
Stefan Esser <stefan.esser@sektioneins.de>

iOS 8: Containers, Sandboxes
and Entitlements

http://www.sektioneins.de

Ruxcon 2014 / Melbourne, 11th October 2014

mailto:stefan.esser@sektioneins.de

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

Who am I?

Stefan Esser

• from Cologne / Germany

• in information security since 1998

• PHP core developer from 2001-20xx

• Months of PHP Bugs and Suhosin

• since 2010 focused on iPhone security (ASLR/jailbreak)

• founder of SektionEins GmbH

2

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

Disclaimer

• title and abstract did not fully match

• iOS 8 plugins research is work in progress

• this talk will focus on code signing and sandboxes

• plus some extra in the end

3

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

Agenda

• iOS Codesigning 101

• Mac Policy Framework / TrustedBSD in iOS

• Sandbox & Sandbox Profiles

• a new mitigation sneaked into iOS 8

• KASLR in iOS 8

4

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

 iOS Codesigning 101

5

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

iOS Codesigning 101

• every executable file on iOS requires code signing information

• stored as binary blobs in mach-o files

• LC_CODE_SIGNATURE with data usually at the end

• code-signing works on per memory page basis

• SHA1 check of memory pages

6

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

iOS Codesigning 101 - Codesigning Blobs

• consist of blob directory followed by blobs

• usually

• SuperBlob

• Entitlements

• optionally a signature

• additional optional elements

7

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

iOS Codesigning 101 - SuperBlob

• defines name etc… of signed object

• defines from where to where the file is signed

• contains SHA1 hashes

• for every memory page inside

• for the other parts (e.g. entitlements)

• signature only signs the SuperBlob

8

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

iOS Codesigning 101 - Entitlements

• XML snippets that define non
default permissions of
applications

• some boolean flags

• some more complicated
structures

• keychain access groups

• selected sandbox profiles

9

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>application-identifier</key>
 <string>com.apple.mobileslideshow</string>
 <key>backupd-connection-initiate</key>
 <true/>
 <key>checklessPersistentURLTranslation</key>
 <true/>
 ...
 <key>com.apple.private.MobileGestalt.AllowedProtectedKeys</key>
 <array>
 <string>EthernetMacAddress</string>
 <string>WifiAddressData</string>
 <string>WifiAddress</string>
 <string>UniqueDeviceID</string>
 </array>
 <key>com.apple.private.accounts.allaccounts</key>
 <true/>
 <key>com.apple.private.accounts.bypassguestmoderestrictions</key>
 <true/>
 ...
 <key>keychain-access-groups</key>
 <array>
 <string>com.apple.youtube.credentials</string>
 <string>com.apple.videouploadplugins.credentials</string>
 <string>apple</string>
 <string>com.apple.airplay</string>
 </array>
 <key>platform-application</key>
 <true/>
 <key>seatbelt-profiles</key>
 <array>
 <string>MobileSlideShow</string>
 </array>
</dict>
</plist>

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

iOS Codesigning 101 - Optional Signature

• for all built-in applications there is no digital signature attached

• instead AMFI driver contains SHA1 whitelist of SuperBlobs

• other apps contain digital signature

• signature verification actually performed by user space daemon

10

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

 Mac Policy Framework / TrustedBSD

11

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

Mandatory Access Control (MAC) Framework

• based on TrustedBSD Mac Framework

• implements mandatory access controls throughout the kernel

• iOS sandbox, entitlement and code-signing security is based on this

• partially documented in  
 
“New approaches to operating system security extensibility” 
by Robert N. M. Watson  
 
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-818.pdf

12

http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-818.pdf

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

Mandatory Access Control (MAC) Framework

13

• the MAC framework and interfaces are inside the XNU source code

• policies come from policy modules inside kernel extensions

• iOS ships with only two modules

• sandbox - responsible for the whole sandboxing of iOS apps

• AppleMobileFileIntegrity (AMFI) - responsible for code signatures and entitlement handling

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

Integration into the Kernel

• throughout the kernel you will see calls from kernel services to the framework

• here is an example from mmap() for protecting MAP_JIT

14

int
mmap(proc_t p, struct mmap_args *uap, user_addr_t *retval)
{
 ...
 if ((flags & MAP_JIT) && ((flags & MAP_FIXED) || (flags & MAP_SHARED) || !(flags & MAP_ANON))){
 return EINVAL;
 }
 ...
 if (flags & MAP_ANON) {
!
 maxprot = VM_PROT_ALL;
#if CONFIG_MACF
 /*
 * Entitlement check.
 */
 error = mac_proc_check_map_anon(p, user_addr, user_size, prot, flags, &maxprot);
 if (error) {
 return EINVAL;
 }
#endif /* MAC */

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

MAC hooks

• implementation of MAC hooks usually check if policy checking is not disabled

• and then they call the policy modules to check the policy

15

int
mac_proc_check_map_anon(proc_t proc, user_addr_t u_addr,
 user_size_t u_size, int prot, int flags, int *maxprot)
{
 kauth_cred_t cred;
 int error;
!
 if (!mac_vm_enforce ||
 !mac_proc_check_enforce(proc, MAC_VM_ENFORCE))
 return (0);
!
 cred = kauth_cred_proc_ref(proc);
 MAC_CHECK(proc_check_map_anon, proc, cred, u_addr, u_size, prot, flags, maxprot);
 kauth_cred_unref(&cred);
!
 return (error);
}

check if
vm policy checks
are disabled for
this process only

check if
vm policy checks

are globally disabled

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

MAC Policy Operations

more than 200 defined
MAC policy operations

defined in  
/security/mac_policy.h

16

/*
 * Policy module operations.
 *
 * Please note that this should be kept in sync with the check assumptions
 * policy in bsd/kern/policy_check.c (policy_ops struct).
 */
#define MAC_POLICY_OPS_VERSION 24 /* inc when new reserved slots are taken */
struct mac_policy_ops {
 mpo_audit_check_postselect_t *mpo_audit_check_postselect;
 mpo_audit_check_preselect_t *mpo_audit_check_preselect; !
 mpo_bpfdesc_label_associate_t *mpo_bpfdesc_label_associate;
 mpo_bpfdesc_label_destroy_t *mpo_bpfdesc_label_destroy;
 mpo_bpfdesc_label_init_t *mpo_bpfdesc_label_init;
 mpo_bpfdesc_check_receive_t *mpo_bpfdesc_check_receive; !
 mpo_cred_check_label_update_execve_t *mpo_cred_check_label_update_execve;
 mpo_cred_check_label_update_t *mpo_cred_check_label_update;
 mpo_cred_check_visible_t *mpo_cred_check_visible;
 mpo_cred_label_associate_fork_t *mpo_cred_label_associate_fork;
 mpo_cred_label_associate_kernel_t *mpo_cred_label_associate_kernel;
 mpo_cred_label_associate_t *mpo_cred_label_associate;
 mpo_cred_label_associate_user_t *mpo_cred_label_associate_user;
 mpo_cred_label_destroy_t *mpo_cred_label_destroy;
 mpo_cred_label_externalize_audit_t *mpo_cred_label_externalize_audit;
 mpo_cred_label_externalize_t *mpo_cred_label_externalize;
 mpo_cred_label_init_t *mpo_cred_label_init;
 mpo_cred_label_internalize_t *mpo_cred_label_internalize;
 mpo_cred_label_update_execve_t *mpo_cred_label_update_execve;
 mpo_cred_label_update_t *mpo_cred_label_update; !
 mpo_devfs_label_associate_device_t *mpo_devfs_label_associate_device;
 mpo_devfs_label_associate_directory_t *mpo_devfs_label_associate_directory;
 mpo_devfs_label_copy_t *mpo_devfs_label_copy;
 mpo_devfs_label_destroy_t *mpo_devfs_label_destroy;
 mpo_devfs_label_init_t *mpo_devfs_label_init;
 mpo_devfs_label_update_t *mpo_devfs_label_update; !
 mpo_file_check_change_offset_t *mpo_file_check_change_offset;
 mpo_file_check_create_t *mpo_file_check_create;
 mpo_file_check_dup_t *mpo_file_check_dup;
 mpo_file_check_fcntl_t *mpo_file_check_fcntl;
 ...

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

MAC Policy Operations - Documentation

purpose and parameters
op operations are well

documented in  
/security/mac_policy.h

17

/**
 @brief Access control check for pipe read
 @param cred Subject credential
 @param cpipe Object to be accessed
 @param pipelabel The label on the pipe !
 Determine whether the subject identified by the credential can
 perform a read operation on the passed pipe. The cred object holds
 the credentials of the subject performing the operation. !
 @return Return 0 if access is granted, otherwise an appropriate value for
 errno should be returned. !
*/
typedef int mpo_pipe_check_read_t(
 kauth_cred_t cred,
 struct pipe *cpipe,
 struct label *pipelabel
);

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

MAC Policy Registration

• new policies get added to the kernel by calling mac_policy_register()

!

!

• the policies are defined by the struct mac_policy_conf

18

struct mac_policy_conf {
 const char *mpc_name; /** policy name */
 const char *mpc_fullname; /** full name */
 const char **mpc_labelnames; /** managed label namespaces */
 unsigned int mpc_labelname_count; /** number of managed label namespaces */
 struct mac_policy_ops *mpc_ops; /** operation vector */
 int mpc_loadtime_flags; /** load time flags */
 int *mpc_field_off; /** label slot */
 int mpc_runtime_flags; /** run time flags */
 mpc_t mpc_list; /** List reference */
 void *mpc_data; /** module data */
};

int mac_policy_register(struct mac_policy_conf *mpc, mac_policy_handle_t *handlep, void *xd);

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

Finding iOS Policies

19

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

AMFI Policy Register

20

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

AMFI mpo_proc_check_get_task

21

checks for
presence of

various
entitlements !

get-task-allow
task_for_pid-allow

kern_return_t task_for_pid(struct task_for_pid_args *args)
{
 ...
#if CONFIG_MACF
 error = mac_proc_check_get_task(kauth_cred_get(), p);
 if (error) {
 error = KERN_FAILURE;
 goto tfpout;
 }
#endif

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

Sandbox Policy Register

• unlike AMFI the sandbox extension uses a pre-filled structure from the
__DATA segment for registering the policy

22

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

Sandbox Policy Conf

23

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

 Sandbox & Sandbox Profiles

24

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

Apple Sandbox

• closed source sandboxing

• reversed by Dionysus Blazakis

• great paper “The Apple Sandbox” in January 2011

• later chapter in iOS Hacker’s Handbook

• released demos, scripts and tools

• AFAIK no public research on anything newer than iOS 5

25

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

Sandbox Profiles

26

;;
;; syslogd - sandbox profile
;; Copyright (c) 2007 Apple Inc. All Rights reserved.
;;
;; WARNING: The sandbox rules in this file currently constitute
;; Apple System Private Interface and are subject to change at any time and
;; without notice. The contents of this file are also auto-generated and not
;; user editable; it may be overwritten at any time.
;;
(version 1)
(debug deny) !
(import "bsd.sb") !
(deny default) !
. . . !
(allow file-write* file-read-data file-read-metadata
 (regex #"^(/private)?/var/run/syslog$"
 #"^(/private)?/var/run/syslog\.pid$"
 #"^(/private)?/var/run/asl_input$")) !
(allow file-write* file-read-data file-read-metadata
 (regex #"^(/private)?/dev/console$"
 #"^(/private)?/var/log/.*\.log$"
 #"^(/private)?/var/log/asl\.db$")) !
(allow file-read-data file-read-metadata
 (regex #"^(/private)?/dev/klog$"
 #"^(/private)?/etc/asl\.conf$"
 #"^(/private)?/etc/syslog\.conf$"
 #"^/usr/lib/asl/.*\.so$"))
(allow mach-lookup (global-name "com.apple.system.notification_center"))

Sandbox operations

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

Sandbox Profiles

• iOS does not come with plaintext profiles

• profiles are binary blobs without any kind of documentation

• built-in blobs are hidden in Sandbox daemon

• decompilation requires extracting system specific operation names

• current iOS uses different binary format from what Dion reversed

27

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

Extracting Sandbox Operations

‣ sandbox kernel extension contains list of all sandbox operations

‣ could be different with every new kernel version

28

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

Sandbox Operations in iOS 8.0

29

default
appleevent-send

authorization-right-obtain
device*

device-camera
device-microphone

distributed-notification-post
file*

file-chroot
file-ioctl

file-issue-extension
file-mknod
file-mount
file-read*

file-read-data
file-read-metadata

file-read-xattr
file-revoke
file-search

file-unmount
file-write*

file-write-create
file-write-data
file-write-flags
file-write-mode
file-write-owner
file-write-setugid
file-write-times
file-write-unlink

file-write-xattr
generic-issue-extension

qtn-user
qtn-download
qtn-sandbox
hid-control

iokit*
iokit-issue-extension

iokit-open
iokit-set-properties
iokit-get-properties

ipc*
ipc-posix*

ipc-posix-issue-extension
ipc-posix-sem
ipc-posix-shm*

ipc-posix-shm-read*
ipc-posix-shm-read-data

ipc-posix-shm-read-metadata
ipc-posix-shm-write*

ipc-posix-shm-write-create
ipc-posix-shm-write-data

ipc-posix-shm-write-unlink
ipc-sysv*

ipc-sysv-msg
ipc-sysv-sem
ipc-sysv-shm
job-creation

load-unsigned-code

lsopen
mach*

mach-bootstrap
mach-issue-extension

mach-lookup
mach-per-user-lookup

mach-priv*
mach-priv-host-port
mach-priv-task-port

mach-register
mach-task-name

network*
network-inbound

network-bind
network-outbound
user-preference*

user-preference-read
user-preference-write

process*
process-exec*

process-exec-interpreter
process-fork
process-info*

process-info-listpids
process-info-pidinfo

process-info-pidfdinfo
process-info-pidfileportinfo

process-info-setcontrol
process-info-dirtycontrol

process-info-rusage
pseudo-tty

signal
sysctl*

sysctl-read
sysctl-write

system*
system-acct
system-audit
system-chud

system-debug
system-fsctl
system-info

system-kext*
system-kext-load

system-kext-unload
system-lcid

system-mac-label
system-nfssvc

system-privilege
system-reboot
system-sched

system-set-time
system-socket

system-suspend-resume
system-swap

system-write-bootstrap

114 operations

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

Extracting Sandbox Profiles

• binary profiles in  
/usr/libexec/sandboxd

• __const section
contains built in profile
names

• table of name followed
by pointers to offset +
length of profiles

• extracting script by
Dion can be adjusted
to work on iOS 8

30

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

Builtin Sandbox Profiles in iOS 8.0

31

AdSheet
AppleDiags
Aquarium
BTServer
BlueTool

CFNetworkAgent
CVMServer

CommCenter
DataActivation

EscrowSecurityAlert
IMDPersistenceAgent

Lowtide
MTLCompilerService

MailCompositionService
MobileCal

MobileMaps
MobileSMS

MobileSlideShow
PasteBoard

Stocks
StreamingUnzipService

WebSheet
accessoryd

afcd
apsd

cloudphotod
com.apple.AssetCacheLocatorService

com.apple.GSSCred
com.apple.WebKit.Databases

com.apple.WebKit.Networking
com.apple.WebKit.WebContent
com.apple.assistant.assistantd

com.apple.bird
com.apple.cloudd

com.apple.datadetectors.AddToRecentsService
com.apple.discoveryd
com.apple.nehelper

com.apple.nesessionmanager
com.apple.quicklook.QLThumbnailsService

com.apple.rtcreportingd
com.apple.sandboxd
com.apple.snhelper

com.apple.tccd
com.apple.tzlinkd

com.apple.ubd
com.apple.xpcd

container
coresymbolicationd

cplogd
dataaccessd
debugserver

deleted
fmfd

ftp-proxy-embedded
gamed

geocorrectiond
geod

gputoolsd
healthd

iapd
keyboard
librariand

limitadtrackingd
lockdownd

mDNSResponder
mediaserverd

mobile-house-arrest
mobileassetd

nfcd
nlcd

nointernet
nsurlsessiond
nsurlstoraged

passd
pfd

printd
ptpd

quicklookd
racoon

reversetemplated
revisiond
routined

seld
sharingd

softwareupdated
streaming_zip_conduit

suggestd
syncdefaultsd

transitd
userfs_helper

userfsd
vibrationmanagerd

vpn-plugins
webinspectord

wifiFirmwareLoader

95 builtin profiles

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

Decompiling Sandbox Profiles

• public tools by Dion will fail on iOS 8 kernels

• and their output was more a helper than a decompiler

• Apple made some smaller changes to overall file format

• regular expressions binary format very different

• reversed the new format by trial and error

!

➡goal a full profile decompiler

32

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

Sandbox Profile Binary Format

33

struct sb_profile_header {
 uint16_t unknown; /* seems to be 0 */
 uint16_t re_table_offset;
 uint16_t re_table_count;
 uint16_t op_table[SB_OP_TABLE_COUNT];
};

file header

• starts with unknown 2 bytes

• regular expression table start offset

• regular expression count

• offset to operation node offset table

!

• all offsets are file offset divided by 8

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

Sandbox Profile Binary Format

34

struct node {
 uint8_t tag;
 union {
 struct result terminal;
 struct decision filter;
 uint8_t raw[7];
 } u;
}

nodes

• are either decision or result nodes (marked by tag)

• result nodes specify allow / deny

• decision nodes specify filter decisions

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

Sandbox Profile Binary Format

35

struct result {
 uint8_t padding;
 uint16_t allow_or_deny;
}

result node

• bit 0 decides if allow (1) or deny (0)

• other bits are modifiers

• if bit 2 is set this result will be logged

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

Sandbox Profile Binary Format

36

struct decision {
 uint8_t type;
 uint16_t arg;
 uint16_t match_next;
 uint16_t nomatch_next;
}

decision nodes

• filter type

• filter argument (number, enum,  
offset to string, number of regex)

• offset of next decision nodes in  
decision graph if filter matches or not

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

Sandbox Profile Binary Format

37

filters (very incomplete list)

• 0x01 literal

• 0x81 regex

• 0x02 mount-relative

• 0x82 mount-relative-regex

• 0x0e target

• 0x11 iokit-user-client-class

• 0x14 device-major

• 0x1c preference-domain

• 0x1e require-entitlement

• 0x21 kext-bundle-id

• ...

nowadays many more filters
that Dion either did not support in his tools

or that were introduced since then
!

numbering of filters also changed

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

Regular Expression Graphs

• example regular expression

• ^match[0-9]*$

38

m a t c h FWD^

[0-9]

BWD

$ end

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

Sandbox Profile Binary Format

39

regular expressions (graphs)

• 0x02 uint8_t character to match

• 0x?b uint8_t * 2 * ? character class

• 0x09 any character .

• 0x19 anchor to beginning ^

• 0x29 anchor to end $

• 0x1f uint8_t end of graph

• 0x?a uint16_t jump backward (offset from start)

• 0x2f uint16_t jump forward (offset from start)

regular expression encoding
completely different from before

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

iOS 8 Sandbox Decompilation Quirks

regex parser

• [^…] negative character classes are compiled to character classes
with wrap around - decompilation does not show this yet

• parser of graph of regular expression doesn’t handle + / ? at the
moment

!

filter parser

• require-all / require-any not fully working, yet

40

• Addition: 29. Nov 2014 - most of these quirks fixed

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

iOS 8 Sandbox Profile Decompilation Tool

• will be released as open source

• requires some fixes for known problems

• will be released on our company’s github in next 2 weeks

• github.com/sektioneins

41

• Addition: 29. Nov 2014 - Release will be for Christmas 2014

http://github.com/sektioneins

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

 queue handling in iOS 8

42

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

queue in Mach Kernel

• Mach kernel comes with queue implementation

• defined in /osfmk/kern/queue.h

• used in IOKit and Mach part of kernel

• queue implemented as double linked list

43

struct queue_entry {
 struct queue_entry *next; /* next element */
 struct queue_entry *prev; /* previous element */
};
!
typedef struct queue_entry *queue_t;
typedef struct queue_entry queue_head_t;
typedef struct queue_entry queue_chain_t;
typedef struct queue_entry *queue_entry_t;

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

queue in Zone Allocator

• with iOS 7 Apple has added zone allocator page meta data

• page meta data is kept in double linked list using four queues

• one queue for each type of page full, empty, intermediate, foreign

44

struct zone_page_metadata {
 queue_chain_t pages;
 struct zone_free_element *elements;
 zone_t zone;
 uint16_t alloc_count;
 uint16_t free_count;
};

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

Unsafe queue Operations

• queue operations not protected in iOS <= 7.1.x

• unlink operation vulnerable to memory corruptions

• iOS zone allocator became a feast for unlink exploits in iOS 7

45

static __inline__ void
remqueue(
 queue_entry_t elt)
{
 elt->next->prev = elt->prev;
 elt->prev->next = elt->next;
 __DEQUEUE_ELT_CLEANUP(elt);
}

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

Safe Unlink for Mach Queues

• with iOS 8 beta 5 Apple sneaked in queue hardening

• added safe unlink check to remqueue() operation

• added NULL checks against queue head and elements

• violations will trigger kernel panics

46

static __inline__ void
remqueue(
 queue_entry_t elt)
{
 if (!elt) panic("Invalid queue element %p", elt);

 if (!elt->next || !elt->prev)
 panic("Invalid queue element pointers for %p: next %p prev %p", elt->next, elt->prev);

 if (elt->next->prev != elt || elt->prev->next != elt)
 panic("Invalid queue element linkage for %p: next %p next->prev %p prev %p "
 "prev->next %p", elt, elt->next, elt->next->prev, elt->prev, elt->prev->next);

 elt->next->prev = elt->prev;
 elt->prev->next = elt->next;
 __DEQUEUE_ELT_CLEANUP(elt);
}

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

 kext_request() in iOS 8

47

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

kext_request()

• Mach API call

• allows applications to request information about kernel modules

• active operations are locked down (load, unload, start, stop, …)

• passive operations partially working from even within the sandbox

• Apple unslides load addresses to protect against KASLR leaks

48

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

kext_request() - Get Loaded Kext Info

• of special interest is a sub request called

• Get Loaded Kext Info

• returns a serialised dictionary with information about all loaded Kext

• information contained includes the mach-o headers

• Apple even modifies those headers to protect KASLR

49

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

kext_request() - Get Loaded Kext Info

50

 mach_msg_type_number_t reqlen, resplen = 0, loglen = 0;
 char *request, *response = NULL, *log = NULL;
 kern_return_t kr;

 request =
 "<dict><key>Kext Request Predicate</key><string>Get Loaded Kext Info</string></dict>";

 reqlen = strlen(request) + 1;

 kext_request(mach_host_self(), 0, request, reqlen,
 &response, &resplen,  
 &log, &loglen, &kr);

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

kext_request() - iPhone 6plus / iOS 8.0.2 Output

51

<dict ID="0"><key>__kernel__</key><dict ID="1"><key>OSBundleMachOHeaders</key><data ID=“2">z/rt/gwAAAEAAAAAAgAAAA  
8AAABACwAAAQAgAAAAAAAZAAAAOAEAAF9fVEVYVAAAAAAAAAAAAAAAIAACgP///wAgSAAAAAAAAAAAAAAAAAAAIEgAAAAAAAUAAAAFA 
AAAAwAAAAAAAABfX3RleHQAAAAAAAAAAAAAX19URVhUAAAAAAAAAAAAAAAwAAKA////rCJCAAAAAAAAEAAADAAAAAAAAAAAAAAAAAQAgAAAAAA 
AAAAAAAAAAF9fY29uc3QAAAAAAAAAAABfX1RFWFQAAAAAAAAAAAAAwFJCAoD///9oYAIAAAAAAMAyQgAFAAAAAAAAAAAAA 
AAAAAAAAAAAAAAAAAAAAAAAX19jc3RyaW5nAAAAAAAAAF9fVEVYVAAAAAAAAAAAAAAos0QCgP///2h
+AwAAAAAAKJNEAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAZAAAAyAIAAF9fREFUQQAAAAAAAAAAAAAAQEgCgP///
wBACwAAAAAAACBIAAAAAAAAwAQAAAAAAAMAAAADAAAACAAAAAAAAABfX21vZF9pbml0X2Z1bmMAX19EQVRBAAAAAAAAAAAAAABASAKA////
CAIAAAAAAAAAIEgAAwAAAAAAAAAAAAAACQAAAAAAAAAAAAAAAAAAAF9fbW9kX3Rlcm1fZnVuYwBfX0RBVEEAAAAAAAAAAAAACEJIAoD///
8AAgAAAAAAAAgiSAADAAAAAAAAAAAAAAAKAAAAAAAAAAAAAAAAAAAAX19jb25zdAAAAAAAAAAAAF9fREFUQQAAAAAAAAAAAAAQREgCgP///
yCWAQAAAAAAECRIAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABfX2RhdGEAAAAAAAAAAAAAX19EQVRBAAAAAAAAAAAAAAAASgKA////
aNICAAAAAAAA4EkADgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF9fc2ZpX2NsYXNzX3JlZwBfX0RBVEEAAAAAAAAAAAAAaNJMAoD///
8AAgAAAAAAAGiyTAADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAX19zeXNjdGxfc2V0AAAAAF9fREFUQQAAAAAAAAAAAABo1EwCgP///
3AcAAAAAAAAaLRMAAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABfX2JzcwAAAAAAAAAAAAAAX19EQVRBAAAAAAAAAAAAAAAATQKA////
kF8GAAAAAAAAAAAADAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAF9fY29tbW9uAAAAAAAAAABfX0RBVEEAAAAAAAAAAAAAAGBTAoD///
8YEQAAAAAAAAAAAAAMAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAGQAAACgCAABfX0tMRAAAAAAAAAAAAAAAAIBTAoD///
8AIAAAAAAAAADwTAAAAAAAACAAAAAAAAADAAAAAwAAAAYAAAAAAAAAX190ZXh0AAAAAAAAAAAAAF9fS0xEAAAAAAAAAAAAAAAAgFMCgP///
1ASAAAAAAAAAPBMAAIAAAAAAAAAAAAAAAAEAIAAAAAAAAAAAAAAAABfX2NzdHJpbmcAAAAAAAAAX19LTEQAAAAAAAAAAAAAAFCSUwKA////
CAcAAAAAAABQAk0AAAAAAAAAAAAAAAAAAgAAAAAAAAAAAAAAAAAAAF9fY29uc3QAAAAAAAAAAABfX0tMRAAAAAAAAAAAAAAAWJlTAoD///
9oAAAAAAAAAFgJTQADAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAX19tb2RfaW5pdF9mdW5jAF9fS0xEAAAAAAAAAAAAAADAmVMCgP///
wgAAAAAAAAAwAlNAAMAAAAAAAAAAAAAAAkAAAAAAAAAAAAAAAAAAABfX21vZF90ZXJtX2Z1bmMAX19LTEQAAAAAAAAAAAAAAMiZUwKA////
CAAAAAAAAADICU0AAwAAAAAAAAAAAAAACgAAAAAAAAAAAAAAAAAAAF9fYnNzAAAAAAAAAAAAAABfX0tMRAAAAAAAAAAAAAAA0JlTAoD///
8BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAGQAAAOgAAABfX0xBU1QAAAAAAAAAAAAAAKBTAoD///
8AEAAAAAAAAAAQTQAAAAAAABAAAAAAAAADAAAAAwAAAAIAAAAAAAAAX19tb2RfaW5pdF9mdW5jAF9fTEFTVAAAAAAAAAAAAAAAoFMCgP///
wgAAAAAAAAAABBNAAMAAAAAAAAAAAAAAAkAAAAAAAAAAAAAAAAAAABfX2xhc3QAAAAAAAAAAAAAX19MQVNUAAAAAAAAAAAAAAig8xKA////
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAABkAAACYAAAAX19QUkVMSU5LX1RFWFQAAAAwWQKA////
AJDTAAAAAAAAoFIAAAAAAACQ0wAAAAAAAwAAAAMAAAABAAAAAAAAAF9fdGV4dAAAAAAAAAAAAABfX1BSRUxJTktfVEVYVAAAADBZAoD///
8AkNMAAAAAAACgUgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGQAAAOgAAABfX1BSRUxJTktfU1RBVEUAALDzEoD///
8AAAAAAAAAAAAgTQAAAAAAAAAAAAAAAAADAAAAAwAAAAIAAAAAAAAAX19rZXJuZWwAAAAAAAAAAF9fUFJFTElOS19TVEFURQAAsPMSgP///
wAAAAAAAAAAACBNAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABfX2tleHRzAAAAAAAAAAAAX19QUkVMSU5LX1NUQVRFAACw8xKA////
AAAAAAAAAAAAIE0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABkAAACYAAAAX19QUkVMSU5LX0lORk8AAADAzBOA////
AFAIAAAAAAAAMCYBAAAAAPhPCAAAAAAAAwAAAAMAAAABAAAAAAAAAF9faW5mbwAAAAAAAAAAAABfX1BSRUxJTktfSU5GTwAAAMDME4D////
4TwgAAAAAAAAwJgEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGQAAAEgAAABfX0xJTktFRElUAAAAAAAAALDzEoD///
94eQUAAAAAAAAgTQAAAAAAeHkFAAAAAAABAAAAAQAAAAAAAAAAAAAAAgAAABgAAADwnU8AnhAAANCnUACo8QEACwAAAFAAAAAAAAAAAAAAAAAAAACeEAAAn
hAAACBNAPVHAAAbAAAAGAAAAPke8gf2KzpJlbujQoICCjclAAAAEAAAAAAA
...AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAWIANAoD///8AAAAAAAAAACYAAAAQAAAAqF9PAEg+AAA=</data><key>OSBundleCPUType</
key><integer size="32" ID="3">0x100000c</integer><key>OSBundleCPUSubtype</key><integer size="32" ID="4">0x0</
integer><key>CFBundleIdentifier</key><string ID="5">__kernel__</string><key>CFBundleVersion</key><string
ID="6">14.0.0</string><key>OSBundleUUID</key><data ID="7">+R7yB/YrOkmVu6NCggIKNw==</data><key>OSKernelResource</
key><true/><key>OSBundleIsInterface</key><false/><key>OSBundlePrelinked</key><false/><key>OSBundleStarted</key><true/
><key>OSBundleLoadTag</key><integer size="32" ID="8">0x0</integer><key>OSBundleLoadAddress</key><integer size="64"
ID="9">0xffffff8002002000</integer><key>OSBundleLoadSize</key>

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

kext_request() - Mach-o Headerdump

52

Load command 0
 cmd LC_SEGMENT_64
 cmdsize 312
 segname __TEXT
 vmaddr 0xffffff8002002000
 vmsize 0x0000000000482000
 fileoff 0
 filesize 4726784 (past end of file)
 maxprot r-x
 initprot r-x
 nsects 3
 flags (none)
Section
 sectname __text
 segname __TEXT
 addr 0xffffff8002003000
 size 0x00000000004222ac
 offset 4096 (past end of file)
 align 2^12 (4096)
 reloff 0
 nreloc 0
 type S_REGULAR
attributes PURE_INSTRUCTIONS SOME_INSTRUCTIONS
 reserved1 0
 reserved2 0
Section
 sectname __const
 segname __TEXT
 addr 0xffffff80024252c0
 size 0x0000000000026068
 offset 4338368 (past end of file)
 align 2^5 (32)
 reloff 0
 nreloc 0

• mach-o dump after base64 decode

• addresses have KASLR slide removed

• in iOS <= 6.0 Apple forgot to  
unslide section headers (disclosed by
Mark Dowd in October 2012)

• fixed in iOS 6.0.1

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

kext_request() - fix for Mark Dowd bug

53

 lcp = (struct load_command *) (temp_kext_mach_hdr + 1);
 for (i = 0; i < temp_kext_mach_hdr->ncmds; i++) {
 if (lcp->cmd == LC_SEGMENT_KERNEL) {
 kernel_segment_command_t * segp;
 kernel_section_t * secp;

 segp = (kernel_segment_command_t *) lcp;
 // 10543468 - if we jettisoned __LINKEDIT clear size info
 if (flags.jettisonLinkeditSeg) {
 if (strncmp(segp->segname, SEG_LINKEDIT, sizeof(segp->segname)) == 0) {
 segp->vmsize = 0;
 segp->fileoff = 0;
 segp->filesize = 0;
 }
 }

 segp->vmaddr = VM_KERNEL_UNSLIDE(segp->vmaddr);

 for (secp = firstsect(segp); secp != NULL; secp = nextsect(segp, secp)) {
 secp->addr = VM_KERNEL_UNSLIDE(secp->addr);
 }
 }
 lcp = (struct load_command *)((caddr_t)lcp + lcp->cmdsize);
 }

fix unslides sections

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

kext_request() - Fixed? But wait …

54

• section addresses now protected

• but some segments / sections  
are still showing slid pointers

• code looked fixed, so why?

• because there is additional hidden bug

Load command 4
 cmd LC_SEGMENT_64
 cmdsize 152
 segname __PRELINK_TEXT
 vmaddr 0xffffff8002593000
 vmsize 0x0000000000d39000
 fileoff 5414912 (past end of file)
 filesize 13864960 (past end of file)
 maxprot rw-
 initprot rw-
 nsects 1
 flags (none)
Section
 sectname __text
 segname __PRELINK_TEXT
 addr 0xffffff8002593000
 size 0x0000000000d39000
 offset 5414912 (past end of file)
 align 2^0 (1)
 reloff 0
 nreloc 0
 type S_REGULAR
attributes (none)
 reserved1 0
 reserved2 0
Load command 5
 cmd LC_SEGMENT_64
 cmdsize 232
 segname __PRELINK_STATE
 vmaddr 0xffffff8012f3b000
 vmsize 0x0000000000000000
 fileoff 5054464 (past end of file)
 filesize 0 (past end of file)
 maxprot rw-
 initprot rw-

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

kext_request() - VM_KERNEL_UNSLIDE()

55

#define VM_KERNEL_IS_SLID(_o) \
 (((vm_offset_t)(_o) >= vm_kernel_base) && \
 ((vm_offset_t)(_o) < vm_kernel_top))
!
#define VM_KERNEL_IS_KEXT(_o) \
 (((vm_offset_t)(_o) >= vm_kext_base) && \
 ((vm_offset_t)(_o) < vm_kext_top))
!
#define VM_KERNEL_UNSLIDE(_v) \
 ((VM_KERNEL_IS_SLID(_v) || \
 VM_KERNEL_IS_KEXT(_v)) ? \
 (vm_offset_t)(_v) - vm_kernel_slide : \
 (vm_offset_t)(_v))

kernel
TEXT / DATA

Kext
PRELINK_TEXT

PRELINK_STATE

PRELINK_INFO

• VM_KERNEL_UNSLIDE() does only unslide main
kernel and pre-loaded kernel extensions

• but there are parts of kernel binary in between
that are not unslid

• leaks KASLR slide

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

kext_request() - VM_KERNEL_UNSLIDE() Infoleak

• easily seen from mach-o header dump

• most likely discovered by multiple parties after October 2012

• proof of it being known in the wild since 2013

• also part of my iOS kernel exploitation training material

• used in Pangu jailbreak by my chinese trainees

56

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

Unfixed?

• yes you heard right !!!

• bug was used in public jailbreak in June 2014

• is most probably known to lots of parties since 2012

• Apple choose not to fix it for new major iOS release

• at the moment KASLR mitigation in iOS 8 is worthless

!

• Addition: 29. Nov 2014 - TAIG has just released an iOS 8.1.1
jailbreak that uses this bug to break KASLR

57

Stefan Esser • iOS 8 Containers, Sandboxes and Entitlements • Ruxcon 2014 / Melbourne • October 2014 •

Questions ?
want more?

there will be a free whitepaper later this year

there are still free slots in our November iOS kernel exploitation training

http://www.sektioneins.de/

58

http://www.sektioneins.de/

