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Abstract ：

In recent years, lots of kernel vulnerabilities in iOS are revealed, 

among which more than 50% lie in kernel extensions and the per-

centage is increasing year by year. We believe that  there are still 

lots of unrevealed vulnerabilities in kernel extensions of iOS sys-

tem. Fuzzing is the most common way of exploiting vulnerabilities, 

and IOKit is an ideal target in kernel extensions for fuzzing . The 

interfaces in IOKit use specific structures, such as IOExternalMe-

thod, IOExternalMethodDispatch, to check the input parameters in 

various ways. Purely random inputs when fuzzing IOKit can hardly 

pass the interfaces’ parameter checking, so that most of fuzzing 

data cannot reach the kernel IOUserClient subclass at all. Thus 

such kind of fuzzing is inefficient.

One way to improve such a blind fuzzing method is to use the static 

information exported by sMethod symbols which can be dumped by 

a static analysis tools such as IDA. However it may not always be 

available  because in iOS 6 there are just a little amount of drivers 

that reserve sMethod symbols, and since iOS 7 all the symbols of 

IOExternalMethod and IOExternalMethodDispatch are totally remo-

ved from the kernel by Apple. This means that the static information 

of sMethod symbols is not available since iOS 7.

In this paper we will introduce an approach to resolve the symbols 

and parameter information dynamically based on a kernel patch to 

read and write memories. In the approach we can exploit quite a lot 

of useful information, including not only the standard parameters of 

IOKit interfaces, but also other supplementary data . We have also 

built a fuzzing framework, which uses the resolved information and 

generates the random inputs which can pass the basic parameter 

checking by IOKit interfaces. Therefore the fuzzing can be done 

efficiently. Although the inputs pass the parameter checking by IO-

Kit interface, they still might lead to kernel panic in the correspon-

ding driver or somewhere else. The fuzzing framework then collects 

the panic logs for further analysis. 

At the end of this paper, we also present the information of IOKit 

interfaces exported by our approach, and several typical vulnerabi-

lities found by our fuzzing framework.

mailto:longlei.ll@alibaba-inc.com


1. Information Export

Class IOUserClient is the most important base class to provide IOKit interfaces from kernel 
mode to user mode, which is overridden by the kernel drivers to provide interfaces functionali-
ties. In this chapter, the information of all OSObject subclasses in the kext (kernel extension) can 
be dynamically exported, definitely including IOUserClient subclasses which is used in fuzzing 
IOKit. The export information includes:
(1) the basic information of IOUserClient subclasses, such as class name, class size, vtable(vir-

tual methods table) address, inherited relationships, virtual method overridden symbols, etc.
(2) the key parameters to open the services of a specific IOUserClient subclass, such as service 

name and open type.
(3) the IOExternalMethodDispatch table, which is used to check the parameters when Function 

externalMethod() is overridden by the kernel IOUserClient subclass to obtain the input from 
user mode.

(4) the IOExternalMethod table, which is used to check the parameters when Function getTarge-
tAndMethodForIndex() or  getExternalMethodForIndex() is overridden by the kernel IOUser-
Client subclass to obtain the input from user mode.

1.1 Basic Information

How to export the basic information of all OSObject subclasses in the kext is detailed in this sec-
tion step by step:
(1) Through kernel memory read operations, obtain the __DATA__const address and Bundle 

Info of all kexts.
(2) Obtain the class information and vtable of each OSObject subclass from its corresponding  

__DATA__const memory space.
(3) Obtain virtual method symbols of OSObject subclasses in the kext, by symbolization of all 

classes’ virtual methods in the kernel.

1.1.1  Kexts’ __DATA __const
It is discovered that vtables of all the OSObject subclasses are stored in the __DATA__const 
memory space in the kexts. Firstly,  locate the __DATA__const addresses of all kexts.
(1) Based on tfp0 patch in iOS, the kernel memory can be read. Function task_for_pid() is used 

to obtain the kernel memory-read capability, as shown in TextBlock 1.



(2) In CRReadAtAddress() in our project, Function vm_read_overwrite() is used to read 256 
bytes memory space each time, and read the left-size memory space less than 256 bytes at 
the last time, as shown in TextBlock 1. 

(3) Traverse the kernel_slider by slider_byte from 256 to 1, and if the memory pointed by the 
current kernel_slider is equal to 0xfeedface, where 0xfeedface is the magic code of Mach-O 
in iOS, and this Mach-O header includes a key-value pair (segname, __PRELINK_TEXT), 
then the kernelcache Mach-O address in the kext is obtained, as shown in TextBlock 2.

(4) Resolve the kernelcache Mach-O header, and locate its section with segname=__PRE-
LINK_TEXT, then the value of addr in this section is the kext Mach-O 0xfeedface address, as 
shown in TextBlock 3. Each LoadCommand may have one or more sections, while there is 
only 1 section shown in TextBlock 3. Kexts are stored in the memory which is pointed by 
each __PRELINK_TEXT addr, in the form of continuous Mach-O files, and addr in this sec-
tion is the first kext Mach-O 0xfeedface address.

(1)kernel_slider=0x01000000+slider_byte*0x00200000,                           
slider_byte={256,…,1}. 
(2)*kernel_slider=0xfeedface. 
(3)Mach-O segname=__PRELINK_TEXT. 

TextBlock 2

void CRReadAtAddress(vm_address_t _address,vm_size_t _size,void 

**buffer) { 
 ……         

 kern_return_t kr = task_for_pid(mach_port_t sel, int curPid, &ker        -
nel_task); 
 ……           

 if(_size > 256) {         

            … 

             kernel_return_t ret = vm_read_overwrite(…, leftSize, …); 
             … 

         } else { 
             kern_return_t ret = vm_read_overwrite(kernel_task, address_-
long, _size, (vm_address_t)*buffer, &outsize); 
             … 

        }          
   } 

TextBlock 1



(5) After obtaining all 0xfeedface addresses, i.e. addr in TextBlock 3, all kexts’ Mach-O header 
can be resolved, and then __DATA__const of kexts can be obtained:

Traversing all kexts’ Mach-O header sections, if a section’s sectname=__const and    
segname=__DATA, then the addr and size in this section is the addr and size of the kext’              
__DATA__const, as shown in TextBlock 4. 

Load command 4 

 cmd LC_SEGMENT          

 cmdsize 124          

 segname __PRELINK_TEXT          

 vmaddr 0x8044f000          

 vmsize 0x00a9f000          

 fileoff 4218880          

 filesize 11137024          

 maxprot 0x00000003          

 initprot 0x00000003          

 nsects 1          

 flags 0x0          

Section 

 sectname __text          

 segname __PRELINK_TEXT          

 addr 0x8044f000          

       size 0x00a9f000    

 offset 4218880          

      align 2^0 (1)     

 reloff 0          

    nreloc 0       

      flags 0x00000000     

  reserved1 0         

  reserved2 0         

TextBlock 3

Section 

  sectname __const 
   segname __DATA 

      addr 0x80383000 

      size 0x0000e630 

    offset 3678208 

     align 2^12 (4096) 
    reloff 0 

    nreloc 0 

     flags 0x00000000 

 reserved1 0 

 reserved2 0 

TextBlock 4



1.1.2 OSObject Subclasses’ Vtable

In the kernel, the vtable of each OSObject subclass is stored in the memory space of its Mach-O 
__DATA__const, including kernelcache main Mach-O and kext Mach-O. Class OSObject is in-
herited from base class OSMetaClassBase, and OSMetaClassBase owns the runtime informa-
tion in the form of OSMetaClass object, including class name, class size,  super class, etc. So 
we can use Function OSMetaClassBase::getMetaClass() to return the OSMetaClass object, and 
resolve the information of its corresponding class.
In Class OSMetaClassBase, Function getMetaClass() is a virtual method as shown in TextBlock 
5, and OSObject subclasses override it to return the corresponding OSMetaClass object. If the 
implementations of overriding getMetaClass() in all OSObject subclasses are the same, a sta-
tionary instruction parsing algorithm can be used to return the OSMetaClass object address, so 
does it in iOS. 

TextBlock 6 is the annotations in OSMetaClass.h in XNU 10.10, which defines that all OSObject 
subclasses in the kext must use one of these two macros declared here to implement OSMeta-
Class runtime. The macro OSDeclareCommonStructors is used for class declaration, while the 

class OSMetaClassBase 
 …         

 virtual const OSMetaClass * getMetaClass() const = 0;         

 ...         

} 
TextBlock 5

 * While kernel extensions rarey interact directly with OSMetaClass at 
run time, 
 * they must register their classes with the metaclass system 

 * using the macros declared here. 
 * The class declaration should use one of these two macros 
 * before its first member function declaration: 
 * <ul> 

 * <li><code>@link OSDeclareDefaultStructors OSDeclareDefaultStruc-
tors@/link</code> - 
 *     for classes with no abstract member function declarations</li> 

 * <li><code>@link OSDeclareAbstractStructors OSDeclareAbstract-
Structors@/link</code> - 
 *     for classes with at least one abstract member function 

declaration</li> 

 * <li><code>@link OSDeclareFinalStructors OSDeclareFinalStructors@/
link</code> - 
 *     for classes that should not be subclassable by another kext</li> 

 * </ul> 

TextBlock 6



macro OSDefineMetaClassWithInit is used for class initialization, as shown in TextBlock 7, 
where Function getMetaClass() is defined here to return the address of OSMetaClass object.

The ARM instructions of getMetaClass() are shown in TextBlock 8, and TextBlock 9 gives out the 
pseudocode to calculate the address of OSMetaClass object in 32-bit devices.

#define OSDeclareCommonStructors(className)                     \ 
    private:                                                    \ 
    static const OSMetaClass * const superClass;                \ 
    public:                                                     \ 
    static const OSMetaClass * const metaClass;                 \ 
        static class MetaClass : public OSMetaClass {           \ 
        public:                                                 \ 
            MetaClass();                                        \ 
            virtual OSObject *alloc() const;                    \ 
        } gMetaClass;                                           \ 
        friend class className ::MetaClass;                     \ 
        virtual const OSMetaClass * getMetaClass() const;       \ 
    protected:                                                  \ 
    className (const OSMetaClass *);                            \ 
    virtual ~ className () 

#define OSDefineMetaClassWithInit(className, superclassName, init)            
\ 
    /* Class global data */                                                   \ 
    className ::MetaClass className ::gMetaClass;                             \ 
    const OSMetaClass * const className ::metaClass =                         

\ 
        & className ::gMetaClass;                                             \ 
    const OSMetaClass * const className ::superClass =                        

\ 
        & superclassName ::gMetaClass;                                        \ 
    /* Class member functions */                                              \ 
    className :: className(const OSMetaClass *meta)                           
\ 
        : superclassName (meta) { }                                           \ 
    className ::~ className() { }                                             \ 
    const OSMetaClass * className ::getMetaClass() const                      
\ 
        { return &gMetaClass; }                                               \ 
    /* The ::MetaClass constructor */                                         \ 
    className ::MetaClass::MetaClass()                                        \ 
        : OSMetaClass(#className, className::superClass, sizeof(class-
Name))   \ 
        { init; } 

TextBlock 7



The memory layout of the returned OSMetaClass object gMetaClass is shown in Table 1, where 
we can get superClassLink(+8), className(+12) and classSize(+16) from the offsets. And 
className is an OSSymbol structure, whose memory layout is shown in Table 2 and we can get 
className length(+12) and strings(+16) from the offsets.

Table 1 gMetaClass Layout

Table 2 className Layout

It is discovered that the vtable of each OSObject subclass is stored in the memory space of its 
Mach-O __DATA__const Section, then its address range can be taken out from the steps in Sec-

OSMetaClass(gMetaClass) Offset

… …

const OSMetaClass *superClassLink gMetaClass + 8

const OSSymbol *className gMetaClass + 12

unsigned int classSize gMetaClass + 16

… …

OSSymbol from OSString(className) Offset

… …

unsigned int length className+12

char * string className+16

… …

address1：LDR R0, =(immediate) 
address2：ADD R0, PC  

address3：BX LR 

TextBlock 8

address = (address1+ immediate)； 

address += (4 - (address % 4))； 

address = KernelRead4Byte(address)； 

address = address2 + address + 4； 

TextBlock 9



tion 1.1.1. After disassembling, it is discovered that Function getMetaClass() stands in the 8th 
order in the whole vtable if it exists. Thus, we can determine that an address points to a get-
MetaClass() function, if it meets these requirements:
(1) The vtable contains at least 14 continuous adjacent addresses (N>=13 as shown in Table 3), 

and these virtual methods’ addresses should be in the range (XNU_TEXT_StartAddress,                       
XNU_TEXT_EndAddress) or (KEXT_TEXT_StartAddress, KEXT_TEXT_EndAddress).

Table 3 Vtable Layout 

(2) Take out the 8th (N=7) address, and check the memory which it points to. If the memory 
structure are the same as ARM instructions listed in TextBlock 9, then it is truly an implemen-
tation of Function getMetaClass(), and we can obtain the returned OSMetaClass object 
gMetaClass from TextBlock 10 in 32-bit devices.

Thus, we check all addresses in the __DATA__const Section byte by byte whether it meets the 
two requirements above or not. If so, gMetaClass can be located, and the runtime information 
and vtable addresses of the inheriting OSObject subclass can be exported. 
Though this measure, we can get almost all OSObject subclasses’ information, definitely includ-
ing IOUserClient subclasses which will be used in subsequent IOKit fuzzing framework.

1.1.3 Virtual Methods Symbolization

In this section, we will obtain virtual method symbols of all OSObject subclasses in the kext, by 
resolving the symbolization of all classes’ virtual methods in the kernel. After symbolization re-
solving, we can:
(1) locate the target method in disassembling and analyzing;

virtual method 0

virtual method 1

virtual method 2

virtual method 3

….

virtual method N-3

virtual method N-2

virtual method N-1

virtual method N



(2) get the the connection between clients and services, since each client may offer multiply ser-
vices and different clients offer different services.

Storing the symbolization of all classes’ virtual methods in the kernel, File kerenlcache is en-
crypted and stored in /System/Library/Caches/com.apple.kernelcaches/kernelcache, taking 
iPhone 4s for instance here. In some mobile devices, the secret key of this encrypted file has 
been totally cracked and published,  also taking iPhone 4s 8.2b4 for instance as shown in 
TextBlock 10.

At first, we can export the system’s kernelcache using the command “nm kernelcache”. Then 
there are two different situations needed to be coped with: a complete kernelcache in plaintext 
decrypted with a published secret key; or an incomplete kernelcache because of unknown secret 
key.
In the situation that a complete kernelcache in plaintext can be exported:
(1) through searching __DATA__const addr in the main Mach-O, the address range of all base 

classes’ vtables can be obtained, however some addresses in the range are not a true vtable 
of a base class.

(2) calculate the address_r with each address vtable_r in the vtable address range, by picking 
out the 8th address and turning it to a fixed constant:
address_r = KernelRead4Btye(vtable_r + sizeof(vm_address_t)*7)&0xfffffffe - kernel_slider

(3) search address_r in the address-symbol table in the plaintext kernelcache. If the paired 
symbol_r with address_r is found, and symbol_r contains String “getMetaClass”, at the 
meanwhile it doesn’t contain String “OSMetaClass”, then vtable_r is truly a vtable of a base 
class.

(4) The base class name className_r corresponding with vtable_r can be deduced out from a 
regular expression:

className_r = symbol_r ( [A-Z][A-Za-z]{3,} )
(5) through traversing vtable_r in the vtable address range, we can get all true vtables and their 
corresponding base classes’ names.  

http://theiphonewiki.com/wiki/Firmware_Keys: 

kernelcache.release.n94  

IV: ae291ecd536ab102e6975a730f065f2f 
Key: c45aac2036dea7bf564bd99399e6ff35b241b580afd323a7aee1b6e9162b1d4f               
 

TextBlock 10

http://theiphonewiki.com/wiki/Firmware_Keys:
http://theiphonewiki.com/wiki/Firmware_Keys:


In the situation that an incomplete kernelcache is exported, it is supposed that symbols of base 
classes’ virtual methods in the kernel are in the same arrangement sequence in different mobile 
devices. So we can deduce out the symbols and addresses of bass classes’ virtual methods in 
different devices from those in iPhone 4s.

1.2 IOUserClients’ Access

After exporting the information of all IOUserClient subclasses in the kernel in Section 1.1, in or-
der to access a specific IOUserClient subclass and open its services, we still need two key pa-
rameters: serviceName and openType. In this section, how to obtain serviceNames and their 
corresponding openTypes of all IOUserClient subclasses is detailed.

1.2.1 Try All Service Names

All serviceNames in the kernel can be obtained by taking IOService subclasses’ names out of all 
IOObject subclasses exported in Section 1.1.2.
And then execute codes shown in TextBlock 11, which use Function IOServiceOpen() to open 
services and try openType from 0 to 0xff. When kr=0, the service is open successfully. In some 
situations, services of IOUserClient subclasses cannot be open via codes here, and we will cope 
with them in Section 1.2.3 next.

for(serviceName in allServiceNames) { 
 for(int _type = 0 ; _type < 0xff ; _type++) {         

   CFDictionaryRef matchingDict = NULL;        

   kern_return_t kr;        

   io_service_t server = 0;        

   task_port_t io_connect_t = 0;        

   matchingDict = IOServiceMatching([serviceName UTF8String]);        

   server = IOServiceGetMatchingService(0,matchingDict);        

  kr = IOServiceOpen (server,mach_task_self(),_type,                      

&io_connect_t); 
  }        

} 
TextBlock 11



1.2.2 io_connect_t address
In the parameters in IOServiceOpen(), the address of io_connect_t should be provided as the 
4th parameter, which is the Mach Port of this IOUserClient subclass object in the kernel. So, we 
need to get the actual io_connect_t address.
In iOS versions lower than 8.1.3, through invoking Function mach_port_kobject(), we can get the 
Mach Port address of IOUserClient subclass object, but the returned address is obfuscated by 
the kernel. The obfuscation function is VM_KERNEL_ASSRPERM(), as shown in TextBlock 12, 
which uses a global variable vm_kernel_addperm.

But after CVE-2014-4496 patching in iOS 8.1.3,  the mach_port_kobject() interface is disabled, 
then we need to find another effective way to get the Mach Port address of IOUserClient sub-
class object. Here we do find another interface mach_port_space_info() to implement this func-
tion in 32-bit devices, through a well-crafted method as detailed in TextBlock 13. Also, the re-
turned obaddress is obfuscated with vm_kernel_addperm. 

kern_return_t 
mach_port_kobject( 
 ipc_space_t   space,         

 mach_port_name_t  name,         

 natural_t   *typep,         

 mach_vm_address_t  *addrp) {         

  ………………         

  *addrp = VM_KERNEL_ADDRPERM(VM_KERNEL_UNSLIDE(kaddr));         

  ………………         

} 

#define VM_KERNEL_ADDRPERM(_v) \ 
 (((vm_offset_t)(_v) == 0) ? \         

 (vm_offset_t)(0) :              \         

 (vm_offset_t)(_v) + vm_kernel_addrperm)         

TextBlock 12



vm_kernel_addperm is a global static variable in the kernel, which is assigned in the device 
booting and unreadable and unwritable in user mode. Thus, we need to find a kernel code seg-
ment which uses Function VM_KERNEL_ADDRPERM() and has a unique characteristic to be 
easily located in the kernel. Here Function IOGeneralMemoryDescriptor::wireVirtual() is select-
ed, whose code snippet is shown in TextBlock 14, by reasons that:
(1) String “IOMemoryDescriptor 0x%lx prepared read only” is a unique characteristic, and only 

appears in this function in the whole kernel.
(2) VM_KERNEL_ADDRPERM() is used in this function, i.e. vm_kernel_addperm.

Then we search the characteristic string “IOMemoryDescriptor 0x%lx prepared read only” in the 
IDA workspace to locate Function OSReportWithBacktrace(), and analyze the 2nd parameter 
VM_KERNEL_ADDRPERM(this) of this function to locate the kernel address of vm_kernel_ad-

IOReturn IOGeneralMemoryDescriptor::wireVirtual(IODirection forDirec-
tion) { 
  ………………         

OSReportWithBacktrace("IOMemoryDescriptor 0x%lx prepared read only", 
VM_KERNEL_ADDRPERM(this)); 
  ………………}         

TextBlock 14

vm_address_t cr_mach_port_kobject(vm_address_t portname) { 
    ipc_info_space_t info; 
    ipc_info_name_array_t table = 0; 
    mach_msg_type_number_t tableCount = 0; 
    ipc_info_tree_name_array_t tree = 0; 
    mach_msg_type_number_t treeCount = 0; 
    vm_address_t obaddress = 0; 
    mach_port_space_info(mach_task_self(), &info, &table, &tableCount, 
&tree, &treeCount); 
    for( int index = 0 ; index < tableCount ; index++ ) { 
        ipc_info_name_t info = table[index]; 
        if(portname == info.iin_name) { 
            obaddress = info.iin_object; 
        } 
    } 
//obaddress is the address of structure ipc_port. By adding offset          
//0x44,we can get ipc_kobject_t kobject in 32-bit devices. 
    return CRReadAtAddress(obaddress+0x44); 
} 

TextBlock 13



drperm. Finally hardcode this address plus with kerenl_slider into our project, and then use 
memory read operation, CRReadAtAddress() as shown in TextBlock 1, to get the current value 
of vm_kernel_addrperm.
By now, we can get the actual io_connect_t address, as shown in TextBlock 15.

1.2.3 Exception
In some situations, services of IOUserClient subclasses cannot be open via codes listed in 
TextBlock 11, and after carefully and deeply analyzing, there are three possibilities:
(1) This IOUserClient subclass is a base class of another IOUserClient subclass which can be 

open successfully.
(2) This IOUserClient subclass is never used in current iOS device, which may be a redundant 

component of the iOS system and used in another different device.
(3) The openType of current serviceName in this IOUserClient subclass is greater than 0xff, 

which is out of the traversing range in TextBlock 11.
With regard to the former two possibilities, we don’t need to open services in this IOUserClient 
subclass. And in the last situation that openType>0xff, some openTypes are designed to a un-
reasonable large number by intention, to prevent from malicious call, and now we must analyze 
the concrete calling procedure. 
When IOServiceOpen() is called to open the services of IOUserClient subclass in the user 
mode, in the kernel mode IOService::newUserClient() will be called to cope with it. TextBlock 16 
shows the definition of IOService::newUserClient() in IOService.h in XNU 10.10.
From TextBlock 16, we can see that the 3rd parameter of newUserClient() is the openType we 
are searching. Using the information obtained in Section 1.1, we can locate the overridden ad-
dress of newUserClient() in the corresponding IOService subclass, and the R3 register in this 
address is the pointer to the openType of this IOService subclass.

//before iOS 8.1.3 

 mach_port_kobject(mach_task_self(), io_connect_t, &type, &kaddr);         

//in or after iOS 8.1.3 

 cr_mach_port_kobject(vm_address_t portname);         

kaddr = kaddr - vm_kernel_addrperm; 

TextBlock 15



TextBlock 17 lists some openTypes exported by our team, which is still correct in the newest iOS 
system.

/*! @function newUserClient 
    @abstract Creates a connection for a non kernel client. 
    @discussion A non kernel client may request a connec-
tion be opened via the @link //apple_ref/c/func/IOSer-
viceOpen IOServiceOpen@/link library function, which will 
call this method in an IOService object. The rules and ca-
pabilities of user level clients are family dependent, and 
use the functions of the IOUserClient class for support. 
IOService's implementation returns <code>kIOReturnUnsup-
ported</code>, so any family supporting user clients must 
implement this method. 
    @param owningTask The Mach task of the client thread 
in the process of opening the user client. Note that in Mac 
OS X, each process is based on a Mach task and one or more 
Mach threads. For more information on the composition of a 
Mach task and its relationship with Mach threads, see 
{@linkdoc //apple_ref/doc/uid/TP30000905-CH209-TPXREF103 
"Tasks and Threads"}. 
    @param securityID A token representing the access level 
for the task. 
    @param type A constant specifying the type of connec-
tion to be created, specified by the caller of @link //ap-
ple_ref/c/func/IOServiceOpen IOServiceOpen@/link and inter-
preted only by the family. 
    @param handler An instance of an IOUserClient object to 
represent the connection, which will be released when the 
connection is closed, or zero if the connection was not 
opened.     
    @param properties A dictionary of additional properties 
for the connection. 
    @result A return code to be passed back to the caller 
of <code>IOServiceOpen</code>. */ 

    virtual IOReturn newUserClient( task_t owningTask, void 
* securityID, UInt32 type, OSDictionary * properties, 
    IOUserClient ** handler ); 

    virtual IOReturn newUserClient( task_t owningTask, void 
* securityID, UInt32 type, IOUserClient ** handler ); 

TextBlock 16

0xff000001 IONetwork 

0x44504456 IODPDevice to IODPDeviceUserClient 

0x44505356 IODPService to IODPServiceUserClient 
  

0x44504354 IODPController to IODPControllerUserClient 

0x64506950 CCDataPipe to CCDataPipeUserClient 

0x6C506950 CCLogPipe to CCLogPipeUserClient 

0x57694669 AppleBCMWLANCore to AppleBCMWLANUserClient 

TextBlock 17



1.3 IOExternalMethodDispatch
After successfully opening the services of IOUserClient subclass, IO methods can be called: 
when Function IOConnectCallMethod() is used in the user mode, Function IOUserClient::exter-
nalMethod() will be overridden in the kernel mode.
In the kernel there are 5 parameters in IOUserClient::externalMethod(), as shown in TextBlock 
18. When it is called, only a selector and an encapsulation “arguments” are delivered from IO-
ConnectCallMethod() in the user mode. The 3rd parameter IOExternalMethodDispatch * dis-
patch = 0, and at the meanwhile, the IOUserClient subclass which offers the service will override 
externalMethod() to supply the dispatch to IOUserClient::externalMethod() in the kernel.

IOExternalMethodDispatch structure is shown in TextBlock 19, which is crucial to check the input 
from IOConnectCallMethod() in the user mode, i.e. “arguments” in TextBlock 18. In this structure, 
checkScalarInputCount is the length of input 64-bit integer array, checkStructureInputSize is the 
bytes length of input structure buffer, checkScalarOutputCount is the length of output 64-bit inte-
ger array, and checkStructureOutputSize is the bytes length of output structure buffer.

virtual IOReturn externalMethod(  
 uint32_t selector,          

 IOExternalMethodArguments * arguments,         

 IOExternalMethodDispatch * dispatch = 0,          

 OSObject * target = 0,          

 void * reference = 0 );         

TextBlock 18

struct IOExternalMethodDispatch 

{ 
    IOExternalMethodAction function; 
    uint32_t     checkScalarInputCount; 
    uint32_t     checkStructureInputSize; 
    uint32_t     checkScalarOutputCount; 
    uint32_t     checkStructureOutputSize; 
} 

TextBlock 19



In the input check of IOUserClient::externalMethod(), arguments are derived from IOConnect-
CallMethod() in the user mode, whose length must be equal to the defined length of the corre-
sponding input type in IOExternalMethodDispatch. If failed the check, a 0xe00002c2 error will 
occur, and the input from user mode cannot reach the opened service of this IOUserClient sub-
class object in the kernel. There is an exception here, that if one of the defined check length in 
IOExternalMethodDispatch is equal to 0xffffffff, then the corresponding input can be of any 
length. 
Obtaining the IOExternalMethodDispatchs of IOUserClient subclasses are crucial to fuzz IOKit in 
iOS, which can avoid a lot of useless fuzzing with unavailable inputs and greatly enhance its ac-
curacy and efficiency. Next, two measures to obtain the IOExternalMethodDispatch tables in the 
kernel are presented. In our project, Measure One in Section 1.3.1 will be carried out first, which 
can cover most of IOExternalMethodDispatch tables; and if failed, then Measure Two in Section 
1.3.2 will be carried out to cover the left.

1.3.1 Measure One

It is discovered that most IOExternalMethodDispatch tables store in a regular memory layout in 
the kernel as shown in TextBlock 20, because they are coded as global static variables in the 
same source code of a IOUserClient subclass.  
Kext Mach-O __DATA__const and client vtable start address can be obtained in Section 1.1, 
and the following is client virtual methods block starting from client vtable start address. Then, it 
is client metaClass virtual methods block, which is separated from client virtual methods block by 
multiline 0s, and client metaClass vtable start address can be calculated by adding 1 to the last 
0’s address between the two blocks. And next, it is the variables block after client metaClass vir-
tual methods block, which is also separated by multiline 0s from the former block, including 
IOExternalMethodDispatch block we are looking for. 



Here we taken meta_vtable_end as client metaClass vtable end address and variable block start 
address, which is the first 0’s address between the two blocks. Starting from meta_vtable_end, 
execute the pseudocode listed in TextBlock 21 to match all IOExternalMethodDispatch address-
es. According to TextBlock 19, the matching rules of IOExternalMethodDispatch address are:
(1) the first address points to an actual function in the kernel, i.e, x∈(KEXT_TEXT_StartAddress, 

KEXT_TEXT_EndAddress).
(2) the following 4 addresses point to a unit32_t type or a 0xffffffff.

               0

client virtual method 0                        ——(client vtable start address)

client virtual method 1                        ——>

client virtual method 2                        ——client virtual methods block

………………….                                 ——>

client virtual method N                       ——(client vtable end address)

0

………………….                                ——(all 0, at least 4 lines)

client metaClass virtual method 0      ——(client metaClass vtable start address)

client metaClass virtual method 1      ——>

client metaClass virtual method 2      ——client metaClass virtual methods block

………………….                   ——>

client metaClass virtual method N      ——(client metaClass vtable end address)

0

…………………..                                —— variables block                          

function-0

checkScalarInputCount-0                  ——>  

checkStructureInputSize-0                ——>

checkScalarOutputCount-0               —— (IOExternalMethodDispatch 0)

checkStructureOutputSize-0             ——>

…………………                                 ——IOExternalMethodDispatch block

function-N

checkScalarInputCount-N                  ——>  

checkStructureInputSize-N               ——>

checkScalarOutputCount-N               —— (IOExternalMethodDispatch N)

checkStructureOutputSize-N             ——>

TextBlock 20



After finding the first matched IOExternalMethodDispatch address, match the following memory 
space to find more IOExternalMethodDispatchs until the matching rules are not fulfilled, because 
all the IOExternalMethodDispatchs are stored in a continuous memory space.
If the first matched IOExternalMethodDispatch address doesn’t exist, which means IOExternal-
MethodDispatchs aren’t stored as global static variables in this IOUserClient subclass, then 
Measure One fails, and Measure Two is carried out in our project, as detailed in the next section. 

//Match start position

dispatch_start_addr = 0 

size_t addSize = sizeof(vm_address_t); 
for( start = meta_vtable_end ; start < (meta_vtable_end + 50); start++) { 
 //selector 0         

 check_func_0 = KernelRead4Byte(start);         

 check_scalar_i_0 = KernelRead4Byte(start+ addSize);         

 check_struct_i_0 = KernelRead4Byte(start+ addSize*2);         

 check_scalar_o_0 = KernelRead4Byte(start+ addSize*3);         

 check_struct_o_0 = KernelRead4Byte(start+ addSize*4);         

 //selector 1         

 check_func_1 = KernelRead4Byte(start+ addSize*5);         

 check_scalar_i_1 = KernelRead4Byte(start+ addSize*6);         

 check_struct_i_1 = KernelRead4Byte(start+ addSize*7);         

 check_scalar_o_1 = KernelRead4Byte(start+ addSize*8);         

 check_struct_o_1 = KernelRead4Byte(start+ addSize*9);         

 if(         

 ((check_func_0 > KEXT_TEXT_StartAddress)                                                                 

              && (check_func_0 < KEXT_TEXT_EndAddress))          &&         

 (check_scalar_i_0 < 0xffff  ||  check_scalar_i_0 == 0xffffffff)   &&         

 (check_struct_i_0 < 0xffff  ||  check_struct_i_0 == 0xffffffff)   &&         

 (check_scalar_o_0 < 0xffff ||  check_scalar_o_0 == 0xffffffff)  &&         

 (check_scalar_i_0 < 0xffff  ||  check_scalar_i_0 == 0xffffffff)   &&         

 ((check_func_1 > KEXT_TEXT_StartAddress)                                                                 

              && (check_func_1 < KEXT_TEXT_EndAddress))          &&         

 (check_scalar_i_1 < 0xffff   ||  check_scalar_i_1 == 0xffffffff)  &&         

 (check_struct_i_1 < 0xffff   ||  check_struct_i_1 == 0xffffffff)  &&         

 (check_scalar_o_1 < 0xffff  ||  check_scalar_o_1 == 0xffffffff) &&         

 (check_struct_o_1 < 0xffff  ||  check_struct_o_1 == 0xffffffff)         

 ) {         

  dispatch_start_addr = start;         

     break;          

 }         

} 

TextBlock 21



1.3.2 Measure Two

Firstly, by locating all LDR Literal instructions when externalMethod() is overridden in the kernel, 
we can resolve the addresses of their corresponding instruction (ADD Rn, PC). Then check 
these addresses whether they match the 2 rules of IOExternalMethodDispatch address listed in 
Section 1.3.1 above. If matching successfully, then it’s an address of a valid IOExternalMethod-
Dispatch. By this measure, we can obtain those IOExternalMethodDispatchs which are directly 
used in externalMethod().
However, Measure Two covers only a small-scale IOExternalMethodDispatchs, because a lot of 
IOExternalMethodDispatchs aren’t used directly in overridden externMethod(). If IOExternal-
MethodDispatch isn’t stored as a global static variable in the source code of IOUserClient sub-
class, and it isn’t used directly in overridden externMethod(), then the two measures presented 
in this paper will both fail. In fact, Measure One can cover most  IOExternalMethodDispatchs in 
the kernel, and Measure Two is only carried out as a supplementary when Measure One fails.

1.4 IOExternalMethod

Differently from Section 1.3, there is a mount of IOUserClient subclasses which don’t override 
Function externalMethod(). Instead, they will select Function getTargetAndMethodForIndex() or 
Function getExternalMethodForIndex() to override and return a data structure IOExternalMethod 
to IOUserClient::externalMethod() in the kernel. Here IOExternalMethod is a similar structure as 
IOExternalMethodDispatch to check the input/output parameters, as shown in TextBlock 22.

struct IOExternalMethod { 
    IOService *  object; 
    vm_address_t* func; 
    int    vflag 

    IOOptionBits  flags; 
    IOByteCount  count0; 
    IOByteCount  count1; 
} 

IOExternalMethod * IOUserClient:: 
getTargetAndMethodForIndex(IOService **targetP, UInt32 index) 

TextBlock 22



In IOExternalMethod structure, the field vflag is a flagging integer: if vflag=0, func is the function 
address, while if vflag=1, func is the object’s vtable offset. The fields flags, count0 and count1 
work together to define the length of input/output integer array or structure buffer, which is de-
fined in IOUserClient.h in XNU 10.10.    
The most easy and reliable approach to obtain IOExternalMethod is to directly invoke Function 
getTargetAndMethodForIndex() in the kernel.

1.4.1 Arbitrary Kernel Function Call
According to Ref. [1] “Tales from iOS 6 Exploitation and iOS 7 Security Changes”, an approach 
to implement arbitrary kernel function call was presented in HITB2013. Here we will introduce its 
details in this section, and construct a getTargetAndMethodForIndex() call in the next section.
In the kernel, the APIs offered by IOKit to the user mode mainly are IOConnectTrap0(), IOCon-
nectTrap1(), IOConnectTrap2(), IOConnectTrap3(), IOConnectTrap4(), IOConnectTrap5() and 
IOConnectTrap6(), where the digit in the API name represents the amount of explicit parameters 
in the calling functions, as shown in TextBlock 23.
The corresponding codes in the kernel start from Function iokit_user_client_trap(), as listed in 
TextBlock 24. If the IOExternalTrap address which is returned from Function getExternalTrap-
ForIndex() points to an controllable IOExternalTrap object, then functions in arbitrary kernel ad-
dress with a maximum 7 parameters (target, args->p1, args->p2, args->p3, args->p4, args->p5, 
args->p6) can be called by controlling the returned IOExternalTrap object address, where target 
is the IOService* object in the IOExternalTrap structure, as shown in TextBlock 25.

In the kernel, IOUserClient::getExternalTrapForIndex() is a virtual method which returns NULL 
as shown in TextBlock 24. But in a jail-broken device, its __DATA__const can be written. Thus, 
we rewrite the address of getExternalTrapForIndex() to the address of the gadget shown in 
TextBlock 26 plus with 1, i.e. the address of code {0x8 0x46 0x70 0x47} in the kernel executable 
addresses plus with 1. By doing so, the implementation of getExternalTrapForIndex() is changed 
to that in TextBlock 27, where index is an input from IOConnectTrap() and points to a control-
lable IOExternalTrap object. Now, arbitrary kernel function call is implemented. 

struct IOExternalTrap { 
    IOService *  object; 
    IOTrap  func; 
}; 

TextBlock 25



kern_return_t 
IOConnectTrap0(io_connect_t connect, 
        uint32_t  index );         

kern_return_t 
IOConnectTrap1(io_connect_t connect, 
        uint32_t  index,         

        uintptr_t p1 );         

kern_return_t 
IOConnectTrap2(io_connect_t connect, 
        uint32_t  index,         

        uintptr_t p1,         

        uintptr_t p2);         

kern_return_t 
IOConnectTrap3(io_connect_t connect, 
        uint32_t  index,         

        uintptr_t p1,         

        uintptr_t p2,         

        uintptr_t p3);         

kern_return_t 
IOConnectTrap4(io_connect_t connect, 
        uint32_t  index,         

        uintptr_t p1,         

        uintptr_t p2,         

        uintptr_t p3,         

        uintptr_t p4);         

kern_return_t 
IOConnectTrap5(io_connect_t connect, 
        uint32_t  index,         

        uintptr_t p1,         

        uintptr_t p2,         

        uintptr_t p3,         

        uintptr_t p4,         

        uintptr_t p5);         

kern_return_t 
IOConnectTrap6(io_connect_t connect, 
        uint32_t  index,         

        uintptr_t p1,         

        uintptr_t p2,         

        uintptr_t p3,         

        uintptr_t p4,         

        uintptr_t p5,         

        uintptr_t p6);         

TextBlock 23



kern_return_t iokit_user_client_trap(struct iokit_user_client_trap_args 
*args) 
{ 
    kern_return_t result = kIOReturnBadArgument; 
    IOUserClient *userClient; 
   if ((userClient = OSDynamicCast(IOUserClient, 
        iokit_lookup_connect_ref_current_task((OSObject *)(args->user-
ClientRef))))) { 
        IOExternalTrap *trap; 
        IOService *target = NULL; 
        trap = userClient->getTargetAndTrapForIndex(&target, args->in-
dex); 
        if (trap && target) { 
           IOTrap func; 
           func = trap->func; 
           if (func) { 
                result = (target->*func)(args->p1, args->p2, args->p3, 
args->p4, args->p5, args->p6); 
            } 
        } 
       userClient->release(); 
    } 
    return result; 
} 

IOExternalTrap * IOUserClient:: 
getTargetAndTrapForIndex(IOService ** targetP, UInt32 index) 
{ 
      IOExternalTrap *trap = getExternalTrapForIndex(index); 

      if (trap) { 
              *targetP = trap->object; 
      } 
      return trap; 
} 

IOExternalTrap * IOUserClient:: 
getExternalTrapForIndex(UInt32 index) 
{ 
 return NULL;         

} 
TextBlock 24

IOExternalTrap * IOUserClient:: 
getExternalTrapForIndex(UInt32 index) 
{ 
 return index;         

} 
TextBlock 27

gadget 
address1：MOV R0 R1  

address2：BX LR 

TextBlock 26



1.4.2 getTargetAndMethodForIndex() call

Based on the measure of arbitrary kernel function call, a specific getTargetAndMethodForIndex() 
call is constructed in this section, whose structure is shown in Figure 1.

Figure 1 getTargetAndMethodForIndex() call

Function getTargetAndMethodForIndex() is defined in IOUserClient.h in XNU 10.10, as shown in 
TextBlock 28. 

virtual IOExternalMethod * 
        getTargetAndMethodForIndex( IOService ** targetP, UInt32 index ); 

TextBlock 28

Gadget 
Client Instance

fake vtable

Constructed Mach Msg

MetaData 
52Byte

fake vtable data

fake getExternalTrapForIndex

….

….

Kernel TEXT

MOV R0,R1 
BX LR

….

….
getExternalTrapForIndex 

Index payload 8 Byte

Kernel Address Of ClientA (target)
ClientA-getTargetAndMethodForIndex

IOConnectTrap2 
parameters

4 Byte(Write Server Ptr)

connect 
(Gadget Client Handle)

index

arg->p1

arg->p2 
�IOExternalMethod Table Index�



To construct a getTargetAndMethodForIndex() call, the selected API should be 
IOConnectTrap2(), as shown in Figure 1, and its four parameters are set as follows:
(1) connect, pointed to a Gadget Client Instance. In this instance, there is a fake vtable address,  

pointed to a fake vtable data containing a fake getExternalTrapForIndex() function’s address, 
which is detailed in Section 1.4.1.

(2) index, pointed to an IOExternalTrap structure. and the fields in IOExternalTrap structure is 
constructed as Table 4. It is a getExternalTrapForIndex()’s Index payload in 8 bytes.

Table 4 IOExternalTrap Construction

(3) arg->p1, pointed to an writable address not in use.
(4) arg->p2, which is IOExternalMethod table index.

By invoke IOConnectTrap2(), we can invoke ClientA->getTargetAndMethodForIndex() actually to 
get IOExternalMethod from arg->p2, i.e, IOExternalMethod table index.

2. Fuzzing
As a result of Chapter 1, all information we get about IOUserClient subclasses can be used to 
generate a much more accurate and effective input in our IOKit fuzzing framework, which brings 

a great optimized enhancement in the fuzzing effect.

2.1 IOKit Fuzzing Framework
The IOKit fuzzing framework is constructed on the base of iOS LaunchDeamon, which can im-
plement automatic fuzzing, restore the parameters as accurate as possible when panic occurs,  
and keep its own running sustainable and efficient. 
The main components of the framework is shown in Figure 1.

Panic Log Collector: each Client-Selector pair in the current fuzzing process will be recorded in 
the logs. And when iOS LaunchDeamon starts after rebooting, this Collector will collect the last 
panic in /Library/Logs/CrashReporter/Panics/ directory and record its corresponding Client-Se-
lector pairs in the Log, and then empty the /Library/Logs/CrashReporter/Panics/ directory.

Fields Values

IOService * object Kernel Address of ClientA (target)

IOTrap func; ClientA->getTargetAndMethodForIndex() address



Figure 1 Framework Infrastructure
SpringBoard Auto Unlock: the iPhone will enter the automatic sleep mode in a little while after 
rebooting, so a small Tweak is running to unlock the device automatically, whose codes are 
shown in TextBlock 29. 

Panic and Reboot

Fuzz LaunchDeamon

Stop and Skip

Slow
Monitor

Deadlock Mon-
itor

Fuzz Thread

Panic Log Collector

SpringBoard Auto Unlock

[[objc_getClass("SBBacklightController") sharedInstance] turnOnScreenFullyWithBacklightSource:0]; 
[[objc_getClass("SBLockScreenManager") sharedInstance] unlockUIFromSource:0 withOptions:nil]; 

TextBlock 29



Fuzz LaunchDaemon is the main body, which consists of :
(1) Fuzz Thread: the fuzzing algorithms will be detailed in the next Section 2.2.
(2) Deadlock Monitor: when fuzzing some IOUserClient interfaces, the kernel may enter a dead-

lock state. This Monitor will monitor the times of fuzzing a specific IOUserClient interface. If 
the times keeps unchanged in a long period, then the Monitor will reboot the device and 
record the deadlock times of this interface. And if the deadlock times exceed a defined 
threshold, this IOUserClient interface will not be fuzzed any more.

(3) Slow Monitor: when fuzzing some IOUserClient interfaces, the kernel suffers a great con-
sumption, which brings a low speed and effectiveness in the whole fuzzing framework. This 
Monitor will reboot the device if its consumption is huge.

(4) Stop and Skip: stop the fuzz thread and reboot the device. It will be called by Deadlock Moni-
tor and Slow Monitor.

Panic and Reboot: when a panic occurs, the device will reboot, and the fuzzing application will 
be called back to Panic Log Collector.

2.2 Fuzz Thread
This section contains two mechanisms in fuzz thread in the framework, including sequential 
fuzzing and shuffle fuzzing.
 

2.2.1 Sequential fuzzing 
Select a IOUserClient subclass Client, and traversing all its interfaces’ Selector in their arrange-
ment sequence. Skip those interfaces’ Selector with no arguments, and fuzz other interfaces’ 
Selector with input generated in Section 2.2.1. The times of fuzzing each interface is defined to 
0xffffff in our framework. 
By so, we can get as much parameter information as we can after a panic, such as Client, Ser-
vice, Selector and so on. However, since some interfaces have a dependency relationship with 
others, thus it has an incomplete coverage, e.g., read() interface Selector arranged behind 
close() interface Selector will not be effectively fuzzed.
TextBlock 30 lists the statistics result of panics in different types in iOS712-4 exploited by our 
team, where different backtrace-sliders denote different panics instead of the actual panic times:

panics in iOS712-4:      
      null pointer dereference：28 

  invalid address read：7  
  invalid address write：1 
  invalid address execute:0 

TextBlock 30



TextBlock 31 lists the statistics result of panic types in iOS812-4S exploited by our team, where 
different backtrace-sliders denote different panics instead of the actual panic times:

We can see that iOS 8 has patched a lot of potential vulnerabilities, and also brought about new 
undiscovered ones.

2.2.2 Shuffle fuzzing
To avoid dependency relationship between interfaces in the same IOUserClient subclass, shuffle 
fuzzing is imported in our project. It breaks down the sequence of the interfaces’ Selector ar-
ranging in the same IOUserClient subclass, and selects a random Selector to fuzz this subclass 
each time. If the current selected Selector interface has no arguments, skip it; else, try to fuzz 
this Client-Selector pair with generated input for at most 500 times, which will terminate if it re-
turns success or its maximum times 500 is exceeded. 
Shuffle fuzzing can effectively expand the fuzzing coverage, however, panics in shuffle fuzzing 
cannot record the current Selector number, which can only be restored by back trace in the pan-
ic logs.
TextBlock 32 lists the statistics result of panic types in iOS812-4S, where different backtrace-
sliders denote different panics instead of the actual panic times:

panics in iOS812-4S:      
      null pointer dereference：7 

  invalid address read：1  
  invalid address write：1 
  invalid address execute: 1 

TextBlock 31

panics in iOS812-4S:      
      null pointer dereference：11 

  invalid address read：3  
  invalid address write：2 
  invalid address execute: 2 

TextBlock 32
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