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ABSTRACT

Code diversification has been proposed as a technique to mitigate
code reuse attacks, which have recently become the predominant
way for attackers to exploit memory corruption vulnerabilities. As
code reuse attacks require detailed knowledge of where code is in
memory, diversification techniques attempt to mitigate these at-
tacks by randomizing what instructions are executed and where
code is located in memory. As an attacker cannot read the diversi-
fied code, it is assumed he cannot reliably exploit the code.

In this paper, we show that the fundamental assumption behind
code diversity can be broken, as executing the code reveals infor-
mation about the code. Thus, we can leak information without

needing to read the code. We demonstrate how an attacker can uti-
lize a memory corruption vulnerability to create side channels that
leak information in novel ways, removing the need for a memory
disclosure vulnerability. We introduce seven new classes of attacks
that involve fault analysis and timing side channels, where each
allows a remote attacker to learn how code has been diversified.

Categories and Subject Descriptors

[Security and Privacy]: Systems Security—Information Flow Con-

trol; [Security and Privacy]: Software and Application Security

Keywords

Information Leakage, Code Diversity, Memory Disclosure, Side-
Channel Attacks, Address Space Layout Randomization

1. INTRODUCTION
Decades of research have gone into solving the problem of mem-

ory corruption bugs [39]. These bugs are particularly notorious, as
they can often be exploited by a remote attacker to execute arbi-
trary code on the victim host, effectively compromising that ma-
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chine. Recently, defenses have progressed enough to prevent at-
tackers from being able to use such bugs to conduct code injection
attacks, where an attacker writes code into memory and then causes
it to be executed [39]. Attackers desiring to do malicious computa-
tions are instead forced to reuse code that already exists in the vul-
nerable binary [33]. Code reuse attacks have become a commonly
used technique for exploiting memory corruption bugs. However,
to conduct such attacks, detailed knowledge of the layout of code is
needed, including what code is in memory, and where is it located.

Code diversification techniques have then recently been proposed
as a way to defend against code reuse attacks [18, 23, 45]. These
techniques preserve the high level semantics of the code, while
changing the low level details of the code. Diversification tech-
niques include changing what specific machine-level instructions
are executed and changing where code is located in memory. These
techniques rely on the assumption that since the attacker cannot
read the code in memory, then he cannot know what code is there
nor where it is located, resulting in the attacker not being able to
reliably exploit the code.

Attackers have responded by utilizing entropy exhausting attacks
[34] and memory disclosure vulnerabilities [36, 38]. Entropy ex-
hausting attacks brute-force the memory space, leveraging the fact
that some diversification techniques do not introduce enough ran-
domness into the system and thus can be fairly predictable. This
allows an attacker to eventually guess how code has been diversi-
fied. However, as entropy is increased through more fine-grained
diversification, these attacks will be less effective.

Memory disclosure vulnerabilities leak information about the
code by allowing an attacker to directly read contents of memory
dynamically during runtime. This allows an attacker to know ex-
actly how code has been diversified without guessing. However,
these attacks often require finding two specialized vulnerabilities
in the same code. One vulnerability to read unintended memory,
facilitating memory disclosure, and another vulnerability to write
to unintended memory, facilitating the code reuse attack.

In this paper, we demonstrate that the fundamental assumption
underlying code diversity can be broken, allowing an attacker to
know how code has been diversified without having to read mem-
ory. We show how executing the code leaks information about the
code. Specifically, we illustrate and analyze how timing and fault
analysis side channels can be used to leak information about the
code. The attacks that we introduce expand the number of ways that
an attacker can exploit memory corruption bugs even if the code
has been diversified. These attacks also have significant advan-
tages over previously discovered attacks. First, they allow leaking
information about the code without needing an entropy exhausting,
brute-force attack. Second, they only require a single vulnerability
that allows an attacker to write to unintended memory, removing
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the requirement of a second vulnerability often needed for mem-
ory disclosures [36, 38]. As we will demonstrate, a single memory
corruption vulnerability can be all that is needed to both learn the
contents of memory and conduct a code reuse attack.

The attacks that we propose demonstrate that side channel at-
tacks can be used by a remote attacker on diversified code, allow-
ing information to be leaked about the code by both analyzing the
output of the execution and timing the execution. Side-channel at-
tacks have a long history of being used to leak secret information,
however, mostly in the context of learning secret data. Most promi-
nently, side channels have been used to subvert cryptographic ap-
plications that operate on some secret key [10, 28, 43]. Many types
of side channels have been found and shown to be effective in re-
covering secret keys. These side channels include timing of ex-
ecution [9, 10, 12, 27] and caches [2, 8, 41, 46], and analysis of
power [24, 28, 32], acoustics [17, 42] and faults [5, 14, 20, 43].

The same side channels that can be applied to computationally
secure cryptography can be applied to code diversification because
they both have a similar security model. Both code diversification
and computationally secure cryptography have been researched due
to provably secure techniques being too impractical to implement
and deploy. Instead, they fundamentally rely on randomization
schemes that require secrets to be kept. However, these secrets are
exposed when actual computation happens. The difference being
that with code diversification the secret is the code instead of data.

Our findings reveal that information leak vulnerabilities may be
even more plentiful and easier to find than what is commonly be-
lieved today [39]. Furthermore, code diversification only random-
izes the low level details of the code, but by necessity needs to
maintain the high level semantics of the code. We demonstrate that
an attacker can leverage his knowledge of high level semantics of
the code to learn how the low level details have been changed.

The contributions of this paper include:
• We introduce new classes of side channel attacks that result in in-
formation being leaked about diversified code. We show how lever-
aging memory corruption vulnerabilities through overwriting data
variables, data pointers, and code pointers can all reveal informa-
tion about the code through fault analysis and timing side channels.
We introduce three fault analysis attacks and four timing attacks.
For each attack, we describe its capabilities and limitations.
• We evaluate how effective different side channels are in determin-
ing how code has been diversified. As different vulnerabilities will
allow different information leaking capabilities, we conduct exper-
iments to determine how useful these capabilities are in identifying
real code. As libc is linked to nearly every program, we measure
aspects of it such as timing, return values, and instruction locations.
We find that knowing such information can often reveal how code
has been diversified, and depending on the information leak, can
allow the attacker to find up to 97% of gadgets contained in libc.
• We demonstrate a side channel attack on a vulnerable Apache
web server and show that with a single vulnerability that is a buffer
overwrite, we can leak enough information to execute practical,
malicious payloads. It is widely believed that to leak enough infor-
mation to defeat the ubiquitously deployed ASLR an extra memory
disclosure vulnerability is needed. However, we show how a mem-
ory corruption vulnerability can be used to gain the same informa-
tion and then be used to conduct a code reuse attack.

The rest of the paper is organized as follows. We discuss re-
lated work in §2. We introduce our side channel attacks in §3 and
demonstrate how effective different side channels are in §4. We
present a framework for incrementally leaking information using
side channels in §5 and demonstrate a practical side channel attack
in §6. We discuss potential defenses in §7 and conclude in §8.

2. RELATED WORK

2.1 Code Diversification
Leveraging diversity as a means of mitigating memory corrup-

tion bugs has been utilized for many years [15]. Recently though,
with the rising prevalence of code reuse attacks, many techniques
have been proposed to diversify code. Address Space Layout Ran-
domization (ASLR) [40] is deployed in most modern operating
systems today, where the base addresses of the stack, heap, and
libraries are randomized. However, most implementations do not
randomize the location of the executable [34]. Several techniques
have then been proposed to complement ASLR.

Some works have focused on diversifying binaries at the instruc-
tion level, where no source code or debugging information is avail-
able. Pappas et al. [31] find instructions in the code that can be
replaced by other, equivalent instructions. This modifies many use-
ful instruction sequences that an attacker might use to conduct his
attack, without increasing the size or significantly increasing ex-
ecution time of the binary. Hiser et al. [19] build a virtual ma-
chine that allows instruction level randomization, where each in-
struction can be placed randomly throughout memory. The virtual
machine keeps track of the order in which instructions should be
executed, and fetches and decodes them as they are needed. Home-
scu et al. [21] focus on designing a library that hooks into just-in-
time (JIT) compilers and randomizes their emitted code by insert-
ing NOP instructions randomly.

Other works have focused on the randomization of function or
basic block locations, which is also called fine-grained ASLR. Kil et

al. [26] propose to randomize the order of functions in the code and
find that it has very low performance overhead. Wartell et al. [45]
diversify at the basic block level, and instrument code to randomly
place basic blocks every time the code is executed.

Compiler based techniques have also been proposed for diversi-
fication of code. Onarlioglu et al. [29] propose an approach which
inserts NOP instructions in the code to correct the alignment and
prevent unaligned free-branch instructions used in code reuse at-
tacks. Franz et al. [16, 23] have built NOP insertion into LLVM,
where NOPs are randomly placed throughout the code. Guiffrida et

al. [18] also modify the LLVM compiler framework to cause func-
tions to be randomly permuted and a random amount of padding to
be inserted between functions.

2.2 Attacks on Diversified Code
Several attacks have also been proposed to thwart code diversi-

fication. Entropy exhausting attacks [34] have been shown to de-
feat ASLR when applications are restarted after crashing and the
amount of entropy in the system is small, as an attack can brute-
force the memory space. The BROP attack [6] demonstrates that
information gained from detecting if a process crashes or not can be
used to determine the locations of pop instructions and the location
of the send function. BROP allows an attacker to directly read
a closed source binary, as a copy of the in-memory binary is sent
to the attacker. Such attacks can typically only be conducted on
systems where repeated crashing goes undetected, the application
is restarted after crashing, and memory is not re-randomized after
restarting. We present and demonstrate several attacks that do not
require crashing the application, thus can bypass such mitigations.

Most often used in practice today are memory disclosure vul-
nerabilities [38], which allow an attacker to read unintended parts
of the code or pointers on the stack or heap. Such vulnerabilities
allow attackers to read memory locations dynamically at runtime,
thus learn exactly how code has been randomized. However, to
effectively use a memory disclosure vulnerability to conduct an ex-
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ploit, an attacker needs two vulnerabilities, one to read memory and
another to overwrite memory.

Snow et al. [36] show that a single memory disclosure vulner-
ability can be abused repeatedly to make fine-grained ASLR in-
effective. They designed and built a JIT compiler where a single
payload can be run within a victim’s web browser scripting envi-
ronment to JIT compile a code reuse exploit. We note that while
their JIT compiler framework currently abuses a memory disclo-
sure vulnerability repeatedly, it could also be modified to use the
information leak attacks that we present in this paper, removing the
need for a second vulnerability.

Hund et al. [22] demonstrate that a local attacker can defeat ker-
nel space ASLR by leveraging cache and TLB-based side chan-
nels. Their work focuses on leaking where kernel code is located in
memory through measuring the execution time of memory accesses
without crashing the kernel. Our work differs as we demonstrate re-
mote side channel attacks that are not cache-based. Furthermore,
we demonstrate how both where code is located and what code has
changed can be leaked through actively influencing the program’s
execution. Techniques such as cache interface randomization [44]
can be deployed to mitigate cache-based side channels.

Another address leakage attack without a memory disclosure
vulnerability is proposed by Blazakis [7] which uses garbage col-
lection to leak addresses. In this attack, a number of objects are cre-
ated on the heap, some address guesses are placed on the stack, then
all references to the objects are removed. If the objects are deleted
after garbage collection the guesses were wrong and the procedure
continues from the beginning, otherwise one of the guesses is cor-
rect. This attack only applies to garbage collected environments.

2.3 Side Channel Attacks on
Cryptography Implementations

We review several kinds of cryptographic side channels that are
applicable to code diversification, with an emphasis on the ones
that can be conducted by remote attackers.

Timing. Cryptography implementations are often optimized to
forgo certain operations when unnecessary, to reduce performance
costs. These optimizations are usually dependent on the secret key,
thus different execution paths will be taken for different keys. As
different keys will cause different execution times, an attacker can
time execution and use that information to infer the key. Many
works have shown that real implementations are susceptible to such
attacks and that they are not trivial to eliminate [9, 10, 12, 27].
Similarly, we will demonstrate how an attacker can use the time of
execution as a way to infer how code has been diversified.

Fault Analysis. Cryptographic systems have been analyzed un-
der the premise that an attacker that has physical access can control
the environment of the device. Specifically, by controlling aspects
such as temperature and power supply voltage an attacker can in-
duce a fault in the device [5, 14, 20, 43]. Typically, these attacks
can force bits to flip during the cryptographic computation process.
The output can then be analyzed, and from this information the
attacker can deduce the secret key. In this work, we take advan-
tage of the memory corruption bug to similarly force memory to
change. However, the major difference being that the attacker no
longer needs to have physical access to cause memory to change.

Caches. Cache hits and misses leak information about the data
and code recently accessed by a process. Since cache hits can
shorten execution time respectively, an attacker can measure exe-
cution time and infer something about the memory being accessed.
These capabilities have been shown to allow secret information
such as cryptographic keys to be discerned by a local attacker [2,
8, 41, 46]. As mentioned earlier, cache attacks have been shown to
allow a local attacker to defeat kernel space ASLR [22].

Physical Access. Numerous side channel attacks cannot be per-
formed remotely. This is due to the fact that they require measure-
ments that can only be done if the attacker has physical access to
the machine. These include power [24, 28, 32], electromagnetic
(EM) emanation [30], and acoustical [17, 42] analyses, where the
attacker needs to measure the power consumed, the EM field pro-
duced, or the sound produced by the device, respectively. In all
cases, the instructions executed often have a distinct power, EM,
or sound measurement. An attacker conducting cryptanalysis then
needs to infer what secret key caused that sequence of instructions
to execute. However, to discern how code was diversified simply
learning what instructions were executed could be sufficient.

3. SIDE CHANNEL ATTACKS ON

DIVERSIFIED CODE
Code reuse attacks leverage that there is a known mapping be-

tween memory locations and gadgets. Code diversification tech-
niques break this assumption by rearranging the mapping. Specif-
ically, these techniques can change where in memory the code re-
sides (e.g., ASLR [40], function reordering [18]) and they can change
what machine-level instruction a memory address contains (e.g,
NOP insertion [23], instruction substitution [31]). To rebuild the
mapping, the attacker then must either choose a memory address
and determine what gadget resides there, or choose a gadget and
determine where in memory it resides. Different side channel at-
tacks can accomplish these two tasks.

To conduct a side channel attack, an attacker needs to be able to
receive feedback from a victim. This requires that the remote at-
tacker be able to interact with the program through a networked or
scripting environment. In a networked environment, a remote at-
tacker will interact directly with the program and can receive some
information through the network. In a scripting environment, a re-
mote attacker can send a script which conducts side channel attacks
and possibly JIT compile an exploit [36] after discerning enough
information. These are similar requirements to previous entropy
exhausting and memory disclosure attacks.

The type of side channel attack that can be conducted will largely
depend on the vulnerability itself and the gadgets that are available
to an attacker. Some vulnerabilities will be better at leaking infor-
mation than others. This will often depend on what the high level
semantics of the code are, whether the vulnerability allows modi-
fying variables, data pointers or code pointers, and how an attacker
can repurpose the code to leak information about the code. Further-
more, if an attacker has access to particular gadgets, even a small
number of them, he can use them to build an information leak at-
tack. While the example code snippets we present later are in a nor-
mal control flow paradigm, they could also be created using return-
oriented programming (ROP) or other code reuse paradigms [11].

Utilizing a memory corruption vulnerability brings with it the
possibility of causing crashes. An attacker may or may not be able
to tolerate crashes. Some attacks can typically only be conducted
on code that tolerates crashes by restarting [34]. Other code, such
as the kernel, cannot tolerate crashes at all [22]. Different memory
corruption attacks have varying amounts of risk in causing crashes
due to invalid memory accesses. Simply modifying variables has
very little risk, to cause a crash the overwritten value would need
to be used as an index to a pointer and then cause the pointer to
point to an invalid page of memory. Similarly, if an attacker does
not know where valid memory pages are, then overwriting a data
pointer can cause crashes. However, if valid memory pages are
predictable, then overwriting a data pointer has no risk in causing
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crashes. Modifying code pointers has the highest risk of causing
crashes, since the pointer needs to not only point to valid pages,
but it also needs to point to a valid instruction sequence and those
instructions need to use the stack in a safe manner. Side channel
attacks that use these different vulnerabilities also carry with them
the same levels of risk.

In the rest of this section, we discuss fault analysis and timing
side channel attacks. For both types of side channel attacks, we
present multiple classes of attacks, that take advantage of memory
corruption bugs in different ways. For each attack, we give a high
level overview and a simple example of some vulnerable code that
could be exploited to conduct the attack. We then describe what
kind of information can be learned from the described attack and
the limitations of the attack.

3.1 Fault Analysis Attacks
To specifically conduct a fault analysis attack, the attacker needs

to be able to send some payload, receive the result of the execution,
and then interpret the result to learn what was executed.

Overwrite Data. An attacker can overwrite some data that is
used as an index to a data pointer, causing the pointer to go out-of-
bounds. This can cause some computation to be done on a location
of his choosing, rather than the intended data. If the data pointer
is then pointing to the stack and incorporates a return address, the
result of the computation could reveal where the code is located. If
the pointer points to the code, and that is computed on, the result
could reveal what changes have been made to the code.

1 recv(socket, buf, input);

2 if (ptr[index])

3 rv = SUCCESS;

4 else

5 rv = ERROR;

7 send(socket, &rv, length);

The exact computation that is being done on the data and what
can be learned from it will depend on the vulnerable piece of code.
The above example represents a simple piece of code that can be
abused to learn low level details of how code has been diversified.
In the example, the attacker can use a buffer overflow to overwrite
an index to a pointer, the dereferenced pointer’s value is checked
and if it is zero an error is sent, otherwise a value indicating suc-
cess is sent. The attacker can cause the data pointer to point back
to somewhere in the code segment, and then learn where the byte
0x00 is located. If the pattern of 0x00 located in the code is dis-
tinct, the attacker can learn how code has been diversified.

Limitations to this attack are largely dependent on how reversible
the computation being done is and thus how much does the output
reveal about the input. This attack is most effective when the com-
putation being done has a one-to-one mapping between input and
output. However, if the computation is reversible, then both where
code is located and what code is there can potentially be leaked.

Overwrite Data Pointer. An attacker could overwrite a data
pointer directly, which is similar to the previous attack, and can
cause some computation to be done on a location of his choosing,
rather than the intended data. However, unlike the previous attack,
an absolute location in memory is chosen, this will directly reveal
where code is and what changes have been made to the code.

1 recv(socket, buf, input);

2 sum = i = 0;

3 while (sum < 100)

4 sum += ptr[i++];

6 send(socket, &i, length);

In the above example, the attacker can overwrite a data pointer
that is used in determining how many values in an array are needed

to sum up to 100. This vulnerability could allow an attacker to over-
write the pointer to the code segment and learn information about
it. Thus if the result of this computation on some byte sequence or
pattern of byte sequences is distinct, then an attacker can determine
how code has been diversified.

Limitations are similar to Overwrite Data, concerning the re-
versibility of computation.

Overwrite Code Pointer. An attacker can overwrite a code pointer
to cause a computation of his choice to be done. If the result of that
computation is distinct to some piece of code and is sent back, the
attacker will learn where that code is located.

1 recv(socket, buf, input);

2 rv = (*funcptr)();

3 send(socket, &rv, length);

In the above example, the attacker can use a buffer overflow to
overwrite a function pointer. The attacker can then cause some
arbitrary piece of code to be executed. In this case, the attacker
can learn information in two ways. First, if the attacker gets no
result, this will most likely be due to the code crashing before it
was able to send the result. The attacker potentially learns then
that the address chosen was an invalid instruction or that the correct
return address was prematurely popped off the stack. Second, if the
attacker receives some value, then he can analyze the undiversified
code to learn what parts of it were capable of giving that value.

Limitations to this attack are dependent on how distinct is the
computation being done and if multiple pieces of code could com-
pute the same result. We will explore this in § 4.

3.2 Timing Attacks
To conduct a timing attack, an attacker needs to be able to start

a timer, send some payload to the victim to initiate and possibly
manipulate execution, and then finally receive some signal when
execution has finished, indicating that the timer can be stopped.
Timing can then reveal information about the code itself. We note
that an attacker could possibly conduct both a fault analysis and
timing attack with the same payload.

Crafted Input. This attack is the most similar to cryptographic
timing side channels, as the attacker does not exploit a memory
corruption vulnerability, but instead chooses well-crafted input to
exercise different paths in the diversified code.

If the instructions in the diversified code have then been mod-
ified, for example if NOPs have been inserted [16, 23], this can
change the timing from the original code and can be measured.
Thus, this attack can help determine what code has been inserted
into the diversified code.

1 if (input == 0)

2 i = i * 2; // block 1

3 else

4 i = i + 2; // block 2

In the above example, the attacker wants to learn if NOPs have
been inserted into block 1 or 2, causing statement 4 to have moved.
The attacker can learn this by crafting his input so that both paths
are eventually exercised. As adding NOPs will increase the time
taken to execute, he can time the results, compare the timings to
what the original code produced, and if it is longer, can calculate
how many NOPs have been inserted.

Limitations to this attack include not being able to detect if the
offset of the entire code segment has been shifted in memory (e.g.,
ASLR), as it can only detect scenarios where instructions with dif-
ferent timings have been inserted. Furthermore, as x86 and other
CISC architectures have variable length instructions that can po-
tentially take variable cycles to execute, multiple instructions of
differing length may take the same time to execute. This can make
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it more difficult for the attacker to discern exactly where gadgets
have moved in memory. However, this generally will not be a prob-
lem for RISC architectures, which have the same length and timing
characteristics for each instruction.

Timing attacks that are conducted over the network and not in
a scripting environment will also have to deal with network jitter.
Jitter becomes a problem when it represents a significant propor-
tion of what is being measured. However, attackers can leverage
previous work which has shown this can largely be overcome by
taking multiple measurements and filtering them intelligently [12].
Furthermore, an attacker can also reduce the significance of jitter
by controlling how many times a piece of code is executed during
a single measurement, perhaps through influencing a loop counter
variable, thus reducing the number of total measurements needed.

Overwrite Data. The previous attack described scenarios where
the attacker only modified state that was intended to be modified
by him. However, parts of the code may only be executed when
certain variables are set in a particular way, and the attacker may
not normally have control over them. The Overwrite Data attack
can be used to to allow an attacker to modify certain variables so
as to execute different pieces of code. Similar to the previous at-
tack, this will allow one to learn what code has been inserted into
the diversified code. This attack can also be used to overwrite an
index to a pointer, causing data on the stack or code segment to be
computed on, and allowing an attacker to learn both what code has
been inserted and also where code is located.

1 if (config_variable == 0)

2 i = i * 2; // block 1

3 else

4 i = i + 2; // block 2

The above example is similar to the previous example, except
there is a memory corruption vulnerability and the variable used in
the conditional is intended to only be set by a local configuration
file. If this variable has been set to 0, then the attacker will not
be able to exercise the code in block 2. However, the attacker can
modify the variable through the memory corruption vulnerability,
and then make block 2 be executed and time the results.

1 if (ptr[index] % input == 0)

2 i = i * 2; // block 1

3 else

4 i = i + 2; // block 2

In the above example, an attacker can overwrite an index to a
pointer, which the dereferenced value is then divided by some user
input, and the remainder is compared to 0. If the value is 0, the
multiplication in block 1 is executed, which takes longer to exe-
cute than the addition in block 2. An attacker can use this vulner-
ability to discover where code is. Since the index variable can be
modified, the pointer can point to a value on the stack, such as a
return address. Similar to previous cryptographic timing side chan-
nels [10], the attacker can guess values intelligently and determine
if the value is a divisor of the return address or not. Eventually the
attacker can determine what is the exact value of the return address.

With respect to network jitter, this attack has similar limitations
to the previous Crafted Input attack.

Overwrite Data Pointer. An attacker can also overwrite a data
pointer to reveal the contents of memory through timing execution.
Specifically, an overwritten pointer that is later used in control flow
decisions can reveal the bytes to which the pointer actually points.
The data pointer can be overwritten to point to a return address on
the stack, revealing where code is located, or a location in the code
segment, revealing what code is located there.

1 i = 0;

2 while (i < ptr->value)

3 i++;

In the above example there is a vulnerability that allows an at-
tacker to overwrite the data pointer. If the attacker overwrites it
with an address in the code segment, the loop will execute that
many number of times. For example, if the attacker is looking for
a return instruction in x86 code, the loop will execute 0xc3 times
when found. If the attacker knows how long it takes to execute
the loop once, he can compare that to when it is executed multiple
times and figure how how many iterations actually took place. This
attack essentially allows one to find the value of arbitrary memory
locations through timing.

The limitation of this attack is that it requires code that makes
control flow decisions using an overwritten pointer. However, as
we will show later, an attacker can use other attacks to bootstrap
and find enough gadgets to create a control flow mechanism.

Overwrite Code Pointer. In this attack, control flow is directly
hijacked by overwriting code pointers, such as return addresses and
function pointers. While the attacker may not know what code he
is actually executing, the attacker can time how long it takes to
execute and discern some information about where code is located.

In the example below, there are three functions whose locations
have been randomized, where func1 has a memory corruption vul-
nerability allowing a function pointer to be overwritten. Each func-
tion func1, func2, func3, takes a different, distinct time to ex-
ecute, t1, t2, t3, respectively. The attacker can hijack control flow
to location 1, and when he finds that it takes t2 time to execute, he
knows that that location is the beginning of func2. Similarly, if he
executes at location 4, he will find it takes t3 time to execute and
will know he is executing func3. Note that this attack works even
if fine-grained ASLR is deployed on the system.

- func2 (int z)

1 x = 3;

2 z = x + z;

3 return z;

- func3 (int x, int z)

4 z = z * x;

5 return z;

- func1 ()

6 recv(sock, buf, input);

7 (*funcptr)();

8 send(sock, data, len);

9 return;

Similarly, the attacker can also try to find return instructions di-
rectly by executing at different locations, thus also determining the
size of pieces of code. For example, if the attacker hijacks control
flow four different times and points execution to locations 1, 2, 3,
and 4, he will find it takes the smallest amount of time to execute
location 3, where the return statement is. As the return instruction
is the fastest piece of code that can possibly be executed, he will
know he has found the return instruction by the timing being the
shortest. The attacker then knows that location 1 is func2, as that
is the only function with size 3.

Limitations to this attack are similar to Crafted Input, but at a
coarser level. If functions, or basic blocks of code, have distinct
timing or size characteristics, then functions can be discerned with
this attack. If many pieces of code, on the other hand, have the same
size and timing, then it can be difficult to differentiate what is being
executed. In RISC architectures size and timing characteristics are
correlated, thus knowing one reveals information about the other.

4. SIDE CHANNEL EFFECTIVENESS
We demonstrated in the previous section that, depending on the

vulnerability, different information can be leaked about the code.
In this section, we ask the question: If we can only leak certain
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information about the code, how useful is that information? Ef-
fective side channels require that the phenomena being measured
(e.g., power, acoustic signals, time, output) be distinct, thus reveal-
ing information about what is being executed. For example, some
of the attacks previously described require that the size of func-
tions, particular sequence of bytes in code, or execution time to be
revealing of what code is actually being executed. Thus, how dis-
tinct these measurements are determines how precisely an attacker
can identify what piece of code he is actually measuring. As libc
is almost always linked as a library in real code, we analyze how
distinct certain aspects of it are.

4.1 Metrics
To measure how distinct a function is, we define the uncertainty

set size (USS) metric. The USS of a function is the cardinality of the
set of other functions that have the same measurement associated
with it. Thus a totally distinct function’s USS would be zero. If two
functions had the same measurement, each function’s USS would
be one, indicating that there is one other function that could be
confused with it. In other words, the USS metric indicates how
many functions have the same side-channel characteristic. If the
set is small enough, then an attacker can do brute-forcing or use
the intersection of USS for different attacks to reduce the overall
uncertainty. We also measure how much information needs to be
leaked by the attacker to learn the actual USS.

Note that in this section, all of our evaluations assume a function-
level randomization, known also as ”medium-grained” ASLR, where
the location of functions are randomized, but the internals of the
functions remain the same. This is done to evaluate how useful dif-
ferent types of side channels are in general. In Sec 6, we evaluate
actual attacks against different code diversification techniques (i.e.,
NOP insertion and coarse-,medium-, and fine-grained ASLR).

Identifying how distinct a piece of code is does not necessarily
answer what an attacker can accomplish once information is leaked.
We also evaluate how many total gadgets an attacker can discover
once he leaks information about the diversified code. However, if
the same gadget is located in many pieces of code, an attacker only
needs to know one of those locations to use that gadget. Therefore,
we also evaluate how many distinct gadgets are available.

As discussed by Skowyra et al. [35], when building a practical
code reuse payload, the most important property a gadget set must
have is access to system calls, not Turing completeness. Malicious
payloads such as uploaders, downloaders, backdoors, and root in-
serters all require access to system calls. Although system calls
are widely available in libc, they are much less common in exe-
cutables or other libraries. In fact, we analyzed all libraries linked
to the Ubuntu Top 500 packages. This amounted to 3989 unique
libraries. Of those, only three libraries outside of libc have ac-
cess to system call gadgets: libgomp, libxul, and libjvm.
As a result, even though the executable may contain many gadgets,
an attacker still needs to find gadgets with access to system calls in
linked libraries, primarily libc. Thus, we also measure how many
system call gadgets can be found, to determine their prevalence in
the code, but we note that an attacker only needs one system call
gadget to write an exploit.

4.2 Byte Sequences
The Overwrite Data and Overwrite Data Pointer attacks can

cause information to be leaked by overwriting an index to a data
pointer, or a data pointer itself, to point to the code segment. In
the previous section, we gave an example of a fault analysis attack
where some calculation was done on the code, and also an example
of a timing attack where a loop was executed a number of times

based on the value of the code. However, an attacker might have
some other way to leak information. Since different vulnerabilities
will leak information in different ways, we explore how distinct
code is and how a side channel attack could take advantage of this.

We begin by evaluating the probability distribution function of
bytes in the code. Considering code is highly compressible, we
expect that bytes in code do not follow a uniform distribution. Fig-
ure 1 confirms this, which shows a large skew towards certain bytes,
while many bytes are used very infrequently. We find that the most
common values are 0x00 and 0xff, as these values are often used
in constants. This suggests that since code is distinct, computing
something on the code itself can reveal what the code is.

If an attacker can find the locations of specific bytes, we eval-
uate if the pattern of such locations are distinct to functions. For
example, perhaps through the use of a vulnerability similar to those
presented earlier, an attacker can learn where 0x00 bytes are lo-
cated. We also evaluate how many locations need to be leaked to
uniquely identify functions. Figure 2 shows a CDF of the frac-
tion of functions that have a particular USS or less. We find that
when only one location is leaked, very few functions have an USS
of zero. However, as the number of locations leaked increases, the
USS decreases. For example, with four locations leaked, 38% of
functions are uniquely identifiable. Finally, if all the locations are
leaked, we find that 62% of functions have distinct patterns, while
71% of functions have an USS of one or less.

Table 1: Gadgets Leaked
Information Leaked Total gadgets Distinct gadgets Syscalls

All functions 24102 (100%) 2059 (100%) 60 (100%)
Zero bytes 13691 (56.8%) 1947 (94.6%) 4 (6.7%)

Return instructions 10106 (41.9%) 1720 (84.0%) 1 (1.7%)
Crashes 13989 (58.0%) 1999 (97.1%) 3 (5.0%)

Return Values 12236 (50.8%) 1995 (96.9%) 14 (23.3%)
Timing 14165 (58.8%) 1972 (95.8%) 16 (26.7%)

Table 1 describes how many gadgets are available when only
certain types of information are leaked (the Galileo algorithm as
described by Shacham [33] was used for these statistics). When all
function locations are known, the attacker has access to over 24,000
total gadgets which are comprised of 2059 distinct gadgets. When
0x00 byte locations are leaked, an attacker can find the locations
of only 56.8% of all gadgets. However, this still includes 94.6% of
distinct gadgets. Syscall gadgets are also available to the attacker,
while four in total are available, an attacker will only need one to
write an exploit. Thus, malicious payloads can still be constructed
with only this amount of information leaked.

Functions that have an USS greater than zero can still be use-
ful, as these functions can be very similar internally. For example,
upon examining the group of functions that have the largest USS of
108, we find that they all are wrappers for system calls. These in-
clude functions such as bind, listen, and mprotect, which are often
important for malicious payloads. However, these functions only
differ in their first instruction, which moves a constant signifying
what system call is intended into a register. The rest of the function
is identical across all 108, where the syscall instruction is executed
and then return values are examined. A payload could be crafted
where some other gadget is used to load the register, perhaps using
a pop instruction, and then jumps directly to the syscall instruction.

4.3 Return Instructions
Several of the attacks described can help determine where both

intentional and unintentional return instructions are in the code. By
using the Overwriting Code Pointer attack and taking advantage of
either fault analysis or timing side channels, we can reveal such in-
formation. If an attacker can discern this information but nothing
else, we evaluate if he can determine what function he is actually
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Figure 1: Probability distribution function

of number of bytes found in code
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Figure 3: Information learned as more re-

turn instructions are known

measuring. Specifically, we evaluate if functions have distinct pat-
terns of where return instructions are internally located.

Figure 3 shows a CDF of the fraction of functions that have a
particular USS or less. We find that if the location of one return
instruction is leaked, then 6.4% of functions are uniquely identifi-
able. However, if two locations are leaked, then 42.2% of functions
are identifiable. Knowing two locations leaks almost as much in-
formation as knowing all locations, as we find if all locations are
known then 42.6% of functions are uniquely identifiable. Further-
more, 90% of functions have an USS of 18 or less, meaning that
this measurement greatly reduces the USS for most functions by a
large amount. Similar to before, we find that a large number of sys-
tem call wrappers are grouped together, thus have an USS greater
than zero, but can be used as previously mentioned.

Leaking return instruction locations yields fewer gadgets than
other information leaks (Table 1). However, 41.9% of all gadgets,
84.0% of distinct gadgets, and 1 syscall gadget are still available.

4.4 Output
If the attacker is able to conduct an Overwriting Code Pointer

attack and can retrieve some information about the result of the
execution, he can conduct some fault analysis and discern infor-
mation about what was executed. In the best case, if the attacker
could learn all the inputs used for a function and all the resulting
outputs, he could potentially learn much about what was executed.
However, we evaluate what an attacker can do with a much more
limited amount of information, namely crashes and the return val-
ues of functions.

We evaluate first the USS of functions if the attacker is able to
discern if the program crashes or not. To evaluate this, we overwrite
a function pointer and test to see if the program crashes when the
function pointer is called. We demonstrate our results in Figure 4.
Many crash locations are needed before a significant number of
functions are uniquely identifiable, over 60 locations are needed to
know just 23% of functions. If all crash locations are known, over
56% of functions are distinct in their crash patterns and 78% of
functions have an USS of 10 or less.

Learning crash locations allows more distinct gadgets (Table 1)
to be leaked than the other types of information leaks that we in-
vestigate. Specifically, 97.1% of distinct gadgets are leaked, while
58.0% of all gadgets and 3 syscall gadgets are leaked.

While an attacker might be able to retrieve different memory val-
ues or registers after something is executed, a likely output is sim-
ply the return value of a function. In x86, this is the value found in
the %eax register. Thus, we evaluate if the pattern of return values,
when jumping into and executing different parts of a function, is
distinct for a function. Figure 5 shows that when one return value
is known, 12% of functions are distinct, and when two values are
known, 38% of functions are distinct. When the attacker learns all
values, 57% of functions are distinct, while 75% of functions have
an USS of six or less.

The group of functions that have the largest USS of over 600
mostly consist of internal libc functions that are used by other
functions. Thus, these functions are likely to not be directly needed
for any common malicious payloads. We again find that wrappers
to system calls are largely grouped together due to their internal
similarity. The return value of executions also gives the ability to
learn the most distinct gadgets (Table 1). 96.9% of distinct gadgets,
50.8% of all gadgets and 14 syscall gadgets are leaked.

4.5 Timing
An attacker will most likely be able to, at the very least, time

execution. Thus, if he can use an Overwrite Code Pointer attack,
and then time the resulting execution, he could possibly still gain a
great deal of information about what is being executed. Similar to
the previous experiment, we overwrite a code pointer to jump into
and execute all locations within a function. We then evaluate how
distinctive timing is to different functions.

Figure 6 shows that when only one timing value is known, only
10% of functions are uniquely identifiable. However, if two loca-
tions are known, the number jumps to 38%. If an attacker knows all
the timing values, he can learn up to 60% of functions with an USS
of zero and 76% of functions with USS of five or less. We find that
timing is very effective in leaking gadgets. 58.8% of all gadgets,
95.8% of distinct gadgets, and 16 syscall gadgets are leaked.

5. PRACTICAL SIDE CHANNELS
In this section we describe our framework that can be used to

practically leak information about the code incrementally. We fo-
cus on Overwrite Data Pointer timing side channel attacks, because
as previous sections have demonstrated, they have the most poten-
tial for practical use. This is due to them having few limitations,
they do not require the application to be able to crash and restart,
they are flexible in the types of information they can leak, and they
are effective in the amount of information they can leak.

Overview. Information leaks are most likely a stepping stone
to other attacks. Thus once an attacker learns enough information
about the location of certain gadgets, he will conduct the intended
exploit (e.g., starting a shell). Furthermore, if an attacker learns
certain other helpful gadgets, he can incorporate them into the at-
tack as well. For example, if the attacker has found enough gadgets
to create a loop, allowing him to reduce the needed timing pre-
cision, he would use them. Gadgets found in the executables are
helpful in facilitating the information leakage, but they are often
not enough for practical payloads as discussed earlier. An attacker
can use these gadgets to find other system call gadgets in libc.

Thus, at a high level, our information leak framework iterates
over three different steps. First, it evaluates a pool of currently
known gadgets, and discerns if these gadgets can be turned into a
new or more efficient information leaking capability. Second, it
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Figure 6: Information learned as more

timing values are known

uses the most efficient capability to leak more information about
the unknown parts of the code. Third, it updates the pool with any
newly discovered gadgets. We stop when we have either leaked
enough information to learn the exploit gadgets or have leaked the
entire code.

Slow Side Channel Attack. If certain gadgets are available to
use, then those are put into the pool of gadgets. Otherwise, we
assume that initially the attacker can only conduct a slow timing
attack, where a piece of code can only be executed once.

This attack requires that a piece of code is found where pointers
can be manipulated such that the code performs some computa-
tion on itself and that the execution time is dependent on the input.
Thus, if code such as a spinlock is found, we can use it to discern
what code is at some memory address.

To know how long the piece of code should take to execute, we
can use a database of timing values, similar to what was developed
in §4. To get a proper timing baseline for the vulnerable remote
host, we first send many requests without exploiting it. We time
how long the baseline execution takes, which will be subtracted
from any future timing measurements. We then start probing mem-
ory locations by overwriting the data pointer, and measuring the
execution time. If a certain amount of timing precision is needed,
the experiment is repeated.

Fast Side Channel Attack. If enough gadgets are found to cre-
ate a ROP conditional jump, we use it to increase efficiency. The
conditional jump allows a payload to be constructed where a piece
of code executes x times. We can then reduce the number of mea-
surements needed. For example, if enough gadgets are available we
can implement a spinlock itself.

The timing payload will then contain either the memory address
of a code pointer (e.g., a return address on the stack) or the code
itself. A gadget then loads the memory address into a register
and other gadgets somehow use that register as an iterator in the
conditional jump. The timing result will then indicate how many
times that piece of code was executed. This requires knowing how
much time executing the piece of code once takes, which will be
known through the database previously constructed. Eventually, as
more memory addresses are measured, enough information will be
leaked so as to learn a system call gadget. Once accomplished, we
are able to compile the exploit based on the exact code in memory.

6. MEASUREMENTS AND RESULTS
We develop a tool to conduct a timing attack against Apache

2.4.7 and evaluate the accuracy of timing information for two types
of networks: a 802.11g wireless network and a wired LAN with
two routers. We evaluate our attack against four types of code
diversification defenses: coarse-grained ASLR [40], function per-
mutation (medium-grained ASLR) [26], basic block randomization
(fine-grained ASLR) [45], and NOP insertion [16].

In our attack we use Apache HTTP Server 2.4.7 (the most recent

version at the time of writing this paper) and glibc 2.16. A stack
overflow vulnerability (CVE-2004-0488) from an earlier version of
Apache was reapplied to create the initial vulnerability. The vulner-
ability allows an attacker to place arbitrary values on the stack.

Below is one example of a side channel vulnerable code from
Apache, which is in Apache’s /server/log.c file and is responsible
for formatting error logs. We redirect the fmt pointer using the
overflow vulnerability to a chosen byte in memory. The additional
delay in processing the request is proportional to the byte value.

1 for (i = 0; i < fmt->nelts; ++i) {

2 ap_errorlog_format_item *item = &items[i];

6.1 Slow Timing Attack
During the slow side channel attack, we redirect the loop itera-

tor (fmt->nelts) using the Apache vulnerability to measure a
chosen byte. This adds a small amount of delay into the query pro-
cessing part of Apache. The success of our attack depends on the
ability to observe the small delay caused by the loop over the net-
work. Although this delay is small, by sending many queries to the
server, the extra delay adds up over the baseline delay.

We measure the cumulative delay in two different setups: one in
which the attacker is on the same 802.11g wireless access point as
the victim and another one in which the attacker is three hops away
from the victim on a wired LAN with two routers in between.

In each case, we start by measuring the time between an HTTP
request and response 10,000 times to collect the timing samples (we
will later reduce the sample size to its minimum). Since Crosby et

al. [12] show that the first percentile yields the most precise timing
measurement, we only keep the fastest 1% samples and discard the
rest to account for abnormally large delays caused by various net-
work conditions. Figures 7 and 8 illustrate the results. For the sake
of space and readability, we just show the delay for eleven different
byte values pointed to by fmt. The maximum standard deviation
among all the LAN measurements for different byte values is 0.557
ms and for the wireless measurements it is 0.715 ms.

We use these measurements to estimate the bytes on the victim
Apache machine. For the actual attack, we point the fmt to a cho-
sen location. Given the slope of the cumulative delay, we estimate
the byte stored at that location. We repeat the measurements for the
subsequent bytes at that location.

To determine where that location is, while taking jitter into ac-
count, we develop and implement a fuzzy n-gram matching algo-
rithm. This algorithm takes as input n measured bytes, where some
measured bytes may be inaccurate due to noise, and will determine
the most likely location in the libc library that is being measured.
To accomplish this in an efficient manner, we build a trie, where for
every offset in libc the next n bytes are put in the trie. We can
then do a scoped depth first search on the trie, finding the strings
that most closely match the measured bytes. We analyze libc to
determine what is the expected number of measured bytes needed

61



0 

200 

400 

600 

800 

1000 

0 20 40 60 80 100 

C
u

m
u

la
ti

v
e
 D

e
la

y
 (

m
s
) 

Sample Number 

0 
1 
5 
10 
40 
80 
120 
160 
200 
240 
255 

Byte Value 

Figure 7: Timing measurement for

Apache 2.4.7 over wired LAN
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Figure 8: Timing measurement for

Apache 2.4.7 over WiFi 802.11g

0 

50 

100 

150 

200 

250 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

B
y
te

 V
a
lu

e
 

Byte Number 

Actual Bytes Estimated Bytes over LAN 

Estimated Bytes over WiFi 

Figure 9: Estimated bytes using timing at-

tack against Apache

to uniquely determine the offset, given a certain timing precision.
We find that even if our timing precision is poor, the expected num-
ber of total measured bytes needed is low. For example, when any
measured byte could be off by ±15, tolerating a 6% margin of er-
ror, at most only 13 measured bytes are needed for the majority
(54%) of offsets, and at most 40 measured bytes are needed for
85% of offsets. 6% is chosen based on the fact that for the code
bases we have analyzed (libc specifically), with error rates higher
than 6%, the fuzzy matching starts to return erroneous results.

To establish the minimum number of samples necessary for the
slow timing attack, we repeat it with increasing sample sizes and
calculate the average byte error. We start with a small sample size
of 1000 and increase it until the error is less than the targeted 6%.
We only keep the first percentile. Table 2 shows the errors for dif-
ferent sample sizes. For the slow timing attack, the minimum sam-
ple size acceptable is 5000 samples.

The amount of time it takes to collect one sample for the slow
timing is approximately 8.64 ms over the wired network and 41.94
ms over WiFi. Since 5000 samples must be collected, the amount
of time it takes to estimate one byte using the slow timing attack is
43.2 sec and 3.49 min for LAN and WiFi respectively.

6.2 Fast Timing Attack
After enough gadgets are found to build a simple ROP loop, the

vulnerable code can be repeated many times (500,000 time in our
case) locally on the victim’s machine to reduce the network noise
and speed up the attack. The ROP loop in pseudo-code is shown
below. In the next section, we will describe how this ROP loop is
constructed for Apache.

1 i=0;

2 while (i < 500000 * ptr->value)

3 i++;

Since the error is small due to the ROP loop, our samples sizes
can be very small (see Table 2). As such, we only keep the fastest
sample. As can be observed from the table, the minimum number
of samples necessary for the fast timing attack is 4 samples.

Table 2: The amount of error for different sample sizes
Sample Size 1,000 2,500 5,000

Slow Timing Error 22.79% 16.96% 5.89%

Sample Size 2 3 4
Fast Timing Error 20.56% 9.48% 5.7%

The time to collect one sample is mainly dominated by the ROP
loop and is about 348 ms for both WiFi and LAN. Since 4 sam-
ples must be collected, the time to estimate one byte using the fast
timing attack is 1.39 sec for both WiFi and LAN.

6.3 Coarse-Grained ASLR
In the coarse-grained implementation of ASLR, the location of

the executable is not randomized. As a result, it is easy to construct
the ROP loop using the gadgets in the Apache executable only (no
linked libraries used). We know the locations of these gadgets from

our local Apache copy. Thus, for the coarse-grained ASLR, only
the fast timing attack is necessary.

We found 4175 gadgets in the Apache executable, although none
of them has access to a system call or a sensitive function. We used
20 of these gadgets to implement the ROP loop. The actual ROP
loop is illustrated in Figure 10 in the appendix. It implements a loop
with the number of iterations equal to 500,000 times the pointed
value. By redirecting the loop iterator into libc and estimating
the bytes, we determine how it is shifted.

The ROP gadgets in the Apache executable, however, are not
enough to build a practical payload (e.g. an uploader) because they
do not have access to a system call. Since the location of libc
linked to Apache is unknown, the attacker does not have access to
system calls within libc either. Normally, the attacker needs an-
other vulnerability for memory disclosure to locate libc or system
calls within libc to build the complete attack. We demonstrate
how just this one vulnerability can be used for both purposes, i.e.,
leaking instructions within libc and hijacking control using the
actual payload. This is in spite of the fact that the vulnerability is
a buffer-over-flow vulnerability, not a buffer-over-read one. Once
we find the offset of libc, we will then use the same vulnerability
to inject a ROP payload that accesses the system calls in libc to
achieve the malicious behavior.

In our measurement, we first measured 20 bytes at the chosen
location. In fact, the bytes were not enough to uniquely identify
the location in libc as two locations matched those 20 bytes. By
inspecting the 21st and 22nd bytes at those two locations in our lo-
cal copy of libc, we realized that since the 22nd byte has very
different values at those two locations, measuring two more bytes
would uniquely identify the location. By measuring the two subse-
quent bytes, we determined that the location is indeed the 49th byte
in the __argp_fmtstream_putc function. Figures 9 shows
the actual bytes in that location and the estimated bytes over wire-
less and wired networks. Since we know from our local copy of
libc that the 24921st byte after that is a system call (located in
the __lll_lock_wait_private function), we used it to cre-
ate the uploader which was the original attack goal.

Our measurement illustrates the strength of timing attacks as
only 22 noisy bytes were enough to uniquely find the location in
libc, a library of more than 1.3 MB. Note that in fact we were a
little unlucky in our attack since for the majority of the cases only
13 bytes are enough. Since the gadgets in the Apache executable
are already known, this attack takes about 30.58 sec (22×1.39 sec).

6.4 Medium-Grained ASLR
Function permutation such as the one implemented by ASLP

[26] is a medium-grained form of ASLR in which function loca-
tions are also randomized within a library.

In this case, we still need to find a system call, but since the
Apache executable itself is also randomized, we do not have access
to the ROP loop gadgets. Our technique for attacking function per-
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mutation is as follows. We redirect the vulnerable loop iterator to a
chosen location to measure a number of bytes using the slow tim-
ing attack. We measure enough bytes to fingerprint the function.
We know from our undiversified copy which functions contain a
system call and which ones do not. If the function contains the sys-
tem call, we are done. If it does not, we skip enough bytes to pass
that function and start to measure the next function. We repeat this
process until we find a system call.

The amount of measurement necessary for attacking medium-
grained ASLR is the expected number of measured bytes needed
to determine what function some piece of code is (13 bytes), mul-
tiplied by the expected number of functions we need to discover
before finding one that has a system call gadget. We determine this
latter value to be the number of functions in libc (3309), divided
by the number of system call gadgets (60). Therefore the expected
number of measured bytes needed is 717.

We performed this attack with different function permutations
four times. The number of bytes measured before we found the
system call for the four experiments were 303, 2661, 806, and 441
which is consistent with our expected number of measures. Since
this attack on average requires 717 bytes with slow timing attack,
it takes about 8.6 hours to complete on the LAN (717× 43.2 sec).

6.5 Fine-Grained ASLR
Fine-grained form of ASLR can randomize code at the granu-

larity of basic blocks. One such implementation is Binary Stir-
ring [45]. Since basic blocks can be very small in nature, we con-
servatively estimate that every instruction in the basic block would
need to be measured. As there are 218930 instructions in libc,
we estimate that 3649 libc instructions would need to be measured
before finding a system call. Furthermore, since the expected size
of an instruction is 3.8 bytes, we expect 13866 measured bytes are
needed to find a system call.

An alternative approach would be to try to find enough gadgets
in Apache to build a ROP loop again. Note that since fine-grained
ASLR also randomizes the basic blocks in the executable, the ROP
loop we constructed for coarse-grained ASLR is not available to
us because we no longer know the location of its gadgets. The
most difficult gadget to find is the conditional jump gadget neces-
sary for building the loop. A convenient way of building the con-
ditional jump is by using instructions that use the carry flag as an
input which are: ADC (add with carry), SBB (subtract with bor-
row), RCR, and LCR (right and left rotations with carry) in x86.
Unfortunately there are only 27 instances of these instructions in
Apache. Since Apache’s binary is 831168 bytes, the expected num-
ber of measured bytes before we are able to construct the ROP loop
is 30784 in this alternative approach. This is more than what is
needed to find a system call using slow timing attack only (13866
bytes), so in our experiments we use the slow timing approach.

We performed this attack with different basic block randomiza-
tion twice. The number of bytes measured before we found the
system call for the two experiments were 7049 and 22942 which is
consistent with our expected number of measurements.

Since this attack on average requires 13866 bytes with slow tim-
ing attack, it takes about a week to complete on the LAN (13866×
43.2 sec). This time may look long, but the strength of this attack
over brute-force or other memory disclosure attacks may justify its
usage for an attacker. First, this attack does not rely on the weak-
nesses of specific fine-grained ASLR implementations. Second, it
does not required a JIT environment such as the one used in JIT-
ROP [36]. Third, it does not require an additional memory disclo-
sure vulnerability. Fourth, it does not require a forking server and
does not introduce numerous crashes such as the BROP attack [6].

6.6 NOP Insertion
If NOP insertion is used to diversify the code, we can first mea-

sure a sample of instructions to discover at what rate NOPs are
inserted. For this experiment, we have setup the multicompiler de-
veloped by Jackson et al. [23] to perform our measurements. Our
measurements show that after estimating about 30 instructions, the
NOP insertion rate can be determined accurately. Since the ex-
pected size of an instruction is 3.8 bytes, the NOP insertion rate
can be determined after estimating 114 bytes on average.

After the NOP insertion-rate is determined, the approximate lo-
cation of every other instruction is known by the following formula:

Diversified Loc. ≈ Undiversified Loc.+
(Undiversified Offset ×NOP Insertion Rate)

As a result, we can directly jump to the system call in function
__lll_lock_wait_private. To account for the error in the
location because of the random NOP insertion, we scan 10 instruc-
tions before and after the diversified location to align correctly (76
bytes on average). Since this attack on average requires 190 bytes
with slow timing attack, it takes about 2.2 hours to complete on the
LAN (190× 43.2 sec).

Note that the fine-grained ASLR achieves the best protection
against this attack, because by leaking a number of bytes at a mem-
ory location, one cannot learn about any other part of memory. If
the code has more dependencies (e.g. pointers from some locations
to the others), the attack can succeed with fewer bytes.

7. POSSIBLE DEFENSES
Complete memory safety can mitigate the impact of the timing

and fault analysis attacks. Note that attacks such as the Crafted In-

put timing attack can still leak information about the code, but such
information will have little value in building a payload. However,
complete memory safety with temporal and spatial safety proper-
ties incurs a very high performance overhead (often multiple times
slowdown) which makes it impractical for many applications [39].

Previous work has suggested re-randomizing code pages dur-
ing execution as a way to mitigate information leaks, as an exploit
could be rendered ineffective by re-randomizing before it gets the
opportunity to actually execute [36].

Weaker forms of memory defenses can mitigate certain types
of timing and fault analysis attacks with lower performance over-
head. However, the problems of weaker memory defenses include
still relatively high performance overhead, false positive/negatives,
source/binary compatibility, and modularity support [39]. Exam-
ples include data integrity techniques such as WIT [3], which stop
the Overwrite Data/Code Pointer attacks, and control flow integrity
[1], which stop Overwriting Code Pointer attacks.

Some weaker memory defenses, similar to code diversification,
rely on randomization and secrets to be kept. Data Space Ran-
domization [4] can help mitigate the Overwrite Data/Code Pointer

and Overwrite Data attacks. Instruction set randomization [25]
can help mitigate Overwriting Data Pointer as the attacker will
only learn the encrypted code. Note that these defenses can them-
selves be attacked using the same side channel attacks described in
this paper. For example, an attacker could conduct an Overwrite

Data Pointer attack and an Overwrite Code Pointer attack on in-
struction set randomization, this would reveal both the encrypted
and decrypted code, and then if the encryption scheme is a sim-
ple XOR [25, 37], the attacker can learn the secret key. However,
since these defenses are not widely deployed in today’s computing
systems, we leave a systematic analysis to future work.

Both Crafted Input and Overwrite Data timing attacks rely on
inserted or changed instructions increasing execution time. A pos-
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sible defense then is to insert code that does not affect execution
time. For example, inserting dead code that cannot be executed
without hijacking control flow [18] can cause an attacker to mis-
judge the location of gadgets.

Side channels are often mitigated by causing every measurement
to be the same, thus destroying the measurement’s distinctiveness.
For example, cryptographic timing side channels can be mitigated
by causing every execution to take the exact same amount of time.
Code diversification techniques currently do not explicitly attempt
to mitigate side channels, although some diversification techniques
can affect them. For example, NOP insertion [23] will affect the
size and timing of functions. Although, NOP insertion or similar
techniques do not try to make all functions have the same size and
timing measurements and currently do not mitigate side channels,
it is possible to conjecture about potential defenses based on this
idea. However, deciding NOP locations based on timing charac-
teristics to mitigate timing side channels will make NOP insertion
more predictable which, in fact, defeats the original purpose.

Note that just adding random delays to the execution of the code
cannot effectively mitigate side channel attacks [13].

8. CONCLUSION
Code diversity relies on the assumption that since an attacker can

not read the code, he cannot reliably exploit the code. In this paper,
we show that this assumption can be broken by applying side chan-
nel attacks that allow an attacker to leak information about the code
by simply executing the code. We have demonstrated how a mem-
ory corruption vulnerability can facilitate fault analysis and timing
attacks on diversified code. We have also shown through analysis
on real code that discerning how code has been diversified can be
easily achieved. Our results reveal that while code diversity raises
the bar for attackers, it is not a panacea for memory corruption
vulnerabilities. We believe that as more randomization techniques
are deployed in practice, attackers will rely more on side channel
attacks to leak enough information to actually exploit the code.

We leave the evaluation of side channel attacks against other
code bases and the analysis of exploiting multiple side channel at-
tacks with the same payload to future work.
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APPENDIX

A. ROP TIMING ATTACK PAYLOAD

Figure 10: ROP payload used for the timing attack
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