we use an on-chip clock generator that

generates a 240MHz clock at the nominal condition (1V
supply voltage and 25◦C). We use a programmable clock

divider to convert the 240MHz clock into the desired clock

frequency for a given experiment.
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(a) Distribution of analog trigger circuit using IO device

(b) Distribution of analog trigger circuit using only core device

Figure 17: Measured distribution of retention time and

trigger cycles under different trigger input divider ratios

across 10 chips at nominal 1V supply voltage and 25◦C.

A. Does the Attack Work?

To prove the effectiveness of A2, we evaluate it from

two perspectives. One is a system evaluation that explores

the end-to-end behavior of our attack by loading attack-

triggering programs on the processor, executing them in

usermode, and verifying that after executing the trigger

sequence, they have escalated privilege on the processor.

The other perspective seeks to explore the behavior of our

attacks by directly measuring the performance of the analog

trigger circuit, the most important component in our attack,

but also the most difficult aspect of our attack to verify using

simulation. To evaluate the former, we use the in-processor

attacks and for the later, we use the attacks implement

outside the processor with taps directly connected to IO pins.

1) System attack: Malicious programs described in Sec-

tion IV-A are loaded to the processor and then we check the

target register values. In the program, we initialize the target

registers SR[0] (the mode bit) to user mode (i.e., 0) and

SR[1] (a free register bit that we can use to test the two-stage

trigger) to 1. When the respective triggers deploys the attack,

the single-stage attack will cause SR[0] to suddenly have a

1 value, while the two-stage trigger will cause SR[1] to

have a 0 value—the opposite of their initial values. Because

our attack relies on analog circuits, environmental aspects

dictate the performance of our attack. Therefore, we test the

chip at 6 temperatures from −25◦C to 100◦C to evaluate

the robustness of our attack. Measurement results confirm

that both the one-stage and two-stage attacks in all 10

Trigger
Circuit

Toggle
Rate (MHz)

Measured
(10 chip avg)

Simulated
(Typical corner)

w/o IO device 120.00 7.4 7

w/o IO device 34.29 8.4 8

w/o IO device 10.91 11.6 10

w/ IO device 120.00 12.6 14

w/ IO device 9.23 11.6 13

w/ IO device 1.88 13.5 12

Table II: Comparison of how many cycles it takes to activate

fully the trigger for our fabricated chip (Measured) and for

HSPICE (Simulated) versions of our analog trigger circuit.

tested chips successfully overwrite the target registers at all

temperatures.
2) Analog trigger circuit measurement results: Using the

standalone testing structure shown in Figure 14, number of
cycles until trigger and retention time can be characterized.

We use the 240MHz on-chip clock to simulate the toggling

of a victim wire that feeds the trigger circuits under test. To

show how our attack triggers respond to a range of victim

activity levels, we systematically sweep clock division ratios

which simulates a similar range of victim wire activities.

Figure 17 shows the measured distribution of retention
time and trigger cycles at 3 different trigger toggle fre-

quencies across 10 chips. The results show that our trigger

circuits have a regular behavior in the presence of real-

world manufacturing variances, confirming SPICE simula-

tion results. retention time at the nominal condition (1V
supply voltage and 25◦C) is around 1μs for trigger with

only core devices and 5μs for attacks constructed using IO

devices. Compared to SPICE simulation results, in Figure 7

and Figure 13, trigger without IO devices has close results

while trigger with IO device shows 4 times smaller retention

time than simulations suggest. This is reasonable because

gate leakage of IO devices is negligible in almost any

designs and the SPICE model is a rough estimation. Table II

provides the number of cycles until triggering for both

trigger circuits (i.e., with and without IO devices) from

fabricated chip measurements and SPICE simulations to

validate the accuracy of simulation. An attacker wants the

simulator to be as accurate as possible as the cost and time

requirement of fabricating test chips make it impractical to

design analog attacks without a reliable simulator. Fortu-

nately, our results indicate that SPICE is capable at providing

results of sufficient accuracy for these unusual circuits based

on leakage currents.

To verify the implemented trigger circuits are robust

across voltage and temperature variations (as SPICE sim-

ulation suggests), we characterize each trigger circuit un-

der different supply voltage and temperature conditions.

Figure 18 and Figure 19 show how many cycles it takes

(on average) for each trigger circuit to activate fully when

the simulated victim wires toggles between .46MHZ and
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(a) Analog trigger circuit with IO device

(b) Analog trigger circuit with only core device

Figure 18: Measured trigger cycles under different input

frequency at different supply voltages.

120MHz, when the supply voltage varies between 0.8V
and 1.2V , and when the ambient temperature varies between

−25◦C and 100◦C.

As expected, different conditions yield different minimum

toggling rates to activate the trigger. It can be seen that tem-

perature has a stronger impact on our trigger circuit’s perfor-

mance because of leakage current’s exponential dependence

on temperature. At higher temperature, more cycles are

required to trigger and higher switching activity is required

because leakage from capacitor is larger. The exception to

this happens with the trigger constructed using IO devices,

at very low temperature. In this case, leakage currents are

so small that the change in trigger cycles comes mainly

from the setup time of Schmitt trigger, higher toggling inputs

spend more cycles during the setup time. SPICE simulation

predicts these results as well.

Lastly, once the trigger activates, it will only remain in

the activated state for so long, barring continued toggling

from the victim wire. The window of time that a trigger

(a) Analog trigger circuit with IO device

(b) Analog trigger circuit with only core device

Figure 19: Measured trigger cycles under different input

frequency at different ambient temperatures.

stays activated is critically important for series-connected

multi-stage trigger circuits. This window is also controlled

by manufacturing variances and environmental conditions.

Variation of retention time across −25◦C to 100◦C is

plotted in Figure 20, which shows that the retention time

of both trigger circuits is long enough to finish the attack

across wide temperature range. Trigger circuits constructed

with IO devices have a larger dependence on temperature

because of different temperature dependencies for different

types of devices. The variation of cycles until triggering and

retention time across PVT variations implies the possibility

that an attacker can include the environmental condition as

part of the trigger. For example, a low activity trigger input

can only trigger the attack at low temperatures according to

the measurement results; great news if you want your attack

to work in the North Pole, but not the tropics. Attackers can

also tune the circuits towards stricter requirement to trigger

so that the attack is never exposed at higher temperatures to

further avoid detections.
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Figure 20: Measured retention time of analog trigger circuits

across temperatures.

B. Is the Attack Triggered by Non-malicious Benchmarks?

Another important property for any hardware Trojan is

not exposing itself under normal operations. Because A2’s

trigger circuit is only connected to the trigger input signal,

digital simulation of the design is enough to acquire the

activity of the signals. However, since we make use of

analog characteristics to attack, analog effects should also

be considered as potential effects to accidentally trigger the

attack. Therefore, we ran 5 selected programs from the

MiBench embedded systems benchmark suite. We select

MiBench [17] because it targets the class of processor that

best fits the OR1200 and it consists of a set of well-

understood applications that are popular system performance

benchmarks in both academia and in industry. MiBench

consists of 31 applications, spread across 6 resource-usage-

based classes. To validate that A2’s trigger avoids spurious

activations from a wide variety of software, we select 5

benchmark applications from MiBench, each from a differ-

ent class. This ensures that we thoroughly test all subsystems

of the processor—exposing likely activity rates for the wires

in the processor. Again, in all programs, the victim registers

are initialized to opposite states that A2 puts them in when

its attack is deployed. The processor runs all 5 programs at 6

different temperatures from −25◦C to 100◦C. Results prove

that neither the one-stage nor the two-stage trigger circuit is

exposed when running these benchmarks across such wide

temperature range.

C. Existing Protections

Existing protections against fabrication-time attacks are

mostly based on side-channel information, e.g., power, tem-

perature, and delay. In A2, we only add one gate in the trig-

ger, thus minimizing power and temperature perturbations

caused by the attack.

Table III summarizes the total power consumption mea-

sured when the processor runs our five benchmark programs,

at the nominal condition (1V supply voltage and 25◦C). A

Keithley 2400 sourcemeter is used to measure the power

consumption of the processor, which can measure down to

1μA in our measurement range. All the values in Table III

are average values across the entire program execution. The

variation of power consumption in all cases are limited to

±3μW . Direct measurement of trigger circuit power is in-

feasible in our setup, so simulation is used as an estimation.

It was shown earlier that SPICE model matches measure-

ment results in terms of trigger performance. Simulated

trigger power consumption in Table I translates to 5.3nW
and 0.5μW for trigger circuits constructed with and without

IO devices. These numbers are based on the assumption that

trigger inputs keep toggling at 1/4 of the clock frequency of

240MHz, which is the maximum switching activity that our

attack program can achieve on the selected victim wire. In

the common case of non-attacking software, the switching

activity is much lower—approaching zero—and only lasts

a few cycles so that the extra power due to our trigger

circuit is even smaller. In our experiments, the power of

the attack circuit is orders-of-magnitude less than the normal

power fluctuations that occur in a processor while it executes

different instructions.

Besides side-channel information leaked by attack cir-

cuit itself, parasitic impacts of attack circuits on original

design should also be considered. Adding new transistors

around existing ones introduces negligible differences to the

existing devices, because manufacturing steps like doping,

lithography, and planarization are well controlled in mod-

ern CMOS IC manufacturing through the use of dummy

doping/poly/metal fill. This fill maintains a high density of

materials over large windows. The tiny inserted A2 trigger

will not significantly change the overall density in a window

and therefore does not cause systematic device variations.

Besides, isolation between transistors avoids their coupling.

Coupling between malicious and original wires may cause

cross-talk and more delay to the original wires. However, in

CMOS manufacturing, the metal fill step adds floating metal

pieces to empty spaces in the chip layout so that the unit

parasitic capacitance of all wires are similar. An attacker can

limit cross-talk effects through careful routing to avoid long

parallel wires.

VI. DISCUSSION

Now that we know A2 is an effective and stealthy

fabrication-time attack, we look forward to possible de-

fenses, including a discussion of the impact of split man-

ufacturing and 3D-IC on our attacks. Before delving into

defending against A2, we qualitatively address the challenge

of implementing an A2-like attack in x86 processors.

A. Extending A2 to x86

We implement A2 on the OR1200 processor because it is

open source. While the OR1200 processor is capable enough
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Program Power (mW)
Standby 6.210

Basic math 23.703

Dijkstra 16.550

FFT 18.120

SHA 18.032

Search 21.960

Single-stage Attack 19.505

Two-stage Attack 22.575

Unsigned Division 23.206

Table III: Power consumption of our test Chip running a

variety of benchmark programs.

to run Linux, its complexity is closer to a mid-range ARM

part, far below that of modern x86 processors from Intel and

AMD. A natural question is if our attack technique applies to

x86 processors and, if so, how does the attack’s complexity

scale with processor complexity.

We expect a A2-like attack in x86 processors to be much

harder to detect and easier to implement than its OR1200

counterpart. While there are more viable victim registers

in x86, A2 still only needs to target a single register to

be effective. Also, A2’s overhead comes primarily from its

trigger circuit, but the complexity of the trigger is much

more dependent on how “hidden” the attacker wants the

attack to be than on the complexity of the processor. In

fact, we expect that there are far more viable victim wires

(highly-variable and controllable activity) due to the internal

structure of complex, out-of-order processors like the x86.

The only aspect of scaling to an x86-class processor that

we anticipate as a challenge is maintaining controllability

as there are many redundant functional units inside an x86,

so a trigger would either need to tap equivalent wires in all

functional units or be open to some probabilistic effects.

B. Possible Defenses

There are a few properties that make our attacks hard

to detect: 1) we require adding as little as a single gate

2) our attack has a sophisticated trigger and 3) our trigger

works in the analog domain, gradually building charge until

it finally impacts the digital domain. Given these properties,

defenses that measure side-channel information (e.g., current

and temperature) have little hope of detecting the impact of

a single gate in a sea of 100,000 gates. The same holds true

for defenses that rely on visual inspection. Even if a defender

were to delayer a chip and image it with a scanning electron

microscope, our malicious gate is almost identical to all the

other gates in a design. One option might be to focus the

search on the area of the chip near security-critical state

holding flip-flops.

If it is impractical to expect defenders to visually identify

our attacks or to be able to detect them through measuring

current or temperature, what about testing? One of the

novel features of A2 is the trigger. In our implementation

(Section IV), we carefully design the trigger to make it

extremely unlikely for unknowing software—including vali-

dation tests—to trigger the attack. In fact, we built a trigger

so immune to unintended activations that we had to employ

sleds of inline assembly to get an activity ratio high enough

to trigger our attack. This indicates that anything short of

comprehensive testing is unlikely to expose the trigger 4.

Given that post-fabrication testing is unlikely to expose

our attack and our attack’s impact on known side-channels

is buried within the noise of a circuit, we believe that a new

type of defense is required: we believe that the best method

for detecting our attack is some form of runtime verification

that monitors a chip’s behavior in the digital domain.

C. Split Manufacturing

One promising future defense to malicious circuits in-

serted during fabrication is split manufacturing [22]–[25]

and 3D-IC [26]. The idea behind defenses incorporating split

manufacturing is to divide a chip into two parts, with one

part being fabricated by a cheap, but untrusted, fabrication

house, while the other part gets fabricated by an expensive,

but trusted, fabrication house (that is also responsible for

putting the two parts together in a single chip). The challenge

is determining how to divide the chip into two parts.

One common method is to divide the chip into gates and

wires [26]. The idea behind this strategy is that by only

moving a subset of wires to the trusted portion of the chip,

it will be cheaper to fabricate at the trusted fabrication

house, while serving to obfuscate the functionality from

the untrusted fabrication house. This obfuscation makes it

difficult for an attacker to determine which gates and wires

(of the ones they have access to) to corrupt.

From this description, it might seem as if current split

manufacturing-based defenses are a viable approach to stop-

ping A2. This is not the case as A2 changes the state in a

flip-flop, but only wires are sent to the trusted fabrication

house. Future split manufacturing approaches could move a

subset of flip-flops to the trusted part of the chip along with a

subset of wires, but that increases the cost of an already pro-

hibitively expensive defense. Additionally, recent research

shows that even when a subset of wires are missing, it is

possible to reverse engineer up to 96% of the missing wires

using knowledge of the algorithms used in floor-planning,

placement, and layout tools [22]. In fact, we already take

advantage of some of this information in identifying the

victim wire that drives our trigger circuit and in identifying

the victim flip-flop.

4Even if test cases somehow activated our attack, the onus is on the
testing routines to catch our malicious state change. Observe that most
non-malicious software runs the same regardless of privilege level.

3333



Previous works [23], [24] also proposed splitting man-

ufacturing at low-level metal layers, even down to lowest

metal layer. Splitting at metal 1 is a potentially effective

method to defend against A2 attack if carried out by

untrusted manufacturer. However, this approach introduces

an extremely challenging manufacturing problem due to the

small dimension of low-level metal layers and tremendous

amount of connections to make between two parts, not

to mention the expense to develop a trusted fabrication

house with such capabilities. There has been no fabricated

chips demonstrating that such a scheme works given the

constraints of existing manufacturers.

VII. RELATED WORK

A2 is a fabrication-time attack. There is almost 10 years

of previous work on fabrication-time attacks and defenses.

In this section, we document the progression of fabrication-

time attacks from 100-gate circuits targeted at single-

function cryptographic chips, aimed at leaking encryption

keys to attacks that work by corrupting existing gates aimed

at more general functionality. The historical progression

of fabrication-time attacks highlights the need for a small,

triggered, and general-purpose attack like A2.

Likewise, for fabrication-time defenses, we document the

progression of defenses from complete chip characterization

with a heavy reliance on a golden reference chip to defenses

that employ self-referencing techniques and advance signal

recovery (removing the requirement of a golden chip). We

conclude with defenses that move beyond side-channels, into

the real of on-chip sensors aimed at detecting anomalous

perturbations in circuit performance presumably due to

malicious circuits. The historical progression of fabrication-

time attack defenses shows that while they may be effective

against some known attacks, there is a need for a new type

of defense that operates with more semantic information.

A. Fabrication-time Attacks

The first fabrication-time hardware attack was the addition

of 100 gates to an AES cryptographic circuit aimed at

creating a side-channel that slowly leaks the private key [27].

The attack circuit works by modulating its switching activity

(i.e., increasing or decreasing the attack’s current consump-

tion) in a way that encodes the secret key on the current

consumed by the chip as a whole. This method of attack

has four disadvantages: 1) the attack has limited scope 2)

the attacker must have physical access to the victim device

and 3) the attack is always-on, making it more detectable and

uncontrollable. To mute their attack’s effect on the circuit,

the authors employ a spread-spectrum technique to encode

single bits of the key on many clock cycles worth of the

power trace of the device. This technique helps conceal

the attack from known, side-channel based, fabrication-time

defenses at the cost of increased key recovery time.

Another fabrication-time method for creating malicious

circuits is to modify the fabrication process so that natural

process variation is shifted outside the specified tolerances.

Process reliability Trojans [28] show how an attacker can

cause reductions in reliability by accelerating the wearing

out mechanisms for CMOS transistors, such as Negative

Bias Temperature Instability (NBTI) or Hot Carrier Injection

(HCI). Process reliability Trojans affect an entire chip and

affect some chips more than others (the effect is randomly

distributed the same way as process variation); the goal

is to cause the entire chip to fail early. While the paper

does not implement a process Trojan, the authors explore

the knobs available for implementing a process reliability

Trojan and discuss the theory behind them. The value of

this attack is that it is very difficult to detect as a defender

would have to destructively measure many chips to reverse-

engineer the fabrication parameters. A2 represents a different

design point: a targeted attack that is controllable by a

remote attacker.

A targeted version of a process reliability Trojan is the

dopant-level Trojan [4]. Instead of adding additional cir-

cuitry to the chip (e.g., the side-channel Trojan) or changing

the properties of the entire chip (e.g., the process reliability

Trojan), dopant-level Trojans change the behavior of existing

circuits by tying the inputs of logic gates to logic level

0 or logic level 1. By carefully selecting the logic value

and the gates attacked, it is possible to mutate arbitrary

circuits into a malicious circuit. This approach is incredibly

stealthy because there are no extra gates or wires, but comes

with limitations. First, while there are no extra gates or

wires added for the attack, more recent work shows that

removing additional layers (down to the contact layers) of

the chip reveals the added connections to logic 0 and logic

1 [6]. Note that removing these extra layers and imaging the

lower layers is estimated to be 16-times more expensive that

stopping at the metal layers. A second limitation is that the

attacker can only modify existing circuits to implement their

attack. This makes it difficult to construct attack triggers

resulting in an exposed attack payload—making detection

more likely. Recent defenses seek to prevent dopant-level

attacks by obfuscating the circuit and using split manufactur-

ing [26]. A2 trades-off some detectability in the metal layers

of the chip for less detectability by testing. The observation

driving this is that every chip has its functionality tested after

fabrication, but it is prohibitively expensive to delayer a chip

and image it with a scanning electron microscope. By using

analog circuits, A2 makes it possible to implement complex

attack triggers with minimal perturbations to the original

circuit.

The most recent fabrication-time attack is the parametric

Trojans for fault injection [5]. Parametric Trojans build on

dopant-level Trojan by adding some amount of controllabil-

ity to the attack. Parametric Trojans rely on power supply

voltage fluctuations as a trigger. For example, imagine a
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dopant-level attack that only drives the input of a logic

gate to 1 or 0 when there is a dip in the supply voltage.

Because this requires that the attacker has access to the

power supply of a device, the goal is to facilitate fault-

injection attacks (e.g., erroneous result leaks part of the key

as in RSA attacks [29]).

B. Fabrication-time Defenses

There are three fundamental approaches to defend against

fabrication-time malicious circuits: 1) side-channel-based

characterization 2) adding on-chip sensors and 3) architec-

tural defenses. This section covers example defenses that

use each approach and qualitatively analyze how A2 fares

against them.

1) Side-channels and chip characterization: IC finger-

printing [7] is the first attempt to detect malicious circuits

added during chip fabrication. IC fingerprinting uses side-

channel information such as power, temperature, and elec-

tromagnetic measurements to model the run time behavior

of a golden (i.e., trusted) chip. To clear untrusted chips of

possible malice, the same inputs are run on the suspect

chip and the same side-channel measurements collected.

The two sets of measurements are then compared, with a

difference above a noise threshold causing the chip to be

labeled as malicious. The more golden chips available, the

better the noise modeling. IC fingerprinting works well when

there are a set of trusted chips, the chip’s logic is purely

combinational, and it is possible to exercise the chip with

all possible inputs. The authors also point out that their

approach requires that Trojans be at least .01% of the circuit;

in A2 the Trojan is an order of magnitude smaller than that—

not to mention that we attack a processor.

Another side-channel-based approach is to create a path

delay fingerprint [8]. This is very similar to IC fingerprinting,

except with a heavier reliance on the chip being purely

combinational. To create a path delay fingerprint, testers

exercise the chip with all possible test cases, recording the

input-to-output time. The observation is that only malicious

chips will have a path delay outside of some range (the

range depends on environmental and manufacturing vari-

ances). Even if it is possible to extend this approach to

sequential circuits and to meaningfully train the classifier

where comprehensive testing is impractical, A2 minimizes

the impacts on the delay of the surrounding circuit to hide

into environmental variation and noise (Section IV-B3) and

the attack modifies state directly.

Building from the previous two defenses is gate-level

characterization [9]. Gate-level characterization is a tech-

nique that aims to derive characteristics of the gates in

a chip in terms of current, switching activity, and delay.

Being a multi-dimensional problem, the authors utilize linear

programming to solve a system of equations created using

non-destructive measurements of several side-channels. A2

evades this defense because it operates in the analog domain.

Electromagnetic fingerprinting combined with statistical

analysis provides a easier approach to measure local side-

channel information from small parts of a chip and suppress

environmental impacts [30]. Because EM radiation from A2

only occurs when the attack is triggered, it evades defenses

that assume EM signals are different in attacked designs

even if the Trojan is dormant.

One major limitation of characterization-based defenses

is the reliance on a golden reference chip. TeSR [10] seeks

to replace a golden chip with self-referencing comparisons.

TeSR avoids the requirement of a golden chip by comparing

a chip’s transient current signature with itself, but across

different time windows. Besides eliminating the need for a

golden chip, TeSR also enables side-channel techniques to

apply to more complex, sequential circuits. Unfortunately,

TeSR requires finding test cases that activate the malicious

circuit to be able to detect it. While TeSR may work

well against dopant-level Trojans, we include a complex

trigger in A2 that avoids accidental activations. Additionally,

results in Section IV suggest that the assumption underlying

TeSR—that malicious and non-malicious side-channel mea-

surements are separable—is not true for A2-like attacks.

2) Adding on-chip sensors: As mentioned, using side-

channel information to characterize chip delay is limited

to combinational circuits. One defense suggests measuring

delay locally through the addition of on-chip sensors [11].

The proposed technique is able to measure precisely the

delay of a group of combinational paths—these paths could

be between registers in a sequential circuit. Much like in the

side-channel version, the sensors attempt to characterize the

delay of the monitored paths and detect delays outside an

acceptable range as potential malice. The increased accuracy

and control over the side-channel version comes at the

cost of added hardware: requires the addition of a shadow

register for every monitored combinational path in the chip

and a shadow clock that is a phase offset version of the

main clock. A comparator compares the main register and

the shadow register, with a difference indicating that the

combinational delay feeding the main register has violated

its setup requirement. This approach is similar to Razor [31],

but here the phase shift of the shadow clock is gradually

adjusted to expose changes in delay. A2 avoids this defense

because it modifies processor state directly, not affecting

combinational delays.

Adding to the list of tell tale features is Temperature

Tracking [12]. Temperature Tracking uses on-chip tempera-

ture sensors to look for temperature spikes. The intuition is

that when malicious hardware activates, it will do so with

an unusually high (and moderate duration) burst of activity.

The activity will increase current consumption, that then

produces temperature increases. Unfortunately, results from

Section V show that this intuition is invalid for our malicious

processor. A2 is a single gate in a sea of 100,000 gates, so its

current consumption is muted. Also, A2’s trigger gradually
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builds charge and the payload lasts for a very short duration

not able to be capture at the slow rate of thermal variation. In

general, it is possible for other attackers to hide their attacks

from this approach by placing their malicious circuits in an

active area of the chip, or by making their attack infrequently

active and active for short durations.

The most recent on-chip sensor proposal targeted at de-

tection malicious circuits added during fabrications hearkens

back to IC fingerprinting in that the goal is to monitor the

power rails of the chip [13]. The authors propose adding

power supply monitoring sensors that detect fluctuations

in a supply’s characteristic frequencies. As has been noted

with previous approaches, our results show that there are

cases where there is no difference in power supply activity

between the case where the malicious circuit is active versus

inactive.

A2 defeats defenses that rely on characterizing device

behavior through power, temperature, and delay measure-

ments by requiring as few as one additional gate and by

having a trigger that does not create or destroy charge,

but redirects small amounts of charge. In addition, A2’s

analog behavior means that cycle-to-cycle changes are small,
eventually accumulating to a meaningful digital change.

3) Eliminating unused space: BISA [32] is a promising

defense against fabrication-time attacks that seeks to prevent

attackers from adding components to a design by eliminating

all empty space that could be used to to insert attack logic.

A perfect deployment of BISA does indeed make imple-

menting A2 more challenging. Unfortunately, the small area

of A2 presents a challenging problem to any BISA imple-

mentation, because all empty space must be filled by BISA

cells with no redundant logic or buffers—as an attacker can

replace these with their attack circuit and the behavior of

the design remains. Also, a perfect BISA implementation

requires 100% test coverage—an impractical requirement,

otherwise an attacker can replace logic not covered in the

tests. In addition, implementing BISA significantly reduces

routing space of the original design and prevents designers

from doing iterative place and route. Limiting designers in

this way results in performance degradation and possibly an

unroutable design. All of these requirements dramatically

increase the cost of chip fabrication and time-to-market.

VIII. CONCLUSION

Experimental results with our fabricated malicious pro-

cessor show that a new style of fabrication-time attack is

possible; a fabrication-time attack that applies to a wide

range of hardware, spans the digital and analog domains,

and affords control to a remote attacker. Experimental results

also show that A2 is effective at reducing the security

of existing software, enabling unprivileged software full

control over the processor. Finally, the experimental results

demonstrate the elusive nature of A2: 1) A2 is as small as a

single gate—two orders of magnitude smaller than a digital-

only equivalent 2) attackers can add A2 to an existing circuit

layout without perturbing the rest of the circuit 3) a diverse

set of benchmarks fail to activate A2 and 4) A2 has little

impact on circuit power, frequency, or delay.

Our results expose two weaknesses in current malicious

hardware defenses. First, existing defenses analyze the dig-

ital behavior of a circuit using functional simulation or

the analog behavior of a circuit using circuit simulation.

Functional simulation is unable to capture the analog prop-

erties of an attack, while it is impractical to simulate an

entire processor for thousands of clock cycles in a circuit

simulator—this is why we had to fabricate A2 to verify

that it worked. Second, the minimal impact on the run-

time properties of a circuit (e.g., power, temperature, and

delay) due to A2 suggests that it is an extremely challenging

task for side-channel analysis techniques to detect this new

class of attacks. We believe that our results motivate a

different type of defense; a defense where trusted circuits

monitor the execution of untrusted circuits, looking for out-

of-specification behavior in the digital domain.
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