Android Security, Pitfalls and Lessons
Learned

Steffen Liebergeld and Matthias Lange

Abstract Over the lasttwo years Android became the most popular mobile operating
system. But Android is also targeted by an over-proportional share of malware. In
this paper we systematize the knowledge about the Android security mechanisms and
formulate how the pitfalls can be avoided when building a mobile operating system.

1 Introduction

Smartphones are now very popular. Aside from calling and texting, people use them
for connecting with their digital life—email, social networking, instant messaging,
photo sharing and more. With that smartphones store valuable personal information
such as login credentials, photos, emails and contact information. The confidentiality
of that data is of paramount importance to the user because it might be abused for
impersonation, blackmailing or else. Smartphones are very attractive for attackers
as well: First, attackers are interested in the precious private information. Second,
smartphones are constantly connected, which makes them useful as bots in botnets.
Third, smartphones can send premium SMS or SMS that subscribe the victim to
costly services, and thus directly generate money for the attacker. It is up to the
smartphone operating system (OS) to ensure the security of the data on the device.
In the last two years Android became the most popular mobile OS on the market.
With over 1.5 million device activations per day Android is expected to cross the
one billion active device barrier in 2013. Its world wide market share has reached
70 % of all smartphones. On the downside Android also became a major target for
mobile malware [19]. Interestingly the share of mobile malware that targets Android
is around 90 %, which is larger than its market share. The question is why is the
Android platform so attractive for malware authors? In this paper we investigate
the Android architecture and the security mechanisms it implements. Android and

S. Liebergeld - M. Lange
Berlin, Germany

E. Gelenbe and R. Lent (eds.), Information Sciences and Systems 2013, 409
Lecture Notes in Electrical Engineering 264, DOI: 10.1007/978-3-319-01604-7_40,
© Springer International Publishing Switzerland 2013

410 S. Liebergeld and M. Lange

its weaknesses have already been well researched and we systematize the results
and give advice for platform designers to avoid those pitfalls in the future. Our
contributions are:

Android security mechanisms: We describe the Android architecture from a secu-
rity point of view and give details on application and system security. We further
detail the mechanisms of Android that are targeted at fending off attacks.

Android security problems: We identify the inherent security problems of the
Android platform.

2 Android Platform Security

Android runs on a wide range of devices and Android’s security architecture relies
on security features that are embedded in the hardware. The security of the platform
depends on a secure boot process.

Secure Boot The boot process of an Android device is a five-step process. First the
CPU starts executing from its reset vector to which the initial bootloader (IBL) code
from the ROM is wired. Then the IBL loads the bootloader from the boot medium
into the RAM and performs a signature check to ensure that only authenticated code
gets executed. The bootloader loads the Linux kernel and also performs a signature
check. The Linux kernel initializes all the hardware and finally spawns the first user
process called init. Init reads a configuration file and boots the rest of the Android
user land.

Rooting In general, mobile devices are subject to strict scrutiny of the mobile opera-
tors. That is it employs secure boot to ensure that only code is being booted, that has
received the official blessing in the form of a certification from the operators. This
is being done to ensure that the mobile OS’s security measures are implemented and
the device does not become a harm to the cellular network.

Rooting involves a modification to the system partition. Modifications to the sys-
tem partition require root permissions, which are not available by default. There are
two ways of obtaining root permissions: Either the customer boots a custom system
that gives him a root shell, or he exploits a vulnerability to obtain root permissions
at runtime.

Rooting, voluntarily or involuntarily has repercussions on device security. Unsigned
kernels can contain malware that runs with full permissions and is undetectable by
anti-virus software (rootkits). Further, rooted devices do not receive over the air
updates. If an application has received root permissions, it can essentially do as
it pleases with the device and its data, including copying, modifying and deleting
private information and even bricking the device by overwriting the bootloader.

Android Security, Pitfalls and Lessons Learned 411

3 Android System Security

The flash storage of an Android device is usually divided into multiple partitions. The
system partition contains the Android base system such as libraries, the application
runtime and the application framework. This partition is mounted read-only to prevent
modification of it. This also allows a user to boot their device into a safe mode which
is free of third party software.

Since Android 3.0 it is possible to encrypt the data partition with 128 bit AES. To
enable filesystem encryption the user has to set a device password which is used to
unlock the master key.

Data Security By default an application’s files are private. They are owned by
that application’s distinct UID. Of course an application can create world read-
able/writable files which gives access to everybody. Applications from the same
author can run with the same UID and thereby get access to shared files. Files cre-
ated on the SD card are world readable and writable. Since Android 4.0 the framework
provides a Keychain API which offers applications the possibility to safely store cer-
tificates and user credentials. The keystore is saved at /data/misc/keystore
and each key is stored in its own file. A key is encrypted using 128-bit AES in
CBC mode. Each key file contains an info header, the initial vector (IV) used for the
encryption, an MDS5 hash of the encrypted key and the encrypted data itself. Keys
are encrypted using a master key which itself is encrypted using AES.

4 Android Application Security

In Android application security is based on isolation and permission control. In the
picture you can see, that there are processes that run with root privileges. Zygote is the
prototype process that gets forked into a new process whenever a (Java) application
is launched. Each application runs in its own process with its own user and group
ID which makes it a sandbox. So, by default applications cannot talk to each other
because they don’t share any resources. This isolation is provided by the Linux
kernel which in turn is based on the decades-old UNIX security model of processes
and file-system permissions. It is worth noting that the Dalvik VM itself is not
a security boundary as it does not implement any security checks. In addition to
traditional Linux mechanisms for inter-process communication Android provides
the Binder [8] framework. Binder is an Android-specific [IPC mechanism and remote
method invocation system. Binder consists of a kernel-level driver and a userspace
server. With Binder a process can call a routine in another process and pass the
arguments between them. Binder has a very basic security model. It enables the
identification of communication partners by delivering the PID and UID.

Android Permissions On Android services and APIs that have the potential to
adversely impact the user experience or data on the device are protected with a

412 S. Liebergeld and M. Lange

mandatory access control framework called Permissions. An application declares
the permissions it needs in its AndroidManifest.xml! such as to access the contacts
or send and receive SMS. At application install time those permissions are presented
to the user who decides to grant all of them or deny the installation altogether. Per-
missions that are marked as normal such as wake-up on boot are hidden because
they are not considered dangerous. The user however can expand the whole list of
permissions if he wants to.

Memory Corruption Mitigation Memory corruption bugs such as buffer overflows
are still a huge class of exploitable vulnerabilities. Since Android 2.3 the underly-
ing Linux kernel implements mmap_min_addr to mitigate null pointer derefer-
ence privilege escalation attacks. mmap_min_addr specifies the minimum virtual
address a process is allowed to mmap. Before, an attacker was able to map the first
memory page, starting at address 0 x 0 into its process. A null pointer dereference
in the kernel then would make the kernel access page zero which is filled with bytes
under the control of the attacker. Also implemented since Android 2.3 is the eXe-
cute Never (XN) bit to mark memory pages as non-executable. This prevents code
execution on the stack and the heap. This makes it harder for an attacker to inject
his own code. However an attacker can still use return oriented programming (ROP)
to execute code from e.g. shared libraries. In Android 4.0 the first implementation
of address space layout randomization (ASLR) was built into Android. ASLR is
supposed to randomize the location of key memory areas within an address space
to make it probabilistically hard for an attacker to gain control over a process. The
Linux kernel for ARM supports ASLR since version 2.6.35. The Linux kernel is able
to randomize the stack address and the brk memory area. The brk() system call is
used to allocate the heap for a process. ASLR can be enabled in two levels by writing
either a 1 (randomize stack start address) or a 2 (randomize stack and heap address) to
/proc/sys/kernel/randomize_va_space. In Android 4.0 only the stack
address and the location of shared libraries are randomized. This leaves an attacker
plenty of possibilities to easily find gadgets for his ROP attack. In Android 4.1 Google
finally added support for position independent executables (PIE) and a randomized
linker to fully support ASLR. With PIE the location of the binary itself is randomized.
Also introduced in Android 4.1 is a technique called read-only relocation (RELro)
and immediate binding. To locate functions in a dynamically linked library, ELF
uses the global offset table (GOT) to resolve the function. On the first call a function
that is located in a shared library points to the procedure linkage table (PLT). Each
entry in the PLT points to an entry in the GOT. On the first call the entry in the GOT
points back to the PLT, where the linker is called to actually find the location of the
desired function. The second time the GOT contains the resolved location. This is
called lazy-binding and requires the GOT to be writable. An attacker can use this
to let entries in the GOT point to his own code to gain control of the program flow.

! There are more than 110 permissions in Android. A full list is available at http://developer.android.
com/reference/android/Manifest.permission.html.

http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html

Android Security, Pitfalls and Lessons Learned 413

RELro tells the linker to resolve dynamically linked functions at the beginning of the
execution. The GOT is then made read-only. This way an attacker cannot overwrite
it and cannot take control of the execution.

5 Android Security Enhancements

With Android 4.2 and the following minor releases Google introduced new security
features in Android. We will present a small selection of these enhancements in the
following paragraphs. The user now can choose to verify side-loaded applications
prior to installation. This is also know as the on-device Bouncer. It scans for com-
mon malware and alerts the user if the application is considered harmful. So far the
detection rates don’t measure up with other commercial malware scanners [5]. With
Android 4.2.2 Google introduced secure USB debugging. That means only authenti-
cated host devices are allowed to connect via USB to the mobile device. To identify
a host, adb generates an RSA key pair. The RSA key’s fingerprint is displayed on the
mobile device and the user can select to allow debugging for a single session or grant
automatic access for all future sessions. This measure is only effective if the user
has a screen lock protection enabled. Prior to Android 4.2 the optional exported
attribute of a Content Provider defaulted to true which hurts the principle of least
privilege. This lead to developers involuntarily making data accessible to other apps.
With Android 4.2 the default behaviour is now “not exported”.

SELinux on Android The SEAndroid project [15] is enabling the use of SELinux in
Android. The separation guarantees limit the damage that can be done by flawed or
malicious applications. SELinux allows OS services to run without root privileges.
Albeit SELinux on Android is possible it is hard to configure and it slows down
the device. Samsung Knox has been announced to actually roll-out SEAndroid on
commercial devices.

6 Android Security Problems

According to F-Secure Response Labs 96 % of mobile malware that was detected in
2012 targets the Android OS [11]. In this chapter we want to shed light on the security
weaknesses of Android that enabled such a vibrant market of malware. In short,
Android has four major security problems: First, security updates are delayed or never
deployed to the user’s device. Second, OEMs weaken the security architecture of
standard Android with their custom modifications. And third, the Android permission
model is defective. Finally, the Google Play market poses a very low barrier to
malware. We will now detail each of these problems.

Android Update Problem There are four parts of the system that can contain vulner-
abilities: the base system containing the kernel and open source libraries, the stock

414 S. Liebergeld and M. Lange

Android runtime including basic services and the Dalvik runtime, the Skin supplied
by the OEM and the branding. The Android base system and runtime are published
with full source by the AOSP. This code is the basis of all Android based smart
phones. Any vulnerability found therein can potentially be used to subvert count-
less Android devices. In other terms, a vulnerability has a high impact. In practice,
updates are very slow to reach the devices, with major updates taking more than
10 months [3]. Many vendors do not patch their devices at all, as the implementation
of a patch seems too costly [4]. According to Google Inc.’s own numbers, the most
recent version of Android is deployed to only 1.2 % of devices [2]. To remedy this
problem, Google announced an industry partnership with many OEM pledging to
update their devices for 18 months. This partnership is called the Android Update
Alliance. However, there has been no mentioning of the alliance since 2012, and
updates are still missing [3]. Bringing the updates to the devices is more involved
however. Once the update reaches the OEMs, they incorporate it into their internal
code repositories. For major updates, this includes porting their Skin forward. A
faulty firmware update has very bad consequences for the OEM’s reputation. There-
fore the updated firmware is subject to the OEM’s quality control. In summary,
incorporating an update into a device firmware is therefore very costly to the OEM
both temporal and financial. Cellular operators certify devices for correct behaviour.
This is done to ensure that the device does not misbehave and therefore does not put
the network and its users at risk. Updated firmwares need to be re-certified before
they can be deployed. Depending on the operator this can take a substantial amount
of time. For example re-certification at T-Mobile takes three to six months [12], other
carriers opt out of the process and do not ship any updates at all.

Android Permission Model The Android permission model has been under criticism
since Android was introduced. It has been extensively studied by researchers. Here
we present the problems that stand out. Kelley et al. conducted a study and found that
users are generally unable to understand and reason about the permission dialogues
presented to them at application installation time [18]. In [16] Barrera et al. conducted
an analysis of the Android permission model on a real-world data set of applications
from the Android market. It showed that a small number of permissions are used
very frequently and the rest is only used occasionally. It also shows the difficulty
between having finer or coarser grained permissions. A finer grained model increases
complexity and thus has usability impacts. The study also showed that not only users
may have difficulties understanding a large set of permissions but also the developers
as many over-requesting applications show. Felt et al. performed a study on how
Android permissions are used by Apps. They found that in a set of 940 Apps about
one-third are over-privileged, mostly due to the developers being confused about the
Android permission system [17]. Another problem are combo permissions. Different
applications from the same author can share permissions. That can be used to leak
information. For example an application has access to the SMS database because
it provides full text search for your SMS. Another app, say a game, from the same
author has access to the Internet because it needs to load ads from an ad server.

Android Security, Pitfalls and Lessons Learned 415

Now through Android’s IPC mechanism those two apps can talk to each other and
essentially leak the user’s SMS database into the Internet.

Insufficient Market Control Anybody can publish her applications to the official
Android App market Google Play after paying a small fee. There are alternative App
markets, e.g. the Amazon Appstore [7] and AndroidPit [9], but Google Play is the
most important one because it is preinstalled on almost any Android device. Any
App that is published via Google Play must adhere to the Google Play Developer
Distribution Agreement (DDA) [13] and Google Play Developer Program Policies
(DPP) [14]. However, Google Play does not check upfront if an uploaded App does
adhere to DDA and DPP. Only when an App is suspected to violate DDA or DPP,
it is being reviewed. If it is found to breach the agreements, it is suspended and
the developer notified. If the App is found to contain malware, Google might even
uninstall the App remotely. In 2012 Google introduced Bouncer [6]. Bouncer is a
service that scans Apps on Google Play for known malware. It runs the Apps in an
emulator and looks for suspicious behaviour. Unfortunately it didn’t take long for
researchers to show ways on how to circumvent Bouncer [1]. Malicious Apps have
been found on Google Play repeatedly [10].

7 Lessons Learned

From our study of Android security problems we compile a set of lessons learned to
educate future OP developers in avoiding these pitfalls.

Timely security updates are an absolute must for any secure system. This is espe-
cially important for open source systems where the code is public and bugs are
easy to spot. For Smartphones an update system has to take all involved parties into
account. We think that the key lies in clear abstractions and a modular system. That
would enable the cellular operators to certify a device by looking on the radio stack
alone.

Control platform diversity: The OS designer should enforce that third party modi-
fications to the OS do not introduce security breaches by design. He should enforce
contracts on security critical points in the system that third party code has to fol-
low. For example Google should enforce that any device running Android must only
contain code that enforces the Android permission system.

Ensure lock screen locks screen under all circumstances: Ensure that no third
party can mess with the lockscreen.

Design permission system with user and developer in mind: A permission system
should be designed such that the permissions it implements are understood by both
the developer to avoid over-privileged Apps and the user, so that she can make an
educated decision when granting permissions. Granting all permissions at installa-
tion time is problematic. Users ofter grant permissions just to be able to install an
App. Also, it does not allow for fine-grained permissions. Maybe a better solution
would be to ask the user to grant permissions on demand.

416 S. Liebergeld and M. Lange

Ensure that the App market does not distribute malware: The App market is the
most important distribution place for Apps. People trust in the App markets, and have
no chance to determine the quality of an App by themselves. Aside from having a
mandatory admission process, an App market should also scan for repackaged Apps.

8 Conclusion

In this work we investigated the security of the Android mobile OS. We described
the Android security measures, and its problems. We derived a set of lessons learned
that will help future mobile OS designers to avoid pitfalls.

Acknowledgments This work was partially supported by the EU FP7/2007-2013 (FP7-ICT-
2011.1.4 Trustworthy ICT), under grant agreement no. 317888 (project NEMESYS).

References

1. Adventures in BouncerLand (2012) Failures of automated Malware detection within
mobile application markets. http://media.blackhat.com/bh-us-12/Briefings/Percoco/BH_US_
12_Percoco_Adventures_in_Bouncerland_WP.pdf, July 2012

2. Android Dashboard (2012) https://developer.android.com/about/dashboards/index.html, Dec
2012

3. Arstechnica (2012) The checkered, slow history of Android handset updates. http://arstechnica.
com/gadgets/2012/12/the-checkered-slow-history-of-android-handset-updates/, Dec 2012

4. Arstechnica (2012) What happened to the Android Update Alliance? http://arstechnica.com/
gadgets/2012/06/what-happened-to-the-android-update-alliance/, June 2012

5. An evaluation of the application verification service in android 4.2. http://www.cs.ncsu.edu/
faculty/jiang/appverify/, Dec 2012

6. Google Mobile Blog (2012) Android and security. http://googlemobile.blogspot.de/2012/02/
android-and-security.html, Feb 2012

7. Amazon Appstore (2013) http://www.amazon.com/mobile-apps/b/ref=sa_menu_adr_app?ie=
UTF8&node=2350149011, April 2013

8. Android Developer Documentation (2013) Binder. http://developer.android.com/reference/
android/os/Binder.html, Jan 2013

9. AndroidPit (2013) http://www.androidpit.com/, Apr 2013

10. Arstechnica (2013) More "BadNews" for Android: New malicious apps found
in Google Play. http://arstechnica.com/security/2013/04/more-badnews-for-android-new-
malicious-apps-found-in-google-play/, Apr 2013

11. F-Secure Mobile Threat Report Q4 2012. http://www.f-secure.com/static/doc/labs\global/
Research/Mobile20Threat20Report20Q4202012.pdf, March 2013

12. Gizmodo (2013) Why Android Updates Are So Slow. http://gizmodo.com/5987508/why-
android-updates-are-so-slow, March 2013

13. Google Play Developer Distribution Agreement. http://www.android.com/us/developer-
distribution-agreement.html, Apr 2013

14. Google Play Developer Program Policies. http://www.android.com/us/developer-content-
policy.html, Apr 2013

15. Seandroid wiki (2013). http://selinuxproject.org/page/SEAndroid, Apr 2013

http://media.blackhat.com/bh-us-12/Briefings/Percoco/BH_US_12_Percoco_Adventures_in_Bouncerland_WP.pdf
http://media.blackhat.com/bh-us-12/Briefings/Percoco/BH_US_12_Percoco_Adventures_in_Bouncerland_WP.pdf
https://developer.android.com/about/dashboards/index.html
http://arstechnica.com/gadgets/2012/12/the-checkered-slow-history-of-android-handset-updates/
http://arstechnica.com/gadgets/2012/12/the-checkered-slow-history-of-android-handset-updates/
http://arstechnica.com/gadgets/2012/06/what-happened-to-the-android-update-alliance/
http://arstechnica.com/gadgets/2012/06/what-happened-to-the-android-update-alliance/
http://www.cs.ncsu.edu/faculty/jiang/appverify/
http://www.cs.ncsu.edu/faculty/jiang/appverify/
http://googlemobile.blogspot.de/2012/02/android-and-security.html
http://googlemobile.blogspot.de/2012/02/android-and-security.html
http://www.amazon.com/mobile-apps/b/ref=sa_menu_adr_app?ie=UTF8&node=2350149011
http://www.amazon.com/mobile-apps/b/ref=sa_menu_adr_app?ie=UTF8&node=2350149011
http://developer.android.com/reference/android/os/Binder.html
http://developer.android.com/reference/android/os/Binder.html
http://www.androidpit.com/
http://arstechnica.com/security/2013/04/more-badnews-for-android-new-malicious-apps-found-in-google-play/
http://arstechnica.com/security/2013/04/more-badnews-for-android-new-malicious-apps-found-in-google-play/
http://www.f-secure.com/static/doc/labsglobal /Research/Mobile20Threat20Report20Q4202012.pdf
http://www.f-secure.com/static/doc/labsglobal /Research/Mobile20Threat20Report20Q4202012.pdf
http://gizmodo.com/5987508/why-android-updates-are-so-slow
http://gizmodo.com/5987508/why-android-updates-are-so-slow
http://www.android.com/us/developer-distribution-agreement.html
http://www.android.com/us/developer-distribution-agreement.html
http://www.android.com/us/developer-content-policy.html
http://www.android.com/us/developer-content-policy.html
http://selinuxproject.org/page/SEAndroid

Android Security, Pitfalls and Lessons Learned 417

16. Barrera, D, Kayacik HG, van Oorschot PC, Somayaji A (2010) A methodology for empirical
analysis of permission-based security models and its application to android. In: Proceedings
of the 17th ACM conference on computer and communications security, CCS *10, ACM, New
York, NY, USA, pp. 73-84. http://doi.acm.org/10.1145/1866307.1866317

17. Felt AP, Chin E, Hanna S, Song D, Wagner D (2011) Android permissions demystified. In:
Proceedings of the 18th ACM conference on Computer and communications security, CCS
11, ACM, New York, NY, USA, pp. 627-638. http://doi.acm.org/10.1145/2046707.2046779

18. Kelley P, Consolvo S, Lorrie C, Jung J, Sadeh N, Wetherall D (2012) An conundrum of per-
missions: installing applications on an android smartphone. Workshop on Usable, Security

19. Symantec (2013) Internet security threat report. Technical report, Apr 2013. http://www.
symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v18_2012_
21291018.en-us.pdf

http://doi.acm.org/10.1145/1866307.1866317
http://doi.acm.org/10.1145/2046707.2046779
http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v18_2012_21291018.en-us.pdf
http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v18_2012_21291018.en-us.pdf
http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v18_2012_21291018.en-us.pdf

	40 Android Security, Pitfalls and Lessons Learned
	1 Introduction
	2 Android Platform Security
	3 Android System Security
	4 Android Application Security
	5 Android Security Enhancements
	6 Android Security Problems
	7 Lessons Learned
	8 Conclusion
	References

