

iOS 10 by Tutorials
Sam Davies, Jeff Rames, & Rich Turton

Copyright ©2016 Razeware LLC.

Notice of Rights
All rights reserved. No part of this book or corresponding materials (such as text,
images, or source code) may be reproduced or distributed by any means without
prior written permission of the copyright owner.

Notice of Liability
This book and all corresponding materials (such as source code) are provided on an
"as is" basis, without warranty of any kind, express of implied, including but not
limited to the warranties of merchantability, fitness for a particular purpose, and
noninfringement. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use of other dealing in
the software.

Trademarks
All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

iOS 10 by Tutorials

raywenderlich.com 2

Dedications
"To Siri, without whom this project would have been far less frustrating,
and to Pui, without whom Siri would have found itself thrown out of a

window."

— Sam Davies

"To my wonderful wife April, for all the love and support. To my
daughters Heidi and Jillian, for reminding me to take time to play."

— Jeff Rames

"To my wife and daughters, who had to (or is that “got to”?) spend many
summer evenings without me."

— Rich Turton

iOS 10 by Tutorials

raywenderlich.com 3

About the authors
Sam Davies is a strange mashup of developer, writer and trainer.
By day you'll find him recording videos for Razeware, writing
tutorials, attending conferences and generally being a good guy.
By night he's likely to be out entertaining people, armed with his
trombone and killer dance moves. He'd like it very much if you
were to follow him on twitter at @iwantmyrealname.

Jeff Rames is an iOS developer at AirStrip Technologies, building
software that helps save lives. Originally a mainframer, he found
his passion in iOS development shortly after the SDK was released
and has been doing it ever since. When not working, he's spending
time with his wife and daughters, watching rocket launches, or
cooking with his pizza oven. Say hi to Jeff on Twitter at
@jefframes.

Rich Turton Rich Turton is an iOS developer for MartianCraft,
prolific Stack Overflow participant and author of a development
blog, Command Shift. When he's not in front of a computer he is
usually building Lego horse powered spaceships (don't ask!) with
his daughters.

About the editors
Zoltán Matók is a tech editor of this book. Zoltán is an iOS and
OS X developer from Hungary. While he is not working or fiddling
with new stuff, he likes to read insightful articles from around the
development world. https://medium.com/@quinnnorton ftw.

iOS 10 by Tutorials

raywenderlich.com 4

Morten Faarkrog is a tech editor of this book. Morten is a
twenty-something Software Development student and iOS
developer from Copenhagen, Denmark. He was first introduced to
iOS development around the launch of Swift and has been in love
with it ever since. When Morten isn't developing apps and
studying, and his adorable cat isn't riding on his shoulders, he
spends his time working out, reading interesting books, and diving
into the world of biohacking. You can find Morten on Twitter at
@mfaarkrog.

Chris Belanger is the editor of this book. Chris is the Book Team
Lead and Lead Editor for raywenderlich.com. If there are words to
wrangle or a paragraph to ponder, he‘s on the case. When he kicks
back, you can usually find Chris with guitar in hand, looking for the
nearest beach, or exploring the lakes and rivers in his part of the
world in a canoe.

Ray Wenderlich is the final pass editor of this book. Ray is part
of a great team - the raywenderlich.com team, a group of over
100 developers and editors from across the world. He and the rest
of the team are passionate both about making apps and teaching
others the techniques to make them. When Ray’s not
programming, he’s probably playing video games, role playing
games, or board games.

iOS 10 by Tutorials

raywenderlich.com 5

Table of Contents: Overview
Introduction 11..
Chapter 1: What's New in Swift 3 16.......................................
Chapter 2: Xcode 8 Debugging Improvements 17.................
Chapter 3: Xcode 8 Source Editor Extensions 44....................
Chapter 4: Beginning Message Apps 64..................................
Chapter 5: Intermediate Message Apps 83.............................
Chapter 6: SiriKit 100..
Chapter 7: Speech Recognition 119..
Chapter 8: User Notifications 140...
Chapter 9: Property Animators 172..
Chapter 10: Measurements and Units 197...............................
Chapter 11: What’s New with Core Data 214.......................
Chapter 12: What's New with Photography 229...................
Chapter 13: What’s New with Search 230..............................
Chapter 14: Other iOS 10 Topics 251......................................
Conclusion 252...

iOS 10 by Tutorials

raywenderlich.com 6

Table of Contents: Extended
Introduction 11..

Early access 12..
What you need 12..
Who this book is for 13..
How to use this book 13...
Book source code and forums 14...
Book updates 14..
License 14..
Acknowledgments 15..
About the cover 15..

Chapter 1: What's New in Swift 3 16.......................................
Chapter 2: Xcode 8 Debugging Improvements 17.................

Getting started 18..
Investigating the project 19...
Memory Graph debugging 21...
Thread Sanitizer 30..
View debugging 36..
Static analyzer enhancements 42...
Where to go from here? 43..
xcode-source-editor-extensions 44..

Chapter 3: Xcode 8 Source Editor Extensions 44....................
Getting started 44..
Why source editor extensions? 46..
Creating a new extension 47..
Building the Asciiify extension 50...
Dynamic commands 60...
Where to go from here? 63..

Chapter 4: Beginning Message Apps 64..................................
Getting started 64..
Creating a sticker application 67...
Where to go from here? 82..

Chapter 5: Intermediate Message Apps 83.............................

iOS 10 by Tutorials

raywenderlich.com 7

Getting started 83..
The Messages app view controller 84...
Adding the first child view controller 84...
Switching view controllers 87..
Creating a message 89..
Custom message content 92...
Getting a second chance 98...
Where to go from here? 99..

Chapter 6: SiriKit 100..
Getting started 101..
Would you like to ride in my beautiful balloon? 101...
99 (passengers in) red balloons 107...
You can’t handle the truth 112..
Making a balloon animal, er, UI 115...
Where to go from here? 118..

Chapter 7: Speech Recognition 119..
Getting started 120..
Transcription basics 123...
Audio file speech transcription 124...
Transcription and locales 128...
Live speech recognition 130..
Usage guidelines 138...
Where to go from here? 139..

Chapter 8: User Notifications 140...
Getting started 141..
The User Notifications framework 142..
Managing notifications 147...
Notification content extensions 153...
Notification Service app extensions 165..
Where to go from here? 171..

Chapter 9: Property Animators 172..
Getting started 172..
Timing is everything 174..
Controlling your frog 177..
Spring animations 178..

iOS 10 by Tutorials

raywenderlich.com 8

Inspecting in-progress animations 182..
Pausing and scrubbing 183...
Stopping 185..
Reversing 187...
Multiple animators 188..
View controller transitions 192..
Where to go from here? 196..

Chapter 10: Measurements and Units 197...............................
Measurement and Unit 198...
I want to ride my bicycle 199...
Uranium Fever 201..
Measure for MeasurementFormatter 203...
(Custom) Dimension 206...
Chain of fools 207...
Turning it up to 11 208...
24 Hours From Tulsa 210...
Where to go from here? 213..

Chapter 11: What’s New with Core Data 214.......................
Getting spudded 215...
An eye to new data models 215..
A stack with a peel 218...
Frenched russet controllers 220..
Digging in to the background 223...
iCloud Core Data gets mashed 228..
Where to go from here? 228..

Chapter 12: What's New with Photography 229...................
Chapter 13: What’s New with Search 230..............................

Getting started 231..
Enabling search continuation 232...
Implementing search continuation 234..
Core Spotlight Search API 237...
Proactive suggestions for location 244..
Where to go from here? 250..

Chapter 14: Other iOS 10 Topics 251......................................

iOS 10 by Tutorials

raywenderlich.com 9

Conclusion 252...

iOS 10 by Tutorials

raywenderlich.com 10

IIntroduction

Each year at WWDC, Apple introduces brand new tools and APIs for iOS developers.
This year, iOS 10 and Xcode 8 has brought a lot of new goodies to play with!

First, iOS 10 brought some fun features to Messages – and also opened up the app
to third party developers. First, developers can now create and sell sticker packs -
simple, but sure to be popular. Second, developers can go deeper and create fully
interactive message experiences. For example, you could create a simple drawing
guessing game right within Messages - in fact, you'll learn how to do that in this
book.

Second, iOS 10 brings a feature long wished for by developers - the ability to
integrate with Siri! If your app fits into a limited number of categories, you can
create a new Intents Extension to handle voice requests by users in your own apps.
Regardless of your app's category, you can also use the new iOS 10 speech
recognizer within your own apps.

Third, Xcode 8 represents a significant new release. It ships with Swift 3, which has
a number of syntax changes that will affect all developers. In addition. Xcode
comes with a number of great new debugging tools to help you diagnose memory
and threading issues.

And that's just the start - iOS 10 is chock-full of new content and changes that
every developer should know about. Gone are the days when every 3rd-party
developer knew everything there is to know about the OS. The sheer size of iOS
can make new releases seem daunting. That's why the Tutorial Team has been
working really hard to extract the important parts of the new APIs, and to present
this information in an easy-to-understand tutorial format. This means you can focus
on what you want to be doing — building amazing apps!

raywenderlich.com 11

Get ready for your own private tour through the amazing new features of iOS 10.
By the time you're done, your iOS knowledge will be completely up-to-date and
you'll be able to benefit from the amazing new opportunities in iOS 10.

Sit back, relax and prepare for some high quality tutorials!

Early access
By purchasing this book early, you get early access to this book while it is in
development.

Since this book is still in early access, not all chapters are ready at this point. This
second early access release has the 11/14 chapters ready (compatible with Xcode
8.0):

• Chapter 2, Xcode 8 Debugging Improvements

• Chapter 3, Xcode 8 Source Editor Extensions

• Chapter 4, Beginning Message Apps

• Chapter 5, Intermediate Message Apps

• Chapter 6, SiriKit

• Chapter 7, Speech Recognition

• Chapter 8, User Notifications

• Chapter 9, Property Animators

• Chapter 10, Measurements and Units

• Chapter 11, What's New with Core Data

• Chapter 13, What's New with Search

You may wish to wait until all chapters are ready before reading the book, to get an
optimal reading experience, or check out the iOS 10 screencasts which we are
releasing, which this book is based on.

But if you want a head start or a sneak peek of what's coming, that's what this
early access release is for - we hope you enjoy!

What you need
To follow along with the tutorials in this book, you'll need the following:

• A Mac running OS X Yosemite or later. You'll need this to be able to install

iOS 10 by Tutorials Introduction

raywenderlich.com 12

the latest version of Xcode.

• Xcode 8.0 or later. Xcode is the main development tool for iOS. You'll need
Xcode 8.0 or later for all tasks in this book. You can download the latest version
of Xcode 8 beta on Apple's developer site here: apple.co/2asi58y

• One or more devices (iPhone, iPad, or iPod Touch) running iOS 10 or
later. Most of the chapters in the book let you run your code on the iOS 10
Simulator that comes with Xcode. However, a few chapters later in the book
require one or more physical iOS devices for testing.

Once you have these items in place, you'll be able to follow along with every
chapter in this book.

Who this book is for
This book is for intermediate or advanced iOS developers who already know the
basics of iOS and Swift development but want to learn about the new APIs,
frameworks, and changes in Xcode 8 and iOS 10.

• If you are a complete beginner to iOS development, we recommend you
read through The iOS Apprentice, Fifth Edition first. Otherwise this book may be
a bit too advanced for you.

• If you are a beginner to Swift, we recommend you read through either The
iOS Apprentice, Fifth Edition (if you are a complete beginner to programming), or
The Swift Apprentice, Second Edition (if you already have some programming
experience) first.

If you need one of these prerequisite books, you can find them on our store here:

• www.raywenderlich.com/store

As with raywenderlich.com, all the tutorials in this book are in Swift.

How to use this book
This book can be read from cover to cover, but we don't recommend using it this
way unless you have a lot of time and are the type of person who just "needs to
know everything". (It's okay; a lot of our tutorial team is like that, too!)

Instead, we suggest a pragmatic approach — pick and choose the chapters that
interest you the most, or the chapters you need immediately for your current
projects. Most chapters are self-contained, so you can go through the book in a
non-sequential order.

Looking for some recommendations of important chapters to start with? Here's our

iOS 10 by Tutorials Introduction

raywenderlich.com 13

suggested Core Reading List:

• Chapter 1, "What's New in Swift 3"

• Chapter 2, "Xcode 8 Debugging Improvements"

• Chapter 4, "Beginning Message Apps"

• Chapter 5, "Intermediate Message Apps"

• Chapter 6, "SiriKit"

• Chapter 8, "User Notifications"

That covers the "Big 6" topics of iOS 10; from there you can dig into other topics of
particular interest to you.

Book source code and forums
This book comes with the Swift source code for each chapter – it's shipped with the
PDF. Some of the chapters have starter projects or other required resources, so
you'll definitely want them close at hand as you go through the book.

We've also set up an official forum for the book at raywenderlich.com/forums. This
is a great place to ask questions about the book, discuss making apps with iOS 10
in general, share challenge solutions, or to submit any errors you may find.

Book updates
Great news: since you purchased the PDF version of this book, you'll receive free
updates of the content in this book!

The best way to receive update notifications is to sign up for our weekly newsletter.
This includes a list of the tutorials published on raywenderlich.com in the past
week, important news items such as book updates or new books, and a few of our
favorite developer links. You can sign up here:

• www.raywenderlich.com/newsletter

License
By purchasing iOS 10 by Tutorials, you have the following license:

• You are allowed to use and/or modify the source code in iOS 10 by Tutorials in as
many apps as you want, with no attribution required.

• You are allowed to use and/or modify all art, images, or designs that are included

iOS 10 by Tutorials Introduction

raywenderlich.com 14

in iOS 10 by Tutorials in as many apps as you want, but must include this
attribution line somewhere inside your app: "Artwork/images/designs: from the
iOS 10 by Tutorials book, available at www.raywenderlich.com".

• The source code included in iOS 10 by Tutorials is for your own personal use
only. You are NOT allowed to distribute or sell the source code in iOS 10 by
Tutorials without prior authorization.

• This book is for your own personal use only. You are NOT allowed to sell this book
without prior authorization, or distribute it to friends, co-workers, or students;
they must to purchase their own copy instead.

All materials provided with this book are provided on an "as is" basis, without
warranty of any kind, express or implied, including but not limited to the warranties
of merchantability, fitness for a particular purpose and non-infringement. In no
event shall the authors or copyright holders be liable for any claim, damages or
other liability, whether in an action of contract, tort or otherwise, arising from, out
of or in connection with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this guide are the property
of their respective owners.

Acknowledgments
We would like to thank many people for their assistance in making this possible:

• Our families: For bearing with us in this crazy time as we worked all hours of
the night to get this book ready for publication!

• Everyone at Apple: For developing an amazing operating system and set of
APIs, for constantly inspiring us to improve our apps and skills, and for making it
possible for many developers to have their dream jobs!

• And most importantly, the readers of raywenderlich.com — especially
you! Thank you so much for reading our site and purchasing this book. Your
continued readership and support is what makes all of this possible!

About the cover
The clownfish, also known as the anemonefish, lives inside the sea anemone in a
symbiotic arrangement. The tentacles of the anemone protect the clownfish from
other predators, while the clownfish eats the parasites that would otherwise attack
the anemone. It's a lot like being an iOS developer: Apple creates great
environments for our apps, and iOS developers create amazing apps (and file
annoying Radar bug reports) for those environments. There's nothing fishy about
that! :]

iOS 10 by Tutorials Introduction

raywenderlich.com 15

1Chapter 1: What's New in
Swift 3
By Rich Turton

This is an early access release of this book, and this chapter is still currently under
development.

Stay tuned for this chapter in a future release! :]

raywenderlich.com 16

2Chapter 2: Xcode 8 Debugging
Improvements
By Jeff Rames

Xcode 8 adds some powerful updates to your debugging toolbox. Race conditions
and memory leaks — some of the most challenging issues to diagnose when
developing an app — can now be automatically identified in the Issue navigator
with runtime tools. The already excellent View Debugger has also gained some
polish and makes runtime debugging of constraints easier than ever.

This chapter will cover three major debugging improvements in Xcode 8:

• The View Debugger lets you visualize your layouts and see constraint
definitions at runtime. Although this has been around since Xcode 6, Xcode 8
introduces some handy new warnings for constraint conflicts and other great
convenience features.

• The Thread Sanitizer is an all new runtime tool in Xcode 8 that alerts you to
threading issues — most notably, potential race conditions.

• The Memory Graph Debugger is also brand new to Xcode 8. It provides
visualization of your app’s memory graph at a point in time and flags leaks in the
Issue navigator.

In this chapter, you’ll be playing the role of a senior developer at Nothin’ But Emojis
LLC, where you spend your days cranking out mind-blowing emoji-related products
for iOS. Today you’re assisting the boss’ nephew — Ray Nooberlich — with a highly
anticipated product named Coloji that lets users view curated colors and emojis.

Ray is a bit new; arguably, too new to be the primary resource on such an
important project. As you help him get the app up and running, you’ll find these
new tools invaluable for debugging the tricky runtime issues he throws your way.

If you’ve not used the View Debugger before, you may want to brush up with View
Debugging in Xcode 6 at raywenderlich.com/98356. The other tools are brand new,
so just bring your desire to crush bugs!

raywenderlich.com 17

Getting started
The design specifications for Coloji indicate a master-detail interface. The master is
a table view with cells displaying colojis, which consist of colors and emojis. The
detail view for color colojis shows the selected color in full screen. For emojis, it
shows a large view of the emoji centered in the view.

Below is a preview of what the finished project will look like:

The problem is that it will be a while before you get any code in good shape from
Ray Nooberlich. He means well, and he’s trying — but, I mean, look at the picture
below. This could easily be the featured image for the “Newbie” entry on Wikipedia:

iOS 10 by Tutorials Chapter 2: Xcode 8 Debugging Improvements

raywenderlich.com 18

Here’s a rundown of the issues you’ll face, and which tools you’ll use to solve them:

1. Memory leak. First, the memory footprint of Coloji continues to grow during
use. You’ll use the new Memory Graph Debugger to clean this up.

2. View bug. Next, the table view cells don’t load anymore. You’ll use the View
Debugger to figure out why.

3. Auto Layout Constraint bug. Then you'll encounter a mysteriously absent
emoji detail view. You'll use the run time constraint debugger to flush out this
bug.

4. Race condition. Finally, a race condition has reared its ugly head. You’ll use
Thread Sanitizer to hunt it down and fix it for good.

Investigating the project
Imagine you’ve just received a pull request from Ray with what he hopes is the
completed project. Open Coloji.xcodeproj in the memory-debugger-starter
folder and take a look at what he pushed. Here are some notes on the most
important pieces of the project:

• ColojiTableViewController.swift manages the table view, whose data source
is loaded with colors and emojis in loadData(). The data source is managed by
colojiStore defined in ColojiDataStore.swift.

• Coloji.swift contains code used to configure the cells, which are defined and
constructed in ColojiTableViewCell.swift. It also generates the data source
objects.

• ColojiViewController.swift controls the detail view, which displays the color or
emoji.

Build and run, scroll around a bit, and drill through to some detail views. You might
occasionally notice a cell’s content change to a different coloji briefly when you
select it, which implies there might be duplicate labels present on a cell:

iOS 10 by Tutorials Chapter 2: Xcode 8 Debugging Improvements

raywenderlich.com 19

Because this would have impacts on memory usage, you’ll start by checking out the
Memory Report as you use the app.

With the project still running, open the Debug navigator and select Memory to
display the Memory Report. Note the memory in use by Coloji under the Usage
Comparison view. In Coloji, start scrolling the table view up and down, and you’ll
see the memory usage growing.

Some of this could definitely be duplicate labels — but the rate at which it’s

iOS 10 by Tutorials Chapter 2: Xcode 8 Debugging Improvements

raywenderlich.com 20

climbing implies there might be more going on. Right now, you’re going with the
suspicion of duplicate labels and a likely memory leak. What a perfect opportunity
to check out Memory Graph Debugging!

Memory Graph debugging
In the past, your best bets for tracking unnecessary allocations and leaks were the
Allocations or Leaks instruments. They can still be useful, but they are resource-
intensive and require a lot of manual analysis.

The Memory Graph Debugger has taken a lot of the work out of finding leaks and
memory usage problems. It does this without the learning curve of Instruments.

When you trigger the Memory Graph Debugger, you’re able to view and filter
objects in the heap in the Debug navigator. This brings your attention to objects
you didn’t expect to see — for instance, duplicate labels.

Additionally, knowing what objects currently exist is the first step in identifying a
leak. If you see something there that shouldn’t be, you’ll know to dig deeper.

After you find an object that shouldn’t exist, the next step is to understand how it
came into being. When you select an object in the navigator, it will reveal a root
analysis graph that shows that object’s relation to all associated objects. This
provides you with a picture of what references are keeping your object around.

Below is an example of a root analysis graph focused on the ColojiDataStore.
Among other things, you can easily see that ColojiTableViewController retains the
ColojiDataStore via a reference named colojiStore. This matches up with what
you may have seen when reviewing the source.

On top of this, the tool also flags occurrences of potential leaks and displays them
in a manner similar to compiler warnings. The warnings can take you straight to the

iOS 10 by Tutorials Chapter 2: Xcode 8 Debugging Improvements

raywenderlich.com 21

associated memory graph as well as a backtrace. Finding leaks has never been this
easy!

Finding the leak
It’s time to look at the Memory Graph Debugger to see what’s causing the growing
memory usage in Coloji.

Build and run if you aren't already, and scroll the table view around a bit. Then,
select the Debug Memory Graph button on the Debug bar.

First, check out the Debug navigator where you’ll see a list of all objects in the
heap, by object type.

In this example, you see 173 instances of ColojiCellFormatter and 181 instances
of ColojiLabel in the heap. The number you’ll see will vary based on how much you
scrolled the table, but anything over the number of visible cells on your table view
is a red flag. The ColojiCellFormatter should only exist while the cell is being
configured, and there should only be one ColojiLabel per visible cell.

The duplicate ColojiLabel instances are likely the reason you saw an unrelated cell

iOS 10 by Tutorials Chapter 2: Xcode 8 Debugging Improvements

raywenderlich.com 22

appear under the one you selected. Seeing all these occurrences lends support to
your theory that labels were placed on top of older ones, rather than being reused.
You’ll dig into that further in just a moment — there’s something even more
interesting going on here.

You should see a purple warning label to the right of each ColojiCellFormatter
instance memory address. To investigate the warning, select the warning icon in the
activity viewer in the workspace toolbar.

Note: Alternatively, you can select the Issue navigator directly from the
Navigator pane.

This will take you to the Issue navigator, where a few memory leaks are flagged
with multiple instances. Be sure that you have Runtime issues selected in the
toggle if they weren’t already.

Select one of the instances of a ColojiCellFormatter leak:

Then and you’ll see a graph appear in the editor. This graph illustrates a retain
cycle, where the ColojiCellFormatter references Closure captures, that is, a
closure, and the closure has a reference to the ColojiCellFormatter.

iOS 10 by Tutorials Chapter 2: Xcode 8 Debugging Improvements

raywenderlich.com 23

The graphs may vary slightly among instances, but all will show the core retain
cycle. In some cases, you may see a triangle-like graph:

Ultimately, the point of interest is the arrow pointing both ways, including a retain
in both directions.

The next step is to get to the code in question. Select Closure captures from the
graph and open the Memory Inspector in the Utilities pane.

iOS 10 by Tutorials Chapter 2: Xcode 8 Debugging Improvements

raywenderlich.com 24

The backtrace would be a lot more helpful if it was actually there. It’s turned off by
default because it does add some notable overhead and might conflict with other
tools. You only want it on when you’re actively using it.

Fortunately, it’s easy to enable malloc stack logging. Select Coloji from your
schemes and then click Edit Scheme:

In the scheme editor, select the Run action on the left, then the Diagnostics tab at
the top. Under Logging, check Malloc Stack and then choose Live Allocations
Only: this requires fewer resources and still retains the logging you need while in
the Memory Debugger. Now select Close.

Build and run again, scroll the table a bit, and enter the Memory Debugger. As
before, go to the Issue navigator and select one of the ColojiCellFormatter leaks.

In the graph, select Closure captures, and this time you should see a backtrace in
the Memory Inspector. The source code you don’t have access to will be dimmed
and inactive, and only a few lines will appear as active. Hover over the line where
tableView(_:cellForRowAt:) is called and click the jump indicator that appears.

iOS 10 by Tutorials Chapter 2: Xcode 8 Debugging Improvements

raywenderlich.com 25

This brings you to the following line in ColojiTableViewController.swift:

cellFormatter.configureCell(cell)

There’s nothing obviously wrong here. A ColojiCellFormatter is defined on the prior
line, and this line uses it to configure the current cell. Command-click on
configureCell and you’ll be taken to the following lazy property declaration:

lazy var configureCell: (UITableViewCell) -> () = {
 cell in
 if let colojiCell = cell as? ColojiTableViewCell {
 colojiCell.coloji = self.coloji
 }
}

configureCell is initialized with a closure which should make your retain cycle
senses tingle. You’ll notice a strong reference to self (self.coloji) in the closure.
This means ColojiCellFormatter retains a reference to configureCell and vice
versa — a classic retain cycle which leads to the type of leak the Memory Debugger
pointed you to.

To fix it, change the line reading cell in to the following:

[unowned self] cell in

You’ve specified an unowned reference to self via the capture list, removing the
strong reference to ColojiCellFormatter. This breaks the retain cycle.

Build and run, restart the Memory Debugger, and navigate back to the Issue
navigator to confirm the leak warnings are gone.

iOS 10 by Tutorials Chapter 2: Xcode 8 Debugging Improvements

raywenderlich.com 26

You just identified and tracked down a leak with just a few clicks. Feels pretty good,
doesn’t it?

Improving memory usage
The leaks are gone, but you still have that peculiar issue with random labels
appearing behind any cells you select. You probably recall seeing many instances of
ColojiLabel hanging around in the heap, while you’d only expect one per visible
cell. The exact number of instances depends on how many times you’ve loaded
cells, but note the 44 labels in the example heap below:

Build and run, and start the Memory Debugger if it’s not already running.

Select a few instances of ColojiLabel from the Debug navigator, and you’ll see
varying graphs as the state of objects associated with each instance change over
time. In all cases, however, you should see the ColojiLabel is tied to a
ColojiTableViewCell:

iOS 10 by Tutorials Chapter 2: Xcode 8 Debugging Improvements

raywenderlich.com 27

Select a ColojiTableViewCell on the graph, and you’ll see its memory address in
the Memory Inspector (it can also be found in bread crumbs above the graph):

If you select a few different ColojiLabel graphs from the Debug navigator and
verify the address of the associated ColojiTableViewCell, you’ll eventually notice
some overlap. This further confirms the theory that duplicate labels are being
placed on each cell.

On the graph, select the ColojiLabel and then select the top active line in the
backtrace:

This should take you to addLabel(coloji:) in ColojiTableViewCell.swift, where
you create the ColojiLabel. The contents of the method looks like this:

let label = ColojiLabel()
label.coloji = coloji
label.translatesAutoresizingMaskIntoConstraints = false
contentView.addSubview(label)
NSLayoutConstraint.activate(
 [label.leadingAnchor.constraint(equalTo:
 contentView.leadingAnchor),
 label.bottomAnchor.constraint(equalTo:
 contentView.bottomAnchor),
 label.trailingAnchor.constraint(equalTo:
 contentView.trailingAnchor),
 label.topAnchor.constraint(equalTo:
 contentView.topAnchor)
])

This creates a new ColojiLabel, provides it with the passed-in coloji for
formatting, and places it in the cell’s contentView. The problem is that this code is
called every time a cell is passed a coloji. The end result is that every single time a
new cell appears, this code creates a brand-new label and places it on the cell —
just as you suspected!

The solution is to create a single ColojiLabel per cell and update its contents when

iOS 10 by Tutorials Chapter 2: Xcode 8 Debugging Improvements

raywenderlich.com 28

the cell is reused. First, add the following property to the top of
ColojiTableViewCell:

private let label = ColojiLabel()

Here you initialize a label that will be retained by the cell and updated when content
changes.

Next, modify the contents of addLabel(coloji:) to match the following:

label.coloji = coloji
if label.superview == .none {
 label.translatesAutoresizingMaskIntoConstraints = false
 contentView.addSubview(label)
 NSLayoutConstraint.activate([
 label.leadingAnchor.constraint(equalTo:
 contentView.leadingAnchor),
 label.bottomAnchor.constraint(equalTo:
 contentView.bottomAnchor),
 label.trailingAnchor.constraint(equalTo:
 contentView.trailingAnchor),
 label.topAnchor.constraint(equalTo:
 contentView.topAnchor)
])
}

Rather than initializing a new label every time here, you use the label property
instead, and simply update its displayed coloji. To avoid the label being added to
the cell repeatedly, you wrap that bit of code in a check that ensures it only adds
the label the first time through.

Build and run, scroll the table a bit, and tap a few cells. You should no longer see a
flicker of some other ColojiLabel when a cell is selected.

Enter the Memory Debugger and return to the Debug navigator. Now you’ll only see
one ColojiLabel on the heap per cell, confirming this bug has been exterminated!

Now that you’ve found the bug, you walk Ray through the changes, trusting he’ll
get it right in the next push. What could possibly go wrong?

iOS 10 by Tutorials Chapter 2: Xcode 8 Debugging Improvements

raywenderlich.com 29

Thread Sanitizer
Well, something went wrong. Open Coloji.xcodeproj in the thread-sanitizer-
starter folder to see what Ray sent over after fixing the memory issues.

Build and run, and while the memory issues were resolved, you’re now seeing
something new. There’s missing data, and you’re only seeing a random sample of
cells. Each time you run, different cells may appear, but here’s a look at one
attempt:

Only three cells loaded, and they appear to be a random selection. Open
ColojiTableViewController.swift and take a look up top at the properties that
drive the data source:

let colors: [UIColor] = [.gray, .green, .yellow, .brown, .cyan, .purple]
let emoji = ["! ", "" ", "# ", "$ ", "% ", "& "]

It seems the latest run displayed the second-to-last color and the last two emojis.
That doesn’t make much sense. Now is a good time to check what Ray did to the
code that loads the data. Take a look at loadData() in the extension and you’ll see it
contains the following:

// 1
let group = DispatchGroup()

// 2
for color in colors {

iOS 10 by Tutorials Chapter 2: Xcode 8 Debugging Improvements

raywenderlich.com 30

 queue.async(
 group: group,
 qos: .background,
 flags: DispatchWorkItemFlags(),
 execute: {
 let coloji = createColoji(color: color)
 self.colojiStore.append(coloji: coloji)
 })
}

for emoji in emoji {
 queue.async(
 group: group,
 qos: .background,
 flags: DispatchWorkItemFlags(),
 execute: {
 let coloji = createColoji(emoji: emoji)
 self.colojiStore.append(coloji: coloji)
 })
}

// 3
group.notify(queue: DispatchQueue.main) {
 self.tableView.reloadData()
}

The code above does the following:

1. group is a dispatch group created to manage the order of tasks added to it.

2. For each color and emoji in the arrays you just reviewed, this code kicks off an
asynchronous operation on a background thread. Inside, the operation creates a
coloji from the color or emoji and then appends it to the store. These are all
queued up together in the same group so that they can complete together.

3. The notify kicks off when all the asynchronous group operations complete.
When this is done, the table reloads to display the new colojis.

It looks like Ray was trying to improve efficiency by letting the coloji data store
operations run concurrently. Concurrent code, coupled with random results, is a
strong indicator a race condition is at play.

Fortunately, the new Thread Sanitizer makes it easy to track down race conditions.
Like the Memory Graph and View Debuggers, it provides runtime feedback right in
the Issue navigator.

iOS 10 by Tutorials Chapter 2: Xcode 8 Debugging Improvements

raywenderlich.com 31

Here’s an example of what it looks like (note this will not appear for you yet):

One of the toughest bugs to squash in development has been refined down to a
single warning in the Issue navigator! This tool will surely save a lot of headaches.

It’s important to note that Thread Sanitizer only works in the simulator. This is
contrary to how you’ve probably debugged race conditions in the past, where the
device has usually been the better choice. Threading issues often behave differently
on devices than they do in the simulator due to processor timing and speed
differences.

However, the sanitizer can detect races even when they don’t occur on a given run,
as long as the operations involved in the race kick off. Thread Sanitizer does this by
monitoring how competing threads access data. If Thread Sanitizer sees the
opportunity for a race condition, it flags a warning.

Using Thread Sanitizer is as simple as turning it on, running your app in the
simulator and exercising the code where a race might exist. For this reason, it
works well alongside unit testing, and ideally, should be run on a regular basis.

In this section, you’re focusing on race conditions as they are the most common
use case for Thread Sanitizer. But the tool can do much more, such as flag thread
leaks, the use of uninitiated mutexes and unlocks happening on the wrong thread.

Detecting thread conflicts
There’s basically only one step to use Thread Sanitizer: enable it.

Edit the Coloji scheme, select the Run action and select the Diagnostics tab. If
Malloc Stack is still checked from your Memory Debugging, uncheck it as it can’t

iOS 10 by Tutorials Chapter 2: Xcode 8 Debugging Improvements

raywenderlich.com 32

be enabled while running the Thread Sanitizer. Now check Thread Sanitizer and
then select Close.

Note: You can also check Pause on issues under Thread Sanitizer to have
execution pause each time a race is detected. Although you won’t do this in
this chapter, this will break on the problem line and display a message
describing the issue.

Build and run. As soon as the table view loads, Thread Sanitizer will start notifying
you of threading issues via the workspace toolbar and the Issue navigator. Open the
Issue navigator, ensure you have Runtime selected, and you should see a number
of data races on display.

The following image focuses on a single data race. In it, you can see a read
operation on thread 6 is at odds with a write on thread 13. Each of these operations
shows a stack trace, where you’ll see they conflicted on a line within append() inside
ColojiDataStore:

iOS 10 by Tutorials Chapter 2: Xcode 8 Debugging Improvements

raywenderlich.com 33

Select ColojiDataStore.append(coloji : Coloji) -> () in either trace, and you’ll
be taken straight to the problematic code in the editor:

data = data + [coloji]

data is an array of Coloji objects. The above line appends a new coloji to the
array. It’s not thread-safe since there is nothing to prevent two threads from
attempting this read/write operation at the same time. That’s why Thread Sanitizer
identified a situation where one thread was reading at the same time another was
writing.

A simple solution to this to create a DispatchQueue and use it to execute operations
on this data serially.

Still in ColojiDataStore.swift, add the following property at the top of
ColojiDataStore:

let dataAccessQueue = DispatchQueue(label:
"com.raywenderlich.coloji.datastore")

You’ll use the serial queue dataAccessQueue to control access to the data store
array. The label is simply a unique string used to identify this queue.

iOS 10 by Tutorials Chapter 2: Xcode 8 Debugging Improvements

raywenderlich.com 34

Now, replace the three methods in this class with the following:

func colojiAt(index: Int) -> Coloji {
 return dataAccessQueue.sync {
 return data[index]
 }
}

func append(coloji: Coloji) {
 dataAccessQueue.async {
 self.data = self.data + [coloji]
 }
}

var count: Int {
 return dataAccessQueue.sync {
 return data.count
 }
}

You’ve wrapped each data access call in a queue operation to ensure no operation
can happen concurrently. Note that colojiAt(index:) and count are run
synchronously, because the caller is waiting on them to return data.
append(coloji:) is done asynchronously, because it doesn’t need to return
anything.

Build and run, and you should see all your colojis appear:

The order can vary since your data requests run asynchronously, but all the cells
make it to the data source. Looks like you may have solved the issue.

iOS 10 by Tutorials Chapter 2: Xcode 8 Debugging Improvements

raywenderlich.com 35

To further confirm you’ve solved the race conditions, take a look at the Issue
navigator where you should see 0 issues:

Congratulations — you chased down a race condition by simply checking a box!
Now it’s just a matter of sending a politely-worded feedback report to Ray, and
surely, surely that will be the end of Ray’s issues.

View debugging
According to your Apple Watch, your pulse has climbed to 120 beats per minute
after seeing the next pull request from Ray. Open Coloji.xcodeproj in the view-
debugging-starter folder to see how Ray made out with his race condition fixes.

Build and run, then navigate around a bit. It’s tough to tell if the threading issue
was fixed because the cells are now completely blank! There are functional color
detail views, but the emojis are way at the top, obstructed by the navigation bar.
Sigh.

The View Debugger is a great tool to investigate each of these issues. You’ll start
with the blank cells.

Prior versions of the View Debugger already displayed run time constraints of your
views in the Size Inspector. The biggest improvement in the View Debugger under

iOS 10 by Tutorials Chapter 2: Xcode 8 Debugging Improvements

raywenderlich.com 36

Xcode 8 is that you can now see constraint warnings, similar to those you see at
design time in Interface Builder. Below is an example of such a warning in the Size
Inspector:

Because the table view constraints in Coloji are all set in code, the only way you
could view constraint warnings before Xcode 8 was via difficult-to-discern console
output. These new visual constraint warnings will make debugging constraint issues
in Coloji much easier.

There are plenty more subtle enhancements as well. In the Debug navigator, you
can now filter the view hierarchy by memory address, class name or even super
class name. From the Object Inspector, you can jump straight to a view class.
Debug snapshots are also much faster — 70% faster, according to Apple.

It’s time to try out a few of these new features as you determine what happened to
the cell content and emoji detail view.

Debugging the cell
First, open ColojiTableViewCell.swift to see how the layout of the cell is defined.

You’ll see a setter for the coloji property that calls addLabel(coloji:), passing the
newly set coloji. addLabel(coloji:) sets the cell’s ColojiLabel with the given coloji.
If the label is not already on the cell’s contentView, this code places it there and
positions it with Auto Layout.

In this same file, you can see the definition of ColojiLabel which is a UILabel
subclass. When it gets set, as addLabel(coloji:) does, it uses the provided coloji
either to color its background or to set its text with the emoji.

Since you don’t see the ColojiLabel, the only view that should be in the cell’s
content view, that’s a good place to focus your questions. Is the label actually in the
content view? If so, what size is it and where does it sit within the content view?

Build and run, and stay on the blank table view. Now select the Debug View
Hierarchy button in the Debug bar.

In the Debug navigator, enter ColojiLabel in the filter. This will show the view
hierarchy leading to each label. Here you’re able to confirm that the ColojiLabel is
inside the content view (UITableViewCellContentView) of the cell
(ColojiTableViewCell).

iOS 10 by Tutorials Chapter 2: Xcode 8 Debugging Improvements

raywenderlich.com 37

Note: You can also try filtering for UILabel, and you’ll see all the ColojiLabel
as well as the UILabel in the navigation bar. The ability to filter by parent class
is a very useful new feature for complex layouts.

Select any of the labels, and take a look at the Size Inspector. In the Constraints
section, you’ll see all the currently active constraints for the label. Looking over the
constraints, you’ll notice immediately that something looks wrong:

A 0 height and width certainly explains an invisible label! It’s time to investigate
what has gone wrong with the code that sets the constraints.

With a ColojiLabel still selected, switch to the Object Inspector in the Utilities
pane. For public classes, an annotation will be present next to the Class Name

iOS 10 by Tutorials Chapter 2: Xcode 8 Debugging Improvements

raywenderlich.com 38

allowing you to jump directly to the source. Because ColojiLabel is private, you
won’t see it.

Back in the debug navigator, move up the label’s hierarchy a bit until you get to the
public ColojiTableViewCell, which happens to reside in the same file as the label.
In the Object Inspector, you’ll now be able to click the annotation to jump right to
the source for this class.

Now inside ColojiTableViewCell.swift, find addLabel(coloji:) where the label is
added to the contentView and constrained to its parent. It looks like this:

label.coloji = coloji
if label.superview == .none {
 contentView.addSubview(label)
 NSLayoutConstraint.activate([
 label.leadingAnchor.constraint(equalTo:
 contentView.leadingAnchor),
 label.bottomAnchor.constraint(equalTo:
 contentView.bottomAnchor),
 label.trailingAnchor.constraint(equalTo:
 contentView.trailingAnchor),
 label.topAnchor.constraint(equalTo:
 contentView.topAnchor)
])
}

There aren’t any constraints here that set the height or width of the label that
explain what you’re seeing at runtime.

But, something else may have caught your eye. Auto Layout is being used, yet this
is missing the vital setting to prevent autoresizing masks from being converted into
constraints. The zeroed label size is exactly the type of behavior you might hit in
such a case, so it seems you’ve found your culprit.

Add the following line, right after the if label.superview == .none line:

label.translatesAutoresizingMaskIntoConstraints = false

This prevents autoresizing masks from converting into constraints that you don’t
expect.

Build and run, check out the table view, and you’ll see you’re back in business.

iOS 10 by Tutorials Chapter 2: Xcode 8 Debugging Improvements

raywenderlich.com 39

Unfortunately, this still hasn’t solved your issue with emoji detail views. Take
another look, and you’ll see they appear to be centered horizontally, but not
vertically:

Runtime constraint debugging
Missing constraints at runtime are View Debugger’s time to really shine. With an

iOS 10 by Tutorials Chapter 2: Xcode 8 Debugging Improvements

raywenderlich.com 40

emoji detail view presented, select Debug View Hierarchy again. Once the debugger
renders, select the Issue navigator and Runtime toggle and you’ll see something
like this:

Select the warning and then go to the Size Inspector to see a little more
information about the vertical layout. You’ll see the same things as you do at design
time in Interface Builder, but now you can see them at runtime!

It’s pretty easy to see why the vertical layout is ambiguous. The height of the label
is defined, but it has no y-position.

Open ColojiViewController.swift and find layoutFor(emoji:), where the label
constraints are defined. Modify the array passed to NSLayoutConstraint.activate so
that it looks like this:

NSLayoutConstraint.activate([
 emojiLabel.centerXAnchor.constraint(equalTo: view.centerXAnchor),
 emojiLabel.widthAnchor.constraint(equalTo: view.widthAnchor),
 emojiLabel.centerYAnchor.constraint(equalTo: view.centerYAnchor)
])

You’ve added a constraint that equates the centerYAnchor of the emojiLabel with
that of the view. With this and the height derived via the label’s intrinsic content
size, you now have a full set of vertical constraints.

Build and run, select an emoji from the table, and the emoji will now be centered
on the detail view.

iOS 10 by Tutorials Chapter 2: Xcode 8 Debugging Improvements

raywenderlich.com 41

In the past, it was difficult to debug runtime issues if you created or modified your
constraints programmatically. You had to dig through frequently-confusing console
logs and go over your constraint code with a fine-toothed comb. Layout issue
warnings in the View Debugger have changed all this, bringing the ease of design
time constraint warnings to runtime.

Having fixed these last couple of issues, it’s just a simple matter of sending the
feedback to Ray and getting Coloji out the door. The good news is, Ray (hopefully)
has learned a lot throughout this ordeal. Who knows — maybe someday Ray will be
the one helping others learn how to build apps! :]

Static analyzer enhancements
Xcode 8 drastically enhances your ability to debug runtime issues. But it doesn’t
stop there — the trusty static analyzer has gained a few tricks of its own. But
before you get too excited, remember the static analyzer only works with C, C++
and Objective-C.

If you’re working with legacy code, the static analyzer does have some goodies to
offer. Besides identifying logic and memory management flaws, it can now assist
with solving localization issues and instance cleanup. It can also flag nullability
violations.

To use the static analyzer, select Product\Analyze with a project open in Xcode. If
there are any issues, a static analyzer icon will be displayed in the activity viewer.
Clicking the icon will bring you to the Issue navigator, where you can see more
information about the problem.

iOS 10 by Tutorials Chapter 2: Xcode 8 Debugging Improvements

raywenderlich.com 42

Localizability will notify you whenever a non-localized string is set on a user-facing
control in a localized app. Consider the situation where you have a method that
accepts an NSString and uses it to populate a UILabel. If the method caller provided
a non-localized string, the static analyzer will flag it and visually indicate the flow of
the problem data so you can resolve it.

Instance Cleanup adds some new warnings around manual retain-release. The
mere mention of this probably sends shudders down your spine! But if you
occasionally have to suffer through some legacy code without ARC, know that there
are some new checks centered around dealloc.

Finally, nullability checking finds logical issues in code that contains nullability
annotations. This is especially useful for applications that mix Objective-C and
Swift. For example, it flags cases where a method with a _Nonnull return type has a
path that would return nil.

While not quite as exciting as new runtime tools, it’s great to see continued
improvement in the static analyzer. You can get more detail and some demos of
these tools in the WWDC videos referenced below.

Where to go from here?
In this chapter, you learned about several great new additions and enhancements to
Xcode’s debugging tools. The Memory Graph Debugger and Thread Sanitizer have
the potential to save countless developer hours and make difficult problems much
easier to debug. That old dog, View Debugger, also learned some new tricks
including runtime constraint warnings.

This chapter provided a basic introduction to what these tools can do and how to
use them. You now know enough to take them for a spin and fit them into your
debugging workflow. For more detail on each, check out these WWDC videos:

• Thread Sanitizer and Static Analysis—apple.co/2aCtz6t

• Visual Debugging with Xcode—apple.co/2as1vVu

iOS 10 by Tutorials Chapter 2: Xcode 8 Debugging Improvements

raywenderlich.com 43

xcode-source-editor-extensions3Chapter 3: Xcode 8 Source
Editor Extensions
By Jeff Rames

New in Xcode 8, Apple has provided the first official way to extend the capabilities
of Xcode: source editor extensions. As the name implies, they rely on the extension
architecture that has gained increasing prevalence on Apple’s platforms recently.

The scope is limited to performing operations on text. This means you cannot
customize Xcode’s UI or modify settings — your interface is via menu items, and
only text passes between Xcode and the extension.

Note: There’s no official word, but there is plenty of chatter about Apple’s
plans to expand editor extension capabilities based on community demand.
Make sure to file a Radar if there is an Xcode extension you’re trying to build
that isn’t possible with a source extension.

Many developers will prefer to use editor extensions created by others. If you don’t
have the itch, and don’t have any needs requiring a custom extension, feel free to
skip ahead to the next chapter.

In this chapter, you’ll build an extension called Asciiify, based on an existing
macOS application that takes text input and outputs an ASCII art version of that
text:

// _ ____ ____ ___ ___ _ __
// / \ / ___| / ___| |_ _| |_ _| (_) / _| _ _
// / _ \ ___ \ | | | | | | | | | |_ | | | |
// / ___ \ ___) | | |___ | | | | | | | _| | |_| |
// /_/ _\ |____/ ____| |___| |___| |_| |_| __, |
// |___/

Getting started
Open Asciiify.xcodeproj in the starter project folder.

raywenderlich.com 44

Before you can build and run, you need to set up signing with your team
information.

Select the Asciiify project from the navigator and then the Asciiify target. From
the General tab, select your team name from the Team dropdown:

Build and run the Asciiify scheme and type some text into the top text field. Your
asciiified output will show up in the label below.

Take a look around the source, which includes some helper files you'll use to build
the source editor extension:

• The Figlet group consists of FigletRenderer.swift, a Swift wrapper around a
JavaScript FIGlet implementation by Scott González. A FIGlet is a program that
makes ASCII art representations of text. You’ll use this, but you don’t need to
know how it works in detail.

iOS 10 by Tutorials Chapter 3: Xcode 8 Source Editor Extensions

raywenderlich.com 45

• Main.storyboard contains a simple view with a text field and label. This view is
for the macOS app, not your extension. However, it will help demonstrate what
the library does.

• AsciiTransformer.swift transforms String input to a FIGlet and is used by the
Asciiify macOS app.

Why source editor extensions?
Your goal is to take this functionality and build it into Xcode itself. But before you
begin, you might be wondering why source code extensions are useful at all,
considering the community has been able to develop Xcode plugins without an
official method provided by Apple for some time.

Xcode 8 source editor extensions bring several benefits:

• They are fully asynchronous and run under their own process, minimizing any
performance impacts to the IDE.

• Using an officially supported interface, they’re also less likely to break with each
Xcode release.

• Finally, the extension model provides a clean interface to Xcode that makes it
quite easy to generate tools.

It's true that Xcode plugins have been available with fewer restrictions for some
time, thanks to the developer community and the package manager Alcatraz. These
community extensions are able to modify Xcode’s UI and behavior anywhere — not
just within a single source file. However, these rely on private frameworks,
introduce security and stability risks, and depend on frequent updates to keep them
working.

Xcode 8 uses runtime library validation to improve security. With this change, the
time for updating plugins has come to an end, as the mechanism they used to run
under in Xcode is now closed off. It’s a brave new world: for better or worse,
developers will be working within Apple’s ecosystem to create new tools.

The new source extensions are fairly limited compared to Xcode plugins of old —
but here are a few ideas of what you can do:

• Generate a documentation block for a method containing all parameters and the
return type based on its signature

• Convert non localized String definitions within a file to the localized version

• Convert color and image definitions to the new color and image literals in Xcode
8 (demoed in the WWDC session on source editor extensions)

iOS 10 by Tutorials Chapter 3: Xcode 8 Source Editor Extensions

raywenderlich.com 46

• Create comment MARKs above an extension block using the name of a protocol it
extends

• Generate a print statement with debugging info on a highlighted property

• Clean up whitespace formatting of a file; for instance, you might enforce a single
line between each method by deleting or adding lines to the file

You’ll likely come up with a half dozen more off the top of your head. Even with
their limitations, source editor extensions have a lot of utility. Some will be more
general in scope, and some may be very specific to your codebase or standards.

While this is a book about iOS 10, keep in mind that source editor extensions are
actually macOS applications. That being said, you’ll be working primarily with
Foundation, so even if this is your first foray into macOS, there aren’t any pre-
requisites.

Creating a new extension
Back to your goal: to implement this same asciiification within Xcode’s source
editor. To do this, you’ll create a source editor extension that leverages the Figlet
framework in the same way this macOS application does.

Navigate to File\New\Target and under the macOS tab select Xcode Source
Editor Extension.

Click Next, use AsciiifyComment for the Project Name, ensure Swift is selected

iOS 10 by Tutorials Chapter 3: Xcode 8 Source Editor Extensions

raywenderlich.com 47

and click Finish.

If prompted to activate the AsciiifyComment scheme, click Activate. This will be
used when building the extension.

You’ll now notice a new target and a new group in the navigator, both named
AsciiifyComment. Expand the new group and take a look at what the template
has provided:

• SourceEditorExtension.swift contains an NSObject that conforms to the
XCSourceEditorExtension protocol. The protocol defines an optional method,
extensionDidFinishLaunching(), which is called upon initial launch allowing you
to do any required setup. commandDefinitions is an optional property that can be
used to provide an array of objects that define commands the extension can
accept.

• SourceEditorCommand.swift defines an object that conforms to the
XCSourceEditorCommand protocol which consists of one required method—
perform(with:completionHandler:). The method is called when a user invokes the
extension by selecting a menu item. This is where you’ll asciiify the passed text.

• The Info.plist of an extension has several important keys under NSExtension
that point to the classes covered above, as well as providing a name for the
command. You’ll dig into this shortly.

Select the AsciiifyComment build scheme, then build and run. When prompted to

iOS 10 by Tutorials Chapter 3: Xcode 8 Source Editor Extensions

raywenderlich.com 48

choose an app to run, select Xcode (version 8 or above) and then click Run. A
version of Xcode will launch with a dark icon, activity viewer, and splash screen icon
as seen below:

This instance of Xcode is meant for testing your extensions. Once launched, create
a new playground, as all you’ll be doing is adding comments. Make sure that the
new playground is open in the test instance of Xcode, not the original version of
Xcode.

With the cursor in your test playground, navigate to Editor\Asciiify Comment
\Source Editor Command. If you don’t see the menu item, don’t panic. As of this
writing, Xcode 8’s release notes indicate an extra step required to run editor
extensions under El Capitan.

Execute the following command in the terminal:

/usr/libexec/xpccachectl

Then restart your Mac. Once this is done, run the AsciiifyComment build scheme
and attempt to navigate to the extension again.

Clicking the command does nothing at present:

iOS 10 by Tutorials Chapter 3: Xcode 8 Source Editor Extensions

raywenderlich.com 49

Time to implement some functionality!

Building the Asciiify extension
You probably already noticed some low hanging fruit — the name Source Editor
Extension in the menu item doesn’t explain what it’s going to do.

Open Info.plist in the AsciiifyComment group and expand the NSExtension
dictionary. Now expand NSExtensionAttributes which contains an array of command
definitions with the key XCSourceEditorCommandDefinitions.

For the first array item, change the value for key XCSourceEditorCommandName to be
Asciiify Comment:

Take a moment to check out the other keys found in the Item 0 dictionary that
help Xcode determine what code to execute for a given command.
XCSourceEditorCommandIdentifier is a unique ID Xcode will use to look up this

iOS 10 by Tutorials Chapter 3: Xcode 8 Source Editor Extensions

raywenderlich.com 50

command in the dictionary. XCSourceEditorCommandClassName then points to the
source editor command class responsible for performing this command.

Build and run the extension, open your test playground from earlier, and you’ll now
be able to navigate to Editor\Asciiify Comment\Asciiify Comment:

Now the name looks the way you’d expect, but it still doesn’t do anything. Your
next step will be to implement the functionality, but first you need to learn a bit
more about the data model used by source editor extensions.

Exploring the command invocation
Selecting a menu command associated with your extension will call
perform(with:completionHandler:) in the SourceEditorCommand implementation. In
addition to the completion handler, it’s passed an XCSourceEditorCommandInvocation.

This class contains the text buffer and everything you need to identify the
selections. Here’s a quick overview of its properties:

• commandIdentifier is a unique identifier for the invoked command, used to
determine what processing should be done. The identifier comes from the
XCSourceEditorCommandIdentifier key in the command definition found in
Info.plist.

• buffer is of type XCSourceTextBuffer and is a mutable representation of the
buffer and its properties to act upon. You’ll get into more detail about its makeup
below.

iOS 10 by Tutorials Chapter 3: Xcode 8 Source Editor Extensions

raywenderlich.com 51

• cancellationHandler is invoked by Xcode when the user cancels the extension
command. Cancellation can be done via a banner that appears within Xcode
during processing by a source editor extension. Extensions block other
operations, including typing in the IDE itself, to avoid merge issues.

Note The cancellation handler brings up an important point: Your extensions
need to be fast, because they block the main UI thread. Any type of network
activity or processor-intensive operations should be done at launch whenever
possible.

The buffer is the most interesting item in the XCSourceEditorCommandInvocation, as
it contains the data to act upon. Here’s an overview of the XCSourceTextBuffer
class’ notable properties:

• lines is an array of String objects in the buffer, with each item representing a
single line from the buffer. A line consists of the characters between two line
breaks.

• selections is an array of XCSourceTextRange objects that identify start and end
positions in the text buffer. Generally a single item will be present, representing
the user’s selection or cursor position in absence of selection. Multiple selections
are also possible with macOS using Shift+Command, and are supported here.

It’s also important to understand XCSourceTextPosition, the class used to represent
the start and end of selections. XCSourceTextPosition uses a zero-based coordinate
system and defines column and line indexes to represent buffer position.

The diagram below illustrates the relation between a buffer, its lines and selections.

iOS 10 by Tutorials Chapter 3: Xcode 8 Source Editor Extensions

raywenderlich.com 52

Now that you have a better understanding of the model involved, it’s time to dive in
and handle a request.

Build the editor command
Open SourceEditorCommand.swift and add the following to the top with the
other imports:

import Figlet

This is the framework used to create FIGlet representations of text.

Just inside the SourceEditorCommand class, add the following:

let figlet = FigletRenderer()

FigletRenderer is the primary controller involved in rendering FIGlets. You’ll call
this in the extension.

Now replace the body of perform(with:completionHandler:) with the following:

let buffer = invocation.buffer

// 1
buffer.selections.forEach({ selection in
 guard let selection = selection as? XCSourceTextRange,
 selection.start.line == selection.end.line else { return }

 // 2
 let line = buffer.lines[selection.start.line] as! String
 let startIndex = line.characters.index(
 line.startIndex, offsetBy: selection.start.column)
 let endIndex = line.characters.index(
 line.startIndex, offsetBy: selection.end.column)

 // 3
 let selectedText = line.substring(
 with: startIndex..<line.index(after: endIndex))
 // TODO: asciiify the text
})

This code does some validation and then examines
XCSourceEditorCommandInvocation to get the selected String and its location in the
buffer. Here’s how this happens:

1. You test each selection in the buffer to determine if it exists on a single line.
XCSourceTextRange contains a start and end position, and this code confirms
those positions are on the same line. This is necessary as FIGlets aren’t
designed to wrap.

2. Because the selection is only a single line, you find it in the buffer.lines array
using the selection’s start line position. You derive the startIndex and endIndex
of the selected text within the buffer using the index of the start of the line

iOS 10 by Tutorials Chapter 3: Xcode 8 Source Editor Extensions

raywenderlich.com 53

offset by the start and end column properties, respectively.

3. You then set selectedText to the selected String by using
substring(with:aRange:) and the selection start and end index. A TODO is here
to pass the resulting String to the FIGlet framework to generate the new
content.

4. The completionHandler() must be called to signify completion of processing for
this invocation.

Now that you’ve the selected text, it’s time to feed it to the FIGlet renderer and
update the text buffer with the results.

Still in perform(with:completionHandler:), replace // TODO: asciiify the text with
the following:

// 1
if let asciiified = figlet.render(input: selectedText) {
 // 2
 let newLines = asciiified.components(separatedBy: "\n")
 let startLine = selection.start.line
 // 3
 buffer.lines.removeObject(at: startLine)
 buffer.lines.insert(
 newLines,
 at: IndexSet(startLine ..< startLine + newLines.count))
}

Here’s a detailed look at what this does:

1. The FIGlet renderer method render(input:) takes the selectedText you
obtained earlier and returns its ASCII art version.

2. Using the newline character as a separator, this code breaks the resulting String
into the array newLines. It then sets startLine to the first line of the selection.
Because you’ve guarded against multi-line selections, the first line is the only
line.

3. This removes the originally selected line from the buffer, replacing it with those
in newLines. The insertion range for newLines is from the original selection’s
startLine through the number of lines being inserted.

Build and run, attach to Xcode and open the Playground from earlier. Select a piece
of text and then select Editor\Asciiify Comment\Asciiify Comment to kick off
the extension. And then you’ll see...

iOS 10 by Tutorials Chapter 3: Xcode 8 Source Editor Extensions

raywenderlich.com 54

Sigh. This probably looks quite familiar if you’ve used Xcode more than once or
twice. Select Report on the alert:

In the report window that appears, scroll until you see Application Specific
Information followed by a backtrace.

For once it’s not Xcode being flaky. It’s you!

Xcode is crashing due to a an NSSelectionArray — an internal class associated with

iOS 10 by Tutorials Chapter 3: Xcode 8 Source Editor Extensions

raywenderlich.com 55

selection ranges — that contains no ranges. By the time you call the completion
handler in perform(with:completionHandler:), buffer.selections is empty. Without
a selection or insertion point in the buffer, Xcode doesn’t know where to put the
cursor when it regains control. Whoops!

Take a look at the code you just added. When the extension kicks off, the buffer
selection is whatever you had selected. But near the end of
perform(with:completionHandler:), you call removeObject(at:) on the selected line
— thus removing the selection from the buffer.

For the sake of simplicity, you’re going to get around this by inserting the cursor at
a known position: the start of the buffer.

Still in SourceEditorCommand.swift, add the following to
perform(with:completionHandler:), just above the completion handler at the end of
the method:

let insertionPosition = XCSourceTextPosition(line: 0, column: 0)
let selection = XCSourceTextRange(
 start: insertionPosition,
 end: insertionPosition)
buffer.selections.setArray([selection])

Here you create an XCSourceTextPosition at the first line and column of the buffer.
The position is used to create an XCSourceTextRange where the start and end are
equal — which means you’re inserting the cursor without doing any selection. You
wrap selection in an array and set it to the buffer selections.

Build and run, and launch the extension as you’ve done before. This time, you’ll see
your asciiified text! As expected, the cursor appears at the start of the file.

Adding some polish
Congrats! You officially have a working source editor extension. But while the
asciiified text isn’t going to revolutionize the way you code, there are some things
you could do to make it a bit more useful.

iOS 10 by Tutorials Chapter 3: Xcode 8 Source Editor Extensions

raywenderlich.com 56

While the FIGlet you created looks glorious, it won’t compile as code. Since you are
working on a source editor, it makes sense to output these decorative items as
comments.

In SourceEditorCommand.swift, find the following line in
perform(with:completionHandler:):

let newLines = asciiified.components(separatedBy: "\n")

Replace that line with the following:

let newLines = asciiified.components(separatedBy: "\n")
 .map { "// \($0)" }

You’ve added a map to the existing String operation. The map simply appends //
and a space to the start of each line, thus changing your FIGlet into a comment.

Build and run and test the extension again. This time, you’ll see the FIGlet is
commented:

That’s definitely better, but not perfect. It’s a little jarring to have some text
selected, then have the cursor hop to the start of the file after the extension
returns. It would be a lot nicer to have the replaced text selected when the call
returns.

Add the following property to the top of perform(with:completionHandler:):

var newSelections = [XCSourceTextRange]()

This will be used to save the position of the FIGlet you create so you can select it in
the buffer before returning.

Add the following code to the bottom of the body, below if let asciiified:

// 1
let startPosition = XCSourceTextPosition(
 line: startLine,
 column: 0)

iOS 10 by Tutorials Chapter 3: Xcode 8 Source Editor Extensions

raywenderlich.com 57

// 2
var endLine = startLine
if newLines.count > 0 {
 endLine = startLine + newLines.count - 1
}
// 3
var endColumn = 0
if let lastLine = newLines.last {
 endColumn = lastLine.characters.count
}
// 4
let endPosition = XCSourceTextPosition(
 line: endLine,
 column: endColumn)

// 5
let selection = XCSourceTextRange(
 start: startPosition,
 end: endPosition)
newSelections.append(selection)

This code sets a selection range around the newly inserted FIGlet. Here’s how:

1. The selection startPosition is the first column of the originally selected line —
the same place you inserted the new text.

2. You calculate the line number for the last inserted line by adding the newly
inserted lines to the start line and subtracting one so the start line isn’t double
counted. If no lines were added, the startLine is used as the endLine.

3. You then determine the last column to select by looking at the last of the
newLines and counting its characters. This results in a selection point at the end
of the new insertion.

4. endPosition is an XCSourceTextPosition created with the newly calculated
endLine and endColumn.

5. Finally, you use the calculated positions to create an XCSourceTextRange covering
the area you want selected after the extension returns. To handle the possibility
of multiple selections, you save each range to the array newSelections.

Once you’ve created all the FIGlets, you can set the selections in the buffer. Look
just above the call to to completionHandler() and replace the code below:

let insertionPosition = XCSourceTextPosition(line: 0, column: 0)
let selection = XCSourceTextRange(
 start: bufferStartPosition,
 end: bufferStartPosition)
buffer.selections.setArray([selection])

...with the following:

if newSelections.count > 0 {
 buffer.selections.setArray(newSelections)

iOS 10 by Tutorials Chapter 3: Xcode 8 Source Editor Extensions

raywenderlich.com 58

} else {
 let insertionPosition = XCSourceTextPosition(line: 0, column: 0)
 let selection = XCSourceTextRange(
 start: insertionPosition,
 end: insertionPosition)
 buffer.selections.setArray([selection])
}

If newSelections contains any ranges, it’s used to set the buffer’s selections. Now
Xcode will select the newly inserted text when the buffer is returned.

If nothing was inserted, there is no selection. In that case, this code falls back to
the old method of setting an insertion at the top of the file.

Build and run, select some text in the editor, and launch the extension. This time,
you’ll see the new text ends up selected:

You’re probably going to be asciiifying with reckless abandon from now on, and
navigating to the menu item is going to cut into productivity. Fortunately, you can
map a key binding for your extension once it’s installed.

In Xcode, navigate to Xcode\Preferences. Select the Key Bindings tab and filter
for Asciiify Comment to find your new command. Double click the Key field and
hold down Control+Option+Command+A (or anything available you prefer) to
assign a hotkey.

iOS 10 by Tutorials Chapter 3: Xcode 8 Source Editor Extensions

raywenderlich.com 59

Now build and run the extension, select some text in the test editor and type
Control+Option+Command+A to trigger Asciiify.

Now that triggering your extension is this easy, you only have one thing left to do:

Dynamic commands
What you’ve built works well to asciiify text, but it doesn’t fully leverage the FIGlet
library. The library is capable of creating FIGlets with a number of different fonts,
whereas your extension doesn’t offer the user a choice.

You could go through and add each supported font to the extension Info.plist, but
that isn’t very flexible and it’s manually intensive. If you wanted the extension to
download new fonts, for instance, you’d have no way to dynamically add them to
the menu, and you’d have to update the extension.

Fortunately, source editor extensions allow an alternate, dynamic means to define
menu items. The XCSourceEditorExtension protocol defines an optional property
commandDefinitions that provides the same information about each command as
the Info.plist.

commandDefinitions is an array of dictionaries, with each dictionary representing a
single command. The dictionary keys are defined in a struct
XCSourceEditorCommandDefinitionKey and represent the command name, associated
source editor class, and a unique identifier. They map directly to keys provided in
the Info.plist here:

You’ll implement this property and use it to pull available fonts from the FIGlet
library.

Open SourceEditorExtension.swift and delete the commented template code
inside SourceEditorExtension.

iOS 10 by Tutorials Chapter 3: Xcode 8 Source Editor Extensions

raywenderlich.com 60

Add the following import above the class:

import Figlet

You’ll use the Figlet library to pull over a list of available fonts.

Now add the following method to SourceEditorExtension:

var commandDefinitions: [[XCSourceEditorCommandDefinitionKey: Any]] {
 // 1
 let className = SourceEditorCommand.className()
 let bundleIdentifier = Bundle(for: type(of: self)).bundleIdentifier!
 // 2
 return FigletRenderer.topFonts.map {
 fontName in
 let identifier = [bundleIdentifier, fontName].joined(separator: ".")
 return [
 // 3
 .nameKey: "Font: \(fontName)",
 .classNameKey: className,
 .identifierKey: identifier
]
 }
}

You’ve implemented the commandDefinitions property covered above. Here’s what
the code does:

1. className contains the String representation of the SourceEditorCommand class
responsible for processing the commands to be defined here. bundleIdentifier
is a String containing the name of the bundle this extension resides in, which
will be part of the unique identifier for the commands.

2. FigletRenderer has a topFonts property containing the names of fonts the
extension can use. This maps each fontName to the required dictionary. Before
returning the dictionary, the identifier for a given font command is created by
joining the bundleIdentifier and fontName.

3. You set each of the three required keys here. The nameKey value will appear in
the menu item, and consists of the word Font followed by the fontName. The
class name and identifier use values derived in earlier steps.

Note: You may have noticed another optional method defined in the template
of SourceEditorExtension. extensionDidFinishLaunching() is called as soon as
the extension is launched by Xcode and provides an opportunity to prepare
prior to a request. Asciiify, for instance, might take this opportunity to
download new fonts.

Now that the command definition contains a font name, you need to use it on the
receiving end.

iOS 10 by Tutorials Chapter 3: Xcode 8 Source Editor Extensions

raywenderlich.com 61

Open SourceEditorCommand.swift and add the following method to
SourceEditorCommand:

private func font(from commandIdentifier: String) -> String {
 let bundleIdentifier = Bundle(for: type(of: self)).bundleIdentifier!
 .components(separatedBy: ".")
 let command = commandIdentifier.components(separatedBy: ".")

 if command.count == bundleIdentifier.count + 1 {
 return command.last!
 } else {
 return "standard"
 }
}

This accepts a String representing the command identifier which you formatted in
the dynamic command creation as {Bundle Identifier}.{Font Name}. The method
first obtains arrays representing the period delimited components of the
bundleIdentifier and the incoming commandIdentifier.

It then checks that the count of items in the command array is one more than the
count for those in bundleIdentifier. This enables a check to see that the
commandIdentifier consists only of the bundle identifier followed by a command
name. In this case, the command name would be the font name.

If the count comparison determines a command name is present, the final array
element is the font name and it gets returned. If it isn’t, the code falls back to
returning "standard", which is the default font name.

Now add the following property to the top of perform(with:completionHandler:):

let selectedFont = font(from: invocation.commandIdentifier)

This uses the new font(from:) method to set selectedFont with the font name to
be processed.

Now find where you set asciiified using figlet.render(input:). Replace the
render(input:) call with the following:

figlet.render(input: selectedText, withFont: selectedFont)

This now uses render(input:withFont:), which accepts a font name String as its
second argument. This uses selectedFont to render the text with the chosen font.

Build and run, and navigate to the AsciiifyComment menu once again. This time,
you’ll see several new menu options, courtesy of commandDefinitions!

iOS 10 by Tutorials Chapter 3: Xcode 8 Source Editor Extensions

raywenderlich.com 62

The extension previously used the Standard font. Select something different this
time to confirm your new commands do indeed pass a different parameter to the
FIGlet library.

Note: Of course, because you’ve replaced the Asciiify Comment command
with the new dynamic commands, your key binding no longer works. If you
like, you can add new key bindings for each of the new Asciiify commands.

Where to go from here?
In a short amount of time, you’ve created a functional source editor extension. In
the process, you learned everything you need to know to implement your own idea
for a source editor extension.

While it is disappointing to lose the progress made in the thriving plugin
community, exciting times are ahead. The simplicity of source editor extensions
make Xcode extension development much more accessible to the masses. Creating
extensions for your own refactoring efforts, or to address standards on your
product, can be done quickly.

The landscape extensions will continue to change as Apple opens up more Xcode
functionality to developers. It’s up to the community to adopt and leverage source
editor extensions while also pleading the case for more Xcode extension points to
fill any voids.

For more insight into source editor extensions, see the 2016 WWDC session on the
topic here: apple.co/2byNQd6

iOS 10 by Tutorials Chapter 3: Xcode 8 Source Editor Extensions

raywenderlich.com 63

4Chapter 4: Beginning Message
Apps
By Rich Turton

iOS 10 brought some fun features to iMessage – and also opened up the app to
third party developers. This means you can create and sell things to use in
iMessage such as applications and sticker packs, and unlike other extension points,
Messages apps don't need to have a "standard" iOS app to work.

In this chapter, you'll learn how to make a sticker app, which is a great introduction
to the Messages framework.

You'll build the sticker pack to start. Next, you'll make a Messages app to provide
stickers using some built-in classes. Finally, you'll create a custom sticker app using
a collection view.

Ready to get sticky? :]

Getting started
Sticker packs are the simplest possible iMessage application you can make. So
simple, in fact, that you don't need to write any code!

Create a new Xcode project and choose the iOS\Application\Sticker Pack
Application template:

raywenderlich.com 64

Name the project RWPeeps, click Next, and then Create.

The project will likely be one of the simplest Xcode projects you've ever seen! It
only contains one thing – a specialized asset catalog named Stickers.xcstickers.
Within the asset catalog is a place for the app icon and a folder named Sticker
Pack:

The resources for this chapter contains a folder called RWPeepsImages. Drag
images from that folder into the Sticker Pack folder:

You're done! No, seriously – you're done.

iOS 10 by Tutorials Chapter 4: Beginning Message Apps

raywenderlich.com 65

Build and run your "app", and you'll see that Xcode now offers you a choice of host
applications to run. Select Messages, since that's what your sticker pack is
designed for:

The iOS simulator now contains a working Messages app, where you can view both
sides of a conversation. This lets you test and develop Messages apps with ease.

Once the simulator has launched and Messages opens, you'll see an app button at
the bottom of the screen:

Tap the button and wait a second or so; it seems to take some time for the

iOS 10 by Tutorials Chapter 4: Beginning Message Apps

raywenderlich.com 66

simulator to launch your app. You'll see your stickers are ready to go! Tap any
sticker to send it, or tap and hold to "peel" it off and attach to another message:

You can use the back button in the navigation bar to switch to the other side of the
conversation.

There are a few rules around sticker pack applications:

• The sticker images must be PNG, APNG, GIF or JPEG format, and less than 500KB in
size.

• Messages will display all the stickers in a pack at the same size.

• You can choose either small (100x100), medium (136x136) or large (206x206) for
the size of your sticker pack.

• You should supplied the images at 3x resolution only.

Once you have recovered from the dizzying excitement of static sticker packs,
you're ready to move on to a sticker application!

Creating a sticker application
Sticker apps offer way more functionality beyond sticker packs; instead of relying
on a static set of images, you can add custom UI and control the stickers available
at runtime.

Next you're going to make a mouth-watering sticker app called Stickerlicious, so

iOS 10 by Tutorials Chapter 4: Beginning Message Apps

raywenderlich.com 67

you can send yummy treats to your friends via iMessage. You'll learn how to create
stickers dynamically from code, and you'll also learn how to filter and divide these
stickers to help your users quickly find the stickers they're looking for.

Close your RWPeeps project if you still have it open, and create a new project in
Xcode. Choose the iOS\Application\iMessage Application template:

Name the project Stickerlicious and make sure the language is Swift. Click Next,
and then Create.

This is another new application template. Here's a quick tour of what you get in the
template:

• An application target, named Stickerlicious – this is necessary because
message applications are actually extensions of standard applications, much like
Today extensions. However, with Messages extensions, the parent app doesn't
have to do anything and doesn't appear on the home screen. You can safely
ignore the application.

• A Messages extension, named MessagesExtension. This is what actually runs
inside Messages, and is where you'll do all your work.

• Of additional interest inside the Messages extension are a storyboard, an asset
catalog, and MessagesViewController.swift, which is a subclass of
MSMessagesAppViewController.

• Messages.framework, which contains all of the message-related classes you
will need.

All Messages apps live inside a MSMessagesAppViewController subclass.
MSMessagesAppViewController contains several properties and methods of interest
when building more complex message apps, but for a dynamic sticker pack, you
can ignore all of them.

iOS 10 by Tutorials Chapter 4: Beginning Message Apps

raywenderlich.com 68

Note: For more information on MSMessagesAppViewController, see Chapter 6,
"Intermediate Message Apps".

For now, open MessagesViewController.swift and delete all of the template
methods, leaving you with an empty class declaration.

The sticker browser view controller
The Messages framework contains a pair of classes, MSStickerBrowserView and
MSStickerBrowserViewController, which you can use to display your stickers. Think
of them as a pair, like UITableView and UITableViewController, or UICollectionView
and UICollectionViewController.

MSMessagesAppViewController has to be the root view controller of your Messages
extension, so to add a sticker browser, you have to embed it as a child view
controller.

Open MainInterface.storyboard and delete the "Hello World" label from the
Messages View Controller scene.

In the object library, find a Container View and drag it into the scene. With the
view selected, add constraints to pin it to all edges of the scene, not relative to the
margins:

When the frames are updated, the container view will fill the scene.

Before you can assign a class to the embedded view controller, you need to create

iOS 10 by Tutorials Chapter 4: Beginning Message Apps

raywenderlich.com 69

it. Make a new file and choose the iOS\Source\Swift File template. Name the file
CandyStickerBrowserViewController.swift.

Delete the contents of the file and replace them with the following:

import Messages

class CandyStickerBrowserViewController: MSStickerBrowserViewController {

}

Switch back to MainInterface.storyboard and select the embedded view
controller. In the Identity Inspector, change the class to
CandyStickerBrowserViewController.

Return to CandyStickerBrowserViewController.swift. Add the following
property to hold the stickers you are going to display:

var stickers = [MSSticker]()

MSSticker is the model object representing a Messages Sticker.

Add the following constant above the class declaration to hold an array of image
names:

let stickerNames = ["CandyCane", "Caramel", "ChocolateBar",
 "ChocolateChip", "DarkChocolate", "GummiBear",
 "JawBreaker", "Lollipop", "SourCandy"]

These names all correspond to images that have been supplied for you in the
starter materials for this chapter. Find the candy folder and drag it into the
MessagesExtension group in Xcode:

iOS 10 by Tutorials Chapter 4: Beginning Message Apps

raywenderlich.com 70

Add the following extension to CandyStickerBrowserViewController.swift,
below the class declaration:

extension CandyStickerBrowserViewController {

 func loadStickers() {
 stickers = stickerNames.map({ name in
 let url = Bundle.main.url(forResource: name,
 withExtension: "png")!
 return try! MSSticker(
 contentsOfFileURL: url,
 localizedDescription: name)
 })
 }

}

This method creates an array of MSSticker elements by converting the names
supplied in stickerNames to URLs. In your own apps, you could create stickers from
packaged resources, or files that you have downloaded.

In the main class body, override viewDidLoad() as follows and call your new
method:

override func viewDidLoad() {
 super.viewDidLoad()
 loadStickers()
 stickerBrowserView.backgroundColor = #colorLiteral(
 red: 0.9490196078, green: 0.7568627451,
 blue: 0.8196078431, alpha: 1)
}

In this method you also set a sweet pink color for the background.

The last step is to set up the data source methods for the sticker browser view. This
should be a familiar task if you've ever written a table view or collection view data
source.

The protocol MSStickerBrowserViewDataSource has two methods; implement them
both by adding the following extension:

//MARK: MSStickerBrowserViewDataSource
extension CandyStickerBrowserViewController {
 override func numberOfStickers(in stickerBrowserView:
 MSStickerBrowserView) -> Int {
 return stickers.count
 }

 override func stickerBrowserView(_ stickerBrowserView:
 MSStickerBrowserView, stickerAt index: Int) -> MSSticker {
 return stickers[index]
 }
}

iOS 10 by Tutorials Chapter 4: Beginning Message Apps

raywenderlich.com 71

These methods are much simpler than table or collection view data sources; you
have a number of stickers, and a sticker for a particular index.

Build and run on the iPhone 6S simulator, and choose to launch into the Messages
app. Tap the Apps button and you'll need to scroll all the way to the right to find
your new app. Wait a moment for the simulator to launch your app, and eventually
you'll see the following:

That's nice, but so far you've only made something that looks exactly like a sticker
pack application – just one that took more work!

Don't fret; in the next section you're going to add some additional UI and dynamic
features to your app.

Adding dynamic stickers
You're about to introduce a special Chocoholic mode for those special times when
only pictures of chocolate will do for ruining – er, sorry – enhancing your iMessage
chats. Chocoholic mode will dynamically update the available stickers before your
sugar-crazed eyes.

To start, open MainInterface.storyboard. Select the container view and use the
resizing handle to drag down the top of the view by about 70 points to give yourself
some room to work:

iOS 10 by Tutorials Chapter 4: Beginning Message Apps

raywenderlich.com 72

Select the top orange constraint and delete it. Drag a switch and a label into the
space you've created, and set the label's text to Chocoholic Mode.

Select the label and the switch, then use the Stack button to embed them in a
horizontal stack view:

With the stack view selected, change the Spacing in the Attributes Inspector to 5.
Using the Pin menu, add constraints from the stack view to its top, leading and
bottom neighbors:

iOS 10 by Tutorials Chapter 4: Beginning Message Apps

raywenderlich.com 73

Select the switch and set its value to Off in the Attributes Inspector. Open the
Assistant editor, and make sure it's displaying MessagesViewController.swift.
Control-drag from the switch into the MessagesViewController class to create a new
action, called handleChocoholicChanged with a sender type of UISwitch.

You're done with Interface Builder for now, so you can open
MessagesViewController.swift in the main editor if you'd like some more elbow
room.

Add the following new Chocoholicable protocol to the file:

protocol Chocoholicable {
 func setChocoholic(_ chocoholic: Bool)
}

Update the action method you just created above:

@IBAction func handleChocoholicChanged(_ sender: UISwitch) {
 childViewControllers.forEach({ vc in
 guard let vc = vc as? Chocoholicable else { return }
 vc.setChocoholic(sender.isOn)
 })
}

This will pass the chocoholic mode down to any child view controller that is
Chocoholicable. There aren't any at present, so switch to
CandyStickerBrowserViewController.swift to make it so.

First, update the declaration of loadStickers():

iOS 10 by Tutorials Chapter 4: Beginning Message Apps

raywenderlich.com 74

func loadStickers(_ chocoholic: Bool = false) {

This lets you pass in the chocoholic mode, with a default value of false so the
existing call from viewDidLoad() remains unaffected.

Next, replace the whole function body with this code:

stickers = stickerNames.filter({ name in
 return chocoholic ? name.contains("Chocolate") : true
}).map({ name in
 let url = Bundle.main.url(forResource: name,
 withExtension: "png")!
 return try! MSSticker(contentsOfFileURL: url,
 localizedDescription: name)
})

This will filter the names to only show chocolate-containing stickers if chocoholic
mode is on.

Finally, add the following extension to make CandyStickerBroswerViewController
conform to Chocoholicable:

extension CandyStickerBrowserViewController: Chocoholicable {
 func setChocoholic(_ chocoholic: Bool) {
 loadStickers(chocoholic)
 stickerBrowserView.reloadData()
 }
}

Build and run; now you can fulfill all your sticky, chocolatey messaging needs:

iOS 10 by Tutorials Chapter 4: Beginning Message Apps

raywenderlich.com 75

Creating a custom sticker browser
MSStickerBrowserView offers you little scope for customization. To really take control
of your sticker app, you'll work with MSStickerView. This is the view that powers
MSStickerBrowserView, and you can use it on its own as well.

It gives you all the sticker functionality – displaying and scaling the stickers,
tapping to add to the message, drag and drop – with no extra code. All you need to
do is put it on the screen and give it an MSSticker.

In this final part of the chapter you will replace the MSStickerBrowserViewController
subclass with a UICollectionViewController subclass which will allow you to divide
the stickers up into labelled sections.

In MainInterface.storyboard, select the Candy Sticker Browser scene and
delete it. Drag in a UICollectionViewController, then Control-drag from the
container view to the collection view controller and choose the Embed segue.

Select the Collection View in the collection view controller, open the Attributes
Inspector and check the Accessories\Section Header checkbox.

Open the Size Inspector, and set Header Size\Height to 25. Set the Min Spacing
and Section Insets values to 0.

Drag a label into the section header, using the guides to position it in the center.
With the Align button at the bottom of the storyboard, add constraints to pin it to
the horizontal and vertical centers of the view:

Drag in a Visual Effect View with Blur from the object library onto the section
header. Using the Pin button at the bottom of the storyboard, add constraints to
pin the view to all sides of the section header, with zero spacing.

Before continuing, make sure the Label is displayed on top of the Visual Effect

iOS 10 by Tutorials Chapter 4: Beginning Message Apps

raywenderlich.com 76

View. If not, open the document outline on the left of Interface Builder and place it
below the Visual Effect View.

Drag in a plain UIView to the collection view cell and, using the same technique, pin
it to all edges of the cell. Select the view, and using the Identity Inspector, change
the class to MSStickerView.

Now you need to create custom subclasses for the section header, collection view
cells and view controller.

For the header, create a new file and choose iOS\Source\Cocoa Touch Class.
Name the class SectionHeader and make it a subclass of
UICollectionReusableView.

For the cell, create a new file and choose iOS\Source\Cocoa Touch Class again.
Name the class StickerCollectionViewCell and make it a subclass of
UICollectionViewCell.

Add the following import statement to the top of
StickerCollectionViewCell.swift:

import Messages

MSStickerView is part of the Messages framework. Since you'll be making an outlet
to one of these, the cell needs to know what that class is.

The final new class to create is the view controller. Create a new file and choose
iOS\Source\Cocoa Touch Class again, name the class
StickerCollectionViewController and make it a subclass of
UICollectionViewController.

Replace the templated contents with the following:

import UIKit
import Messages

class StickerCollectionViewController: UICollectionViewController {
}

Switch back to MainInterface.storyboard to connect everything up.

First, choose the collection view controller and use the Identity Inspector to set the
class to StickerCollectionViewController.

Choose the section header (labeled Collection Reusable View in the Document
Outline), change its class to SectionHeader, and use the Attributes Inspector to
set the reuse identifier to SectionHeader.

Choose the cell, change its class to StickerCollectionViewCell, and set the reuse
identifier to StickerCollectionViewCell.

Open the Assistant editor, make sure StickerCollectionViewCell.swift is

iOS 10 by Tutorials Chapter 4: Beginning Message Apps

raywenderlich.com 77

displayed, and create a new outlet from the MSStickerView inside the cell to the
collection view cell subclass. Name it stickerView.

Now switch the Assistant editor to SectionHeader.swift and create a new outlet
from the label in the section header to the SectionHeader class file. Name it label.

Check the document outline in the storyboard to make sure you haven't missed
anything:

Close the Assistant editor and switch to StickerCollectionViewController.swift.

The stickers will be grouped in this view controller using a dictionary instead of an
array. Add the following code above the class declaration:

let stickerNameGroups: [String: [String]] = [
 "Crunchy": ["CandyCane","JawBreaker","Lollipop"],
 "Chewy": ["Caramel","GummiBear","SourCandy"],
 "Chocolate": ["ChocolateBar","ChocolateChip","DarkChocolate"]
]

Dictionaries aren't great data objects, because you need to remember keys and
values.

To help with this, still above the class declaration, define the following new struct
which will form the basis of your model:

struct StickerGroup {
 let name: String
 let members: [MSSticker]

iOS 10 by Tutorials Chapter 4: Beginning Message Apps

raywenderlich.com 78

}

Inside the StickerCollectionViewController class, add a property to hold the
model:

var stickerGroups = [StickerGroup]()

Just as you did with the sticker browser view controller subclass, you'll need to
implement the loadStickers method. Add it in an extension as follows:

extension StickerCollectionViewController {
 // 1
 func loadStickers(_ chocoholic: Bool = false) {
 // 2
 stickerGroups = stickerNameGroups.filter({ (name, _) in
 // 3
 return chocoholic ? name == "Chocolate" : true
 }).map { (name, stickerNames) in
 // 4
 let stickers: [MSSticker] = stickerNames.map { name in
 let url = Bundle.main.url(forResource: name,
 withExtension: "png")!
 return try! MSSticker(contentsOfFileURL: url,
 localizedDescription: name)
 }
 // 5
 return StickerGroup(name: name, members: stickers)
 }
 // 6
 stickerGroups.sort(by: { $0.name < $1.name })
 }
}

This is quite similar to the previous loadStickers method. Here's a breakdown:

1. This takes a chocoholic mode with a default value.

2. Filtering on a dictionary takes a tuple of the key and value. For filtering we can
ignore the value; ergo, the presence of "_".

3. The filtering now takes place on the group name, rather than on a substring of
the sticker name.

4. There is an additional mapping step to turn the array of names from the
dictionary into an array of stickers.

5. You then convert each dictionary entry to a StickerGroup struct.

6. Finally, you sory the array of sticker groups by name, since dictionaries don't
have a guaranteed ordering.

Modify viewDidLoad() to call your new method and set up a few things:

override func viewDidLoad() {

iOS 10 by Tutorials Chapter 4: Beginning Message Apps

raywenderlich.com 79

 super.viewDidLoad()
 loadStickers()
 if let layout = collectionView?.collectionViewLayout as?
 UICollectionViewFlowLayout {
 layout.sectionHeadersPinToVisibleBounds = true
 }
 collectionView?.backgroundColor = #colorLiteral(
 red: 0.9490196078, green: 0.7568627451,
 blue: 0.8196078431, alpha: 1)
}

This uses the nice new feature of UICollectionViewFlowLayout, which gives you
sticky section headers.

You may have noticed that the sticker browser view you used before managed to fit
three columns onto an iPhone 6 in portrait, despite the stickers being 136 points
across and the iPhone 6 only being 375 points across. You're going to perform a
similar trick and make sure you get at least three columns of stickers.

Add the following extension:

// MARK: UICollectionViewDelegateFlowLayout
extension StickerCollectionViewController {
 func collectionView(_ collectionView: UICollectionView,
 layout collectionViewLayout: UICollectionViewLayout,
 sizeForItemAtIndexPath indexPath: NSIndexPath) -> CGSize {
 let edge = min(collectionView.bounds.width / 3, 136)
 return CGSize(width: edge, height: edge)
 }
}

This sets the cells to a square shape with an edge of 136 points or a third of the
screen width, whichever is least.

The collection view datasource methods are next. Add the following extension:

extension StickerCollectionViewController {
 override func numberOfSections(
 in collectionView: UICollectionView) -> Int {
 return stickerGroups.count
 }

 override func collectionView(_ collectionView:
 UICollectionView,
 numberOfItemsInSection section: Int) -> Int {
 return stickerGroups[section].members.count
 }
}

The two .count methods are simple, thanks to the StickerGroup struct you're using
as a model object.

The cell configuration method is also straightforward. Add the following code to the
extension you just created:

iOS 10 by Tutorials Chapter 4: Beginning Message Apps

raywenderlich.com 80

override func collectionView(_ collectionView: UICollectionView,
 cellForItemAt indexPath: IndexPath) -> UICollectionViewCell {
 let cell = collectionView.dequeueReusableCell(
 withReuseIdentifier: "StickerCollectionViewCell",
 for: indexPath) as! StickerCollectionViewCell

 let sticker =
 stickerGroups[indexPath.section].members[indexPath.row]
 cell.stickerView.sticker = sticker

 return cell
}

This gets the correct sticker for the section and item and passes it to the sticker
view in the cell. That's all you need to get a working sticker view.

Add the final method for the data source extension to populate the section header:

override func collectionView(_ collectionView: UICollectionView,
 viewForSupplementaryElementOfKind kind: String,
 at indexPath: IndexPath) -> UICollectionReusableView {
 guard kind == UICollectionElementKindSectionHeader else {
 fatalError()
 }

 let header = collectionView.dequeueReusableSupplementaryView(
 ofKind: kind, withReuseIdentifier: "SectionHeader",
 for: indexPath) as! SectionHeader
 header.label.text = stickerGroups[indexPath.section].name
 return header
}

You're almost done. The last thing to add is to make the view controller
Chocoholicable. Add the following extension, which will look almost identical to the
one you used for the sticker browser view controller:

extension StickerCollectionViewController: Chocoholicable {
 func setChocoholic(_ chocoholic: Bool) {
 loadStickers(chocoholic)
 collectionView?.reloadData()
 }
}

Build and run; your candy neatly separates into sections, so you know just what
you're going to get. Perhaps Forrest Gump should have used a collection view? :]

iOS 10 by Tutorials Chapter 4: Beginning Message Apps

raywenderlich.com 81

Where to go from here?
Congratulations! At this point, you know how to make a basic sticker pack ("Look
ma, no code!") and how to create a custom user interface for your stickers.

There's much more you can do with Messages beyond sticker packs. In the next
chapter, you'll learn how to create custom messages. Specifically, you'll create a
cool drawing and guessing game you can play right within Messages!

iOS 10 by Tutorials Chapter 4: Beginning Message Apps

raywenderlich.com 82

5Chapter 5: Intermediate
Message Apps
By Rich Turton

In the previous chapter, you saw how to build apps containing custom stickers for
use in Messages. Stickers are great, but you can do far more than that.

In this chapter, you're going to learn how to send fully custom, updatable
messages. This will allow you to build a game called WenderPic, where one player
tries to draw something with a limited supply of ink, and their opponent tries to
guess what it is. Drawings and guesses all travel via iMessage.

Ready to channel your inner Picasso?

Getting started
Open the WenderPic starter project provided with the materials for this chapter.
There's quite a lot already present in the project, but none of it really has to do
with Messages. That's where you come in.

Here's a quick tour of the project:

• Just like in the previous chapter, what you're building is a MessagesExtension,
and not a "full" app like you're used to. The code for the extension is inside the
MessagesExtension group.

• The Models group contains the model object for the game, WenderPicGame.

• The Controllers group contains the three view controllers used to play the
game; SummaryViewController, which shows the title of the game and a start
button; DrawingViewController, which handles the drawing; and
GuessesViewController, which lets you enter a guess.

• MainInterface.storyboard shows the root messages view controller and the UI
for the three game controllers. You'll build code to add these as child view
controllers.

raywenderlich.com 83

In this chapter, the root messages view controller will do a lot more work than it did
in the previous one, so let's start with an overview of that.

The Messages app view controller
You briefly encountered MSMessagesAppViewController in the previous chapter; it's a
UIViewController subclass, but the Messages framework calls several interesting
functions on it.

There are life cycle functions, similar to viewDidLoad(_:), viewWillAppear(_:), and
its brethren:

• willBecomeActive(with:): Called when your Messages app is activated. As you'll
learn later, the current conversation is passed in here.

• didResignActive(with:): Called when the user is done with your app, either
because they switched conversations, switched to another app, or left the
Messages app.

There are functions relating to the current conversation:

• didReceive(_: conversation:): Called when a message that was generated by
your extension is received. It's important to note that your extension does not
get told about every message your user receives — only those relevant to your
extension.

• didStartSending(_: conversation:) and didCancelSending(_: conversation:):
Called when the user hits send for one of your messages, or cancels sending.

Finally, there are functions relating to presentation-style transitions. Messages apps
can have two presentation styles; Compact, where the app fills the space normally
taken by the keyboard, or Expanded, where the app fills the entire screen.
willTransition(to:) and didTransition(to:) are called when the presentation style
changes.

The idea of the MSMessagesAppViewController is to act as the root of the rest of your
Messages extension, so it can handle all the things above. Typically, the interface
for your app is handled in separate view controllers which are added as children –
this is what you'll be doing in the next part.

Adding the first child view controller
You'll add all of the game view controllers mentioned above as children of
MessagesViewController. Adding a child view controller involves quite a lot of
boilerplate, so you'll add a utility function to avoid duplicating yourself thrice.

Open MessagesViewController.swift and add the following extension:

iOS 10 by Tutorials Chapter 5: Intermediate Message Apps

raywenderlich.com 84

// MARK: Child View Controllers
extension MessagesViewController {
 func switchTo(viewController controller: UIViewController) {
 // Remove any existing child view controller
 for child in childViewControllers {
 child.willMove(toParentViewController: .none)
 child.view.removeFromSuperview()
 child.removeFromParentViewController()
 }

 // Add the new child view controller
 addChildViewController(controller)

 controller.view.translatesAutoresizingMaskIntoConstraints = false
 view.addSubview(controller.view)

 NSLayoutConstraint.activate([
 controller.view.leftAnchor.constraint(equalTo: view.leftAnchor),
 controller.view.rightAnchor.constraint(equalTo: view.rightAnchor),
 controller.view.topAnchor.constraint(equalTo:
topLayoutGuide.bottomAnchor),
 controller.view.bottomAnchor.constraint(equalTo: view.bottomAnchor)
])

 controller.didMove(toParentViewController: self)
 }
}

First, you remove any existing child view controllers, then you add the controller
passed in by the function. Finally, you pin its view to all edges of the messages view
controller's view.

The first view controller the user will see is the SummaryViewController – a controller
with the title of the game and a "new game" button.

Add the following utility function to the extension to create a new
SummaryViewController:

func instantiateSummaryViewController(game: WenderPicGame?) ->
 UIViewController {
 guard let controller = storyboard?.instantiateViewController(
 withIdentifier: "summaryVC") as? SummaryViewController
 else {
 fatalError("Unable to instantiate a summary view controller")
 }

 controller.game = game
 return controller
}

This function creates and configures a new instance of a SummaryViewController
from the Storyboard.

The decision for which of the three game view controllers you will show at any point
is based on a combination of the current conversation and the current presentation

iOS 10 by Tutorials Chapter 5: Intermediate Message Apps

raywenderlich.com 85

style. The following function, which you will flesh out further as the project
progresses, makes that decision. For now, you'll just show the
SummaryViewController.

Add the following code to the extension:

func presentViewController(
 forConversation conversation: MSConversation,
 withPresentationStyle style: MSMessagesAppPresentationStyle) {

 let controller: UIViewController

 // TODO: Create the right view controller here
 controller = instantiateSummaryViewController(game: nil)
 switchTo(viewController: controller)
}

The final piece is to call this function at just the right time. Add the following code
to willBecomeActive(with:):

presentViewController(forConversation: conversation,
 withPresentationStyle: presentationStyle)

Build and run, and attach to the Messages app as you did in the previous chapter.
You should see the summary view controller like so:

Tapping the "New Game" button does nothing yet. You'll fix this next.

Switch back to Xcode and open MessagesViewController.swift. The summary
view controller has a delegate, which you need to set. Make

iOS 10 by Tutorials Chapter 5: Intermediate Message Apps

raywenderlich.com 86

MessagesViewController conform to SummaryViewControllerDelegate by adding the
following extension:

extension MessagesViewController: SummaryViewControllerDelegate {
 func handleSummaryTap(forGame game: WenderPicGame?) {
 requestPresentationStyle(.expanded)
 }
}

You want the app to change to the expanded presentation style when you tap the
button on the summary view controller so that you can do full-screen drawing.

Set the summary view controller's delegate by adding the following line to
instantiateSummaryViewController(game:), above the return statement:

controller.delegate = self

Build and run again, and tap the button; the app transitions to the expanded size!

Nice, but that's only half of what you want. In the next part you'll switch to the
drawing view controller as well.

Switching view controllers
When the user taps to start a new game, the app transitions to the expanded
presentation style. You want to create a new WenderPicGame and show the drawing
view controller.

iOS 10 by Tutorials Chapter 5: Intermediate Message Apps

raywenderlich.com 87

To do this, you need to call the utility function which chooses and presents the view
controller whenever a change in the presentation style occurs.

To do this, open MessagesViewController.swift and add the following code to
willTransition(to:):

if let conversation = activeConversation {
 presentViewController(
 forConversation: conversation,
 withPresentationStyle: presentationStyle)
}

activeConversation is an optional property of MSMessagesAppViewController.

Inside your extension where you work with the child view controllers, add a utility
function to the to make a new DrawingViewController:

func instantiateDrawingViewController(game: WenderPicGame?) ->
 UIViewController {
 guard let controller = storyboard?.instantiateViewController(
 withIdentifier: "drawingVC") as? DrawingViewController
 else {
 fatalError("Unable to instantiate a drawing view controller")
 }

 controller.game = game
 return controller
}

This is almost identical to the function that creates the SummaryViewController, and
only differs in the type of controller it returns.

Move to presentViewController(forConversation: withPresentationStyle:). Find
the TODO: comment you added earlier, and replace it, along with the line where you
create the SummaryViewController, with the following:

switch style {
case .compact:
 controller = instantiateSummaryViewController(game: nil)
case .expanded:
 let newGame = WenderPicGame.newGame(drawerId:
 conversation.localParticipantIdentifier)
 controller = instantiateDrawingViewController(game: newGame)
}

Instead of always creating the SummaryViewController, you are now switching on
the presentation style. When the app is compact, the summary controller will be
shown; when expanded, you'll see the drawing controller instead.

You create a new WenderPicGame using a UUID which represents the person doing
the drawing. This UUID is available as a property on MSConversation and is
consistent as long as the user keeps your app installed and enabled. This will let the
app track the progress of a game between two participants.

iOS 10 by Tutorials Chapter 5: Intermediate Message Apps

raywenderlich.com 88

Build and run, and tap the new game button, then let your artistic side go wild!

When you've run out of ink, hit the Done button...and nothing happens. You need
to pack up your image in a message and send it to your friend. You'll solve this in
the next part.

Creating a message
The Messages framework has these model classes: a Conversation, a Message,
and a Session. Here's a brief overview of each one.

Conversation
MSConversation represents the back-and-forth stream of messages visible in the
Messages app. This is the view that has the speech bubbles when you are texting.

You don't have full access to the conversation, which is understandable given the
privacy implications. However, you can access the following properties:

• localParticipantIdentifier: A UUID representing the user of the device — i.e.
the person who is sending messages from your extension. You used this when
creating a new game earlier.

• remoteParticipantIdentifiers: An array of UUIDs representing the recipient(s)
of any sent messages.

• selectedMessage: An optional property representing the selected message, if the

iOS 10 by Tutorials Chapter 5: Intermediate Message Apps

raywenderlich.com 89

selected message was generated by your extension.

A conversation also has functions to add attachments, messages, text or stickers to
the input field. Sending is still at the discretion of the user. This is similar to the way
MFMessageComposeViewController works – your app can populate a message and
have it all set up and ready to go, but the user still has control over the actual
sending of the message. This way, nothing will be sent without the user's content.

Message
MSMessage represents an interactive message. These are unique to, and only
accessible by, your Messages app. If someone receives a message created by your
extension, and they don't have it installed, they'll be prompted to install it. The
most important properties of a message, which must be set before the message is
sent, are the layout and the URL.

The layout is a separate class which controls how the message appears in the
conversation. You don't get to fully customize the layout, you simply set whichever
of its properties (image, caption and so on) are appropriate for your message.

The URL is your opportunity to send any custom data along with the message. You
can include key-value pairs using NSURLQueryItem. You'll see these in action later in
this chapter.

Session
MSSession is used when a message is intended to be updated as the conversation
progresses, rather than creating new entries in the conversation each time. If you
create a message and associate it with a session, it will be shown normally. If you
send another message with the same session, the previous message will be moved
down to the bottom of the conversation and be updated with the new information.

Imagine playing a game of Tic-Tac-Toe over Messages. With no sessions, the
transcript would be a series of board images as the game progressed. With
sessions, however, you'd only have one board image, with the latest positions
appearing as each player made their move.

You can decide for yourself if sessions make sense for your messaging app.

Sending a message
With that bit of theory covered, it's time to apply what you've learned. To recap the
current state of the app, you can draw a picture, but not send it to your friend.

In MessagesViewController.swift, add the following function in a new extension:

extension MessagesViewController {
 func composeMessage(with game: WenderPicGame,
 caption: String, session: MSSession? = .none) -> MSMessage {
 //1

iOS 10 by Tutorials Chapter 5: Intermediate Message Apps

raywenderlich.com 90

 let layout = MSMessageTemplateLayout()
 //2
 layout.image = game.currentDrawing
 //3
 layout.caption = caption
 //4
 let message = MSMessage(session: session ?? MSSession())
 message.layout = layout

 return message
 }
}

Here's the play-by-play:

1. MSMessageTemplateLayout is currently the only available message layout class, so
you have to use it. This could very well change in future versions of the
Messages framework.

2. The DrawingViewController updates the game with the current state of the
image. You use this image for the layout, so it will be part of the message.

3. The caption is text that appears under the image.

4. You create a new message with either the existing session, or if one doesn't
exist, a new session.

The DrawingViewController, like the SummaryViewController, has a delegate which is
called when the user taps the done button. Add the following extension to
MessagesViewController.swift:

extension MessagesViewController: DrawingViewControllerDelegate {
 func handleDrawingComplete(game: WenderPicGame?) {
 defer { dismiss() }
 guard
 let conversation = activeConversation,
 let game = game
 else { return }

 let message = composeMessage(with: game, caption: "Guess my
WenderPic!", session: conversation.selectedMessage?.session!)

 conversation.insert(message) { (error) in
 if let error = error {
 print(error)
 }
 }
 }
}

This function uses the theory covered earlier. You get the current conversation and
insert a custom message into it. Finally, you dismiss the drawing view.

Next, update instantiateDrawingViewController(game:) so that the delegate is set:

iOS 10 by Tutorials Chapter 5: Intermediate Message Apps

raywenderlich.com 91

controller.delegate = self

Build and run, create another artistic, ink-limited masterpiece and tap the done
button – your message is ready to send!

The appearance of the message, with the image and caption, are defined by the
layout object. You don't get any control over the appearance – but you don't have
to do any work either. We'll call it a draw. :]

Tap the send button and the message will go to the other fake contact in the
simulator. Tap the back button and switch to the other side of the conversation, and
you'll see what the recipient would see. Tap the message and you'll simply see
another drawing controller for a new game.

What's going on here? When the user taps the message, the extension transitions
to the expanded presentation style. At the moment, that action simply starts a new
game. In the next section, you'll add some data to the message so you can pass
the game state back and forth between participants. This will let the recipient of a
WenderPic send their guess back to the artist.

Custom message content
In the discussion of MSMessage earlier, you learned that the URL property was your
opportunity to add custom data to a message. You're going to do that now so that
there's enough data in the message to recreate the WenderPicGame at the receiving
end.

iOS 10 by Tutorials Chapter 5: Intermediate Message Apps

raywenderlich.com 92

Note: Messages apps are not yet available on macOS. The URL property has a
second job - if your message is opened on a Mac, it will open the URL. We're
not covering that in this chapter as it would involve you setting up a server
that could handle the games.

To include data in a URL you'll need to use URLQueryItem. This struct represents a
single key-value pair in a URL's query section – this is the part of the URL you'd see
as ?key=value&otherKey=otherValue.

Open WenderPicGame.swift and add the following extension:

// MARK: Encoding / Decoding
extension WenderPicGame {
 var queryItems: [URLQueryItem] {
 var items = [URLQueryItem]()

 items.append(URLQueryItem(name: "word", value: word))
 items.append(URLQueryItem(name: "guesses", value:
 guesses.joined(separator: "::-::")))
 items.append(URLQueryItem(name: "drawerId", value:
 drawerId.uuidString))
 items.append(URLQueryItem(name: "gameState", value:
 gameState.rawValue))
 items.append(URLQueryItem(name: "gameId", value:
 gameId.uuidString))
 return items
 }
}

This puts all the important bits from the game into an array of query items: the
word that the drawing is supposed to be, the person who drew it, any guesses that
have been made, the current state of the game and the game's unique ID. You
haven't made any guesses yet, but you will shortly.

Switch to MessagesViewController.swift and find the composeMessage(with:
caption: session:). Add the following code before the return statement:

var components = URLComponents()
components.queryItems = game.queryItems
message.url = components.url

You might not think that you can create a valid URL just by using query
components, but you can! The above code creates a URL that looks like this:

?word=dog&drawerId=D5E356A9-0B6A-4441-AB6C-08D24DB255B2

Note: The image that's been drawn can't be sent as part of the URL - it's too
big. It can't be retreived from the layout object at the receiving end either,
because that's only available to the sender of the message. For your own apps

iOS 10 by Tutorials Chapter 5: Intermediate Message Apps

raywenderlich.com 93

you'd have to implement some form of web storage to make the image
available to both sides. Because that's outside the scope of this tutorial, you're
going to cheat slightly and store the drawn image in user defaults. You'll use
the gameId property to do this. For the simulated conversation, the user
defaults object is shared between both sides of the conversation - this trick
won't work on devices!

Find handleDrawingComplete(game:) and add the following after the line where you
create the message:

if let drawing = game.currentDrawing {
 DrawingStore.store(image: drawing, forUUID: game.gameId)
}

DrawingStore is the wrapper for user defaults mentioned in the note - in your own
app you'd have a call to a web service here to store the image.

Now that you're sending some custom content with your message, it's time to
receive it at the other end of the conversation. Remember that at the moment,
when the user receives and taps a message, they simply see the drawing controller
reappear. Instead, your app should attempt to recreate the game from the selected
message and decide what to do based on that attempt.

First, you need to create a custom initializer for WenderPicGame that accepts some
query items. Switch to WenderPicGame.swift and add the following inside the
encoding / decoding extension:

init?(queryItems: [URLQueryItem]) {
 var word: String?
 var guesses = [String]()
 var drawerId: UUID?
 var gameId: UUID?

 for item in queryItems {
 guard let value = item.value else { continue }

 switch item.name {
 case "word":
 word = value
 case "guesses":
 guesses = value.components(separatedBy: "::-::")
 case "drawerId":
 drawerId = UUID(uuidString: value)
 case "gameState":
 self.gameState = GameState(rawValue: value)!
 case "gameId":
 gameId = UUID(uuidString: value)
 default:
 continue
 }
 }

iOS 10 by Tutorials Chapter 5: Intermediate Message Apps

raywenderlich.com 94

 guard
 let decodedWord = word,
 let decodedDrawerId = drawerId,
 let decodedGameId = gameId
 else {
 return nil
 }

 self.word = decodedWord
 self.guesses = guesses
 self.currentDrawing = DrawingStore.image(forUUID: decodedGameId)
 self.drawerId = decodedDrawerId
 self.gameId = decodedGameId
}

This failable initializer will return a valid game if the mandatory properties – word,
drawerId and gameId – can be extracted from the query items. It attempts to get an
image from the DrawingStore - remember that this is just using user defaults, and
wouldn't work for a normal application.

For convenience, add the below initializer that takes a MSMessage, extracts the query
items from it, and passes it to the previously defined initializer:

init?(message: MSMessage?) {
 guard
 let messageURL = message?.url,
 let urlComponents = URLComponents(url: messageURL,
resolvingAgainstBaseURL: false),
 let queryItems = urlComponents.queryItems
 else {
 return nil
 }
 self.init(queryItems: queryItems)
}

Now you have the ability to reconstruct a game from a message. If the user
receives a drawing from their friend, they would want to see the
GuessViewController when they tap it.

Switch to MessagesViewController.swift and add the following function to create
the GuessViewController in the extension where you define the functions for dealing
with child view controllers:

func instantiateGuessViewController(game: WenderPicGame?) ->
 UIViewController {
 guard let controller = storyboard?.instantiateViewController(
 withIdentifier: "guessVC") as? GuessViewController
 else {
 fatalError("Unable to instantiate a guess view controller")
 }

 controller.game = game
 return controller
}

iOS 10 by Tutorials Chapter 5: Intermediate Message Apps

raywenderlich.com 95

Now find the switch statement inside presentViewController(forConversation
withPresentationStyle:). Replace the lines after case .expanded: with the
following:

if let game = WenderPicGame(message: conversation.selectedMessage) {
 controller = instantiateGuessViewController(game: game)
} else {
 let newGame = WenderPicGame.newGame(
 drawerId: conversation.localParticipantIdentifier)
 controller = instantiateDrawingViewController(game: newGame)
}

Remember that the expanded style is requested when the user taps the new game
button or taps a received message. If the user has tapped a message, then the
conversation would have a selected message, so therefore you'll be able to create a
game and show the GuessViewController.

Build and run your app; create a sketch, switch to the other conversation view and
tap the message:

In what should be a familiar pattern by now, you can enter a guess, but nothing will
happen. The GuessViewController has a delegate property, and you need to set it
up in the MessagesViewController.

Add the following extension to MessagesViewController.swift to conform to the
GuessViewControllerDelegate:

extension MessagesViewController: GuessViewControllerDelegate {
 func handleGuessSubmission(forGame game: WenderPicGame, guess: String)

iOS 10 by Tutorials Chapter 5: Intermediate Message Apps

raywenderlich.com 96

{
 defer { dismiss() }
 guard let conversation = activeConversation else { return }

 //1
 let prefix = game.check(guess: guess) ? "' " : "("
 //2
 let guesser = "$\(conversation.localParticipantIdentifier)"

 //3
 let caption = "\(prefix) \(guesser) guessed \(guess)"

 //4
 let message = composeMessage(with: game,
 caption: caption,
 session: conversation.selectedMessage?.session)

 conversation.insert(message) { (error) in
 if let error = error {
 print(error)
 }
 }
 }
}

Here's the play-by-play:

1. check(guess:) sees if the guess is right, so we get a thumbs up or down to add
to the message

2. If you use any of the message participant UUIDs in a message like this, prefixed
with $, then they get auto-expanded into the contact's name. This allows you to
personalise your custom messages without affecting the user's privacy.

3. You stitch everything together into the caption for the message

4. You create and send the message using the same convenience method as
before.

Note: The local participant identifier is the same for all sides of the
conversation when running on a simulator, so the UUID might not convert to
the correct text.

Change instantiateGuessViewController(game:) to set the delegate property:

controller.delegate = self

Build and run again, bang out a sketch, switch sides, make a guess, and you'll see
your guess return to the artist:

iOS 10 by Tutorials Chapter 5: Intermediate Message Apps

raywenderlich.com 97

Getting a second chance
You'll have noticed that you get a very limited supply of ink in this game. This
means it's unlikely your opponent would guess your first attempt – unless you're
Henri Matisse.

In the case of an incorrect guess, it would be a good idea to add some more ink to
give your opponent another chance. At present, if you can recreate a game from
the message, you show the GuessViewController. You're going to change this so
that an incorrect guess lets the artist draw more.

Open MessagesViewController.swift and find
presentViewController(forConversation withPresentationStyle:). Change the
code where a game has been created from the message to match the following:

if let game = WenderPicGame(message: conversation.selectedMessage) {
 switch game.gameState {
 case .guess:
 controller = instantiateDrawingViewController(game: game)
 case .challenge:
 controller = instantiateGuessViewController(game: game)
 }
} else {

Note: Comparing the drawerId with the localParticipantIdentifer would be
another option here, but as noted before this is currently not working correctly

iOS 10 by Tutorials Chapter 5: Intermediate Message Apps

raywenderlich.com 98

in the simulator.

This will show the DrawingViewController if the game is a guess, or the guess
controller if the game is a challenge. The game state is updated by each view
controller when the player submits a drawing or guess.

Build and run, send a drawing, make a guess, switch back to the original
conversation and tap on the guess – and now you're able to further refine your
pièce de resistance:

Congratulations! You've successfully built a collaborative messaging app, which lets
you pass custom information back and forward between two participants.

Where to go from here?
Messages apps are an exciting new area for iOS. This is your chance to get involved
from day one!

To learn more about the Messages framework check out the full documentation at
https://developer.apple.com/reference/messages.

iOS 10 by Tutorials Chapter 5: Intermediate Message Apps

raywenderlich.com 99

6Chapter 6: SiriKit
By Rich Turton

Since Siri was introduced in iOS 5, people have been asking when they’d be able to
use it in their apps. Just five short years later, here it is. Er, well, sort of. And only
for some types of apps.

It turns out that integrating natural language processing into an app is quite a
tricky problem to solve. You can’t just take whatever text Siri has decoded from the
user’s speech, pass it as a string to the app and presto — you’re done! Well, you
could, but imagine the number of possible ways your users around the world could
talk to your app. Would you really want to write that code?

Think about the times you’ve used Siri. There’s usually a little conversation that
happens between you and Siri; sometimes that conversation goes well, and
sometimes it doesn’t. Either way, there’s a lot of first-party support work happening
behind the scenes.

Before you start this chapter, some warnings: if you’ve ever been frustrated with
Siri, how would you feel having to use Siri for every build and run? Then imagine
that debugging was incredibly hard because you’re running in an app extension,
and because Siri times out if you pause the debugger for too long. Also, imagine
you have to build using a device, because Siri isn’t available on the simulator.

If that hasn’t scared you off, then:

“It’s time to get started.”

I'm not sure I understand.

“Start the chapter.”

OK, here's what I found on the web:

I’m just getting you warmed up. You’ll be seeing that sort of thing a lot.

raywenderlich.com 100

Getting started
SiriKit works using a set of domains, which represent related areas of functionality,
such as Messaging.

Within each domain is a set of intents, which represent the specific tasks that the
user can achieve using Siri. For example, within the Messaging domain, there are
intents for sending a message, searching for messages and setting attributes on a
message.

Each intent is represented by an INIntent subclass, and has associated with it a
handler protocol and a specific INIntentResponse subclass for you to talk back to
SiriKit.

Language processing in your app boils down to SiriKit deciding which intent and app
the user is asking for, and your code checking that what the user is asking makes
sense or can be done, and then doing it.

Note: For a full list of the available domains and intents, check out the Intents
Domains section in the SiriKit programming guide at: apple.co/2d2yUb8

Would you like to ride in my beautiful
balloon?
The sample project for this chapter is WenderLoon, a ride-booking app like no
other. The members of the Razeware team are floating above London in hot air
balloons, waiting to (eventually) pick up passengers and take them to... well,
wherever the wind is blowing. It’s not the most practical way to get around, but the
journey is very relaxing. Unless Mic is driving. :]

Open up the sample project. Before you can start, you’ll need to amend the bundle
identifier of the project so that Xcode can sort out your provisioning profiles. Using
Siri needs entitlements, and you need to run it on a device, which means you need
your own bundle ID.

Select the WenderLoon project in the project navigator, then select the
WenderLoon target. Change the Bundle identifier from com.razeware.WenderLoon
to something unique; I’d suggest replacing razeware with something random.

iOS 10 by Tutorials Chapter 6: SiriKit

raywenderlich.com 101

In the Signing section choose a development team.

Select the WenderLoonCore framework target and change the bundle identifier
and select a development team there as well.

Connect a device running iOS 10 and build and run to confirm that everything is
working:

You’ll see some balloons drifting somewhere over London. The app doesn’t do very
much else — in fact, you’ll be doing the rest of your work in an extension.

Add a new target using the plus button at the bottom of the target list, or by
choosing File\New\Target....

Choose the iOS/Application Extension/Intents Extension template:

iOS 10 by Tutorials Chapter 6: SiriKit

raywenderlich.com 102

On the next screen, enter RideRequestExtension for the product name. Don’t
check the Include UI Extension box. If you’re prompted to activate a new
scheme, say yes.

A new target and group have been added to your project. Find
IntentHandler.swift in the RideRequestExtension group and replace the entire
contents of the file with this:

import Intents

class IntentHandler: INExtension {

}

Like a lot of Apple template code, there’s a blizzard of nonsense in there that stops
you from really understanding each piece. INExtension is the entry point for an
Intents extension. It only has one job, which is to provide a handler object for the
intent or intents that your app supports.

As mentioned earlier, each intent has an associated handler protocol which defines
the methods needed for dealing with that particular intent.

Select the RideRequestExtension scheme then add a new file using File
\NewFile.... Choose the Swift File template, name the file
RideRequestHandler.swift and make sure it is in the RideRequestExtension
group and RideRequestExtension target.

Add the following code to the new file:

import Intents

class RideRequestHandler:
 NSObject, INRequestRideIntentHandling {

}

iOS 10 by Tutorials Chapter 6: SiriKit

raywenderlich.com 103

INRequestRideIntentHandling is the protocol for handling the — you’ve guessed it —
ride request intent. It only has one required method.

Add the following code:

func handle(requestRide intent: INRequestRideIntent,
 completion: @escaping (INRequestRideIntentResponse) -> Void)
{
 let response = INRequestRideIntentResponse(
 code: .failureRequiringAppLaunchNoServiceInArea,
 userActivity: .none)
 completion(response)
}

This method fires when the user gets to the point where they are ready to book the
ride. That’s a little ahead of where the rest of your code is, so at the moment it just
returns a response with a failure code.

Switch back to IntentHandler.swift and add the following method:

override func handler(for intent: INIntent) -> Any? {
 if intent is INRequestRideIntent {
 return RideRequestHandler()
 }
 return .none
}

Here, you’re returning your new request handler object if the intent is of the correct
type. The only type of intent you’ll be dealing with is the INRequestRideIntent. This
has to be declared in another place as well, so that Siri knows it can direct requests
to your app.

Open Info.plist inside the RideRequestExtension group and find the
NSExtension dictionary. Inside there is an NSExtensionAttributes dictionary
which contains an IntentsSupported array. The template is for a messages
extension, which means the array contains some messaging intents which you don’t
support.

Delete those intents and add in an INRequestRideIntent line:

There are a few more hoops to jump through before you can use Siri. First, you
need to ask the user’s permission. Open AppDelegate.swift in the main

iOS 10 by Tutorials Chapter 6: SiriKit

raywenderlich.com 104

WenderLoon group, and you’ll see a stub method called requestAuthorisation().

At the top of the file, import the Intents framework:

import Intents

Then replace the //TODO comment with this code:

INPreferences.requestSiriAuthorization { status in
 if status == .authorized {
 print("Hey, Siri!")
 } else {
 print("Nay, Siri!")
 }
}

Permission requests now come with usage strings which are displayed to the user
when the dialog displays. Open Info.plist from the WenderLoon group and find
the Privacy - Location... entry.

Add a new entry there, for Privacy - Siri Usage Description (it should
autocomplete) and enter a usage string:

Finally, you need to add the Siri entitlement to the app. Select the project, then the
WenderLoon target, then the Capabilities tab. Switch on Siri:

Here’s a summary of the steps required to add Siri to your app:

• Add an Intents extension

• Create appropriate handler objects

• Return the handler objects in your INExtension subclass

• Declare the supported intents in the Info.plist of the extension

iOS 10 by Tutorials Chapter 6: SiriKit

raywenderlich.com 105

• Request the user’s permission to use Siri

• Add a Siri usage description to the app’s Info.plist

• Add the Siri entitlement to the app

After all that, select the WenderLoon scheme (not the extension) and build and
run. You’ll get asked to enable Siri:

After all that effort, you really want to make sure you tap OK. If all works well, you
should see "Hey, Siri!" printed in the console.

Now the real fun begins. Back in Xcode, change to the RideRequestExtension
scheme. Build and run, and choose Siri from the list of applications. Siri will start
on your device and you can start having the first of many fun conversations.

Try saying "Book a ride using WenderLoon from Heathrow airport", and if Siri can
understand you, you should see something like the following:

iOS 10 by Tutorials Chapter 6: SiriKit

raywenderlich.com 106

That’s the basic setup complete. Remember, at the moment you’re always returning
a response saying that there’s no service in the area, which is what you can see
above. In the next sections you’ll work through the detail of handling an intent
properly.

99 (passengers in) red balloons
Handling an intent is a three-stage process. The first stage is called Resolution. In
this stage, your extension has to confirm that all of the information it needs about
the intent is present. If there is information missing, Siri can ask the user additional
questions.

The information varies depending on the particular intent. For the ride request
intent, there are the following parameters:

• Pickup location

• Drop-off location

• Party size

• Ride option

• Payment method

Note: If your app isn’t interested in some of the parameters, such as if you
only accept Apple Pay for payments, then you can ignore them.

Each parameter comes with a related method in the handler protocol. Remember

iOS 10 by Tutorials Chapter 6: SiriKit

raywenderlich.com 107

that you’re using the INRequestRideIntentHandling for handling intents in this app.
That protocol has methods for resolving each of the parameters above. Each one
receives a ride request intent as a parameter and has a completion block, which
you call when you’ve processed the intent. The completion block takes an
INIntentResolutionResult subclass as a parameter.

The resolution result tells Siri what to do next, or if everything is OK, it moves on to
the next parameter. That all sounds a little abstract, so here’s a diagram:

Open RideRequestHandler.swift and add the following method:

func resolvePickupLocation(forRequestRide intent: INRequestRideIntent,
with completion: @escaping (INPlacemarkResolutionResult) -> Void) {
 if let pickup = intent.pickupLocation {
 completion(.success(with: pickup))
 } else {
 completion(.needsValue())
 }
}

This method resolves the pickup location. The completion block takes a
INPlacemarkResolutionResult parameter, which is the specific subclass for dealing
with location values in the Intents framework. Here you accept any pickup location
that arrives with the intent. If there is no pickup location, you tell Siri that a value
is required.

iOS 10 by Tutorials Chapter 6: SiriKit

raywenderlich.com 108

Build and run the app, and ask Siri to book you a ride using WenderLoon, giving no
extra information:

You supplied no pickup information in the original intent, so the resolution method
tells Siri to ask for more data. If you then say a location, the resolution method is
called again. The resolution method will get called multiple times until you end up
with a success or a failure.

However, the handler object is initialized from scratch for each separate
interaction with Siri. A different instance of RideRequestHandler deals with each
interaction, which means you cannot use any state information on the handler when
dealing with intents.

Back in Xcode, add another resolution method, this time for the drop-off location:

func resolveDropOffLocation(forRequestRide intent: INRequestRideIntent,
with completion: @escaping (INPlacemarkResolutionResult) -> Void) {
 if let dropOff = intent.dropOffLocation {
 completion(.success(with: dropOff))
 } else {
 completion(.notRequired())
 }
}

Here you’re allowing a ride with no drop-off location to go ahead. This is actually
quite sensible, considering you have absolutely no control over where a hot air
balloon will take you. If you build and run, Siri will use a drop-off location that you
supply, but it won’t try and fill in the gaps if there isn’t one present.

iOS 10 by Tutorials Chapter 6: SiriKit

raywenderlich.com 109

As well as simply accepting any value that’s passed in as an intent parameter, you
can also perform a bit of business logic in there. In many cases, this will involve the
same logic used in the main app. Apple recommends that you put code such as this
in a separate framework that can be shared between your extension and the main
app.

That’s why the sample project contains the WenderLoonCore framework. Bring that
framework into the extension by adding the following statement to the top of
RideRequestHandler.swift:

import WenderLoonCore

Then add the following property and initializer to RideRequestHandler:

let simulator: WenderLoonSimulator

init(simulator: WenderLoonSimulator) {
 self.simulator = simulator
 super.init()
}

WenderLoonSimulator is an object which contains the business logic for the app.
Open IntentHandler.swift and add the following to the top of the file:

import WenderLoonCore

let simulator = WenderLoonSimulator(renderer: nil)

Then replace the line where the request handler is created (it will have an error on
it) with the following:

return RideRequestHandler(simulator: simulator)

Now your request handler will be able to access the business logic from the rest of
the app.

Back in RideRequestHandler.swift, add the following method for resolving the
number of passengers:

func resolvePartySize(forRequestRide intent: INRequestRideIntent, with
completion: @escaping (INIntegerResolutionResult) -> Void) {
 switch intent.partySize {
 case .none:
 completion(.needsValue())
 case let .some(p) where simulator.checkNumberOfPassengers(p):
 completion(.success(with: p))
 default:
 completion(.unsupported())
 }
}

This will ask for a number of passengers if the intent doesn’t already contain that
information. If the number of passengers is known, it is validated against the rules

iOS 10 by Tutorials Chapter 6: SiriKit

raywenderlich.com 110

held in the WenderLoonSimulator object. The maximum number of passengers is
four. Build and run and see what happens with different party sizes:

You’ve seen that the resolution stage works by dealing with a single parameter at a
time. In the next stage, you can handle the final intent with all of the parameters
resolved.

The Confirmation stage of intent handling happens after all of the parameters
have been resolved. As with resolution, there are delegate methods specific to each
intent. The delegate method has a similar signature to the resolution methods, but
there is only one per intent.

Add the following to RideRequestHandler.swift:

func confirm(requestRide intent: INRequestRideIntent, completion:
@escaping (INRequestRideIntentResponse) -> Void) {
 let responseCode: INRequestRideIntentResponseCode
 if let location = intent.pickupLocation?.location,
 simulator.pickupWithinRange(location) {
 responseCode = .ready
 } else {
 responseCode = .failureRequiringAppLaunchNoServiceInArea
 }
 let response = INRequestRideIntentResponse(code: responseCode,
userActivity: nil)
 completion(response)
}

Here you use a method from the simulator to check that the pickup location is in
range. If not, you fail with the “no service in area“ response code.

iOS 10 by Tutorials Chapter 6: SiriKit

raywenderlich.com 111

Sure, you could have performed this check when resolving the pickup location. But
then you wouldn’t have seen any implementation at all! :] You can also use this
method to ensure that you had connectivity to your services, so the booking could
go ahead. This method is called just before the confirmation dialog is shown to the
user.

Try to book a ride with a pickup location more than 50 km away from London, and
you’ll receive an error telling you there is no service in the area.

Note: If you don't live near London, edit WenderLoonCore >
WenderLoonSimulator.swift > pickupWithinRange(_:) and add a few more
zeros to the radius.

You’ve dealt with the first two phases of a Siri interaction: resolution and
confirmation. The final phase is where you actually take that intent and convert it
into something actionable.

You can’t handle the truth
You implemented a handler way back in the first section of the chapter. All it did
was return a failure code, saying there was no service in the area. Now, you’re
armed with a fully populated intent so you can perform more useful work.

After the user has seen the confirmation dialog and has requested the ride, Siri
shows another dialog with the details of the ride that has been booked. The details
of this dialog will differ between the different intents, but in each case you must
supply certain relevant details. Each intent actually has its own data model subset,
so you need to translate the relevant part of your app’s data model to the
standardized models used by the Intents framework.

Switch schemes to the WenderLoonCore framework, add a new Swift file to the
Extensions group and name it IntentsModels.swift. Replace the contents with
the following:

import Intents

// 1
public extension UIImage {
 public var inImage: INImage {
 return INImage(imageData: UIImagePNGRepresentation(self)!)
 }
}

// 2
public extension Driver {
 public var rideIntentDriver: INRideDriver {
 return INRideDriver(
 personHandle: INPersonHandle(value: name, type: .unknown),

iOS 10 by Tutorials Chapter 6: SiriKit

raywenderlich.com 112

 nameComponents: .none,
 displayName: name,
 image: picture.inImage,
 rating: rating.toString,
 phoneNumber: .none)
 }
}

Here’s what each method does:

1. The Intents framework, for some reason, uses its own image class INImage. This
UIImage extension gives you a handy way to create an INImage.

2. INRideDriver represents a driver in the Intents framework. Here you pass
across the relevant values from the Driver object in use in the rest of the app.

Unfortunately there’s no INBalloon. The Intents framework has a boring old
INRideVehicle instead. Add this extension to create one:

public extension Balloon {
 public var rideIntentVehicle: INRideVehicle {
 let vehicle = INRideVehicle()
 vehicle.location = location
 vehicle.manufacturer = "Hot Air Balloon"
 vehicle.registrationPlate = "B4LL 00N"
 vehicle.mapAnnotationImage = image.inImage
 return vehicle
 }
}

This creates a vehicle based on the balloon’s properties.

With that bit of model work in place you can build the framework (press Command-
B to do that) then switch back to the ride request extension scheme.

Open RideRequestHandler.swift and replace the implementation of
handle(intent:completion:) with the following:

// 1
guard let pickup = intent.pickupLocation?.location else {
 let response = INRequestRideIntentResponse(code: .failure,
 userActivity: .none)
 completion(response)
 return
}

// 2
let dropoff = intent.dropOffLocation?.location ??
 pickup.randomPointWithin(radius: 10_000)

// 3
let response: INRequestRideIntentResponse
// 4
if let balloon = simulator.requestRide(pickup: pickup, dropoff: dropoff)
{

iOS 10 by Tutorials Chapter 6: SiriKit

raywenderlich.com 113

 // 5
 let status = INRideStatus()
 status.rideIdentifier = balloon.driver.name
 status.phase = .confirmed
 status.vehicle = balloon.rideIntentVehicle
 status.driver = balloon.driver.rideIntentDriver
 status.estimatedPickupDate = balloon.etaAtNextDestination
 status.pickupLocation = intent.pickupLocation
 status.dropOffLocation = intent.dropOffLocation

 response = INRequestRideIntentResponse(code: .success,
userActivity: .none)
 response.rideStatus = status
} else {
 response =
INRequestRideIntentResponse(code: .failureRequiringAppLaunchNoServiceInAr
ea, userActivity: .none)
}

completion(response)

Here’s the breakdown:

1. Theoretically, it should be impossible to reach this method without having
resolved a pickup location, but hey, Siri...

2. We’ve decided to embrace the randomness of hot air balloons by not forcing a
dropoff location, but the balloon simulator still needs somewhere to drift to.

3. The INRequestRideIntentResponse object will encapsulate all of the information
concerning the ride.

4. This method checks that a balloon is available and within range, and returns it if
so. This means the ride booking can go ahead. If not, you return a failure.

5. INRideStatus contains information about the ride itself. You populate this object
with the Intents versions of the app’s model classes. Then, you attach the ride
status to the response object and return it.

Note: The values being used here aren’t what you should use in an actual ride
booking app. The identifier should be something like a UUID, you’d need to be
more specific about the dropoff location, and you’d need to implement the
actual booking for your actual drivers :]

Build and run; book a ride for three passengers, pickup somewhere in London, then
confirm the request. You’ll see the final screen:

iOS 10 by Tutorials Chapter 6: SiriKit

raywenderlich.com 114

Hmmm. That’s quite lovely, but it isn’t very balloon-ish. In the final part, you’ll
create custom UI for this stage!

Making a balloon animal, er, UI
To make your own UI for Siri, you need to add another extension to the app. Go to
File\New\Target... and choose the Intents UI Extension template from the
Application Extension group.

Enter LoonUIExtension for the Product Name and click Finish. Activate the
scheme if you are prompted to do so. You’ll see a new group in the project
navigator, LoonUIExtension.

A UI extension consists of a view controller, a storyboard and an Info.plist file. Open
the Info.plist file and, the same as you did with the Intents extension, change the
NSExtension/NSExtensionAttributes/IntentsSupported array to contain
INRequestRideIntent.

Each Intents UI extension must only contain one view controller, but that view
controller can support multiple intents.

Open MainInterface.storyboard. You’re going to do some quick and dirty
interface builder work here, since the actual layout isn’t super-important.

Drag in an image view, pin it to the top, left and bottom edges of the container and
set width to 0.25x the container width. Set the view mode to Aspect Fit.

iOS 10 by Tutorials Chapter 6: SiriKit

raywenderlich.com 115

Drag in a second image view and pin it to the top, right and bottom edges of the
container and set the same width constraint and view mode.

Drag in a label, pin it to the horizontal and vertical center of the view controller and
set the font to System Thin 20.0 and the text to WenderLoon.

Drag in another label, positioned the standard distance underneath the first. Set the
text to subtitle. Add a constraint for the vertical spacing to the original label and
another to pin it to the horizontal center.

Make the background an attractive blue color.

This is what you’re aiming for:

Open the assistant editor and create the following outlets:

• The left image view, called balloonImageView

• The right image view, called driverImageView

• The subtitle label, called subtitleLabel

In IntentViewController.swift, import the core app framework:

import WenderLoonCore

You configure the view controller in the configure(with: context: completion:)
method. Replace the template code with this:

// 1
guard let response = interaction.intentResponse as?
INRequestRideIntentResponse
 else {
 driverImageView.image = nil
 balloonImageView.image = nil
 subtitleLabel.text = ""

iOS 10 by Tutorials Chapter 6: SiriKit

raywenderlich.com 116

 completion?(self.desiredSize)
 return
}

// 2
if let driver = response.rideStatus?.driver {
 let name = driver.displayName
 driverImageView.image = WenderLoonSimulator.imageForDriver(name: name)
 balloonImageView.image = WenderLoonSimulator.imageForBallon(driverName:
name)
 subtitleLabel.text = "\(name) will arrive soon!"
} else {
// 3
 driverImageView.image = nil
 balloonImageView.image = nil
 subtitleLabel.text = "Preparing..."
}

// 4
completion?(self.desiredSize)

Here’s the breakdown:

1. You could receive any of the listed intents that your extension handles at this
point, so you must check which type you’re actually getting. This extension only
handles a single intent.

2. The extension will be called twice. Once for the confirmation dialog and once for
the final handled dialog. When the request has been handled, a driver will have
been assigned, so you can create the appropriate UI.

3. If the booking is at the confirmation stage, you don’t have as much to present.

4. Finally, you call the completion block that has been passed in. You can vary the
size of your view controller and pass in a calculated size. However, the size must
be between the maximum and minimum allowed sizes specified by the
extensionContext property. desiredSize is a calculated variable added as part of
the template that simply gives you the largest allowed size.

Build and run and request a valid ride. Your new UI appears in the Siri interface at
the confirmation and handle stages:

iOS 10 by Tutorials Chapter 6: SiriKit

raywenderlich.com 117

Notice that your new stuff is sandwiched in between all of the existing Siri stuff.
There isn’t a huge amount you can do about that. If your view controller
implements the INUIHostedViewSiriProviding protocol then you can tell Siri not to
display maps (which would turn off the map in the confirm step), messages (which
only affects extensions in the Messages domain) or payment transactions.

Where to go from here?
This chapter has been all about ride booking, but the principles should cover all of
the different intents and domains. Take a look at the documentation to find out
what’s possible for your app. If your app isn’t covered by the existing domains and
intents, try mapping out the intents, parameters, responses and model objects and
file a radar. Maybe your app can add Siri next year!

If you’ve followed along with this chapter, you might also want to take a trip to the
Apple store to replace the devices you smashed in a fit of rage when Siri didn’t
understand you. You’ve been warned! :]

iOS 10 by Tutorials Chapter 6: SiriKit

raywenderlich.com 118

7Chapter 7: Speech Recognition
By Jeff Rames

iOS 10's new Speech Recognition API lets your app transcribe live or pre-recorded
audio. It leverages the same speech recognition engine used by Siri and Keyboard
Dictation, but provides much more control and improved access.

The engine is fast and accurate and can currently interpret over 50 languages and
dialects. It even adapts results to the user using information about their contacts,
installed apps, media and various other pieces of data.

Audio fed to a recognizer is transcribed in near real time, and results are provided
incrementally. This lets you react to voice input very quickly, regardless of context,
unlike Keyboard Dictation, which is tied to a specific input object.

Speech Recognizer creates some truly amazing possibilities in your apps. For
example, you could create an app that takes a photo when you say "cheese". You
could also create an app that could automatically transcribe audio from Simpsons
episodes so you could search for your favorite lines.

In this chapter, you'll build an app called Gangstribe that will transcribe some pretty
hardcore (hilarious) gangster rap recordings using speech recognition. It will also
get users in the mood to record their own rap hits with a live audio transcriber that
draws emojis on their faces based on what they say. :]

raywenderlich.com 119

The section on live recordings will use AVAudioEngine. If you haven't used
AVAudioEngine before, you may want to familiarize yourself with that framework
first. The 2014 WWDC session AVAudioEngine in Practice is a great intro to this,
and can be found at apple.co/28tATc1. This session video explains many of the
systems and terminology we'll use in this chapter.

The Speech Recognition framework doesn't work in the simulator, so be sure to use
a real device with iOS 10 for this chapter.

Getting started
Open Gangstribe.xcodeproj in the starter project folder for this chapter. Select
the project file, the Gangstribe target and then the General tab. Choose your
development team from the drop-down.

iOS 10 by Tutorials Chapter 7: Speech Recognition

raywenderlich.com 120

Connect an iOS 10 device and select it as your run destination in Xcode. Build and
run and you'll see the bones of the app.

From the master controller, you can select a song. The detail controller will then let
you play the audio file, recited by none other than our very own DJ Sammy D!

The transcribe button is not currently operational, but you'll use this later to kick off
a transcription of the selected recording.

iOS 10 by Tutorials Chapter 7: Speech Recognition

raywenderlich.com 121

Tap Face Replace on the right of the navigation bar to preview the live
transcription feature. You'll be prompted for permission to access the camera;
accept this, as you'll need it for this feature.

Currently if you select an emoji with your face in frame, it will place the emoji on
your face. Later, you'll trigger this action with speech.

iOS 10 by Tutorials Chapter 7: Speech Recognition

raywenderlich.com 122

Take a moment to familiarize yourself with the starter project. Here are some
highlights of classes and groups you'll work with during this chapter:

• MasterViewController.swift: Displays the list of recordings in a table view. The
recording model object is defined in Recording.swift along with the seeded
song data.

• RecordingViewController.swift: Plays the pre-recorded audio selected in the
master controller. You'll code the currently stubbed out
handleTranscribeButtonTapped(_:) to have it kick off file transcription.

• LiveTranscribeViewController.swift: Handles the Face Replace view, which
leverages the code included in the FaceReplace folder. It currently displays live
video and a collection view of emojis, attaching the selected emoji to any face in
the live view. This is where you'll add code to record and transcribe audio.

• FaceReplace: Contains a library provided by Rich Turton that places emojis over
faces in live video. It uses Core Image's CIDetector — but you don't need to
understand how this works for this tutorial. However, if you'd like to learn more,
you can read about CIDetector here: apple.co/1Tx2uCN.

You'll start this chapter by making the transcribe button work for pre-recorded
audio. It will then feed the audio file to Speech Recognizer and present the results
in a label under the player.

The latter half of the chapter will focus on the Face Replace feature. You'll set up an
audio engine for recording, tap into that input, and transcribe the audio as it
arrives. You'll display the live transcription and ultimately use it to trigger placing
emojis over the user's face.

You can't just dive right in and start voice commanding unicorns onto your face
though; you'll need to understand a few basics first.

Transcription basics
There are four primary actors involved in a speech transcription:

1. SFSpeechRecognizer is the primary controller in the framework. Its most
important job is to generate recognition tasks and return results. It also handles
authorization and configures locales.

2. SFSpeechRecognitionRequest is the base class for recognition requests. Its
job is to point the SFSpeechRecognizer to an audio source from which
transcription should occur. There are two concrete types:
SFSpeechURLRecognitionRequest, for reading from a file, and
SFSpeechAudioBufferRecognitionRequest for reading from a buffer.

3. SFSpeechRecognitionTask objects are created when a request is kicked off

iOS 10 by Tutorials Chapter 7: Speech Recognition

raywenderlich.com 123

by the recognizer. They are used to track progress of a transcription or cancel it.

4. SFSpeechRecognitionResult objects contain the transcription of a chunk of
the audio. Each result typically corresponds to a single word.

Here's how these objects interact during a basic Speech Recognizer transcription:

The code required to complete a transcription is quite simple. Given an audio file at
url, the following code transcribes the file and prints the results:

let request = SFSpeechURLRecognitionRequest(url: url)
SFSpeechRecognizer()?.recognitionTask(with: request) { (result, _) in
 if let transcription = result?.bestTranscription {
 print("\(transcription.formattedString)")
 }
}

SFSpeechRecognizer kicks off a SFSpeechRecognitionTask for the
SFSpeechURLRecognitionRequest using recognitionTask(with:resultHandler:). It
returns partial results as they arrive via the resultHandler. This code prints the
formatted string value of the bestTranscription, which is a cumulative transcription
result adjusted at each iteration.

You'll start by implementing a file transcription very similar to this.

Audio file speech transcription
Before you start reading and sending chunks of the user's audio off to a remote
server, it would be polite to ask permission. In fact, considering their commitment
to user privacy, it should come as no surprise that Apple requires this! :]

You'll kick off the the authorization process when the user taps the Transcribe
button in the detail controller.

iOS 10 by Tutorials Chapter 7: Speech Recognition

raywenderlich.com 124

Open RecordingViewController.swift and add the following to the import
statements at the top:

import Speech

This imports the Speech Recognition API.

Add the following to handleTranscribeButtonTapped(_:):

SFSpeechRecognizer.requestAuthorization {
 [unowned self] (authStatus) in
 switch authStatus {
 case .authorized:
 if let recording = self.recording {
 //TODO: Kick off the transcription
 }
 case .denied:
 print("Speech recognition authorization denied")
 case .restricted:
 print("Not available on this device")
 case .notDetermined:
 print("Not determined")
 }
}

You call the SFSpeechRecognizer type method requestAuthorization(_:) to prompt
the user for authorization and handle their response in a completion closure.

In the closure, you look at the authStatus and print error messages for all of the
exception cases. For authorized, you unwrap the selected recording for later
transcription.

Next, you have to provide a usage description displayed when permission is
requested. Open Info.plist and add the key Privacy - Speech Recognition Usage
Description providing the String value I want to write down everything you say:

Build and run, select a song from the master controller, and tap Transcribe. You'll
see a permission request appear with the text you provided. Select OK to provide
Gangstribe the proper permission:

iOS 10 by Tutorials Chapter 7: Speech Recognition

raywenderlich.com 125

Of course nothing happens after you provide authorization — you haven't yet set up
speech recognition! It's now time to test the limits of the framework with DJ
Sammy D's renditions of popular rap music.

Transcribing the file
Back in RecordingViewController.swift, find the RecordingViewController
extension at the bottom of the file. Add the following method to transcribe a file
found at the passed url:

fileprivate func transcribeFile(url: URL) {

 // 1
 guard let recognizer = SFSpeechRecognizer() else {
 print("Speech recognition not available for specified locale")
 return
 }

 if !recognizer.isAvailable {
 print("Speech recognition not currently available")
 return
 }

 // 2
 updateUIForTranscriptionInProgress()
 let request = SFSpeechURLRecognitionRequest(url: url)

 // 3
 recognizer.recognitionTask(with: request) {
 [unowned self] (result, error) in
 guard let result = result else {

iOS 10 by Tutorials Chapter 7: Speech Recognition

raywenderlich.com 126

 print("There was an error transcribing that file")
 return
 }

 // 4
 if result.isFinal {
 self.updateUIWithCompletedTranscription(
 result.bestTranscription.formattedString)
 }
 }
}

Here are the details on how this transcribes the passed file:

1. The default SFSpeechRecognizer initializer provides a recognizer for the device's
locale, returning nil if there is no such recognizer. isAvailable checks if the
recognizer is ready to be used, failing in cases such as missing network
connectivity.

2. updateUIForTranscriptionInProgress() is provided with the starter to disable
the Transcribe button and start an activity indicator animation while the
transcription is in process. A SFSpeechURLRecognitionRequest is created for the
file found at url, creating an interface to the transcription engine for that
recording.

3. recognitionTask(with:resultHandler:) processes the transcription request,
repeatedly triggering a completion closure. The passed result is unwrapped in a
guard, which prints an error on failure.

4. The isFinal property will be true when the entire transcription is complete.
updateUIWithCompletedTranscription(_:) stops the activity indicator, re-enables
the button and displays the passed string in a text view. bestTranscription
contains the transcription Speech Recognizer is most confident is accurate, and
formattedString provides it in String format for display in the text view.

Note: Where there is a bestTranscription, there can of course be lesser ones.
SFSpeechRecognitionResult has a transcriptions property that contains an
array of transcriptions sorted in order of confidence. As you see with Siri and
Keyboard Dictation, a transcription can change as more context arrives, and
this array illustrates that type of progression.

Now you need to call this new code when the user taps the Transcribe button. In
handleTranscribeButtonTapped(_:) replace //TODO: Kick off the transcription
with the following:

self.transcribeFile(url: recording.audio)

After successful authorization, the button handler now calls transcribeFile(url:)
with the URL of the currently selected recording.

iOS 10 by Tutorials Chapter 7: Speech Recognition

raywenderlich.com 127

Build and run, select Gangsta's Paradise, and then tap the Transcribe button.
You'll see the activity indicator for a while, and then the text view will eventually
populate with the transcription:

Transcription and locales
The results aren't bad, considering Coolio doesn't seem to own a copy of Webster's
Dictionary. Depending on the locale of your device, there could be another reason
things are a bit off. The above screenshot was a transcription completed on a device
configured for US English, while DJ Sammy D has a slightly different dialect.

But you don't need to book a flight overseas to fix this. When creating a recognizer,
you have the option of specifying a locale — that's what you'll do next.

Note: Even if your device is set to en_GB (English - United Kingdom) as Sam's
is, the locale settings are important to Gangstribe. In just a bit, you'll
transcribe text in an entirely different language!

Still in RecordingViewController.swift, find transcribeFile(url:) and replace
the following two lines:

fileprivate func transcribeFile(url: URL) {
 guard let recognizer = SFSpeechRecognizer() else {

with the code below:

iOS 10 by Tutorials Chapter 7: Speech Recognition

raywenderlich.com 128

fileprivate func transcribeFile(url: URL, locale: Locale?) {
 let locale = locale ?? Locale.current

 guard let recognizer = SFSpeechRecognizer(locale: locale) else {

You've added an optional Locale parameter which will specify the locale of the file
being transcribed. If locale is nil when unwrapped, you fall back to the device's
locale. You then initialize the SFSpeechRecognizer with this locale.

Now you need to modify where this method is called. Find
handleTranscribeButtonTapped(_:) and replace the transcribeFile(url:) call with
the following:

self.transcribeFile(url: recording.audio, locale: recording.locale)

You use the new method signature, passing the locale stored with the recording
object.

Note: If you want to see the locale associated with a Gangstribe recording,
open Recording.swift and look at the recordingNames array up top. Each
element contains the song name, artist, audio file name and locale. You can
find information on how locale identifiers are derived in Apple's
Internationalization and Localization Guide here — apple.co/1HVWDQa

Build and run, and complete another transcription on Gangsta's Paradise.
Assuming your first run was with a locale other than en_GB, you should see some
differences.

iOS 10 by Tutorials Chapter 7: Speech Recognition

raywenderlich.com 129

In both transcription screenshots, look for the words following treated like a punk
you know that's. With the correct locale set, the next words read unheard-of
whereas the American English transcription heard on head of. This is a great
example of the power of this framework with its understanding of a wide range of
languages and dialects.

Note: Keep in mind that your transcriptions may differ from the screenshots.
The engine evolves over time and it does customize itself based on its
knowledge of you.

You can probably understand different dialects of languages you speak pretty well.
But you're probably significantly weaker when it comes to understanding languages
you don't speak. The Speech Recognition engine understands over 50 different
languages and dialects, so it likely has you beat here.

Now that you are passing the locale of files you're transcribing, you'll be able to
successfully transcribe a recording in any supported language. Build and run, and
select the song Raise Your Hands, which is in Thai. Play it, and then tap
Transcribe and you'll see something like this:

Flawless transcription! Presumably.

Live speech recognition
Live transcription is very similar to file transcription. The primary difference in the

iOS 10 by Tutorials Chapter 7: Speech Recognition

raywenderlich.com 130

process is a different request type — SFSpeechAudioBufferRecognitionRequest
— which is used for live transcriptions.

As the name implies, this type of request reads from an audio buffer. Your task will
be to append live audio buffers to this request as they arrive from the source. Once
connected, the actual transcription process will be identical to the one for recorded
audio.

Another consideration for live audio is that you'll need a way to stop a transcription
when the user is done speaking. This requires maintaining a reference to the
SFSpeechRecognitionTask so that it can later be canceled.

Gangstribe has some pretty cool tricks up its sleeve. For this feature, you'll not only
transcribe live audio, but you'll use the transcriptions to trigger some visual effects.
With the use of the FaceReplace library, speaking the name of a supported emoji
will plaster it right over your face!

Connect to the audio buffer
To do this, you'll have to configure the audio engine and hook it up to a recognition
request. But before you start recording and transcribing, you need to request
authorization to use speech recognition in this controller.

Open LiveTranscribeViewController.swift and add the following to the top of the
file by the other imports:

import Speech

Now the live transcription controller has access to Speech Recognition.

Next find viewDidLoad() and replace the line startRecording() with the following:

SFSpeechRecognizer.requestAuthorization {
 [unowned self] (authStatus) in
 switch authStatus {
 case .authorized:
 self.startRecording()
 case .denied:
 print("Speech recognition authorization denied")
 case .restricted:
 print("Not available on this device")
 case .notDetermined:
 print("Not determined")
 }
}

Just as you did with pre-recorded audio, you're calling requestAuthorization(_:) to
obtain or confirm access to Speech Recognition.

For the authorized status, you call startRecording() which currently just does some
preparation — you'll implement the rest shortly. For failures, you print relevant
error messages.

iOS 10 by Tutorials Chapter 7: Speech Recognition

raywenderlich.com 131

Next, add the following properties at the top of LiveTranscribeViewController:

let audioEngine = AVAudioEngine()
let speechRecognizer = SFSpeechRecognizer()
let request = SFSpeechAudioBufferRecognitionRequest()
var recognitionTask: SFSpeechRecognitionTask?

• audioEngine is an AVAudioEngine object you'll use to process input audio signals
from the microphone.

• speechRecognizer is the SFSpeechRecognizer you'll use for live transcriptions.

• request is the SFSpeechAudioBufferRecognitionRequest the speech recognizer
will use to tap into the audio engine.

• recognitionTask will hold a reference to the SFSpeechRecognitionTask kicked off
when transcription begins.

Now find startRecording() in a LiveTranscribeViewController extension in this
same file. This is called when the Face Replace view loads, but it doesn't yet do any
recording. Add the following code to the bottom of the method:

// 1
guard let node = audioEngine.inputNode else {
 print("Couldn't get an input node!")
 return
}
let recordingFormat = node.outputFormat(forBus: 0)

// 2
node.installTap(onBus: 0, bufferSize: 1024,
 format: recordingFormat) { [unowned self]
 (buffer, _) in
 self.request.append(buffer)
}

// 3
audioEngine.prepare()
try audioEngine.start()

This code does the following:

1. Obtains the input audio node associated with the device's microphone, as well as
its corresponding outputFormat.

2. Installs a tap on the output bus of node, using the same recording format. When
the buffer is filled, the closure returns the data in buffer which is appended to
the SFSpeechAudioBufferRecognitionRequest. The request is now tapped into the
live input node.

3. Prepares and starts the audioEngine to start recording, and thus gets data going
to the tap.

Because starting the audio engine throws, you need to signify this on the method.

iOS 10 by Tutorials Chapter 7: Speech Recognition

raywenderlich.com 132

Change the method definition to match the following:

fileprivate func startRecording() throws {

With this change, you likewise need to modify where the method gets called. Find
viewDidLoad() and replace self.startRecording() with the following:

do {
 try self.startRecording()
} catch let error {
 print("There was a problem starting recording: \
(error.localizedDescription)")
}

startRecording() is now wrapped in a do-catch, printing the error if it fails.

There is one last thing to do before you can kick off a recording — ask for user
permission. The framework does this for you, but you need to provide another key
in the plist with an explanation. Open Info.plist and add the key Privacy -
Microphone Usage Description providing the String value I want to record you
live:

Build and run, choose a recording, then select Face Replace from the navigation
bar. You'll immediately be greeted with a prompt requesting permission to use the
microphone. Hit OK so that Gangstribe can eventually transcribe what you say:

iOS 10 by Tutorials Chapter 7: Speech Recognition

raywenderlich.com 133

With the tap in place, and recording started, you can finally kick off the speech
recognition task.

In LiveTranscribeViewController.swift, go back to startRecording() and add
the following at the bottom of the method:

recognitionTask = speechRecognizer?.recognitionTask(with: request) {
 [unowned self]
 (result, _) in
 if let transcription = result?.bestTranscription {
 self.transcriptionOutputLabel.text = transcription.formattedString
 }
}

recognitionTask(with:resultHandler:) is called with the request connected to the
tap, kicking off transcription of live audio. The task is saved in recognitionTask for
later use.

In the closure, you get bestTranscription from the result. You then update the
label that displays the transcription with the formatted string of the transcription.

Build and run, and tap the Face Replace button in the navigation bar. Start
talking, and you'll now see a real time transcription from speech recognition!

iOS 10 by Tutorials Chapter 7: Speech Recognition

raywenderlich.com 134

Note: Apple has hinted at some throttling limits, including an utterance
duration limit of “about one minute”. If you stay in live transcription long
enough, you'll probably see it stop responding. Now you know why!

But there's a problem. If you try opening Face Replace enough times, it will crash
spectacularly. You're currently leaking the SFSpeechAudioBufferRecognitionRequest
because you've never stopping transcription or recording!

Add the following method to the LiveTranscribeViewController extension that also
contains startRecording():

fileprivate func stopRecording() {
 audioEngine.stop()
 request.endAudio()
 recognitionTask?.cancel()
}

Calling stop() on the audio engine releases all resources associated with it.
endAudio() tells the request that it shouldn't expect any more incoming audio, and
causes it to stop listening. cancel() is called on the recognition task to let it know
its work is done so that it can free up resources.

You'll want to call this when the user taps the Done! button before you dismiss the
controller. Add the following to handleDoneTapped(_:), just before the dismiss:

stopRecording()

The audio engine and speech recognizer will now get cleaned up each time the user

iOS 10 by Tutorials Chapter 7: Speech Recognition

raywenderlich.com 135

finishes with a live recording. Good job cleaning up your toys! :]

Transcription segments
The live transcription below your video is pretty cool, but it's not what you set out
to do. It's time to dig into these transcriptions and use them to trigger the emoji
face replacement!

First, you need to understand a bit more about the data contained in the
SFTranscription objects returned in SFSpeechRecognitionResult objects. You've
been accessing these with the bestTranscription property of results returned to the
recognitionTask(with:resultHandler:) closure.

SFTranscription has a segments property containing an array of all
SFTranscriptionSegment objects returned from the request. Among other things, a
SFTranscriptionSegment has a substring containing the transcribed String for that
segment, as well as its duration from the start of the transcription. Generally, each
segment will consist of a single word.

Each time the live transcription returns a new result, you want to look at the most
recent segment to see if it matches an emoji keyword.

First add the following property to at the top of the class:

var mostRecentlyProcessedSegmentDuration: TimeInterval = 0

mostRecentlyProcessedSegmentDuration tracks the timestamp of the last processed
segment. Because the segment duration is from the start of transcription, the
highest duration indicates the latest segment.

Now add the following to the top of startRecording():

mostRecentlyProcessedSegmentDuration = 0

This will reset the tracked duration each time recording starts.

Now add the following new method to the bottom of the last
LiveTranscribeViewController extension:

// 1
fileprivate func updateUIWithTranscription(_ transcription:
SFTranscription) {
 self.transcriptionOutputLabel.text = transcription.formattedString

 // 2
 if let lastSegment = transcription.segments.last,
 lastSegment.duration > mostRecentlyProcessedSegmentDuration {
 mostRecentlyProcessedSegmentDuration = lastSegment.duration
 // 3
 faceSource.selectFace(lastSegment.substring)
 }
}

iOS 10 by Tutorials Chapter 7: Speech Recognition

raywenderlich.com 136

Here's what this code does:

1. This defines a new method that accepts an SFTranscription and uses it to
update the UI with results. First, it updates the transcription label at the bottom
of the screen with the results; this will soon replace similar code found in
startRecording().

2. This unwraps the last segment from the passed transcription. It then checks
that the segment's duration is higher than the
mostRecentlyProcessedSegmentDuration to avoid an older segment being
processed if it returns out of order. The new duration is then saved in
mostRecentlyProcessedSegmentDuration.

3. selectFace(), part of the Face Replace code, accepts the substring of this new
transcription, and completes a face replace if it matches one of the emoji
names.

In startRecording(), replace the following line:

self.transcriptionOutputLabel.text = transcription.formattedString

with:

self.updateUIWithTranscription(transcription)

updateUIWithTranscription() is now called each time the resultHandler is
executed. It will update the transcription label as well as triggering a face replace if
appropriate. Because this new method updates the transcription label, you removed
the code that previously did it here.

Build and run and select Face Replace. This time, say the name of one of the
emojis. Try “cry” as your first attempt.

The speech recognizer will transcribe the word “cry” and feed it to the FaceSource
object, which will attach the cry emoji to your face. What a time to be alive!

iOS 10 by Tutorials Chapter 7: Speech Recognition

raywenderlich.com 137

Note: For a full list of available keywords, open FaceSource.swift and look
for the names array. Each of these map to one of the emojis in the faces array
above it.

Usage guidelines
While they aren't yet clearly defined, Apple has provided some usage guidelines for
Speech Recognition.

Apple will be enforcing the following types of limitations:

• Per device per day

• Per app per day (global limitations for all users of your app)

• One minute limitation for a single utterance (from start to end of a recognition
task)

Apple hasn't provided any numbers for device and app daily limits. These rules are
likely to mature and become more concrete as Apple sees how third party
developers use the framework.

Apple also emphasizes that you must make it very clear to users when they are
being recorded. While it isn't currently in the review guidelines, it's in your best
interest to follow this closely to avoid rejections. You also wouldn't want to invade
your user's privacy!

iOS 10 by Tutorials Chapter 7: Speech Recognition

raywenderlich.com 138

Finally, Apple suggests presenting transcription results before acting on them.
Sending a text message via Siri is a great example of this: she'll present editable
transcription results and delay before sending the message. Transcription is
certainly not perfect, and you want to protect users from the frustration and
possible embarrassment of mistakes.

Where to go from here?
In this chapter, you learned everything you need to know to get basic speech
recognition working in your apps. It's an extremely powerful feature where the
framework does the heavy lifting. With just a few lines of code, you can bring a lot
of magic to your apps.

There isn't currently much documentation on Speech Recognition, so your best bet
is to explore the headers in the source for more detail.

Here are a couple of other places to go for more info:

• WWDC Speech Recognition API Session - apple.co/2aSMrlw

• Apple Speech Recognition sample project (SpeakToMe) - apple.co/2aSO6HS

iOS 10 by Tutorials Chapter 7: Speech Recognition

raywenderlich.com 139

8Chapter 8: User Notifications
By Jeff Rames

Consider your favorite apps. It's likely that a good portion of them leverage some
type of User Notification.

Remote push notifications date all the way back to iOS 3, while local notifications
were introduced iOS 4. Notifications engage users with your app, keep you up to
date, and provide near real-time communication with others.

For all their importance, User Notifications haven't changed much over the years.
However, iOS 10 has introduced sweeping changes to the way User Notifications
work for developers:

• Media attachments can now be added to notifications, including audio, video
and images.

• New Notification Content extensions let you create custom interfaces for
notifications.

• Managing notifications is now possible with interfaces in the new user
notification center.

• New Notification Service app extensions let you process remote notification
payloads before they're delivered.

In this chapter, you'll explore all of these new features. Let's get started!

Note: For most of this chapter, you'll be fine with the iOS simulator, and don't
need any prior experience with user notifications. However, to work with
Notification Service app extensions in the final section of this chapter, you'll
need a device running iOS 10 and a basic understanding of configuring remote
notifications. For more background information on notifications, check out
Push Notifications Tutorial: Getting Started at raywenderlich.com/123862.

raywenderlich.com 140

Getting started
The sample app for this chapter is cuddlePix, which aims to spread cheer with
visually rich notifications containing pictures of cuddly cacti.

Note: While cuddlePix employs only the most cuddly digital cacti, remember
to use caution when cuddling a real cactus. Real world prototyping of cuddlePix
indicated that some cacti can be quite painful. :]

When complete, the app will act as a management dashboard for notification
statuses and configuration data, as well as a scheduler for local notifications. It will
also define custom notifications complete with custom actions.

Open the starter project for this chapter, and set your team in the CuddlePix Target
General Signing settings. Then build and run to see what you have to work with.
You'll be greeted by an empty table view that will eventually house the notification
status and configuration information.

Tap the + bar button, and you'll see an interface for scheduling multiple local
notifications over the next hour, or scheduling a single one in five seconds' time.
These don't do anything at present - that's where you come in.

iOS 10 by Tutorials Chapter 8: User Notifications

raywenderlich.com 141

Take a few minutes and explore the below items in the starter project:

• NotificationTableViewController.swift contains the table view controller and
displays a sectioned table using a datasource built from a struct and protocol
found in TableSection.swift.

• ConfigurationViewController.swift manages the view that schedules
notifications, centered around a mostly stubbed-out method
scheduleRandomNotification(in:completion:) that will ultimately create and
schedule notifications.

• Main.storyboard defines the simple UI you've already seen in full while testing
the app.

• Utilities contains some helpers you'll use during this tutorial.

• Supporting Files contains artwork attributions, the plist, and images you'll
display in your notifications.

The User Notifications framework
Gone are the days of handling notifications via your application delegate. Enter
UserNotifications.framework, which does everything its predecessor did, along
with enabling all of the new user notification functionality such as attachments,
Notification Service extensions, foreground notifications, and more.

The core of the new framework is UNUserNotificationCenter, which is accessed via
a singleton. It manages user authorization, defines notifications and associated
actions, schedules local notifications, and provides a management interface for
existing notifications.

The first step in using UNUserNotificationCenter is to ask the user to authorize your
app to use notifications. Open NotificationTableViewController.swift and add
the following to viewDidLoad(), just below the call to super:

UNUserNotificationCenter.current()
 .requestAuthorization(options: [.alert, .sound]) {
 (granted, error) in
 if granted {
 self.loadNotificationData()
 } else {
 print(error?.localizedDescription)
 }
}

UNUserNotificationCenter.current() returns the singleton user notification center.

You then call requestAuthorization(options:completionHandler:) to request
authorization to present notifications. You pass in an array of
UNAuthorizationOptions to indicate what options you're requesting — in this case,

iOS 10 by Tutorials Chapter 8: User Notifications

raywenderlich.com 142

alert and sound notifications. If access is granted, you call the currently stubbed
out loadNotificationData(); otherwise you print the passed error.

Build and run, and you'll see an authorization prompt as soon as
NotificationTableViewController loads. Be sure to tap Allow.

Scheduling notifications
Now that you have permission from the user, it's time to take this new framework
for a spin and schedule some notifications!

Open ConfigurationViewController.swift and review the following code:

• Pressing the Cuddle me now! button triggers handleCuddleMeNow(_:), which
passes a delay of 5 seconds to scheduleRandomNotification(in:completion:).

• The Schedule button triggers scheduleRandomNotifications(_:completion:),
which calls scheduleRandomNotification(in:completion:) with various delays to
space out repeat notifications over an hour.

• Right now scheduleRandomNotification(in:completion:) obtains the URL of a
random image in the bundle and prints it to the console, but it doesn't yet
schedule a notification. That's your first task.

To create a local notification, you need to provide some content and a trigger
condition.

In scheduleRandomNotification(in:completion:), delete print("Schedule
notification with \(imageURL)") and add the following in its place:

// 1
let content = UNMutableNotificationContent()
content.title = "New cuddlePix!"
content.subtitle = "What a treat"
content.body = "Cheer yourself up with a hug) "
//TODO: Add attachment

// 2
let trigger = UNTimeIntervalNotificationTrigger(
 timeInterval: seconds, repeats: false)

iOS 10 by Tutorials Chapter 8: User Notifications

raywenderlich.com 143

Note: You can select an emoji from the Xcode editor with Command +
Control + Spacebar. Don't stress if you can't find this exact emoji, as it
doesn't matter for this tutorial.

Here's what you're doing in the code above:

1. You create a UNMutableNotificationContent, which defines what is displayed on
the notification — in this case, you're setting a title, subtitle and body. This is
also where you'd set things like badges, sounds and attachments. As the
comment teases, you'll add an attachment here a bit later in the tutorial.

2. A UNTimeIntervalNotificationTrigger needs to know when to fire and if it
should repeat. You're passing through the seconds parameter for the delay, and
creating a one-time notification. You can also trigger user notifications via
location or calendar triggers.

Next up, you need to create the notification request and schedule it.

Replace the completion() call with the following:

// 1
let request = UNNotificationRequest(
 identifier: randomImageName, content: content, trigger: trigger)

// 2
UNUserNotificationCenter.current().add(request, withCompletionHandler:
{ (error) in
 if let error = error {
 print(error)
 completion(false)
 } else {
 completion(true)
 }
})

Here's the breakdown:

1. You create a UNNotificationRequest from the content and trigger you created
above. You also provide the required unique identifier (the name of the
randomly selected image) to use later when managing the request.

2. You then call add(_:withCompletionHandler) on the shared user notification
center to add your request to the notification queue. Take a look at the
completion handler: if an error exists, you print it to the console and inform the
caller. If the call was successful, you call the completion(success:) closure
indicating success, which ultimately notifies its delegate
NotificationTableViewController that a refresh of pending notifications is
necessary. You'll learn more about NotificationTableViewController later in the
chapter.

iOS 10 by Tutorials Chapter 8: User Notifications

raywenderlich.com 144

Build and run, tap the + bar item, tap Cuddle me now! then quickly background
the application (you can use Command + Shift + H to background the application
if you are using the Simulator). Five seconds after you created the notification,
you'll see the notification banner complete with your custom content:

Adding attachments
When you have such a beautiful cactus image, it seems a bit wasteful to only use it
for the unique notification identifier. It would be nice to display this image in the
notification itself as well.

To do this, back in scheduleRandomNotification(in:completion:), add the following
just below the imageURL declaration at the beginning of the method:

let attachment = try! UNNotificationAttachment(identifier:
 randomImageName, url: imageURL, options: .none)

A UNNotificationAttachment is an image, video, or audio attachment that is
included with a notification. It requires an identifier, for which you've used the
randomImageName string, as well as a URL that points to a local resource of a
supported type.

Note this method throws an error if the media isn't readable or otherwise isn't
supported. But since you've included these images in your bundle, it's fairly safe to
disable error propagation with a try!.

Next, replace //TODO: Add attachment with the following:

content.attachments = [attachment]

Here you're setting attachments to the single image attachment wrapped in an
array. This makes it available for display when the notification fires using default
notification handling for image attachments.

Note: When the notification is scheduled, a security-scoped bookmark is
created for the attachment so Notification Content extensions have access to
the file.

Build and run, initiate a notification with Cuddle me now! then return to the home
screen as you did before. You'll be greeted with a notification containing a random
cactus picture on the right side of the banner. Force tap, or select and drag down on
the banner, and you'll be treated to an expanded view of the huggable cactus.

iOS 10 by Tutorials Chapter 8: User Notifications

raywenderlich.com 145

Foreground notifications
The UNUserNotificationCenterDelegate protocol defines methods for handling
incoming notifications and their actions, including an enhancement to iOS 10
notifications: the ability to display system notification banners in the foreground.

Open AppDelegate.swift and add the following at the end of the file:

extension AppDelegate: UNUserNotificationCenterDelegate {
 func userNotificationCenter(_ center: UNUserNotificationCenter,
 willPresent notification: UNNotification,
 withCompletionHandler completionHandler:
 @escaping (UNNotificationPresentationOptions) -> Void) {
 completionHandler(.alert)
 }
}

This extends AppDelegate to adopt the UNUserNotificationCenterDelegate protocol.
The optional userNotificationCenter(_:willPresent:withCompletionHandler:) is
called when a notification is received in the foreground, and gives you an
opportunity to act upon that notification. Inside, you call the completionHandler(),
which determines if and how the alert should be presented.

The .alert notification option indicates you want to present the alert, but with no
badge updates or sounds. You could also choose to suppress the alert here by
passing an empty array.

In application(_:didFinishLaunchingWithOptions:), add the following just before
the return:

iOS 10 by Tutorials Chapter 8: User Notifications

raywenderlich.com 146

UNUserNotificationCenter.current().delegate = self

This sets your app's delegate as the UNUserNotificationCenterDelegate so the user
notification center will pass along this message when a foreground notification is
received.

Build and run, and schedule a notification as you've done before. This time, leave
cuddlePix in the foreground and you'll see a system banner appear in the
foreground:

Think back to all the times you had to build your own banner for these situations.
Take a deep breath — that's all in the past now! :]

Managing notifications
You've probably experienced the frustration of clearing out countless missed and
outdated notifications in Notification Center. Think of an app that posts sports
scores in real-time; you likely care only about the most recent score. iOS 10 gives
developers the ability to realize this improved user experience.

The accessor methods of UNUserNotificationCenter let you read an app's user
notification settings (the user permissions) so you can stay up-to-date on changes.
But more excitingly, the delete accessors let you programmatically remove pending
and delivered notifications to free your users from a wall of unnecessary
notifications.

Finally, the accessor methods let you read and and set notification categories –
you'll learn about those a little later in this chapter.

iOS 10 by Tutorials Chapter 8: User Notifications

raywenderlich.com 147

Querying Notification Center
You'll start by reading the notification settings and displaying them in cuddlePix's
initial table view.

Open NotificationTableViewController.swift and find
loadNotificationData(callback:). Your code calls this when the table is refreshed,
an authorization is returned, a notification is scheduled or a notification is received.
Right now, it simply reloads the table.

Add the following just below the group declaration near the top:

// 1
let notificationCenter = UNUserNotificationCenter.current()
let dataSaveQueue = DispatchQueue(label:
 "com.raywenderlich.CuddlePix.dataSave")

// 2
group.enter()
// 3
notificationCenter.getNotificationSettings { (settings) in
 let settingsProvider = SettingTableSectionProvider(settings:
 settings, name: "Notification Settings")
 // 4
 dataSaveQueue.async(execute: {
 self.tableSectionProviders[.settings] = settingsProvider
 group.leave()
 })
}

This code queries for notification settings and updates the table datasource object
that displays them:

1. You create notificationCenter to reference the shared notification center more
concisely. Then you create a DispatchQueue to prevent concurrency issues when
updating the table view data source.

2. You then enter a dispatch group to ensure all data fetch calls have completed
before you refresh the table. Note the project already refreshes in a
group.notify(callback:) closure for this reason.

3. You call getNotificationSettings(callback:) to fetch current notification
settings from Notification Center. You pass the results of the query to the
callback closure via settings, which in turn you use to initialize a
SettingTableSectionProvider. SettingTableSectionProvider is from the starter
project; it extracts interesting information from the provided
UNNotificationSettings for presentation in a table view cell.

4. Using the dataSaveQueue, you asynchronously update the settings section of
tableSectionProviders with the newly created settingsProvider. The table
management is all provided by the starter project; all you need to do is set the
provider so as to provide the data to the table view. Finally, you leave group to

iOS 10 by Tutorials Chapter 8: User Notifications

raywenderlich.com 148

release your hold on the dispatch group.

Build and run, and you'll see a Notification Settings section in the table view that
represents the current status of notification settings for cuddlePix.

To test it out, go to iOS Settings, find CuddlePix and toggle some of the switches.
Return to cuddlePix, pull to refresh, and you'll see the updated status:

Knowing your user's settings can help you tailor your notifications to suit.

It's just as easy to fetch information about pending and delivered notifications.

Add the following code just below the closing bracket of the
getNotificationSettings(completionHandler:) closure:

group.enter()
notificationCenter.getPendingNotificationRequests { (requests) in
 let pendingRequestsProvider =
 PendingNotificationsTableSectionProvider(requests:
 requests, name: "Pending Notifications")
 dataSaveQueue.async(execute: {
 self.tableSectionProviders[.pending] = pendingRequestsProvider
 group.leave()
 })
}

iOS 10 by Tutorials Chapter 8: User Notifications

raywenderlich.com 149

group.enter()
notificationCenter.getDeliveredNotifications { (notifications) in
 let deliveredNotificationsProvider =
 DeliveredNotificationsTableSectionProvider(notifications:
 notifications, name: "Delivered Notifications")
 dataSaveQueue.async(execute: {
 self.tableSectionProviders[.delivered]
 = deliveredNotificationsProvider
 group.leave()
 })
}

This implements two additional fetches that are similar to the settings fetch you
coded earlier and update each tableSectionProviders respectively.
getPendingNotificationRequests(completionHandler:) fetches notifications that are
pending; that is, scheduled, but not yet delivered.
getDeliveredNotifications(completionHandler:) fetches those notifications that
have been delivered, but not yet deleted.

Build and run, schedule a notification, and you'll see it appear under Pending
Notifications. Once it's been delivered, pull to refresh and you'll see it under
Delivered Notifications.

Delivered notifications persist until they're deleted. To test this, expand a
notification when the banner appears then select the X in the upper right. Refresh
the table, then check to see if the notification still exists. You can also delete a
notification by pulling down Notification Center and clearing it from the Missed list:

iOS 10 by Tutorials Chapter 8: User Notifications

raywenderlich.com 150

Note: Remember that your notifications use the randomly selected image
name as their unique identifier. Because there are only a handful of images in
cuddlePix, you're bound to get some notifications with duplicate content and
identifiers. If you dismiss a notification with a delivered duplicate, you will
notice both it and its duplicate get deleted.

It would be even nicer if you didn't have to pull to refresh when a new notification
arrives.

Add the following to AppDelegate.swift at the top of
userNotificationCenter(_:willPresent:withCompletionHandler):

NotificationCenter.default.post(name:
 userNotificationReceivedNotificationName, object: .none)

userNotificationReceivedNotificationName is a system notification cuddlePix uses
to reload the status table. You've placed it here, because
userNotificationCenter(_:willPresent:withCompletionHandler) triggers whenever
a notification arrives.

A very compelling application of this "status awareness" is to prevent repeat
notifications if an identical notification is still in "delivered" status.

Modifying notifications
Consider again the app that reports sport scores. Rather than littering Notification
Center with outdated score alerts, you could update the same notification and bump
it to the top of the notification list each time an update comes through.

Updating notifications is straightforward. You simply create a new
UNNotificationRequest with the same identifier as the existing notification, pass it
your updated content, and add it to UNUserNotificationCenter. Once the trigger
conditions are met, it will overwrite the existing notification that has a matching
identifier.

For cuddlePix, notifications are serious business. Consider the scenario where you
scheduled 10 notifications, when you meant to only schedule five. Too much of a
good thing can get pretty prickly, so you're going to make your notification strategy
a little more succulent and delete pending notifications.

Open NotificationTableViewController.swift; you'll see tableView editing
methods near the end of the data source methods extension. Deletion is enabled
for rows in the pending section, but committing the delete doesn't do anything.
Time to fix that.

Add the following to tableView(_:commit:forRowAt:):

// 1

iOS 10 by Tutorials Chapter 8: User Notifications

raywenderlich.com 151

guard let section =
 NotificationTableSection(rawValue: indexPath.section),
 editingStyle == .delete && section == .pending else { return }

// 2
guard let provider = tableSectionProviders[.pending]
 as? PendingNotificationsTableSectionProvider else { return }

let request = provider.requests[indexPath.row]

// 3
UNUserNotificationCenter.current()
 .removePendingNotificationRequests(withIdentifiers:
 [request.identifier])
loadNotificationData(callback: {
 self.tableView.deleteRows(at: [indexPath], with: .automatic)
})

This method executes when you attempt an insertion or deletion on the tableView.
Taking it step-by-step:

1. You check that the selected cell came from the pending section of the table and
that the attempted operation was a delete. If not, return.

2. You unwrap and typecast the tableSectionProviders datasource object
associated with pending notifications, and return if the operation fails. You then
set request to the UNNotificationRequest represented by the selected cell.

3. You call removePendingNotificationRequests(withIdentifiers:) on the user
notification center to delete the notification matching your request's identifier.
Then you call loadNotificationData(callback:) to refresh the datasource,
deleting the row in the callback closure.

Build and run, create a new notification, and swipe the cell in the Pending
Notifications section to reveal the delete button. Tap Delete quickly before the
notification is delivered. Because you've deleted it from the user notification center
before it was delivered, the notification will never be shown, and the cell will be
deleted.

iOS 10 by Tutorials Chapter 8: User Notifications

raywenderlich.com 152

Notification content extensions
Another major change to notifications in iOS 10 is the introduction of Notification
Content extensions, which let you provide custom interfaces for the expanded
version of your notifications. Interaction is limited, though — the notification view
won't pass along gestures, but the extension can update the view in response to
actions, which you'll learn about a little later.

To make a Notification Content extension, you must adopt the
UNNotificationContentExtension protocol in your extension view controller. This
protocol defines optional methods that notify the extension when it's being
presented, help it respond to actions, and assist in media playback.

The interface can contain anything you might normally place in a view, including
playable media such as video and audio. However, the extension runs as a separate
binary from your app, and you don't have direct access to the app's resources. For
this reason, any required resources that aren't included in the extension bundle are
passed via attachments of type UNNotificationAttachment.

Creating an extension with an attachment
Let's try this out. Select File\New\Target in Xcode; choose the iOS\Application
Extension\Notification Content template then select Next.

iOS 10 by Tutorials Chapter 8: User Notifications

raywenderlich.com 153

Enter ContentExtension for the Product Name, select the Team associated with
your developer account, choose Swift as the Language, then hit Finish. If
prompted, choose to Activate the scheme.

You've created a new target and project group, both named ContentExtension. In
the group, you have a view controller, storyboard, and plist necessary for
configuring the extension. You'll visit each of these in turn while implementing the
extension.

Open MainInterface.storyboard and take a look; you'll see a single view
controller of type NotificationViewController — this is the controller created when
you generated the extension. Inside is a single view with a "Hello World" label
connected to an outlet in the controller.

For cuddlePix, your goal is to create something similar to the default expanded
view, but just a tad more cuddly. A cactus picture with a hug emoji in the corner
should do quite nicely! :]

To start, delete the existing label and change the view's background color to white.
Set the view height to 320 to give yourself more room to work. Add an Image View
and pin it to the edges of the superview:

iOS 10 by Tutorials Chapter 8: User Notifications

raywenderlich.com 154

Select the Image View and go to the Attributes Inspector. In the View section, set
the Content Mode to Aspect Fill to ensure as many pixels as possible are filled with
beautiful, poky, cactusy goodness:

To clean things up, select the Resolve Auto Layout Issues button in the lower
right and then select Update Frames in the All Views in Notification View
Controller section. This will cause your Image View to resize to match the
constraints, and the Auto Layout warnings should resolve as well.

Next, drag a label just under the image view in the document outline pane on the
left-hand side of Interface Builder:

Pin it to the bottom left of the view with the following constraints:

Now to add a big spiny cactus hug! With the label selected, change the Text in the
attribute inspector to a hug emoji. To do this, use Control + Command +
Spacebar to bring up the picker, and select the) .

iOS 10 by Tutorials Chapter 8: User Notifications

raywenderlich.com 155

Set the font size of the label to 100 so your hug emoji is more visible. Click
Update Frames again to resize the label to match the new content.

Now, open NotificationViewController.swift in the Assistant Editor so that you
can wire up some outlets.

First, delete the following line:

@IBOutlet var label: UILabel?

That outlet was associated with the label you deleted from the storyboard template.
You'll see an error now as you're still referencing it.

Delete the following in didReceive(_:) to resolve that:

self.label?.text = notification.request.content.body

Next, Control-drag from the image view in the storyboard to the spot where you
just deleted the old outlet. Name it imageView and select Connect:

With the interface done, close the storyboard and open
NotificationViewController.swift in the Standard editor.

iOS 10 by Tutorials Chapter 8: User Notifications

raywenderlich.com 156

Remember that didReceive(_:) is called when a notification arrives; this is where
you should perform any required view configuration. For this extension, that means
populating the image view with the cactus picture from the notification.

Add the following to didReceive(_:):

// 1
guard let attachment = notification.request.content.attachments.first
 else { return }
// 2
if attachment.url.startAccessingSecurityScopedResource() {
 let imageData = try? Data.init(contentsOf: attachment.url)
 if let imageData = imageData {
 imageView.image = UIImage(data: imageData)
 }
 attachment.url.stopAccessingSecurityScopedResource()
}

Here's what the above does:

1. The passed-in UNNotification (notification) contains a reference to the
original UNNotificationRequest (request) that generated it. A request has
UNNotificationContent (content) which, among other things, contains an array
of UNNotificationAttachments (attachments). In a guard, you grab the first of
those attachments — you know you've only included one — and you place it in
attachment.

2. Attachments in the user notification center live inside your app's sandbox – not
the extension's – therefore you must access them via security-scoped URLs.
startAccessingSecurityScopedResource() makes the file available to the
extension when it successfully returns, and
stopAccessingSecurityScopedResource() indicates you're finished with the
resource. In between, you load imageView using Data obtained from the file
pointed to by this URL.

The extension is all set. But when a notification triggers for cuddlePix, how is the
the system supposed to know what, if any, extension to send it to?

Gnomes are a good guess, but they're notoriously unreliable. :] Instead, the user
notification center relies on a key defined in the extension's plist to identify the
types of notifications it should handle.

Open Info.plist in the ContentExtension group and expand NSExtension, then

iOS 10 by Tutorials Chapter 8: User Notifications

raywenderlich.com 157

NSExtensionAttributes, to reveal UNNotificationExtensionCategory. This key
takes a string (or array of strings) identifying the notifications it should handle.
Enter newCuddlePix here, which you'll later use in the content of your notification
requests.

Note: In the same plist dictionary, you'll see another required key:
UNNotificationExtensionInitialContentSizeRatio. Because the system starts
to present a notification before it loads your extension, it needs something on
which to base the initial content size. You provide a ratio of the notification's
height to its width, and the system will animate any expansion or contraction
once the extension view loads.

cuddlePix's extension view frame is set to fill the full width of a notification, so
in this case you leave it at the default ratio of 1.

The operating system knows that notifications using the newCuddlePix category
should go to your extension, but you haven't yet set this category on your outgoing
notifications. Open ConfigurationViewController.swift and find
scheduleRandomNotification(in:completion:) where you generate instances of
UNNotificationRequest.

Add the following after the spot where you declare content:

content.categoryIdentifier = newCuddlePixCategoryName

The UNNotificationRequest created in this method will now use
newCuddlePixCategoryName as a categoryIdentifier for its content.
newCuddlePixCategoryName is a string constant defined in the starter that matches
the one you placed in the extension plist: "newCuddlePix".

When the system prepares to deliver a notification, it will check the notification's
category identifier and try to find an extension registered to handle it. In this case,
that is the extension you just created.

iOS 10 by Tutorials Chapter 8: User Notifications

raywenderlich.com 158

Note: For a remote notification to invoke your Notification Content extension,
you'd need to add this same category identifier as the value for the category
key in the payload dictionary.

Make sure you have the CuddlePix scheme selected, then build and run. Next,
switch to the ContentExtension scheme then build and run again. When you're
prompted what to run the extension with, select CuddlePix and Run:

In cuddlePix, generate a new notification with Cuddle me now!. When the banner
appears, expand it either by force touching on a compatible device, or selecting the
notification and dragging down in the simulator. You'll now see the new custom view
from your extension:

iOS 10 by Tutorials Chapter 8: User Notifications

raywenderlich.com 159

Note: You'll notice that the custom UI you designed is presented above the
default banner content. In this case, that's what you want, as your custom
view didn't implement any of this text.

However, if you shifted the titles and messages to the extension, you might
want to remove the system-generated banner at the bottom. You could do this
by adding the UNNotificationExtensionDefaultContentHidden key to your
extension plist with a value of true.

Handling notification actions
So far, the custom notification for cuddlePix isn't all that different from the default
one. However, a custom view does provide quite a lot of opportunity depending on
your needs. For example, a ride-sharing app could provide a map of your ride's
location, while a sports app could provide a large scoreboard.

The feature that makes extensions shine in cuddlePix is interactivity. While
Notification Content extensions don't allow touch handling, where the touches
aren't passed to the controller, they do provide interaction through custom action
handlers.

Before iOS 10, custom actions were forwarded on to the application and handled in
an application delegate method. This worked great for things like responding to a
message where there wasn't any need to see the results of the action.

Because Notification Content extensions can handle actions directly, that means the
notification view can be updated with results. For instance, when you accept an
invitation, you could display an updated calendar view right there in the notification
showing the new event.

The driver behind this is the new UNNotificationCategory, which uniquely defines
a notification type and references actions the type can act upon. The actions are
defined with UNNotificationAction objects that, in turn, uniquely define actions.
When configured and added to the UNUserNotificationCenter, these objects help
direct actionable notifications to the right handlers in your app or extensions.

Defining the action
The goal of cuddlePix is to spread cheer, and what better way to do that than
shower your cuddly cactus with stars? You're going to wire up an action for
"starring" a cactus, which will kick off an animation in your custom notification
view.

To start, you need to register a notification category and action in the app.

Open AppDelegate.swift and add the following method to AppDelegate:

func configureUserNotifications() {
 // 1

iOS 10 by Tutorials Chapter 8: User Notifications

raywenderlich.com 160

 let starAction = UNNotificationAction(identifier:
 "star", title: "* star my cuddle * ", options: [])
 // 2
 let category =
 UNNotificationCategory(identifier: newCuddlePixCategoryName,
 actions: [starAction],
 intentIdentifiers: [],
 options: [])
 // 3
 UNUserNotificationCenter.current()
 .setNotificationCategories([category])
}

Taking each numbered comment in turn:

1. A UNNotificationAction has two jobs: it provides the data used to display an
action to the user, and it uniquely identifies actions so controllers can act upon
them. It requires a title for the first job and a unique identifier string for the
second. Here you've created a starAction with a recognizable identifier and
title.

2. You defined a UNNotificationCategory with the string constant set up for this
notification: newCuddlePixCategoryName. You've wrapped starAction in an array
and passed it to actions, which requires all custom actions in the order you
want them displayed.

3. You pass the new category to the UNUserNotificationCenter with
setNotificationCategories(), which accepts an array of categories and
registers cuddlePix as supporting them.

Add the following code just before the return statement in
application(_:didFinishLaunchingWithOptions:):

configureUserNotifications()

This ensures category registration occurs as soon as the app starts.

Build and run the CuddlePix scheme, followed by the ContentExtension scheme,
which you should choose to run with CuddlePix. Create a notification and expand it
via force touch or a drag down when it arrives.

You'll now see your custom action at the bottom of the notification:

iOS 10 by Tutorials Chapter 8: User Notifications

raywenderlich.com 161

Select star my cuddle; the notification will simply dismiss, because you haven't
yet implemented the action to be performed.

Handling and forwarding extension responses
Notification extensions get first crack at handling an action response. In fact, they
determine whether or not to forward the request along to the app when they finish.

Inside ContentExtension, open NotificationViewController.swift and you'll see
your controller already adheres to UNNotificationContentExtension. This provides
an optional method for handling responses.

Add the following to NotificationViewController:

internal func didReceive(_ response: UNNotificationResponse,
 completionHandler completion:
 @escaping (UNNotificationContentExtensionResponseOption) -> Void) {
 // 1
 if response.actionIdentifier == "star" {
 // TODO Show Stars
 let time = DispatchTime.now() +
 DispatchTimeInterval.milliseconds(2000)
 DispatchQueue.main.asyncAfter(deadline: time) {
 // 2
 completion(.dismissAndForwardAction)
 }
 }
}

didReceive(_:completionHandler:) is called with the action response and a

iOS 10 by Tutorials Chapter 8: User Notifications

raywenderlich.com 162

completion closure. The closure must be called when you're done with the action,
and it requires a parameter indicating what should happen next. Here's what's
going on in more detail:

1. When you set up UNNotificationAction, you gave the star action an identifier of
star, which you check here to catch responses of this type. Inside, you have a
TODO for implementing the star animation that you'll soon revisit. You let the
animation continue for two seconds via DispatchQueue.main.asyncAfter before
calling the completion closure.

2. completion takes an enum value defined by
UNNotificationContentExtensionResponseOption. In this case, you've used
dismissAndForwardAction, which dismisses the notification and gives the app an
opportunity to act on the response. Alternative values include doNotDismiss,
which keeps the notification on screen, and dismiss, which doesn't pass the
action along to the app after dismissal.

Your current implementation of the star action leaves something to be desired —
specifically, the stars! The starter project already contains everything you need for
this animation, but it's not yet available to the Notification Content extension's
target.

In the project navigator, expand the Utiltiies and the Star Animator group and
select both files inside:

Open the File Inspector in the utilities pane of Xcode and select ContentExtension
under Target Membership:

Back in NotificationViewController.swift, replace // TODO Show Stars with the
following:

imageView.showStars()

This uses a UIImageView extension defined in the StarAnimator.swift file you just
added to the target. showStars() uses Core Animation to create a shower of stars
over the image view.

iOS 10 by Tutorials Chapter 8: User Notifications

raywenderlich.com 163

Build and run the extension and the app as you've done before. Create and expand
a notification, then select star my cuddle and you'll see an awesome star shower
over your cactus before the notification dismisses:

Your extension has done its job, and the cuddle has been starred. But recall that
you called dismissAndForwardAction in the completion closure. Where is it being
forwarded to?

The answer is that it's forwarded to the app, but right now the
UNUserNotificationCenterDelegate in cuddlePix isn't expecting anything.

Open AppDelegate.swift and add the following method to the
UNUserNotificationCenterDelegate extension:

func userNotificationCenter(_ center: UNUserNotificationCenter,
 didReceive response: UNNotificationResponse,
 withCompletionHandler
 completionHandler: @escaping () -> Void) {
 print("Response received for \(response.actionIdentifier)")
 completionHandler()
}

userNotificationCenter(_:didReceive:withCompletionHandler) will let you know a
notification action was selected. Inside, you print out the actionIdentifier of the
response, simply to confirm things are working as they should. You then call
completionHandler() which accepts no arguments and is required to notify the user
notification center that you're done handling the action.

Build and run the CuddlePix scheme, then trigger a notification. Expand the

iOS 10 by Tutorials Chapter 8: User Notifications

raywenderlich.com 164

notification and select star my cuddle. Watch the console and you should see the
below text print:

Response received for star

To recap, here's the flow of messages that takes place when you receive a
notification in the foreground and respond to an action in a Notification Content
extension:

1. userNotificationCenter(_:willPresent:withCompletionHandler:) is called
in the UNUserNotificationCenterDelegate (only in the foreground), and
determines if the notification should present itself.

2. didReceive(_:) is called in the UNNotificationContentExtension and provides
an opportunity to configure the custom notification's interface.

3. didReceive(_:completionHandler:) is called in the
UNNotificationContentExtension after the user selects a response action.

4. userNotificationCenter(_:didReceive:withCompletionHandler:) is called
in the UNUserNotificationCenterDelegate if the UNNotificationContentExtension
passes it along via the dismissAndForwardAction response option.

Notification Service app extensions
Believe it or not, another major feature awaits in the form of Notification Service
extensions. These let you intercept remote notifications and modify the payload.
Common use cases would include adding a media attachment to the notification, or
decrypting content.

cuddlePix doesn't really demand end-to-end encryption, so instead you'll add an
image attachment to incoming remote notifications. But first, you need to set up a
development environment. Because the simulator cannot register for remote
notifications, you'll need a device with iOS 10 to test.

Start by configuring cuddlePix for push with your Apple Developer account. First
select the CuddlePix target and General tab. In the Signing section, select your
Team and then in Bundle Identifier enter a unique Identifier.

iOS 10 by Tutorials Chapter 8: User Notifications

raywenderlich.com 165

Now switch to the Capabilities tab and switch Push Notifications on for the
CuddlePix target. cuddlePix is now set up to receive tokens from the Apple Push
Notification Service (APNS).

Select the ContentExtension target and change the com.razeware.CuddlePix
prefix in its bundle identifier to match the unique identifier you used for the
CuddlePix target (leaving .ContentExtension at the end of the identifier). Also set
your Team as you did in the other target. Apple requires that your extensions have
a prefix that matches the main app.

You'll also need a way to send test pushes. For this, you'll use a popular open
source tool called Pusher, which sends push notifications directly to APNS. To start,
follow the instructions in the Installation section of their GitHub readme to get the
app running: github.com/noodlewerk/NWPusher.

Pusher's readme also has a Getting Started section that guides you through
creating the required SSL certificate; follow this to create a Development certificate.
You may also find the section titled Creating an SSL Certificate and PEM file in Push
Notifications Tutorial: Getting Started useful. You can find it here -
raywenderlich.com/123862.

With your p12 file in hand, go back to Pusher and select it in the Select Push
Certificate dropdown. You may need to choose Import PCKS #12 file (.p12)
and manually select it if it doesn't appear here.

Pusher requires a push token so it can tell APNS where to send the notification.

iOS 10 by Tutorials Chapter 8: User Notifications

raywenderlich.com 166

Head back to Xcode and open AppDelegate.swift. Add the following just before
the return statement in application(_:didFinishLaunchingWithOptions):

application.registerForRemoteNotifications()

When cuddlePix starts up, it will now register for notifications. Remember – this will
only work when run on a device.

Add the following at the bottom of the app delegate, just below the final bracket:

extension AppDelegate {
 // 1
 func application(_ application: UIApplication,
didFailToRegisterForRemoteNotificationsWithError error: Error) {
 print("Registration for remote notifications failed")
 print(error.localizedDescription)
 }

 // 2
 func application(_ application: UIApplication,
 didRegisterForRemoteNotificationsWithDeviceToken deviceToken: Data) {
 print("Registered with device token: \(deviceToken.hexString)")
 }
}

This extension contains UIApplicationDelegate methods for handling responses
from APNS:

1. application(_:didFailToRegisterForRemoteNotificationsWithError:) is called
when registration fails. Here, you print the error message.

2. application(_:didRegisterForRemoteNotificationsWithDeviceToken:) is called
when registration is successful, and returns the deviceToken. You use hexString,
a helper method included with the starter project, to convert it to hex format
and print it to the console.

Build and run on a device, and check the debug console for your device token,
prefixed with the string Registered with device token. Copy the hex string and
paste it into the Device Push Token field in Pusher. Then paste the following in
the payload field, using Paste and Match Style to avoid formatting issues:

{
 "aps":{
 "alert":{
 "title":"New cuddlePix!",
 "subtitle":"From your friend",
 "body":"Cheer yourself up with this remote hug) "
 },
 "category":"newCuddlePix"
 }
}

iOS 10 by Tutorials Chapter 8: User Notifications

raywenderlich.com 167

Your setup should now look like this:

Select Push in the lower right of Pusher and, if everything is configured properly,
you should see a push that looks like this:

The default notification banner is here, but if you expand it, the image view will be
blank. You passed in the category of newCuddlePix, identifying your Notification
Content extension – but you didn't provide an attachment to load. That's just not
possible from a remote payload...but that's where Notification Service extensions
come in.

Creating and configuring a Notification Service extension
The plan is to modify your payload to include the URL of an attachment you'll
download in the Notification Service extension and use to create an attachment.
Update the JSON in the payload section in Pusher to match the following:

{
 "aps":{
 "alert":{
 "title":"New cuddlePix!",
 "subtitle":"From your friend",
 "body":"Cheer yourself up with this remote hug) "
 },
 "category":"newCuddlePix",
 "mutable-content": 1
 },
 "attachment-url": "https://wolverine.raywenderlich.com/books/i10t/
notifications/i10t-feature.png"
}

iOS 10 by Tutorials Chapter 8: User Notifications

raywenderlich.com 168

This contains two new keys:

1. mutable-content takes a boolean and indicates whether or not the notification
should be modifiable by a Notification Service extension. You set it to 1 to
override the default of 0, which prevents a Notification Service app extension
from running.

2. attachment-url resides outside of the main payload, and is of your own design;
the key name and content are not dictated by the user notification services.
You'll write code in the extension to grab this and use it to load an image in the
notification.

With the content in mind, it's time to start creating the Notification Service
extension to load the content-url and build an attachment with it.

Select File\New\Target in Xcode, and choose the iOS\Application Extension
\Notification Service Extension template. Name it ServiceExtension, make
sure your correct Team is selected, select Swift as the Language, and hit Finish.
If prompted, choose to Activate the scheme.

This will create a target called ServiceExtension. It will also add the following files
to your project:

Take a look at NotificationService.swift, which contains a class
NotificationService that inherits from UNNotificationServiceExtension.
UNNotificationServiceExtension is the central class for Notification Service
extensions, and it contains two important methods overridden in the template
code:

1. didReceive(_:withContentHandler) is called when a notification is received
and routed to the extension, and is given a limited amount of time to modify the
notification contents. It accepts a UNNotificationRequest, from which it creates
bestAttemptContent, a mutable copy of the notification content. The template
unwraps this, appends [modified] to the end of the title, then calls the content
handler, passing the updated content.

2. serviceExtensionTimeWillExpire() is called to provide a best attempt at
updating notification content in cases where
didReceive(_:UNNotificationServiceExtension) doesn't return quickly enough.
The template contains a property bestAttemptContent that
didReceive(_:UNNotificationServiceExtension) uses while updating content.
Here, serviceExtensionTimeWillExpire() unwraps bestAttemptContent and
sends it along to the content handler.

iOS 10 by Tutorials Chapter 8: User Notifications

raywenderlich.com 169

You'll modify this code to handle downloading the attachment-url. First, add the
following import to the top of the file:

import MobileCoreServices

You'll need this for referencing a file type constant in just a moment.

In didReceive(_:withContentHandler), delete the template code inside the if let
bestAttemptContent = bestAttemptContent block. Add the following in its place:

// 1
guard let attachmentString = bestAttemptContent
 .userInfo["attachment-url"] as? String,
 let attachmentUrl = URL(string: attachmentString) else { return }

// 2
let session = URLSession(configuration:
 URLSessionConfiguration.default)
let attachmentDownloadTask = session.downloadTask(with:
 attachmentUrl, completionHandler: { (url, response, error) in
 if let error = error {
 print("Error downloading: \(error.localizedDescription)")
 } else if let url = url {
 // 3
 let attachment = try! UNNotificationAttachment(identifier:
 attachmentString, url: url, options:
 [UNNotificationAttachmentOptionsTypeHintKey: kUTTypePNG])
 bestAttemptContent.attachments = [attachment]
 }
 // 5
 contentHandler(bestAttemptContent)
})
// 4
attachmentDownloadTask.resume()

Here's what this does:

1. This gets the string value for attachment-url found in userInfo of the request
content copy. It then creates a URL from this string and saves it in
attachmentUrl. If this guard isn't successful, it bails out early with a return.

2. session is an instance of URLSession used when creating a downloadTask to get
the image at attachmentUrl. In the completion handler, an error is printed on
failure.

3. On success, a UNNotificationAttachment is created using the attachmentString
as a unique identifier and the local url as the content.
UNNotificationAttachmentOptionsTypeHintKey provides a hint as to the file type;
in this case, kUTTypePNG is used as the file is known to be a PNG. The resulting
attachment is set on bestAttemptContent.

4. The completionHandler is called, passing over the modified notification content.
This signifies the extension's work is done, and sends back the updated
notification. This must be done whether or not the attempt was successful. If

iOS 10 by Tutorials Chapter 8: User Notifications

raywenderlich.com 170

unsuccessful, the original request is sent back.

5. Once the downloadTask is defined, it kicks off with resume(). This leads to the
attachmentDownloadTask completionHandler executing on completion, which in
turn calls the contentHandler to complete processing.

serviceExtensionTimeWillExpire() is already in good shape with the template code.
It will return whatever you currently have in bestAttemptContent.

Build and run the ServiceExtension scheme on your device, making sure to run
with cuddlePix. Now return to Pusher where you should have already copied the
new payload containing attachment-url. Hit Push and you should see a remotely-
sourced cuddle, complete with an image of something truly beautiful:

The Notification Service extension intercepted the remote push, downloaded the
image in the URL provided in the payload and attached it to the notification. Pretty
cool!

Where to go from here?
In this chapter, you got up close and personal with some cuddly cacti while
checking out all the new features in notifications.

You learned how to create custom notification interfaces, respond to actions in
Notification Content extensions and the app, query and modify existing
notifications, and enhance remote notifications with Notification Service extensions.
I imagine you've already come up with some ideas on your own to enhance your
apps with these basic concepts.

For more detail on any of these topics, be sure to check out Apple's
UserNotifications API Reference at apple.co/29F1nzE

Also check out the great WWDC 2016 videos that cover all of these new features:

• Advanced Notifications (Session 708)—apple.co/29t7c6v

• Introduction to Notifications (Session 707)—apple.co/29Wv6D6

iOS 10 by Tutorials Chapter 8: User Notifications

raywenderlich.com 171

9Chapter 9: Property Animators
By Rich Turton

If you’ve done any animations in UIKit, you’ve probably used the UIView animation
methods UIView.animate(withDuration:animations:) and friends.

iOS 10 has introduced a new way to write animation code: using
UIViewPropertyAnimator. This isn’t a replacement for the existing API, nor is it
objectively “better”, but it does give you a level of control that wasn’t possible
before.

In this chapter, you’ll learn about the following new features that Property
Animators give you access to:

• Detailed control over animation timing curves

• A superior spring animation

• Monitoring and altering of animation state

• Pausing, reversing and scrubbing through animations or even abandoning them
part-way through

The fine control over animation timing alone would make a Property Animator an
improvement for your existing UIView animations. But where they really shine is
when you create animations that aren’t just fire-and-forget.

For example, if you’re animating something in response to user gestures, or if you
want the user to be able to grab an animating object and do something else with it,
then Property Animators are your new best friend.

Getting started
Open the Animalation project in the starter materials for this chapter. This is a
demonstration app which you’ll modify to add extra animation capabilities. There
are two view controllers, some animated transition support files, and some utility

raywenderlich.com 172

files. Build and run the project:

Tap the Animate button at the top, and the frog will move to a random position.
This happens with a traditional call to UIView.animate(withDuration:) in
ViewController.swift:

func animateAnimalTo(location: CGPoint) {
 // TODO
 UIView.animate(withDuration: 3) {
 self.imageContainer.center = location
 }
}

Watch carefully as the frog moves. It starts slowly, then gets faster, then slows
down again before it stops.

That’s due to the animation’s timing curve. UIView.animate(withDuration:) uses a
built-in timing curve called curveEaseInOut, which represents this slow/fast/slow
behavior. There are a few other timing curve options provided by Apple, but your
choices are quite limited.

Often, you want precise control over an animation's timing curve, and this is one of
the features that Property Animators give you. Before we get into the code, here’s a
quick explanation of timing curves.

iOS 10 by Tutorials Chapter 9: Property Animators

raywenderlich.com 173

Timing is everything
Consider a very simple animation, ten seconds in length, where a view moves along
a line, from x = 0 to x = 10.

At any given second, how far along the line is the view? The answer to this question
is given by the animation’s timing curve. The simplest timing curve isn’t curved at
all — it’s called the linear curve. Animations using the linear curve move along at a
constant speed: after 1 second, the view is at position 1. After 2 seconds, position
2, and so on. You could plot this on a graph like so:

This doesn’t lead to very fluid or natural-looking animations; in real life, things
don’t go from not moving at all to moving at a constant rate, and then suddenly
stopping when they get to the end. For that reason, the UIView animation API uses
an ease-in, ease-out timing curve. On a graph, that looks more like this:

You can see that for the first quarter or so of the time, your animation doesn’t
make much progress. It then speeds up and slows again near the end. To the eye,

iOS 10 by Tutorials Chapter 9: Property Animators

raywenderlich.com 174

the animated object accelerates, moves then decelerates and stops. This looks a lot
more natural and is what you saw with the frog animation.

UIView animations offer you four choices of timing curve: linear and ease-in-
ease-out, which you’ve seen above; ease-in, which accelerates at the start but
ends suddenly; and ease-out, which starts suddenly and decelerates at the end.

UIViewPropertyAnimator, however, offers you nearly limitless control over the timing
curve of your animations. In addition to the four pre-baked options above, you can
supply your own cubic Bézier timing curve.

Cubic Bézier timing curves
Your own cubic what now?

Don’t panic. You’ve been looking at these types of curves already. A cubic Bézier
curve goes from point A to point D, while also doing its very best to get near points
B and C on the way, like a dog running across the park, being distracted by
interesting trees.

Let's review the examples from earlier. In both examples above, point A is in the
bottom left and point D is in the top right. With the linear curve, points B and C
happen to be in an exact straight line:

With ease-in-ease-out, point B is directly to the right of point A, and point C is
directly to the left of point D. You can imagine the line being pulled from A towards
B, then C takes over, then D:

iOS 10 by Tutorials Chapter 9: Property Animators

raywenderlich.com 175

Finally, here's what the ease-in and ease-out curves look like. With the ease-in
curve, point C is directly under point D, and with the ease-out curve, B is under A:

But what if you want something custom? You could set up the four points like this
and make a custom animation curve:

iOS 10 by Tutorials Chapter 9: Property Animators

raywenderlich.com 176

Here, points B and C are above the top of the graph, so the animation would
actually overshoot and then come back to its final position.

Points B and C in these diagrams are the control points of the animation curve.
They define the shape of the line as it travels from A to D.

Controlling your frog
With that covered, it’s now time to write some code. :]

Open ViewController.swift and find animateAnimalTo(location:). Replace the
body of the method with this code:

imageMoveAnimator = UIViewPropertyAnimator(
 duration: 3,
 curve: .easeInOut) {
 self.imageContainer.center = location
}
imageMoveAnimator?.startAnimation()

There’s already a property in the starter project to hold the animator, so you create
a new Property Animator and assign it. After the Animator is created, you need to
call startAnimation() to set it running.

Note: Why do you need to assign the Animator to a property? Well, you don’t
need to, but one of the major features of Property Animators is that you can
take control of the animation at any point, and without holding a reference to
it, that’s not possible.

Build and run the project, hit the animate button, and... well, it looks exactly the
same. You’ve used the .easeInOut timing curve, which is the same as the default
curve used for UIView animations.

iOS 10 by Tutorials Chapter 9: Property Animators

raywenderlich.com 177

Let’s take a look at a custom timing curve. When frogs jump, they have an
explosive burst of acceleration, then they land gently. In terms of timing curves,
that looks something like this:

You can see the two control points on the diagram. Let's try it out!

Replace the contents of animateAnimalTo(location:) with the following:

let controlPoint1 = CGPoint(x: 0.2, y: 0.8) // B on the diagram
let controlPoint2 = CGPoint(x: 0.4, y: 0.9) // C on the diagram
imageMoveAnimator = UIViewPropertyAnimator(
 duration: 3,
 controlPoint1: controlPoint1,
 controlPoint2: controlPoint2) {
 self.imageContainer.center = location
}
imageMoveAnimator?.startAnimation()

The two control points correspond to the labelled points on the diagram as indicated
by the comments. The timing curve always runs from (0, 0) at A to (1, 1) at D.
Build and run and you’ll see that the frog starts to move very quickly and then
slows down — exactly as you wanted!

Challenge: Play around with the control points to see what effects you can
get. What happens if any control point coordinate is greater than 1.0, or less
than 0.0?

Spring animations
The level of control over the timing curve goes even further than this. The two
initializers you’ve used so far, passing in a curve or control points, are actually
convenience initializers. All they do is create and pass on a UITimingCurveProvider

iOS 10 by Tutorials Chapter 9: Property Animators

raywenderlich.com 178

object.

UITimingCurveProvider is a protocol that provides the relationship between elapsed
time and animation progress. Unfortunately, the protocol doesn’t go as far as to let
you have total control, but it does give you access to another cool feature: springs!

Note: “Wait!” you cry. “We already had spring animations!” Yes, you did, but
they weren’t very customizable. UIView spring require a duration, as well as
the various parameters describing the spring. To get natural-looking spring
animations, you had to keep tweaking the duration value.

Why? Well, imagine an actual spring. If you stretch it between your hands and
let go, the duration of the spring’s motion is really a function of the properties
of the spring (What is it made of? How thick is it?) and how far you stretched
it. Similarly, the duration of the animation should be driven from the properties
of the spring, not tacked on and the animation forced to fit.

Apple has provided an implementation of UITimingCurveProvider to create timing
curves for springs, called UISpringTimingParameters. To use
UISpringTimingParameters you need to provide three values to describe the spring
system:

• The mass of the object attached to the spring.

• The stiffness of the spring.

• The damping; these are any factors that would act to slow down the movement
of the system, like friction or air resistance.

The amount of damping applied will give you one of three outcomes: the system
can be under-damped, meaning it will bounce around for a while before it settles;
critically damped, meaning it will settle as quickly as possible without bouncing at
all; or over-damped, meaning it will settle without bouncing, but not quite as
quickly.

In most cases, you’ll want a slightly under-damped system — without that, your
spring animations won’t look particularly springy. But you don’t have to guess at
what values to use. The critical damping ratio is 2 times the square root of the
product of the mass and stiffness values. You’ll put this into action now.

Replace the contents of animateAnimalTo(location:) with the following:

//1
let mass: CGFloat = 1.0
let stiffness: CGFloat = 10.0
//2
let criticalDamping = 2 * sqrt(mass * stiffness)
//3
let damping = criticalDamping * 0.5
//4

iOS 10 by Tutorials Chapter 9: Property Animators

raywenderlich.com 179

let parameters = UISpringTimingParameters(
 mass: mass,
 stiffness: stiffness,
 damping: damping,
 initialVelocity: .zero)
//5
imageMoveAnimator = UIViewPropertyAnimator(
 duration: 3,
 timingParameters: parameters)
imageMoveAnimator?.addAnimations {
 self.imageContainer.center = location
}
imageMoveAnimator?.startAnimation()

Here’s the breakdown:

1. Create constants for the mass and stiffness values.

2. Derive the critical damping ratio using the formula stated above.

3. Reduce this ratio to give an under-damped spring.

4. Create a spring timing parameters object.

5. Use the designated initializer, passing in the new timing parameters.

Note that since you’re using spring timing parameters, duration is ignored. You also
have to add the animations separately when using this initializer.

Build and run, and you’ll see the frog move in a more spring-like fashion.

Challenge: Experiment with the mass and stiffness used in section 1 and the
multiplier used in section 3, and see what effect this has on the animation.

Note: If for some reason you don’t find specifying your own spring parameters
exciting, there is also a convenience initializer init(dampingRatio:,
initialVelocity:) for UISpringTimingParameters where 1.0 is a critically
damped spring and values less than 1.0 will be under-damped.

Initial velocity
There’s one additional value when you create the spring timing parameters — the
initial velocity. This means you can tell the spring system that the object has
momentum at the start of the animation — in which case it can make the animation
look more natural.

Build and run the app, and drag the frog around. Notice that when you release the
frog, he moves back to where he started. Then try moving the frog quickly, and
release your mouse while you're still moving the frog. You’ll see that when you let

iOS 10 by Tutorials Chapter 9: Property Animators

raywenderlich.com 180

go, the frog suddenly starts moving in the opposite direction. It doesn’t look quite
right: you'd expect the frog to continue moving in the direction you were dragging
for a bit before he moves back to the initial point.

The initial velocity is a CGVector, measured in units that correspond to the total
animation distance — that is, if you are animating something by 100 points, and
the object is already moving at 100 points per second, the vector would have a
magnitude of 1.0.

You’re going to amend the app so that the velocity of the pan gesture used to move
the frog is taken into account in the spring animation. First, change the
animateAnimalTo(location:) method signature to include a velocity parameter:

func animateAnimalTo(location: CGPoint,
 initialVelocity: CGVector = .zero) {

Use this value instead of .zero when making the timing parameters:

initialVelocity: initialVelocity)

Now find handleDragImage(_:). Replace the body of the .ended: case with the
following code:

case .ended:
 if let imageDragStartPosition = imageDragStartPosition {
 //1
 let animationVelocity = sender.velocity(in: view)
 //2
 let animationDistance = imageContainer.center.distance(toPoint:
imageDragStartPosition)
 //3
 let normalisedVelocity = animationVelocity.normalise(weight:
animationDistance)
 //4
 let initialVelocity = normalisedVelocity.toVector
 animateAnimalTo(
 location: imageDragStartPosition,
 initialVelocity: initialVelocity)
 }
 imageDragStartPosition = .none

Taking each numbered comment in turn:

1. The pan gesture has a velocity(in:) method describing how fast it’s moving
measured in points per second. This is returned as a CGPoint rather than a
CGVector, but both structures are very similar.

2. A convenience method included in the starter project calculates the distance in
points from the current position to the animation’s end position. This is one
“unit” when talking about the animation.

3. Another convenience method uses that distance to convert the gesture velocity
into animation units.

iOS 10 by Tutorials Chapter 9: Property Animators

raywenderlich.com 181

4. Finally, the CGPoint is converted to a CGVector so it can be passed to the
animation method.

Build and run and fling the frog about — you will see that the animation takes your
initial gesture into account.

Inspecting in-progress animations
What else can you get out of a Property Animator, besides fancy timing curves?
Well, you can query what’s happening at any point in the animation. The Property
Animator has the following properties that tell you what’s happening:

• state: This is .inactive, .active or .stopped.

• isRunning: This is a Bool telling you if the animation is running or not.

• isReversed: This is a Bool telling you if the animation is reversed or not.

The state property is also observable via key-value-observing (KVO). KVO is quite
tedious to set up, so that work has been done for you in ViewController
+Observers.swift.

Let's try it out. Add this line to the start of
animateAnimalTo(location:initialVelocity:):

removeAnimatorObservers(animator: imageMoveAnimator)

And this line just above where you call startAnimation():

addAnimatorObservers(animator: imageMoveAnimator)

These lines link up the segmented control at the bottom of the app to the current
state of the animator. Build and run, start an animation and keep an eye on the
segmented control. You can see state change before your eyes:

iOS 10 by Tutorials Chapter 9: Property Animators

raywenderlich.com 182

As you explore more features of the Property Animator you’ll see more of these
segments light up. This is where Property Animators start to get really interesting!

Pausing and scrubbing
With UIView animations, you set them going and then usually forget about them
unless you also added a completion block. With Property Animators, you can reach
in at any point during the animation and stop it. You can, for example, use this for
animations the user can interrupt by touching the screen. Interactions like this
make your users feel incredibly connected to what’s happening in the app.

The Animalation project already has a handler for tapping the image view, but at
the moment it doesn’t do anything. In ViewController.swift, find
handleTapOnImage(_:) and add the following code:

//1
guard let imageMoveAnimator = imageMoveAnimator else {
 return
}
//2
progressSlider.isHidden = true

iOS 10 by Tutorials Chapter 9: Property Animators

raywenderlich.com 183

//3
switch imageMoveAnimator.state {
case .active:
 if imageMoveAnimator.isRunning {
 //4
 imageMoveAnimator.pauseAnimation()
 progressSlider.isHidden = false
 progressSlider.value = Float(imageMoveAnimator.fractionComplete)
 } else {
 //5
 imageMoveAnimator.startAnimation()
 }
default:
 break
}

Here’s the step-by-step breakdown:

1. If there’s no imageMoveAnimator, there’s no point in doing anything, so you
simply break out of the method.

2. On the provided screen you have a slider, which has currently been hidden. The
slider should also be hidden in most cases when the image is tapped, so you set
that here.

3. If you’re testing values of an enum, it’s almost always better to use a switch,
even if in this case you’re only interested in one outcome. Remember the
possible values are .active, .inactive and .stopped.

4. If the Animator is running, then you pause it, show the slider and set the
slider’s value to the .fractionComplete value of the animator. UIKit currently
uses CGFloat rather than Float in almost all cases, but we’re starting to see a
switch in the Apple APIs that favors a simpler syntax such as Float. The
UISlider’s value is one such example, so here you have to convert between
Float and CGFloat.

5. If the Animator isn’t running, you set it off again.

Next, add in the implementation for handleProgressSliderChanged(_:):

imageMoveAnimator?.fractionComplete = CGFloat(sender.value)

This is the reverse of what you did when pausing the animation — the value of the
slider is used to set the .fractionComplete property of the animator.

Build and run the app and try to tap the frog while it’s moving:

iOS 10 by Tutorials Chapter 9: Property Animators

raywenderlich.com 184

You can see the slider appear and the animation stop. Moving the slider back and
forth moves the frog along its path — but note that it follows the straight point-to-
point path, rather than the overshooting and oscillation coming from the spring.
That’s because the slider moves the animation along the progress axis of those
charts from earlier, not the time axis.

It’s important to note here that pausing an animation isn’t the same as stopping
one. Notice that the state indicator stays on .active when you’ve paused the
animation.

Stopping
When a Property Animator stops, it ends all animation at the current point and,
more importantly, updates the properties of the animated views to match those at
the current point. If you’ve ever tried to get in-flight values out of an interrupted
UIView animation so that you can seamlessly stop it, you’ll be quite excited to read
this.

Inside handleTapOnImage(_:), add the following line at the end of the method:

stopButton.isHidden = progressSlider.isHidden

iOS 10 by Tutorials Chapter 9: Property Animators

raywenderlich.com 185

This will show or hide the stop button in sync with the progress slider.

Find handleStopButtonTapped(_:) and replace the comment with the following
implementation:

guard let imageMoveAnimator = imageMoveAnimator else {
 return
}
switch imageMoveAnimator.state {
//1
case .active:
 imageMoveAnimator.stopAnimation(false)
//2
case .inactive:
 break
//3
case .stopped:
 imageMoveAnimator.finishAnimation(at: .current)
}

Stopping an Animator is, or can be, a two-stage process. Above, you have the
standard guard checking that the Animator object exists, then a switch on the state:

1. For an active Animator, you tell it to stop. The parameter indicates if the
Animator should immediately end and become inactive (true), or if it should
move to the stopped state and await further instructions (false)

2. There’s nothing to do for the inactive state.

3. A stopped Animator should be finished at the current position.

Build and run the project, then do the following:

• Tap the animate button to start the animation.

• Tap the frog to pause the animation.

• Tap the stop button to stop the animation.

• Tap the stop button again to finish the animation.

If you’re feeling a little confused at this point, don’t worry. A Property Animator can
be paused, stopped or finished, and those all mean different things:

Paused
State: .active

Running: true

This is a running Animator on which you’ve called pauseAnimation(). All of the
animations are still in play. The animations can be modified, and the Animator can
be started again by calling startAnimation().

iOS 10 by Tutorials Chapter 9: Property Animators

raywenderlich.com 186

Stopped
State: .stopped

Running: false

This is a running or paused Animator on which you’ve called stopAnimation(_:),
passing false. All of the animations are removed, and the views that were being
animated have their properties updated to the current state as determined by the
animation. The completion block has not been called. You can manually finish the
animation by calling finishAnimation(at:), passing .end, .start or .current.

Finished
State: .inactive

Running: false

This is either an Animator that’s reached the end of its animations naturally; a
running Animator on which you’ve called stopAnimation(_:), passing true; or a
stopped Animator on which you’ve called finishAnimation(at:). Note that you
cannot call finishAnimation(at:) on anything other than a stopped animator.

The animated views will have their properties set to match the end point of the
animation, and the completion block for the Animator will be called.

We haven’t yet discussed completion blocks for Property Animators. They’re a little
different to those from UIView animations, where you get a Bool indicating if the
animation was completed or not. One of the main reasons they’re different is
because a Property Animator can be run in reverse.

Reversing
You might be thinking “Why would I ever want to run an animation in reverse?” A
good use case is when you’re working with gesture-driven interfaces. Imagine using
something like a swipe gesture to dismiss a presented view, where, during the
dismiss animation, the user decides not to dismiss it, and swipes back slightly in
the other direction. A Property Animator can take all of this into account and run
the animation back to the start point, without having to store or recalculate
anything.

To demonstrate this in the sample app, you’re going to change the function of the
Animate button. If you tap it while an animation is running, it’s going to reverse
the animation.

In ViewController.swift find handleAnimateButtonTapped(_:) and replace the
implementation with the following:

iOS 10 by Tutorials Chapter 9: Property Animators

raywenderlich.com 187

if let imageMoveAnimator = imageMoveAnimator, imageMoveAnimator.isRunning
{
 imageMoveAnimator.isReversed = !imageMoveAnimator.isReversed
} else {
 animateAnimalToRandomLocation()
}

For a running animation, this will toggle the reversed property; otherwise, it will
start the animation as before.

Build and run, then tap the animate button — then tap it again. You’ll see the frog
return to its original position, but using the spring timing to settle naturally back
into place! You can see that the isReversed indicator on the screen updates
appropriately.

Note: At the time of writing this chapter, there appears to be a bug in Xcode 8
beta 4 where isReversed does not update properly.

You now have three different ways that the animation can end: it can finish
normally, you can stop it half way, or you can reverse it to finish where it started.
This is useful information to know when you have a completion block on the
animation, so you’re now going to add one now.

In animateAnimalTo(location: initialVelocity:), add the following code after you
call addAnimations(_:):

imageMoveAnimator?.addCompletion { position in
 switch position {
 case .end: print("End")
 case .start: print("Start")
 case .current: print("Current")
 }
}

The completion block takes a UIViewAnimatingPosition enum as its argument,
which tells you what state the Animator was in when it finished.

Build and run the project and try to obtain all three completion block printouts by
ending the animation at the end, start or somewhere in the middle.For a more
practical demonstration of the various states of a completion block, you’re going to
add a second animation and run the two of them together.

Multiple animators
You can add as many changes as you like to a single Property Animator, but it’s also
possible to have several Animators working on the same view. You’re going to add a
second Animator to run alongside the first, which will change the animal image

iOS 10 by Tutorials Chapter 9: Property Animators

raywenderlich.com 188

displayed.

In ViewController.swift add the following array of images, before the class
declaration of ViewController:

let animalImages = [
 #imageLiteral(resourceName: "bear"),
 #imageLiteral(resourceName: "frog"),
 #imageLiteral(resourceName: "wolf"),
 #imageLiteral(resourceName: "cat")
]

You’ll see the pasted code transform into image literals... how cool is that?

Next, underneath the declaration for imageMoveAnimator, add a declaration for the
second animator:

var imageChangeAnimator: UIViewPropertyAnimator?

In the extension where animateAnimalToRandomLocation() lives, add the following
new method:

func animateRandomAnimalChange() {
 //1
 let randomIndex = Int(arc4random_uniform(UInt32(animalImages.count)))
 let randomImage = animalImages[randomIndex]
 //2
 let duration = imageMoveAnimator?.duration ?? 3.0

 //3
 let snapshot = animalImageView.snapshotView(afterScreenUpdates: false)!
 imageContainer.addSubview(snapshot)
 animalImageView.alpha = 0
 animalImageView.image = randomImage

 //4
 imageChangeAnimator = UIViewPropertyAnimator(
 duration: duration,
 curve: .linear) {
 self.animalImageView.alpha = 1
 snapshot.alpha = 0
 }

 //5
 imageChangeAnimator?.addCompletion({ (position) in
 snapshot.removeFromSuperview()
 })

 //6
 imageChangeAnimator?.startAnimation()
}

Here’s the play-by-play:

1. Select a random destination image from the array you just created.

iOS 10 by Tutorials Chapter 9: Property Animators

raywenderlich.com 189

2. You want the duration of this animation to match that from the move animation.
Remember that a spring animation ignores the duration you pass in. Instead,
the duration is calculated based on the spring parameters and is available for
you to use via the duration property.

3. Here you set up the animation: you take a snapshot of the current animal, add
that to the image container, make the actual image view invisible and set the
new image.

4. Create a new Animator with a linear timing curve (you don’t really want a spring
for a fade animation) and within that, fade in the image view and fade out the
snapshot for a cross-dissolve effect.

5. When the animation is complete, remove the snapshot.

6. Finally, start the animation.

Add a call to this method in handleAnimateButtonTapped(_:), right after the call to
animateAnimalToRandomLocation():

animateRandomAnimalChange()

Build and run and hit the animate button, and you’ll see the image cross-fade while
it moves:

iOS 10 by Tutorials Chapter 9: Property Animators

raywenderlich.com 190

Note: The animal won’t always change. Sometimes the randomly selected
animal is the same as the one that’s already there!

If you pause the animation, you’ll see that the cross-fade merrily continues. This
might be what you want — it can be handy to have independent animations on the
same object. However, for this app, you’re going to sync up the state of the two
animators.

Find handleTapOnImage(_:) and where you pause or start imageMoveAnimator, do the
same to imageChangeAnimator:

case .active:
 if imageMoveAnimator.isRunning {
 imageMoveAnimator.pauseAnimation()
 imageChangeAnimator?.pauseAnimation()
 progressSlider.isHidden = false
 progressSlider.value = Float(imageMoveAnimator.fractionComplete)
 } else {
 imageMoveAnimator.startAnimation()
 imageChangeAnimator?.startAnimation()
 }

Change handleProgressSliderChanged(_:) to adjust the second Animator by adding
this line:

imageChangeAnimator?.fractionComplete = CGFloat(sender.value)

In handleAnimateButtonTapped(_:), after you set the reversed state of the move
animator, mirror it for the image change animator:

imageChangeAnimator?.isReversed = imageMoveAnimator.isReversed

Finally, you need to handle the stopping. You’re not going to do quite the same
thing here — abandoning the fade animation half way through would look rather
odd. In handleStopButtonTapped(_:), after you stop the move animator, simply
pause the image change animator:

imageChangeAnimator?.pauseAnimation()

After you finish the move animator in the .stopped case, add the following code:

if let imageChangeAnimator = imageChangeAnimator,
 let timing = imageChangeAnimator.timingParameters {
 imageChangeAnimator.continueAnimation(
 withTimingParameters: timing,
 durationFactor: 0.2)
}

continueAnimation lets you swap in a brand new timing curve (or spring) and a
duration factor, which is used as a multiplier of the original animation duration. You

iOS 10 by Tutorials Chapter 9: Property Animators

raywenderlich.com 191

can only do this to a paused animator. This means your fade animation will quickly
finish, while the move animation has stopped. This is an example of the great
flexibility and control that Property Animators can give you.

Build and run the app, and try pausing, scrubbing, stopping, finishing (remember to
tap “stop” twice to finish) and reversing the animation. You’ll notice a problem when
you reverse — the animal disappears! Where’s your doggone frog gone?

Remember what’s happening in the fade animation — a snapshot of the old image
is added, the image view is updated and made transparent, then a cross fade
happens. In the completion block, the snapshot is removed.

If the animation is reversed, when it “finishes” (i.e. returns to the start), the image
view is transparent and the snapshot view is removed, which means you can’t see
anything. You need to do different things in the completion block depending on
which position the animation ended in.

Go to animateRandomAnimalChange() and add the following line before you take the
snapshot:

let originalImage = animalImageView.image

This keeps a reference to the original animal, which you’ll need if the animation is
reversed. Add the following code to the completion block of the
imageChangeAnimator:

if position == .start {
 self.animalImageView.image = originalImage
 self.animalImageView.alpha = 1
}

This code restores the alpha and the image as they were before the animation
started.

Build and run again, reverse the animation and behold! No more disappearing
animals!

View controller transitions
Property Animators, or to be specific, objects that conform to
UIViewImplicitlyAnimating, can also be plugged in to your interactive view
controller transitions. Previously, you could start an interactive transition, track a
gesture, and then hand it off to finish or be canceled by the system — but after that
point, the user had no control. When you add Property Animators to the mix, you
can switch multiple times between interactive and non-interactive modes, making
your users feel really connected to what’s happening on the screen.

Setting up and building interactive transitions is a complex topic outside the scope

iOS 10 by Tutorials Chapter 9: Property Animators

raywenderlich.com 192

of this chapter. See https://www.raywenderlich.com/110536/custom-
uiviewcontroller-transitions or our book iOS Animations By Tutorials for an
overview. The starter project already contains an interactive transition; you’re going
to amend this to make it use Property Animators and become interruptible.

First, take a look at the existing transition. Open Main.storyboard, find the
Animals button on the bottom right of the main view controller and make it visible
by unchecking the Hidden box. Build and run the project and tap the button:

To dismiss the controller interactively, pull down:

iOS 10 by Tutorials Chapter 9: Property Animators

raywenderlich.com 193

Once you’ve let go, the animation will either return to the top or complete. If you
try and grab the screen as it’s disappearing (the transition is super slow to help you
with this!), nothing will happen.

To make an interactive transition super-duper interruptibly interactive, there’s a
new method to implement on your UIViewControllerAnimatedTransitioning object.
Open DropDownDismissAnimator.swift. This is a standard transition Animator
object. Add the following new method:

func interruptibleAnimator(using transitionContext:
UIViewControllerContextTransitioning) -> UIViewImplicitlyAnimating {
 let animator = UIViewPropertyAnimator(
 duration: transitionDuration(using: transitionContext),
 curve: .easeInOut) {
 self.performAnimations(using: transitionContext)
 }
 return animator
}

This creates a new Property Animator that simply calls the same animation method,
UIView animations and all, that is currently used by the transition.

The project is using a subclass of UIPercentDrivenInteractiveTransition for the
interaction controller for this transition. Percent driven transitions have a new
method, pause(), which tells the transition context to switch from non-interactive to
interactive mode.

You want this to happen when the user starts another pan gesture. Open

iOS 10 by Tutorials Chapter 9: Property Animators

raywenderlich.com 194

DropDownInteractionController.swift , which is the interaction controller. This
class uses a pan gesture to update the progress of the transition, and when the
gesture ends, sets it back to non-interactive mode with either finish() or cancel()
depending on the position of the view.

Add two new properties, underneath isInteractive:

var hasStarted = false
var interruptedPercent: CGFloat = 0

You will use hasStarted to decide if a new pan gesture is the start of a new
dismissal, or an attempt to interrupt an ongoing dismissal. If you do interrupt an
ongoing dismissal, interruptedPercent will be used to make sure the pan gesture’s
translation takes the current position of the view into account.

Inside handle(pan:), amend the calculation of percent:

let percent = (translation / pan.view!.bounds.height) +
interruptedPercent

You’re adding the interrupted percent on here, because if the dismissal was already
50% through when the user touches the screen, that needs to be reflected in the
position of the view.

Inside the same method, replace the .began case in the switch statement with the
following code:

case .began:
 if !hasStarted {
 hasStarted = true
 isInteractive = true
 interruptedPercent = 0
 viewController?.dismiss(animated: true, completion: nil)
 } else {
 pause()
 interruptedPercent = percentComplete
 }

If this isn’t the first gesture in the dismissal, the transition is paused and the
current percentage is taken from it. The transition must be paused before you read
the percentage, otherwise you’ll get an inaccurate figure.

Finally, switch over to AppDelegate.swift and add the following line to the
animationCleanup closure created in animationController(forDismissed:):

interactionController?.hasStarted = false

This ensures that the interaction controller is properly reset when the animations
are complete.

Build and run the project, show the animals view, then have fun interrupting
yourself and wobbling the view up and down!

iOS 10 by Tutorials Chapter 9: Property Animators

raywenderlich.com 195

Where to go from here?
Congratulations! You’ve had a good exploration of the new powers available to you
now that you can use Property Animators! Go forth and fill your apps with
interruptible, interactive animations, including an extra level of awesomeness in
your view controller transitions.

The WWDC video, 2016 session 216, available at https://developer.apple.com/
videos/play/wwdc2016/216/ is full of useful information.

iOS 10 by Tutorials Chapter 9: Property Animators

raywenderlich.com 196

10Chapter 10: Measurements and
Units
By Rich Turton

You’ve probably written code like this:

let distance: CGFloat // Distance is in miles

When dealing with real-world units in code, it’s easy just to use one of the built-in
numeric types and try to remember all the places you’re supposed to use units
along with the number, like the following:

distanceLabel.text = "\(distance) miles"

But that’s not quite correct if there’s only one mile, or if the mile has a lot of
decimal places, so you’d have to add even more code to counter this. Then it
doesn’t localize properly, so you add some more code. Then people want to see
their distances in kilometers, so you add a preference and some conversion logic.

If this is a familiar story, you’re in luck. The Foundation framework has some
exciting new additions this year for solving exactly these problems. You’re going to
learn about Measurement and Unit, and how they allow you to do the following:

• Get rid of fiddly conversions

• Use strongly typed values that prevent you from making unit mistakes; for
example, using yards when you meant Kelvin

• Show values to the user in terms they understand

• Get all this power for your own measurements and units.

Date intervals
Another exciting addition to Foundation this year is the date interval — a period
from one Date to another.

Again, this represents a problem that is commonly solved by having to write a lot of

raywenderlich.com 197

code that you probably don’t test (admit it), and you almost certainly don’t test for
international users. Date intervals and the associated date interval formatter will
make your life easier when you need to work with dates.

As I'm sure you can agree, dates are hard, so all help is welcome!

Measurement and Unit
To get started, you’re going to learn about two new types that will make a
measurable improvement to your code. :]

The Measurement struct doesn’t sound like much. It has just two properties:

• value, which is a Double

• unit, which is a Unit

Unit is even more minimal — it has just one propert:

• symbol, which is a String

This minimal implementation gives you some benefits. Given a Measurement, you’d
know right away what its units were, and be able to format it for display using the
symbol that comes with the unit. But the real power of the system comes from two
things:

• The Unit subclasses that are included with Foundation

• The use of generics to associate a particular Measurement with a given Unit

Unit subclasses
Dimension is a subclass of Unit in Foundation. This represents units that have a
dimension, such as length or temperature. Dimensions have a base unit and a
converter that can interpret the value to and from the base unit.

Dimension is an abstract class, which means you’re expected to subclass it to make
your own dimensions. A wide variety are already included in Foundation.

As an example, there is a UnitLength class. This is a subclass of Dimension used to
represent lengths or distances. The base unit is the meter, which is the SI unit for
length.

Note: SI stands for Système International, the internationally agreed system
of measurements. Readers from the US, brace yourselves for learning that you
are measuring almost everything “incorrectly”. :]

UnitLength has over 20 class variables which are instances of UnitLength. Each one

iOS 10 by Tutorials Chapter 10: Measurements and Units

raywenderlich.com 198

has a different converter so that it can be translated to and from meters.

UnitLength.meters, for example, has a converter that does nothing, because the
unit is already in the base unit. UnitLength.miles will have a converter that knows
that there are around 0.000621371 miles per meter.

Units and generics
When you create a Measurement, you give it a value and a unit. That unit becomes a
generic constraint on the measurement. Knowing that a measurement is associated
with a particular Unit means that Swift won’t let you do things with two
measurements that don’t use the same unit, and it means that you can do useful
things with measurements that do — like math.

I want to ride my bicycle
A triathlon is a fun event if your idea of fun is spending all day hurting. That means
the annual raywenderlich.com team triathlon event is particularly fun!

The annual raywenderlich.com team triathalon includes:

• a 25km bike ride

• a 3 nautical mile swim

• a half marathon run

Let's see how we can create some measurements representing these lengths using
the new classes in Foundation.

Open a new playground and enter the following code:

let cycleRide = Measurement(value: 25,
 unit: UnitLength.kilometers)
let swim = Measurement(value: 3,
 unit: UnitLength.nauticalMiles)

Here you define the length of the cycle and swim using the new Measurement class.
You simply set the value and choose the appropriate unit: simple!

But what about the half marathon?

A marathon is 26 miles, 385 yards. This awkward number comes from the 1908
London Olympics, where the organizers planned a course of 26 miles, then had to
add an extra bit so that the race would finish neatly in front of the Royal Box. Do
you know what 26 miles, 385 yards is in “Decimal miles”? I don’t, and now, I don’t
have to.

To create a measurement of a marathon, add the following to the playground:

iOS 10 by Tutorials Chapter 10: Measurements and Units

raywenderlich.com 199

let marathon = Measurement(value: 26, unit: UnitLength.miles)
 + Measurement(value: 385, unit: UnitLength.yards)

Notice that you’ve been able to add these measurements together, even though one
is in miles and the other is in yards. That’s because the units are all UnitLength. The
final value of marathon is in the base unit, because that’s the only result that makes
sense when adding two different instances together. Add the following code to the
playground to take a look at the units in use:

marathon.unit.symbol
swim.unit.symbol
cycleRide.unit.symbol

The results sidebar shows the units in use for each measurement:

"m"
"NM"
"km"

These stand for meters, nautical miles, and kilometer respectively.

Remember that the raywenderlich.com team triathalon is a half-marathon, not a full
marathon. You don't really think computer geeks like us could run a full marathon,
do you? :]

So next, add the following code to find the length of a half-marathon:

let run = marathon / 2

Then you can get the total distance covered in the triathlon like this:

let triathlon = cycleRide + swim + run

As you might expect, triathlon shows up in the results sidebar in meters

51653.442 m

This isn’t particularly useful, but generics can help you here. Measurement instances
with a Unit subclassing Dimension have a useful extra feature: they can convert to
other units, or be converted to other units. To see the triathlon total in miles, add
this line:

triathlon.converted(to: .miles)

The results sidebar will now show you 32.096 miles and change.

In addition to mathematical operations, you can also compare measurements of the
same Unit. To find out if the cycle ride is longer than the run, you can do this:

cycleRide > run

iOS 10 by Tutorials Chapter 10: Measurements and Units

raywenderlich.com 200

It’s true: A 25km cycle ride is longer than running a half marathon. Which would
you rather do?

If all of this exercise has left you feeling short of energy, the next section should
help.

Uranium Fever
You’ve almost certainly heard of Einstein’s equation E = mc². It states that the
energy (E) contained in a mass (m) is equal to the mass multiplied by the square
of the speed of light (c). In this equation, energy is measured in joules, mass in
kilograms, and the speed of light in meters per second.

Light is really rather fast — 299,792,458 meters per second. This suggests that
everything contains huge amounts of energy. Perhaps luckily, that energy is quite
hard to release.

One way to convert mass into energy is nuclear fission. The type commonly used in
nuclear power stations works a little like this (it’s a bit more complicated in reality,
but you’re not here to get a nuclear physics degree):

• Uranium-235 gets hit by a neutron

• Uranium-235 absorbs the neutron and briefly becomes Uranium-236

• Then it breaks apart into Krypton-92, Barium-141 and three more neutrons

• Those neutrons carry on to hit more Uranium-235...

Note: If you do have a nuclear physics degree, congratulations on your
change of career, but please don’t get upset about errors or simplifications in
this chapter.

You’re going to do some calculations in the playground to work out what is
happening in this reaction.

First of all, you’re going to define a unit to deal with atomic masses. Atoms aren’t
very heavy things on their own, and physicists use Atomic Mass Units to talk about
them. One atomic mass unit is approximately the mass of a proton or neutron, and
is approximately 1.661 x 10 to the -27th power kilograms. That’s quite a small
number.

Add the following code to the playground to create this instance of UnitMass:

let amus = UnitMass(symbol: "amu",
 converter: UnitConverterLinear(coefficient: 1.661e-27))

This is your first custom unit. You’ll look at converters in more detail later on, but

iOS 10 by Tutorials Chapter 10: Measurements and Units

raywenderlich.com 201

for now, understand that you’re saying you’ve got a new way of representing mass,
and you’ve specified how your new way relates to the base unit for UnitMass, which
is the kilogram.

Add measurements to describe the elements that go in to the nuclear reaction:

let u235 = Measurement(value: 235.043924, unit: amus)
let neutron = Measurement(value: 1.008665, unit: amus)
let massBefore = u235 + neutron

Now add measurements to describe the products of the fission reaction:

let kr92 = Measurement(value: 91.926156, unit: amus)
let ba141 = Measurement(value: 140.914411, unit: amus)
let massAfter = kr92 + ba141 + (3 * neutron)

massAfter is less than massBefore. What’s happened? It’s been converted to energy!
You can use E = mc² to find out how much energy.

This function uses Einstein’s equation to convert mass into energy:

func emc2(mass: Measurement<UnitMass>) -> Measurement<UnitEnergy> {
 let speedOfLight = Measurement(value: 299792458,
 unit: UnitSpeed.metersPerSecond)
 let energy = mass.converted(to: .kilograms).value *
 pow(speedOfLight.value, 2)
 return Measurement(value: energy, unit: UnitEnergy.joules)
}

Note: In the calculation you have to use the value of the measurement. That’s
because relationships between different dimensions (like mass and speed)
aren’t yet defined in Foundation. For example, you can’t divide a UnitLength by
a UnitDuration and get a UnitSpeed.

Find out how much energy is released in the fission of a single Uranium-235 atom
like this:

let massDifference = massBefore - massAfter
let energy = emc2(mass: massDifference)

That gives you a very small number of joules. You don’t run a nuclear reactor with a
single atom of uranium, though; you use a rod or some pellets of the stuff. So how
much energy is contained in a given weight of uranium?

The first step is to do a little chemical calculation. You want to find out how many
atoms of uranium are in a given mass. That’s done by this function:

func atoms(atomicMass: Double, substanceMass: Measurement<UnitMass>) ->
Double {
 let grams = substanceMass.converted(to: .grams)
 let moles = grams.value / atomicMass

iOS 10 by Tutorials Chapter 10: Measurements and Units

raywenderlich.com 202

 let avogadro = 6.0221409e+23
 return moles * avogadro
}

This formula uses a special number called Avogadro’s number which defines the
number of atoms in a mole, which is in turn approximately the number of amus
that weigh one gram. Don’t worry too much about understanding the formula, but
note that you can pass in any UnitMass you like and get a value out of the other
end.

Use this function to get the number of atoms in 1 lb of uranium, then multiply that
by the value you obtained earlier for the energy released by a single atom:

let numberOfAtoms = atoms(atomicMass: u235.value, substanceMass:
Measurement(value: 1, unit: .pounds))
let energyPerPound = energy * numberOfAtoms

The number has now gone from a meaninglessly small number to a meaninglessly
large one. Let’s do a final calculation to give it some context. The average American
home uses 11,700 kWh (kilowatt hours) of electricity per year. UnitEnergy has you
covered:

let kwh = energyPerPound.converted(to: .kilowattHours)
kwh.value / 11700

You should come up with a number close to 766. A pound of uranium can power
766 American homes for a year!

In the results sidebar in the playground, the numbers are often displayed with lots
of decimal places or exponentials. In the next section, you’re going to take control
of presenting your measurements with MeasurementFormatter.

Measure for MeasurementFormatter
MeasurementFormatter is a Formatter subclass just like DateFormatter and
NumberFormatter. It can take a lot of the work out of presenting your measurements
to the user, as it will automatically use the preferred units for the user’s locale.

Note: Unlike date and number formatters, measurement formatters are one-
way. You can’t use them to take a string like "1 kWh" and turn it into a
Measurement.

It’s getting hot in here
Open a new playground to start exploring measurement formatters.

Create a measurement representing a pleasantly warm Northern European

iOS 10 by Tutorials Chapter 10: Measurements and Units

raywenderlich.com 203

summer’s day:

let temperature = Measurement(value: 24, unit: UnitTemperature.celsius)

Now, create a measurement formatter and use it to get a string from the
measurement:

let formatter = MeasurementFormatter()
formatter.string(from: temperature)

Because the locale in playgrounds is the US by default, your sensible measurement
has been changed into “nonsense units” that only one country in the world
understands. Fix that by setting a more sensible locale:

formatter.locale = Locale(identifier: "en_GB")
formatter.string(from: temperature)

Measurement formatter has a property, UnitOptions, which acts as a sort of grab
bag of random options which didn’t really fit elsewhere. There are only three
options in there, one of which specifically relates to temperature.

Add these lines:

formatter.unitOptions = .temperatureWithoutUnit
formatter.string(from: temperature)

This tells the formatter to skip the letter indicating the temperature scale. This
option also stops the formatter changing the scale to match the locale, as that
would be hopelessly confusing. Check by changing the locale back:

formatter.locale = Locale(identifier: "en_US")
formatter.string(from: temperature)

The second unit option you can specify tells the formatter not to change the units
you’ve passed in. Add the following lines to see this in action:

formatter.unitOptions = .providedUnit
formatter.string(from: temperature)

You’ll see that the formatter is using Celsius again, even though it is still in the US
locale.

The third option doesn’t relate to temperatures. You’ll look at that in the next
section.

I would walk 500 miles
Remember earlier, when you added miles to yards to nautical miles to kilometers,
and the answer was given in meters?

The number of meters was quite high, and to present a meaningful value to the

iOS 10 by Tutorials Chapter 10: Measurements and Units

raywenderlich.com 204

user you would have to have a conversion step to a more sensible unit, and you
may need to write code to determine what that more sensible unit should be.
Measurement formatters can do this for you, for some kinds of units.

Add the following code to the playground:

let run = Measurement(value: 20000, unit: UnitLength.meters)
formatter.string(from: run)

The formatter gives you 20,000 m as the result; the formatter you’re using has a
locale of the US, but is set to use the provided unit. Now add these lines:

formatter.unitOptions = [.naturalScale, .providedUnit]
formatter.string(from: run)

Now you get a more sensible 20 km. .naturalScale works together
with .providedUnit to stay within the measurement system given by the
measurement, but to move up and down through related units:

let speck = Measurement(value: 0.0002, unit: UnitLength.meters)
formatter.string(from: speck)

This gives you the result 0.2 mm.

The unitStyle option on the formatter will tell it to present the full names or
abbreviations of units where possible:

formatter.unitStyle = .long
formatter.string(from: run)

This gives you the result 20 kilometers.

The default value is .medium, which prints the symbol of the unit in use. There is
currently no public API to provide extended or shorter names or symbols for your
own units.

The final aspect of a measurement formatter you can customize is the way the
numbers themselves are presented. What do we know that’s good at formatting
numbers? A number formatter!

You can create a number formatter and give it to the measurement formatter:

let numberFormatter = NumberFormatter()
numberFormatter.numberStyle = .spellOut
formatter.numberFormatter = numberFormatter
formatter.string(from: run)

This gives you the result twenty kilometers.

Up next, you’re going to learn how to go beyond the units provided to you by
Foundation.

iOS 10 by Tutorials Chapter 10: Measurements and Units

raywenderlich.com 205

(Custom) Dimension
The base class for units is Unit. This is an abstract class, designed for subclassing.
Foundation comes with a single subclass, Dimension, which is also an abstract class.
There are lots of subclasses of Dimension, each one of which represents a specific
quantifiable thing, like length or area or time. The base unit for the dimension is
defined at the class level — there is a class function, baseUnit(), which returns the
instance used as the base unit.

Instances feature a symbol and a converter for translating to and from the base
unit. Again, Foundation loads each Dimension subclass with class variables giving
you pre-made common units.

This is a little complicated to understand. Here’s a diagram to clarify things:

To instantiate a Dimension or one of its subclasses, you pass in a symbol and a
converter. The converter, as its name suggests, is responsible for converting the
value of the unit back and forth from the base unit specified at class level.

The converter has to be a subclass of UnitConverter, which, in a pattern that should
be familiar by now, is an abstract superclass. There is one subclass provided —
UnitConverterLinear — which allows linear conversion between units.

Most things you measure start at zero; zero miles is zero meters is zero furlongs.

iOS 10 by Tutorials Chapter 10: Measurements and Units

raywenderlich.com 206

This means that a simple coefficient (multiplication factor) is good enough for most
conversions.

Some things, like temperature, are a little more complicated. When people were
inventing temperature scales, they had no concept of absolute zero, so they placed
zero somewhere sensible (when water freezes) or somewhere silly (the temperature
of equal parts ice and salt). To cope with these situations you need a constant as
well as the coefficient.

UnitConverterLinear is created with a coefficient and a constant; the constant has a
default value of zero. When you made the amus UnitMass instance, you used a linear
converter. You’re going to look at an example in more detail now.

Chain of fools
It seems like in Olde England when people would have a thing that needed
measuring, they would look around them, pick the first thing they saw and use that
as a unit. Hence we have poppyseed, finger, hand, foot, rod, chain, and many
more.

It turns out that a chain is 20.1168 meters. So, you could create a unit to use in
measurements like this:

let chains = UnitLength(symbol: "ch",
 converter: UnitConverterLinear(coefficient: 20.1168))

This is similar to the code you used earlier when creating amus. However, imagine
that you believe the chain is such a useful unit of measure, you want it to be
available everywhere, just like the meter or the mile. To do this, you create an
extension on UnitLength and add a new class variable. Add the following code to a
new playground:

extension UnitLength {
 class var chains: UnitLength {
 return UnitLength(symbol: "ch",
 converter: UnitConverterLinear(coefficient: 20.1168))
 }
}

You can then use this unit just like any other. A cricket pitch is one chain from
wicket to wicket:

let cricketPitch = Measurement(value: 1, unit: UnitLength.chains)

This works just like any of the built-in units. You can do a few conversions:

cricketPitch.converted(to: .baseUnit())
cricketPitch.converted(to: .furlongs)
(80 * cricketPitch).converted(to: .miles)

iOS 10 by Tutorials Chapter 10: Measurements and Units

raywenderlich.com 207

This gives the values you’d expect; a chain is 20.1168 meters, as you’ve defined,
and in a rare occurrence of the number 10 in Imperial measurements, a chain is 0.1
furlongs. There are 8 furlongs in a mile, so 80 chains, give or take a bit of rounding,
is a mile.

So to get a fully-qualified extra unit added to any dimension, all you need to do is
provide a class variable, and all that needs to have is a symbol and a converter. Go
and sing a few verses of Unchained Melody to celebrate, but don’t get too carried
away — the next part is a little more complicated.

Turning it up to 11
You’ll probably have heard of decibels (dB), associated with how loud things are.
The decibel is actually a measure of the ratio of two values, and not only that, it’s
done on a logarithmic scale.

Decibels are used to measure changes in amplitude or power. Because of the
logarithmic scale, they allow you to talk about quite large changes and still use
sensible numbers. For example, a doubling of power is approximately 3dB, but
increasing power by a factor of 1 million is only 60dB.

Converting between power ratios and decibels is therefore not possible with the
linear unit converter, because the relationship between the two is not linear. You’re
going to make a new subclass of UnitConverter to express this relationship, and a
new Dimension subclass to hold your units.

Note: Don’t worry too much about following or understanding the math in this
example. The idea is to learn about creating a new dimension and a new
converter.

First, the converter. Make a new subclass of UnitConverter in your playground:

// 1
class UnitConverterLogarithmic: UnitConverter, NSCopying {
 // 2
 let coefficient: Double
 let logBase: Double
 // 3
 init(coefficient: Double, logBase: Double) {
 self.coefficient = coefficient
 self.logBase = logBase
 }
 // 4
 func copy(with zone: NSZone? = nil) -> Any {
 return self
 }
}

iOS 10 by Tutorials Chapter 10: Measurements and Units

raywenderlich.com 208

Here’s the breakdown:

1. You’re subclassing UnitConverter. Subclasses must also implement NSCopying,
though that isn’t mentioned in the documentation at the time of writing this
chapter.

2. These are the two properties needed to perform logarithmic conversions. A
coefficient and a log base.

3. This is the initializer which allows you to set the two properties

4. This is the implementation required for NSCopying. Your class is immutable, so
you can just return self.

There are two methods you must override to make a working converter to convert
to and from the base unit. These calculations are the standard methods for dealing
with logarithms; it isn’t important for the chapter that you follow the math. Add the
following methods to your converter class:

override func baseUnitValue(fromValue value: Double) -> Double {
 return coefficient * log(value) / log(logBase)
}

override func value(fromBaseUnitValue baseUnitValue: Double) -> Double {
 return exp(baseUnitValue * log(logBase) / coefficient)
}

These two methods allow your converter to convert measurements to and from the
base unit. That’s your unit converter done. Now for the Dimension subclass. The
thing you’re measuring is a ratio, so you’re going to call the subclass UnitRatio.
Add the following code to the playground:

class UnitRatio: Dimension {

 class var decibels: UnitRatio {
 return UnitRatio(symbol: "dB",
 converter: UnitConverterLinear(coefficient: 1))
 }

 override class func baseUnit() -> UnitRatio {
 return UnitRatio.decibels
 }
}

This has created a new Dimension subclass. There’s a single instance, decibels. This
is set up just like the chains that you added to UnitLength. Decibels is going to be
the base unit, so to “convert” it doesn’t need to do any work, since the linear
converter with a coefficient of 1 will do the job.

The class method baseUnit() has to be implemented for all Dimension subclasses.
This just returns the decibels class variable.

Now you can add the two ratios that can be converted to decibels — amplitude and

iOS 10 by Tutorials Chapter 10: Measurements and Units

raywenderlich.com 209

power. Add the following class variables to UnitRatio:

class var amplitudeRatio: UnitRatio {
 return UnitRatio(symbol: "", converter:
 UnitConverterLogarithmic(coefficient: 20, logBase: 10))
}

class var powerRatio: UnitRatio {
 return UnitRatio(symbol: "", converter:
 UnitConverterLogarithmic(coefficient: 10, logBase: 10))
}

Now you’re ready to use your new dimension. To double the volume of something,
that’s a power ratio of 2. Add this code to create that measurement, and convert it
to decibels:

let doubleVolume = Measurement(value: 2, unit: UnitRatio.powerRatio)
doubleVolume.converted(to: .decibels)

That’s approximately three decibels, which is what you expected from the
introduction to this section.

To take your amp “up to 11” from 10 is a power ratio of 1.1:

let upTo11 = Measurement(value: 1.1, unit: UnitRatio.powerRatio)
upTo11.converted(to: .decibels)

That’s only 0.4dB. Doesn’t sound quite as impressive, does it?

You’ve covered a lot of theory here — congratulations! From tiring sports to rocking
out, via a spot of nuclear physics. But you’re not done. If you need a holiday after
all that, the next section will help you out.

24 Hours From Tulsa
Any app that deals with dates probably has to deal with date intervals as well. You
might be dealing with events that have start and end times. How do you display
that event? How do you do calculations and comparisons between events?

All of this was possible to write yourself, but it was easy to get wrong. DateInterval
and DateIntervalFormatter are here to help.

A DateInterval has a start Date and a duration, so it represents a specific period of
time, in the same way a Date represents a specific point in time.

You can create a date interval in two ways: either with a start date and a duration,
or with a start date and end date. You can’t make an interval with an end date
before the start date.

In a new playground page, add this code:

iOS 10 by Tutorials Chapter 10: Measurements and Units

raywenderlich.com 210

let today = Date()
let twentyFourHours: TimeInterval = 60 * 60 * 24
let tomorrow = today + twentyFourHours
let overmorrow = tomorrow + twentyFourHours

let next24Hours = DateInterval(start: today, duration: twentyFourHours)
let nowTillThen = DateInterval(start: today, end: tomorrow)

This sets up some useful dates and then creates two date intervals using each
method. They both represent the same period of time, and you can test this
equality:

next24Hours == nowTillThen

This code evaluates to true. You can perform other comparisons between intervals
as well:

let next48Hours = DateInterval(start: today, end: overmorrow)
next48Hours > next24Hours //true

If date intervals start at the same time, the longest interval counts as the larger of
the two.

let allTomorrow = DateInterval(start: tomorrow, end: overmorrow)
allTomorrow > next24Hours //true
allTomorrow > next48Hours //true

If two date intervals start at different times, the one with the latest start date is
larger, and the lengths of the intervals are not compared.

There are more useful methods on DateInterval. Add this code to the playground to
create an interval covering a normal working week:

// 1
let calendar = Calendar.current
var components = calendar.dateComponents([.year, .weekOfYear],
 from: Date())
// 2
components.weekday = 2
components.hour = 8
let startOfWeek = calendar.date(from: components)!
// 3
components.weekday = 6
components.hour = 17
let endOfWeek = calendar.date(from: components)!
// 4
let workingWeek = DateInterval(start: startOfWeek,
 end: endOfWeek)

Here’s the breakdown:

1. Get a reference to the current calendar and then get the year and week
components of the current date.

iOS 10 by Tutorials Chapter 10: Measurements and Units

raywenderlich.com 211

2. Set the weekday to Monday and the hour to 8 and use this to create 8am on
Monday. Note that this is the correct way to work with dates. Adding time
intervals will let you down when you happen to fall across a daylight savings
change!

3. Set the weekday to Friday and the hour to 17 to make 5pm on Friday. Cocktail
time!

4. Create a date interval with those two dates.

It turns out you’ve won a surprise holiday! It’s two weeks long, and it starts right
now! (“Now” being 1pm on Friday. You have to allow a little poetic license here
because you could be following this chapter at any point in the week, but the code
has to work the same way!).

Add this code to represent your holiday:

components.hour = 13
let startOfHoliday = calendar.date(from: components)!
let endOfHoliday = calendar.date(byAdding: .day,
 value: 14, to: startOfHoliday)!
let holiday = DateInterval(start: startOfHoliday,
 end: endOfHoliday)

This creates the 1pm on Friday date, adds 14 days to get the end date, and makes
a new interval.

You can find out if the holiday start date falls within the working week like this:

workingWeek.contains(startOfHoliday) //true

You can find out if the holiday and the working week intersect each other like this:

workingWeek.intersects(holiday) //true

And, most excitingly, you can see exactly how much of the working week you’re
missing out on by going on your holiday:

let freedom = workingWeek.intersection(with: holiday)

This gives you a date interval beginning at 1pm on Friday and ending at 5pm. The
method returns an optional; if the two intervals don’t intersect, you get .none back.

You may have noticed that these date intervals are tricky to read in the results bar
of the playground. You can change that with DateIntervalFormatter.

DateIntervalFormatter isn’t too exciting; you configure it just like a DateFormatter,
and it then applies the format to the start and end dates of the interval and puts a
hyphen in between them. But it does save you having to do that step yourself.

Add the following code to the playground:

iOS 10 by Tutorials Chapter 10: Measurements and Units

raywenderlich.com 212

let formatter = DateIntervalFormatter()
formatter.dateStyle = .none
formatter.string(from: freedom!)

You knew the freedom interval only covered part of a day, so it made sense to hide
the dates from the formatter. The options available for date interval formatters are
the same as those for date formatters, so if you can use date formatters, you’re all
set.

Where to go from here?
The classes covered in this chapter aren’t going to give your users mind-blowing
new features, nor do they deal with particularly exciting or shiny things. But what
they do give you is rock-solid, useful functionality, and give you more time to spend
working on what makes your app unique. That’s what Foundation is there for, after
all: for you to build on top of!

iOS 10 by Tutorials Chapter 10: Measurements and Units

raywenderlich.com 213

11Chapter 11: What’s New with
Core Data
By Rich Turton

You know what nobody likes? Typing boilerplate code. But there’s another type of
typing nobody likes as well — explicit typing, especially when Swift’s implicit typing
will do.

The new Core Data updates in iOS 10 involve less of both kinds of typing:

• Less typing of boilerplate code because there are new convenience methods,
classes and code generations.

• Less explicit typing because Generic Fairy Dust™ has been sprinkled over fetch
requests and fetched results controllers. The compiler now knows what class of
managed object you’re dealing with.

There are also some useful new features at the managed object context and
persistent store coordinator level, which may change the way you’re structuring
your code.

If the previous two paragraphs made no sense to you, then check out our book
Core Data By Tutorials to learn the basics of Core Data first.

If you’re already familiar with Core Data, then read on to find out what’s new!

In this chapter, you’re going to take an app and convert it to use Core Data, using
some of the handy new Core Data features in iOS 10.

The app is TaterRater, which is incredibly handy for creating ratings notes about
your favorite varieties of potato. Later, you’ll make a greater TaterRater using Core
Dater — er, Data.

raywenderlich.com 214

Getting spudded
Open the starter project, build and run, then take a look around.

The app has a split view controller holding a master list and a detail view. The detail
view lets you set your own score for a particular variety of potato, view the average
score given by the millions of other potato fans worldwide and view your personal
potato notes.

You can edit your notes by bringing up a modal view controller which holds a text
view.

The Model group has a text file that holds a list of potato varieties and a single
model class in Potato.swift which represents the app’s model.

You’re going to start by replacing that model class with a Core Data model.

An eye to new data models
With the Model group selected, choose File\New\File…. Select Data Model from
the Core Data group:

iOS 10 by Tutorials Chapter 11: What’s New with Core Data

raywenderlich.com 215

Name the file TaterRater.xcdatamodeld. When the model editor opens, add a
new entity called Potato and the following attributes:

• crowdRating of type Float

• notes of type String

• userRating of type Integer 16

• variety of type String

The model editor should look like this:

The Potato entity will replace the Potato class that currently exists in the app.
You’ve created and typed the properties to match the existing class, so the existing
code will still compile. Delete the Potato.swift file from the Model group.

Still in the model editor open the Data Model Inspector with the Potato entity
selected. Fill in the Name field to say Potato, if it’s not already.

There are some new options in the Class section. Take a look at the Codegen field.
There are three options here which control how the code for that particular entity
will be created:

• Manual / None: no files will be created.

iOS 10 by Tutorials Chapter 11: What’s New with Core Data

raywenderlich.com 216

• Class Definition: a full class definition will be created.

• Category / Extension: An extension with the core data attributes declared
within will be created.

Choose Class Definition:

Build and run your project. It will crash, but at runtime. Does that surprise you?
You removed the Potato.swift file and you haven’t generated an NSManagedObject
subclass file yet, but your app built just fine. What’s happening?

Xcode now automatically generates the code to implement your subclasses. It puts
the generated files into the Derived Data folder for the project, to further underline
the idea that you’re not supposed to be editing them yourself. It does this every
time you change the model file.

See for yourself what has been created by finding some code that uses your entity.
For example, open AppDelegate.swift, then Command-click on the Potato type to
see the class definition:

import Foundation
import CoreData

@objc(Potato)
public class Potato: NSManagedObject {

}

Back in AppDelegate.swift, Command-click on one of the properties, such as
variety, to see how the properties are implemented:

import Foundation
import CoreData

extension Potato {

 @nonobjc public class func fetchRequest() -> NSFetchRequest<Potato> {
 return NSFetchRequest<Potato>(entityName: "Potato");
 }

 @NSManaged public var crowdRating: Float

iOS 10 by Tutorials Chapter 11: What’s New with Core Data

raywenderlich.com 217

 @NSManaged public var notes: String?
 @NSManaged public var userRating: Int16
 @NSManaged public var variety: String?

}

Note: If you select Manual / None in the model editor, then these files will
not be created. If you select Category / Extension, only the second file will
be created, and you’ll have to define the class yourself. If you want the files to
be included in your project directly, then choosing Manual / None then
Editor\Create NSManagedObject subclass… will give you the original
behavior.

Automatic code generation can make it easier to make changes in your model.
However, it does not free you of the responsibility for versioning your model when
you make changes to it. Lightweight migration still requires versions.

You’ve created your model and Xcode has made the implementations for you. But
why did the app crash at runtime? The problem lies in the App Delegate, where you
are creating a list of model objects based on the list of potato varieties in the text
file.

The error given is Failed to call designated initializer on NSManagedObject
class 'Potato'. At the moment the code tries to create a new potato with a blank
initializer: Potato(). This doesn’t work for managed objects. It’s time to set up Core
Data for this app and give yourself some context.

A stack with a peel
Setting up the Core Data stack used to be quite a bit of work. You’d need to create
the model, then a persistent store coordinator, then a managed object context. The
code to do that was rather long, and almost exactly the same for each project.

The new NSPersistentContainer class now wraps up all of that tedious work for you,
as well as offering some handy new features.

Open AppDelegate.swift and add the following line to the top of the file:

import CoreData

Inside the class definition, add a new property:

var coreDataStack: NSPersistentContainer!

At the start of application(_:didFinishLaunchingWithOptions:), add the following
line:

iOS 10 by Tutorials Chapter 11: What’s New with Core Data

raywenderlich.com 218

coreDataStack = NSPersistentContainer(name: "TaterRater")

This single line of code retrieves your model using the name you pass in and
creates a persistent store coordinator configured with a sensible set of default
options. You can change these by setting the persistentStoreDescriptions property
of the persistent container. These are the properties and settings you’d normally
pass to the persistent store coordinator: the URL, migration options and so forth.

One interesting new option is that you can instruct the persistent container to set
up its stores asynchronously. If you have a large data set or a complex migration,
then you previously had to do extra work to make sure that migrations didn’t block
during launching, resulting in the watchdog killing the app off. Now it’s a simple
setting.

You can set up asynchronous loading like this, after you’ve created the persistent
container (but don’t add this code to the project):

coreDataStack.persistentStoreDescriptions.first?
 .shouldAddStoreAsynchronously = true

For this project you’ll leave the setting to its default, which lets the stores be set up
synchronously. In most cases this is fine.

Add the following code right after you make the persistent container:

coreDataStack.loadPersistentStores {
 description, error in
 if let error = error {
 print("Error creating persistent stores: \
(error.localizedDescription)")
 fatalError()
 }
}

This code creates the SQL files if they aren’t there already. It performs any
lightweight migrations that may be required. These are the things that normally
happen using addPersistentStore... on the persistent store coordinator.

Because you haven’t told the persistent container to set its stores up
asynchronously, this method blocks until the work is complete. With asynchronous
setup, execution continues, so you’d have to load some sort of waiting UI at launch,
then in the completion block above perform a segue to show your actual UI. The
completion block is called on the calling thread.

Find the line later on in the same method where each Potato is created. Replace the
empty initializer let potato = Potato() with this:

let potato = Potato(context: coreDataStack.viewContext)

This line contains two new Core Data features:

iOS 10 by Tutorials Chapter 11: What’s New with Core Data

raywenderlich.com 219

• Finally you can create a managed object subclass just with a context. No more
entity descriptions, entity names or casting!

• The persistent container has a property, viewContext, which is a managed object
context running on the main queue, directly connected to the persistent store
coordinator. You’ll learn more about the context hierarchy later.

Build and run the app now and everything will work exactly as it did before —
except now you’re using managed objects under the hood.

Next, you’ll change the table view around so that it works with a fetched results
controller instead of an array of objects.

Frenched russet controllers
Open PotatoTableViewController.swift. Import the core data module:

import CoreData

Then add new properties to hold the fetched results controller and the context:

var resultsController: NSFetchedResultsController<Potato>!
var context: NSManagedObjectContext!

Here’s another new feature: fetched results controllers are now typed. This means
that all of the arrays and objects that you get out of them are of known types. You’ll
see the benefits of this shortly.

Add the following code to the end of viewDidLoad():

// 1
let request: NSFetchRequest<Potato> = Potato.fetchRequest()
// 2
let descriptor = NSSortDescriptor(key: #keyPath(Potato.variety),
ascending: true)
// 3
request.sortDescriptors = [descriptor]
// 4
resultsController = NSFetchedResultsController(fetchRequest: request,
managedObjectContext: context, sectionNameKeyPath: nil, cacheName: nil)
do {
 try resultsController.performFetch()
} catch {
 print("Error performing fetch \(error.localizedDescription)")
}

Here’s the breakdown:

1. Here you use the fetchRequest() method that is part of the generated managed
object subclass code you saw earlier.

iOS 10 by Tutorials Chapter 11: What’s New with Core Data

raywenderlich.com 220

Unfortunately this seems to clash with the new, magically typed fetchRequest()
that has been added to NSManagedObject. If you don’t use the type annotation,
then the compiler doesn’t know which method you want to use and will give you
an error.

Hopefully the file generation will be fixed in a future version so that the new
method can be used directly.

2. The new #keyPath syntax prevents you from mistyping keys when creating sort
descriptors. You should definitely use it.

3. The sort descriptor is added to the fetch request.

4. Creating the fetched results controller and performing the fetch hasn’t changed.

Now replace the implementations of the datasource methods. Change
numberOfSections(in:) to this:

return resultsController.sections?.count ?? 0

This is unchanged from last year. sections is an optional so you need the nil
coalescing operator to make sure you always return a valid number.

Change tableView(_: numberOfRowsInSection:) to this:

return resultsController.sections?[section].numberOfObjects ?? 0

Again, this is nothing new. You’re getting the section info object from the results
controller and returning the row count.

Inside configureCell(_: atIndexPath:), replace the first line with this:

let potato = resultsController.object(at: indexPath)

Notice that you don’t need to tell Swift what type of object this is. Because the
fetched results controller now has type information, when you say potato, the
compiler says Potato. No need to call the whole thing off.

Make a similar change in prepare(for: sender:). The final line of the method gets
the selected object to pass to the detail view controller. Replace that line with this
one:

detail.potato = resultsController.object(at: path)

Finally, you can delete the potatoes property from the view controller. This will give
you an error because you’re passing in that property from the app delegate when
the app launches. Switch back to AppDelegate.swift and change the error line to
this:

potatoList.context = coreDataStack.viewContext

iOS 10 by Tutorials Chapter 11: What’s New with Core Data

raywenderlich.com 221

Now the table is using the same main thread managed object context that you used
to load in the objects.

Build and run just to confirm that you now have a results-controller driven table
view. You’ll see a warning about the potatoes constant not being used any more —
you’re going to fix that soon.

A fetched results controller isn’t particularly useful unless it has a delegate. The
standard fetched results controller delegate code hasn’t changed except for getting
slightly shorter due to Swift 3 renaming, so I won’t go through the details.

Open PotatoTableViewController.swift and add the following extension:

extension PotatoTableViewController: NSFetchedResultsControllerDelegate {

 func controllerWillChangeContent(_ controller:
NSFetchedResultsController<NSFetchRequestResult>) {
 tableView.beginUpdates()
 }

 func controller(_ controller:
NSFetchedResultsController<NSFetchRequestResult>,
 didChange anObject: Any, at indexPath: IndexPath?,
 for type: NSFetchedResultsChangeType,
 newIndexPath: IndexPath?) {
 switch type {
 case .delete:
 guard let indexPath = indexPath else { return }
 tableView.deleteRows(at: [indexPath], with: .automatic)
 case .insert:
 guard let newIndexPath = newIndexPath else { return }
 tableView.insertRows(at: [newIndexPath], with: .automatic)
 case .update:
 guard let indexPath = indexPath else { return }
 if let cell = tableView.cellForRow(at: indexPath) {
 configureCell(cell, atIndexPath: indexPath)
 }
 case .move:
 guard let indexPath = indexPath,
 let newIndexPath = newIndexPath else { return }
 tableView.deleteRows(at: [indexPath], with: .automatic)
 tableView.insertRows(at: [newIndexPath], with: .automatic)
 }
 }

 func controllerDidChangeContent(_ controller:
NSFetchedResultsController<NSFetchRequestResult>) {
 tableView.endUpdates()
 }

}

Back up in viewDidLoad() assign the result controller’s delegate just before you
perform the fetch:

iOS 10 by Tutorials Chapter 11: What’s New with Core Data

raywenderlich.com 222

resultsController.delegate = self

Build and run again, and change the ratings on some of your favorite potatoes.
You’ll see the ratings update instantly on the cells if you’re running on an iPad,
otherwise you’ll have to navigate back. That’s the power of a fetched results
controller.

Currently the app creates the list of potatoes from scratch every time it launches.
One of the main features of Core Data is that it can be used for persistence, so
you’re going to actually save things now. To demonstrate another new feature,
you’ll going to offload that initial list creation to a background task.

Digging in to the background
Add a new Swift file to the Model group, and call it PotatoTasks.swift. Add the
following code:

import CoreData

extension NSPersistentContainer {

iOS 10 by Tutorials Chapter 11: What’s New with Core Data

raywenderlich.com 223

 func importPotatoes() {
 // 1
 performBackgroundTask { context in
 // 2
 let request: NSFetchRequest<Potato> = Potato.fetchRequest()
 do {
 // 3
 if try context.count(for: request) == 0 {
 // TODO: Import some spuds
 }
 } catch {
 print("Error importing potatoes: \(error.localizedDescription)")
 }
 }
 }
}

Here’s the breakdown:

1. performBackgroundTask(_:) is a built-in method on NSPersistentContainer that
takes a block with a managed object context as a parameter, does some work
with it and then disposes of the context. The context is confined to a private
queue. There’s also a method to get a background context directly if you want
to manage the object yourself.

2. This is the same code to generate a typed fetch request that you’ve already
seen.

3. This is another new method, this time on the context itself. count(for:) is a
throwing version of countForFetchRequest(_: error:).

Replace the TODO: comment with this code, which is very similar to the code that
was used in the app delegate:

sleep(3)
guard let spudsURL = Bundle.main.url(forResource: "Potatoes",
withExtension: "txt") else { return }
let spuds = try String(contentsOf: spudsURL)
let spudList = spuds.components(separatedBy: .newlines)
for spud in spudList {
 let potato = Potato(context: context)
 potato.variety = spud
 potato.crowdRating = Float(arc4random_uniform(50)) / Float(10)
}

try context.save()

The sleep line is there so that you can pretend you’re loading data from a server. At
the end of the object creation, the private context is saved. if you didn’t do this,
everything would be lost as the context is discarded at the end of the block.

Switch back to AppDelegate.swift and in application(_:
didFinishLaunchingWithOptions) replace all of the code from after the
loadPersistentStores(_:) call to just before the return true statement with this:

iOS 10 by Tutorials Chapter 11: What’s New with Core Data

raywenderlich.com 224

coreDataStack.importPotatoes()

if let split = window?.rootViewController as? UISplitViewController {

 if
 let primaryNav = split.viewControllers.first as?
UINavigationController,
 let potatoList = primaryNav.topViewController as?
PotatoTableViewController {
 potatoList.context = coreDataStack.viewContext
 }

 split.delegate = self
 split.preferredDisplayMode = .allVisible
}

This code removes all of the potato creation code and calls the new extension
method which loads the data in a background queue. Build and run the app and...

Where are your potatoes? You may have expected them to make their way to the
main thread managed object context after the background context saved. Usually,
you’d make a background context as a child of the main thread context. But that
isn’t what NSPersistentContainer gives you.

If you build and run the app again, then you’ll see your list. This gives you a clue as
to what is happening.

The previous way to deal with multiple managed object contexts looked a little
something like this:

iOS 10 by Tutorials Chapter 11: What’s New with Core Data

raywenderlich.com 225

You only had one context that would talk to the persistent store coordinator.
Typically that was a background queue context whose only job was to perform
saves.

Under that was the main thread context, which represented the “truth” of your app.
Subsequent background operations or foreground editing contexts would be
children of that main thread context.

This was necessary because the persistent store coordinator and SQL store could
not handle multiple readers or writers without having to use locks.

In iOS 10, the SQL store has been improved to allow multiple readers and a single
writer, and the persistent store coordinator no longer uses locks.

This means that a context hierarchy now looks more like this:

iOS 10 by Tutorials Chapter 11: What’s New with Core Data

raywenderlich.com 226

The background contexts that the persistent container gives you talk directly to the
persistent store coordinator — they aren’t children of the main thread context. The
background context adds all of the potatoes, then saves. This is written to the SQL
store by the persistent store coordinator. The main thread context has no idea this
is happening, unless it is forced to re-run the fetch requests.

This would have presented a problem in older versions of iOS. You’d have to listen
for save change notifications and do the merges yourself, like a savage. Luckily, this
is the future. In AppDelegate.swift, before the importPotatoes() line, add the
following code:

coreDataStack.viewContext.automaticallyMergesChangesFromParent = true

This is a new property on NSManagedObjectContext, and very useful it is too.
Essentially it does all of that merging process for you. If the context is directly
beneath the persistent store coordinator, then it will receive updates whenever a
sibling context linked to the coordinator saves. If the context is a child context of
another context, then it will receive updates whenever the parent context saves.

Note: Because the changes are merged when the parent saves, this means
that changes don’t automatically cascade down. For example, if you had a
background task which saved straight to the persistent store, and the view
context was merging changes, then those background changes would appear
in the view context. However, if the view context itself had a child context, the
changes would not cascade down even if the child context was set to
automatically merge.

iOS 10 by Tutorials Chapter 11: What’s New with Core Data

raywenderlich.com 227

Delete the app from your simulator or device (because the data is already there)
and build and run again. You’ll see the empty list of potatoes for a while, then once
the background context has done its work, the new data will automatically appear!

iCloud Core Data gets mashed
Not announced at WWDC was one slightly nasty surprise: all of the symbols and
methods associated with iCloud Core Data sync have been removed.

iCloud has always had something of a troubled relationship with Core Data and it
seems Apple has finally decided to end it. According to the documentation, the
existing methods will still work (for whatever definition of "work" you had before),
but it’s difficult to recommend starting a new project and relying on iCloud.

Perhaps with this year’s changes, the simplification of setup and more convenient
code, Apple is positioning Core Data as a more accessible, default choice model
layer in your app, and you’re supposed to use CloudKit or some other method to
sync. There is no “official” guidance on the matter.

Where to go from here?
Our Core Data By Tutorials book is completely updated for iOS 10 and contains
much more information about all of the goodies and new features listed here, as
well as a solid grounding in what Core Data is, and how it works.

iOS 10 by Tutorials Chapter 11: What’s New with Core Data

raywenderlich.com 228

12Chapter 12: What's New with
Photography
By Rich Turton

This is an early access release of this book, and this chapter is still currently under
development.

Stay tuned for this chapter in a future release! :]

raywenderlich.com 229

13Chapter 13: What’s New with
Search
By Jeff Rames

Search frameworks gain some hefty new features with iOS 10. Most notable is the
introduction of the Core Spotlight Search API, which brings the power of Spotlight
search to your apps. For apps that already use Core Spotlight or user activity
indexing, leveraging that same engine and index inside your app is easy — and
powerful.

Another great new feature is the ability to continue Spotlight searches in your app.
If a search yields results for your app, you can enable an annotation that launches
your app and passes in the search string for further searching.

In addition, proactive suggestions have learned some exciting new tricks. By adding
location data to your user activities, addresses displayed in your app can be made
available throughout iOS. Features and apps such as QuickType, Siri and Maps will
now have direct access to your data, while giving your app credit as the source.

raywenderlich.com 230

All of these changes continue the trend of increasing your app’s reach outside of its
own little world. iOS 10 gives you more ways to entice users into launching your
app — and more opportunities to remind users how useful your app can be.

If you’re already indexing Core Spotlight or NSUserActivity items, these features
are amazingly easy to implement in your apps. If your app deals in data, and you’re
not currently using these features, this is probably the time to bring your app into
the 21st century and integrate these frameworks in your app.

For some background on search APIs in iOS, check out Introducing iOS 9 Search
APIs here: https://videos.raywenderlich.com/courses/introducing-ios-9-search-
apis/lessons/1

You can complete most of this chapter with the simulator, but you’ll need a device
running iOS 10 to test proactive location suggestions.

Getting started
In this chapter, you’ll update an existing app called Green Grocer. It displays
produce available at Ray’s Fruit Emporium and employs a simple product filter. It
also has a tab with contact info for the store along with a map.

In the starter folder, open GreenGrocer.xcodeproj and take a look around.
There’s quite a lot in the project, but here’s a quick overview of the important files:

iOS 10 by Tutorials Chapter 13: What’s New with Search

raywenderlich.com 231

• AppDelegate.swift does two things of note already. In
application(_:didFinishLaunchingWithOptions:) it calls
dataStore?.indexContent() which indexes all products in Core Spotlight.
application(_:continue:restorationHandler:) is currently set up to restore state
when the user launches the app by tapping a product that Core Spotlight
matched.

• Product.swift is the model object for the Product class. This represents one of
the produce items central to Green Grocer.

• SearchableExtensions.swift contains an extension to Product that generates
CSSearchableItem and CSSearchableItemAttributeSet objects used when indexing
to Core Spotlight.

• ProductTableViewController.swift is the root controller in the Products tab.
It displays a table view of produce and includes a UISearchController for filtering
the content. Filtering happens in filterContentForSearchText(searchText:)
which triggers each time content in the search bar changes.

• ProductViewController.swift is the detail controller for produce, which
displays when the user selects a cell in the ProductTableViewController. It
configures the view with data from the passed Product and creates a
NSUserActivity to index the activity.

• StoreViewController.swift controls the view displayed in the Store tab that
contains contact info for Ray’s Fruit Emporium. It also contains a map view for
displaying the location of the store — something you’ll leverage when
implementing proactive suggestions.

Green Grocer already enables Spotlight search via Core Spotlight and
NSUserActivity indexing. In this chapter, you will make three modifications:

1. You’ll start by implementing search continuation to feed Spotlight search queries
to the search filter found in ProductTableViewController.

2. Next, you’ll refactor the existing in-app search to use the Core Spotlight Search
API.

3. Finally, you’ll modify the StoreViewController so that it provides activity
information necessary to enable location based proactive suggestions.

Enough talk — the future of Ray’s Fruit Emporium depends on you! Head on in to
the next section to get started.

Enabling search continuation
Spotlight search helps users quickly find what they’re looking for. A user could enter
the word apple into Spotlight and be one tap away from seeing the price on the

iOS 10 by Tutorials Chapter 13: What’s New with Search

raywenderlich.com 232

Ray’s Fruit Emporium product page. Spotlight fits that model quite well.

But what if the user’s goal is a little different? If the user wanted to view all of Ray’s
fruit, they could search for fruit in Spotlight, but it would be unreasonable to expect
every item to display right there. Results are limited to just a few matches per
source; otherwise, responses would be unmanageably long.

This is where search continuation steps into the, er, spotlight. It lets Spotlight
launch your app and pass the user’s search query. This lets you not only display all
results, but display them in your custom interface.

Open Info.plist and add a Boolean key named CoreSpotlightContinuation and
set it to YES.

This key tells Spotlight to display an annotation in the upper right of Green Grocer
search results to indicate the search can be continued in-app.

This is where things gets scary. As of the initial public release of iOS 10, updating
this plist does not cause the annotation to start working until you reboot the device
or simulator. Feel free to bravely forge ahead without a reboot, but if Search in
App doesn’t appear in the next step, you’re going to have to reboot your device
after building.

Build and run, then background the app with the home button or Shift+Command
+H in the simulator. Drag down to reveal Spotlight search and enter apple. Note
the Search in App annotation that appears to the right of GREENGROCER in the
section header:

Tap Search in App, and Green Grocer will launch to the Products table — but it
won’t kick off a search. This shouldn’t come as a surprise, considering you haven’t
written any code to accept the query from Spotlight and act on it!

You’ll take care of that next.

iOS 10 by Tutorials Chapter 13: What’s New with Search

raywenderlich.com 233

Implementing search continuation
Open AppDelegate.swift and add the following near the top of the file with the
other import:

import CoreSpotlight

Search continuation requires some properties that are available in the framework.

Now look for application(:_continue:restorationHandler:) and replace the
following line:

if let rootVC = window?.rootViewController,

With this:

if userActivity.activityType == CSQueryContinuationActionType {
 // TODO handle search continuation
} else if let rootVC = window?.rootViewController,

Previously, application(:_continue:restorationHandler:) was used solely as an
entry point for restoring state after a user had selected an activity indexed in
Spotlight. You’ve added a check for CSQueryContinuationActionType activities —
which is what Search in App triggers. The prior check moves down to an else if,
letting the processing of Spotlight result launches operate as they did before.

Now replace // TODO handle search continuation with the following:

// 1
guard let searchQuery =
 userActivity.userInfo?[CSSearchQueryString]
 as? String else {
 return false
}
// 2
guard let rootVC = window?.rootViewController,
 let tabBarViewController = rootVC as? TabBarViewController
 else {
 return false
}
tabBarViewController.selectedIndex = 0
// 3
guard let navController =
 tabBarViewController.selectedViewController as?
 UINavigationController else {
 return false
}
navController.popViewController(animated: false)
if let productTableVC = navController.topViewController as?
 ProductTableViewController {
 //4
 productTableVC.search(with: searchQuery)
 return true

iOS 10 by Tutorials Chapter 13: What’s New with Search

raywenderlich.com 234

}

Here’s some detail on what happens when you hit a search continuation activity:

1. The CSSearchQueryString key in userActivity.userInfo points to the string
typed into Spotlight. This guard unwraps and casts the searchQuery or, on
failure, returns false to indicate the activity could not be processed.

2. The root view of Green Grocer is a tab bar controller. This guard places a
reference to that controller in tabBarViewController. You then set selectedIndex
to the first tab to display the product list.

3. The selected tab in tabBarViewController contains a navigation controller. You
get a reference to it here, then call popViewController(animated:) with no
animation to get to the root controller. The root is the
ProductTableViewController, which productTableVC now points to.

4. search(with:) is a method in ProductTableViewController that kicks off the in-
app product search using the passed parameter. It’s called here with the
searchQuery, followed by return true to indicate Green Grocer was able to
handle the incoming search request.

Build and run, background the app, then search for apple in Spotlight. Tap the
Search in App annotation by the Green Grocer results. This time, your new
restoration handler code will trigger and you’ll be brought straight to the search
results!

iOS 10 by Tutorials Chapter 13: What’s New with Search

raywenderlich.com 235

Of course, doing a search continuation for apple doesn’t make much sense. Before
you tapped Search in App, you already knew there would be only a single match,
because Spotlight would have shown at least a few if there were more. Beyond
that, the custom search result cells in Green Grocer actually provides less
information than Spotlight does!

A search with a result set too large to display completely in Spotlight would be a
better use case for this feature. Green Grocer includes the term “fruit” with every
product it indexes in Spotlight, so that’s a good one to try.

Background Green Grocer again and complete a Spotlight search for fruit. Only
three results will display; a mere sample of what Green Grocer contains. Tap
Search in App to see the in-app results for fruit.

Note Keep in mind your results, especially for a generic term like fruit, may
vary from those presented here. This is dependent on what you have indexed
on your device, what Spotlight brings from the web, and on Spotlight's ranking
algorithms. You can learn more about best practices for search ranking in the
resources at the end of this chapter.

iOS 10 by Tutorials Chapter 13: What’s New with Search

raywenderlich.com 236

Green Grocer successfully launches and presents a search result for fruit — but
where are all the matches?

It’s clear fruit was included in the meta-data when indexing the produce, but the
search must not be looking at this in the same way. Open
ProductTableViewController.swift and find
filterContentForSearchText(searchText:). Take a look at the filter contained in this
method:

filteredProducts = dataStore.products.filter { product in
 return product.name.lowercased().contains(searchText.lowercased())
}

filteredProducts acts as the data source when filtered results display. Here it’s set
using a filter on the complete dataStore.products array. The filter does a case-
insensitive compare to identify any product names that contain the search string.

This isn’t a bad way to filter the product list, but it’s clear you could do better. To
replicate Spotlight’s results, you could index all of the associated meta-data for
each product and create a more complex filter that includes that data.

But wouldn’t it be nice to use Spotlight’s existing index, search algorithm, and
performance benefits instead of rolling your own? With iOS 10, you can! The new
Core Spotlight Search API provides access to all of these features in Spotlight.

Before refactoring your code, you’ll do well to walk through the following overview
of Core Spotlight’s features and query syntax first.

Core Spotlight Search API
Spotlight handles the indexing of your data and provides a powerful query language
for use with its speedy search engine. This lets you use your own search interface
— backed by the power of Spotlight.

If you’ve already indexed content with Core Spotlight, using the Search API means
you'll have more consistency between in-app searches and those completed in
Spotlight. It also protects user privacy as an app can only search its own indexed
data.

iOS 10 by Tutorials Chapter 13: What’s New with Search

raywenderlich.com 237

To complete a search, you first create a CSSearchQuery that defines what and
how you want to search. The initializer for CSSearchQuery requires two things:

• queryString: A formatted string that defines how you want to search. You’ll
learn more about how to format query strings shortly.

• attributes: An array of strings that correspond to names of properties in the
CSSearchableItemAttributeSet class. The properties you include here will be
returned in the result set, if available. You’d then use them to display the result
or look it up in the application model.

Knowing how to format the search query string is the primary challenge in
implementing Core Spotlight Search. The format of the most basic query is as
follows:

attributeName operator value[modifiers]

Note these names are for illustration and not associated with the format syntax.
Here’s a breakdown of each component:

1. attributeName is one of the properties included in the attributes array. For
example, this could be the product title in Green Grocer.

2. operator is a relational operator from the following list: ==, !=, <, <=, >, >=.

3. value is the literal value you’re comparing against. For the title example, the
value might be fruit.

4. modifiers consist of four different character values that represent modifications
to how the comparison is applied. See the table below for detail on the available
modifiers.

The existing Green Grocer in-app search does a case-insensitive compare for
product names that contain the search query. Assuming the user searched for
apple, and title was passed as an attribute, a comparable Spotlight search query
would look like this:

title == "*apple*"c

iOS 10 by Tutorials Chapter 13: What’s New with Search

raywenderlich.com 238

The base compare checks that the title attribute contains the string apple. The *
is a simple wildcard, meaning titles that contain apple meet the criteria, even if
they have text before or after the word. The c modifier makes the comparison case-
insensitive.

A word-based search may make more sense if the user simply wants strings that
contain the unique word apple. They may want to see Fuji Apple and Red Delicious
Apple, but not Pineapple or Snapple. In such a case, you likely want to ditch the
wildcard to focus only on complete matches, making it more like a true search
rather than a filter.

Here’s what such a search would look like:

title == "apple"wc

Here the string is apple, with no wildcards. The w modifier says apple can appear
anywhere in the title string, as long as it’s a standalone word. Core Spotlight
indexing is optimized to handle this faster than a wildcard, and as a bonus it
provides a more accurately refined result set.

Numerics, especially dates, are quite common in search queries. It’s especially
common to check that a value falls within a given range. For this reason, the query
language provides a second query syntax for this purpose:

InRange(attributeName, minValue, maxValue)

This checks that values associated with attributeName fall within the range bounded
by minValue and maxValue.

Dates are an obvious use case for InRange queries. For dates, the query language
uses floating-point values representing seconds relative to January 1, 2001. More
commonly, you’ll use $time values to derive dates.

$time has properties such as now and today that represent specific times relative to
when a query kicks off. It allows for calculated dates relative to the current time,
such as now(NUMBER) where NUMBER represents seconds added to the current time.

These simple queries formats can be combined to create more complex searches
with the familiar && and || operators. Here’s an example using both query formats:

title == "apple"wc && InRange(metadataModificationDate,$time.today(-5),
$time.today)

metadataModificationDate is an attribute property that indicates the last date an
item’s metadata was updated. This query looks for products with apple in the title,
as before. In addition, it checks that the item has been updated within the past 5
days — a great way to search for new or updated product listings.

iOS 10 by Tutorials Chapter 13: What’s New with Search

raywenderlich.com 239

Note: The above query example won’t work in Green Grocer, because it
doesn’t set the metadataModificationDate. If you wanted to do this, you’d have
to add the property when indexing data. Additionally, you’d likely only do this
if the user indicated a desire to view only new or updated products, perhaps
via a search flag in your UI.

A complete list of $time properties, along with more detail on query language in
general, can be found in Apple’s documentation on CSSearchQuery: apple.co/
1UPjAry

With this knowledge in hand, you’ve got all you need to start converting Green
Grocer’s search to use Core Spotlight!

Migrating to Core Spotlight Search API
Open ProductTableViewController.swift and add the following to the other
properties at the top of ProductTableViewController:

var searchQuery: CSSearchQuery?

You’ll use this to manage the state of the CSSearchQuery requests you kick off.

Now look for filterContentForSearchText(searchText:) in the
UISearchResultsUpdating extension. This is called when the user updates their
search string. It currently uses a filter to identify products in the dataStore with
names matching the search string.

It’s time to throw that away in favor of Core Spotlight Search!

Start by deleting this code:

filteredProducts = dataStore.products.filter { product in
 return product.name.lowercased().contains(searchText.lowercased())
}

tableView.reloadData()

In its place, add the following:

// 1
searchQuery?.cancel()

// 2
let queryString = "title=='*\(searchText)*'c"
// 3
let newQuery = CSSearchQuery(queryString: queryString, attributes: [])
searchQuery = newQuery

// 4
//TODO: add found items handler
//TODO: add completion handler

iOS 10 by Tutorials Chapter 13: What’s New with Search

raywenderlich.com 240

// 5
filteredProducts.removeAll(keepingCapacity: true)
newQuery.start()

This sets up the bones of the search. Here’s what’s going on:

1. As this method gets called each time a new search should be kicked off,
canceling any currently running searches is good practice. searchQuery will later
point to the new search query.

2. This queryString seeks to replicate Spotlight’s behavior; it looks for the user-
provided searchText in the title property. The query uses a case-insensitive
compare and flanks the term with wildcards, meaning the product name can
have other text before or after it and still match.

3. You then create a CSSearchQuery, passing newQuery as the query string and an
empty attributes array. No attributes are required in the result set; instead,
you’ll pull object from the database using the returned search item’s unique
identifier. searchQuery now points to the newQuery so that you can cancel it when
you kick off another search.

4. These TODOs relate to required handlers associated with the CSSearchQuery
operation. You’ll address these shortly.

5. You use filteredProducts as the table view data source when a filter is in
effect. Because you’re kicking off a new search, you should clear out the
previous results. newQuery.start() then starts the Spotlight query.

Right now, nothing is listening for returned search results. Fix that by replacing //
TODO: add found items handler with:

newQuery.foundItemsHandler = {
 (items: [CSSearchableItem]) -> Void in
 for item in items {
 if let filteredProduct = dataStore.product(withId:
 item.uniqueIdentifier) {
 self.filteredProducts.append(filteredProduct)
 }
 }
}

The foundItemsHandler is called as batches of CSSearchableItem objects matching
the query criteria return from Core Spotlight. This code iterates over each returned
item and locates a Product with a matching uniqueIdentifier in the dataStore. You
then add the products to filteredProducts, which is the table view data source
when a filter is active.

Finally, there is a completionHandler that runs when all results are in. This is where
you’d do any processing on the final results and display them.

Replace //TODO: add completion handler with the following:

iOS 10 by Tutorials Chapter 13: What’s New with Search

raywenderlich.com 241

newQuery.completionHandler = { [weak self] (err) -> Void in
 guard let strongSelf = self else {
 return
 }
 strongSelf.filteredProducts = strongSelf.filteredProducts.sorted
 { return $0.name < $1.name }

 DispatchQueue.main.async {
 strongSelf.tableView.reloadData()
 }
}

You added the results to filteredProducts in the arbitrary order as returned by
Core Spotlight. This code sorts them to match the order used by the unfiltered
data. Code to reload the tableview is dispatched to the main queue, as this handler
runs on a background thread.

Build and run; test your the filter on the Products tab. The behavior will be
identical to the previous implementation. The example below shows a partial match
for Ap that includes Apple and Grapes:

This query filters products in a similar manner to Spotlight, but it has a major
shortcoming: It only searches the product title, whereas Spotlight checks all of the
metadata.

To prove this, do an in-app search for fruit as you did before implementing Core
Spotlight Search.

iOS 10 by Tutorials Chapter 13: What’s New with Search

raywenderlich.com 242

The title field doesn’t include fruit, but the keywords property does. Clearly,
Spotlight searches more than just title. You’ll have to expand your query to match.

Still in filterContentForSearchText(searchText:), find the following line:

let queryString = "title=='*\(searchText)*'c"

Replace it with the following:

let queryString = "**=='*\(searchText)*'cd"

The main change here is that instead of matching on title, you’re using **. This
applies the comparison to all properties in the search items’ attribute sets. You’ve
also added the d modifier to ignore diacritical marks. While this has no impact with
Green Grocer’s current inventory, it’s a good general practice to follow.

Build and run, and enter a search for fruit. This time, you’ll see all of the produce
in the result set, just as you do in Spotlight.

iOS 10 by Tutorials Chapter 13: What’s New with Search

raywenderlich.com 243

Note: A more practical example might be a user who recalled seeing a product
with “potassium” in the description. Searching on that keyword in Spotlight will
show “banana” — and now you can support that with in-app search!

The search you implemented was a simple one, with the primary goal of making
Green Grocer’s in-app results match those out of Spotlight. However, understanding
these mechanics gives you all you need to know to deploy more sophisticated
searches tailored to your specific data and user’s needs.

Proactive suggestions for location
Adopting search makes it easy to implement other features that use NSUserActivity,
such as Handoff and contextual reminders. Adding location data to your indexed
NSUserActivity objects means they can be consumed by Maps, QuickType, Siri, and
more.

View the Store tab in Green Grocer; the content is related to a physical location:
the address of Ray’s Fruit Emporium.

iOS 10 by Tutorials Chapter 13: What’s New with Search

raywenderlich.com 244

Wouldn’t it be great if the Emporium address appeared above recent locations when
you switch to the Map view? Or what if if the address appeared as a QuickType
option in Messages, so you could tell your friends where to pick up the freshest
pears in town?

Proactive suggestions with location based activities make all of this possible, and
more. Below are a few examples.

From a user’s perspective, this is one of the more exciting multitasking features iOS
has introduced in a long time. From a developer’s perspective, it’s a great way to

iOS 10 by Tutorials Chapter 13: What’s New with Search

raywenderlich.com 245

increase awareness of your app and your brand throughout iOS. As an added
bonus, it’s extremely easy to implement for apps that already index NSUserActivity
objects.

To enable the feature, you need to minimally set the new thoroughfare and
postalCode CSSearchableItemAttributeSet properties for location-related activities.
These are used both for display purposes and to help location services find the
address. You can further improve the quality of the results by including the
following optional properties:

• namedLocation

• city

• stateOrProvince

• country

For more accuracy, you should include the latitude and longitude properties as
well.

Adding a few properties isn’t too hard, but wouldn’t it be easier if it was just one
propery? If you’re using MapKit, you can point your MKMapItem to an NSUserActivity
and it will populate all the location information for you. Fortunately, Green Grocer
already leverages this, so it will be a snap to set up.

Time for a quick experiment. You need to do this on a physical device, as many
location features are unavailable on the simulator. If you haven’t already, be sure to
set your development team in the GreenGrocer target’s Signing section in the
General tab.

Launch Green Grocer on a physical device, navigate to the Store tab and take note
of the store address on Mulberry Street. Switch back and forth between tabs a
couple of times to make sure the NSUserActivity indexing occurs.

Now jump to the home screen and do a Spotlight search for Mulberry Street.
Make sure to scroll through all the results, and you’ll see there are no Green Grocer
matches.

iOS 10 by Tutorials Chapter 13: What’s New with Search

raywenderlich.com 246

Take a quick look in StoreViewController.swift and you’ll see a MKMapItem with
the store’s address, as well as a CSSearchableItemAttributeSet containing the
longitude and latitude of the shop.

The supportsNavigation attribute is also set to true, allowing navigation from
Spotlight using the coordinates. However, Spotlight currently has no knowledge of
the address, so it makes sense that Mulberry Street turned up no matches.

In one single line of code, you’re going to provide the NSUserActivity with
attributes needed to enable address search and enable proactive location
suggestions.

In StoreViewController.swift find prepareUserActivity(). This is called when the
store view loads and creates a search eligible NSUserActivity for the view.

Add the following line just above the return at the end:

activity.mapItem = mapItem()

mapItem() returns an MKMapItem that represents the location of the store. Setting
mapItem to that value is all that’s required to unlock location suggestions.
Additionally, setting the mapItem populates the CSSearchableItemAttributeSet of the
activity with all of its location information, including the street name.

Although CSSearchableItemAttributeSet properties are now set from the MKMapItem,
they are overridden by existing code.

Find the following line in updateUserActivityState(_:):

iOS 10 by Tutorials Chapter 13: What’s New with Search

raywenderlich.com 247

let attributeSet = CSSearchableItemAttributeSet(itemContentType:
kUTTypeContact as String)

This creates a new CSSearchableItemAttributeSet that is ultimately assigned to the
new NSUserActivity, thus replacing anything MKMapItem provided.

Replace it with the following:

let attributeSet = activity.contentAttributeSet ??
 CSSearchableItemAttributeSet(itemContentType: kUTTypeContact as String)

Now, if contentAttributeSet is already populated — thanks to the map item — it’s
added to, rather than replaced.

Build and run on a device, and flip between the two tabs a few times to ensure the
NSUserActivity changes are indexed. Now double-tap the home button to bring up
the app switcher. You’ll see a proactive suggestion appear at the bottom of the
screen including Green Grocer’s name and the location of Ray’s Fruit Emporium.

The suggested app differs based on what you have installed, but in the example
below it’s offering to launch Maps with directions to the store. Tapping the banner
takes you to the suggested app with your location data prepopulated. Ray’s Produce
is really great, but it might not be worth the 18 hour drive from Texas! :]

Now open Messages and start typing a message that includes the words Meet me
at and you’ll see a QuickType suggestion including Ray’s store. As with other
proactive suggestions, your app is getting some good press here with the From

iOS 10 by Tutorials Chapter 13: What’s New with Search

raywenderlich.com 248

GreenGrocer tagline.

Think back to the test in Spotlight search, where Mulberry pulled up zero results
from Green Grocer. Repeat the search for Mulberry, and you’ll now see a result for
Ray’s Fruit Emporium! This means the MKMapItem is successfully providing location
information to the CSSearchableItemAttributeSet.

iOS 10 by Tutorials Chapter 13: What’s New with Search

raywenderlich.com 249

These are just a handful of examples of proactive suggestions. It should be pretty
clear at this point that adding location data to your NSUserActivity objects is quite
powerful. Not only does it streamline common user workflows, it reinforces
awareness of your app throughout iOS.

Where to go from here?
In this chapter, you took an existing app with Core Spotlight and activity indexing
and added some seriously cool functionality with minor effort. You enabled search
continuation from Spotlight, and then refactored in-app search to use Spotlight’s
engine. Then with a single line of code, you enabled location based proactive
suggestions to better integrate your app with iOS.

If you have an app already using Core Spotlight, the effort-to-benefit ratio should
make adopting these features very compelling. Not only do they improve user
experience, but they better integrate your app with iOS, giving you more
opportunity to engage with the iOS ecosystem.

For more detail, check out the following resources:

• WWDC 2016 Making the Most of Search APIs apple.co/2cPwCbA

• WWDC 2016 Increase Usage of Your App With Proactive Suggestions apple.co/
2cvOsAM

• search.developer.apple.com

iOS 10 by Tutorials Chapter 13: What’s New with Search

raywenderlich.com 250

14Chapter 14: Other iOS 10
Topics
By Jeff Rames

This is an early access release of this book, and this chapter is still currently under
development.

Stay tuned for this chapter in a future release! :]

raywenderlich.com 251

CConclusion

We hope this book has helped you get up to speed with the new changes in Xcode 8
and iOS 10.

If you have any questions or comments as you continue to develop for iOS 10,
please stop by our forums at http://www.raywenderlich.com/forums.

Thank you again for purchasing this book. Your continued support is what makes
the tutorials, books, videos, conferences and other things we do at
raywenderlich.com possible—we truly appreciate it!

Wishing you all the best in your continued iOS 10 adventures,

– Sam, Jeff, and Rich

The iOS 10 by Tutorials team

raywenderlich.com 252

	Table of Contents : Overview
	Introduction
	Chapter 1: What's New in Swift 3
	Chapter 2: Xcode 8 Debugging Improvements
	Chapter 3: Xcode 8 Source Editor Extensions
	Chapter 4: Beginning Message Apps
	Chapter 5: Intermediate Message Apps
	Chapter 6: SiriKit
	Chapter 7: Speech Recognition
	Chapter 8: User Notifications
	Chapter 9: Property Animators
	Chapter 10: Measurements and Units
	Chapter 11: What’s New with Core Data
	Chapter 12: What's New with Photography
	Chapter 13: What’s New with Search
	Chapter 14: Other iOS 10 Topics
	Conclusion
	Table of Contents : Extended
	Introduction
	Early access
	What you need
	Who this book is for
	How to use this book
	Book source code and forums
	Book updates
	License
	Acknowledgments
	About the cover

	Chapter 1: What's New in Swift 3
	Chapter 2: Xcode 8 Debugging Improvements
	Getting started
	Investigating the project
	Memory Graph debugging
	Thread Sanitizer
	View debugging
	Static analyzer enhancements
	Where to go from here?
	xcode-source-editor-extensions

	Chapter 3: Xcode 8 Source Editor Extensions
	Getting started
	Why source editor extensions?
	Creating a new extension
	Building the Asciiify extension
	Dynamic commands
	Where to go from here?

	Chapter 4: Beginning Message Apps
	Getting started
	Creating a sticker application
	Where to go from here?
	Getting started
	The Messages app view controller
	Adding the first child view controller
	Switching view controllers
	Creating a message
	Custom message content
	Getting a second chance
	Where to go from here?

	Chapter 6: SiriKit
	Getting started
	Would you like to ride in my beautiful balloon?
	99 (passengers in) red balloons
	You can’t handle the truth
	Making a balloon animal, er, UI
	Where to go from here?

	Chapter 7: Speech Recognition
	Getting started
	Transcription basics
	Audio file speech transcription
	Transcription and locales
	Live speech recognition
	Usage guidelines
	Where to go from here?

	Chapter 8: User Notifications
	Getting started
	The User Notifications framework
	Managing notifications
	Notification content extensions
	Notification Service app extensions
	Where to go from here?

	Chapter 9: Property Animators
	Getting started
	Timing is everything
	Controlling your frog
	Spring animations
	Inspecting in-progress animations
	Pausing and scrubbing
	Stopping
	Reversing
	Multiple animators
	View controller transitions
	Where to go from here?

	Chapter 10: Measurements and Units
	Measurement and Unit
	I want to ride my bicycle
	Uranium Fever
	Measure for MeasurementFormatter
	(Custom) Dimension
	Chain of fools
	Turning it up to 11
	24 Hours From Tulsa
	Where to go from here?

	Chapter 11: What’s New with Core Data
	Getting spudded
	An eye to new data models
	A stack with a peel
	Frenched russet controllers
	Digging in to the background
	iCloud Core Data gets mashed
	Where to go from here?

	Chapter 12: What's New with Photography
	Chapter 13: What’s New with Search
	Getting started
	Enabling search continuation
	Implementing search continuation
	Core Spotlight Search API
	Proactive suggestions for location
	Where to go from here?

	Chapter 14: Other iOS 10 Topics
	Conclusion

