Chapter 2
Background and Evolution
of Code-Reuse Attacks

2.1 General Principle of Control-Flow Attacks

In general, control-flow attacks allow an adversary to subvert the intended
execution-flow of a program by exploiting a program error. For instance, a buffer
overflow error can be exploited to write data beyond the boundaries of the buffer. As
a consequence, an adversary can overwrite critical control-flow information which
is located close to the buffer. Since control-flow information guide the program’s
execution-flow, an adversary can thereby trigger malicious and unintended
program actions such as installing a backdoor, injecting a malware, or accessing
sensitive data.

Control-flow attacks are performed at application runtime. Hence, they are often
referred to as runtime exploits. Note that we use both terms interchangeably in this
book. In summary, we define a control-flow attack as follows.

Control-Flow Attack (Runtime Exploit): A control-flow attack exploits a
program error, particularly a memory corruption vulnerability, at application
runtime to subvert the intended control-flow of a program. The goal of a
control-flow attack is the execution of malicious program actions.

Loosely speaking, we can distinguish between two major classes of control-flow
attacks: (1) code injection and (2) code-reuse attacks. The former class requires
the injection of some malicious executable code into the address space of the
application. In contrast, code-reuse attacks only leverage benign code already
present in the address space of the application. In particular, code-reuse attacks
combine small code pieces scattered throughout the address space of the application
to generate new malicious program codes on-the-fly.

© The Author(s) 2015 7
L. Davi, A.-R. Sadeghi, Building Secure Defenses Against Code-Reuse Attacks,
SpringerBriefs in Computer Science, DOI 10.1007/978-3-319-25546-0_2

8 2 Background and Evolution of Code-Reuse Attacks

i) inject malicious code

— intended flow

= malicious flow

Control-Flow Graph Malicious Code / CFG ---- attack steps
(CFG)

Fig. 2.1 Code injection attacks

A high-level representation of code injection attacks is given in Fig.2.1. It
shows a sample control-flow graph (CFG) with six nodes. The CFG contains all
intended execution paths a program might follow at runtime. Typically, the CFG
nodes represent the so-called basic blocks (BBLs), where a BBL is a sequence
of machine/assembler instructions with a unique entry and exit instruction. The
exit instruction can be any branch instruction the processor supports such as direct
and indirect jump instructions, direct and indirect call instructions, and function
return instructions. The entry instruction of a BBL is an instruction that is target of
a branch instruction.

As shown in Fig. 2.1, the CFG nodes are connected via directed edges. These
edges represent the possible control-flows, e.g., there is an intended control-flow
from node n3 to n5 and ng, where n simply stands for node.

A code injection attack first requires the injection of malicious code. Since
programs are allocated into a dedicated memory location at runtime, i.e., the
application’s virtual address space, the adversary needs to find a free slot to inject
her malicious code. Typically, this can be achieved by loading the malicious code
into a local buffer that is large enough to hold the entire malicious code. In Fig. 2.1,
the malicious code consists of the two nodes ny and ng. However, these nodes are
not connected to the original CFG. In order to connect the malicious nodes to the
intended program nodes, the adversary needs to identify and exploit a program
vulnerability. Exploitation of the program vulnerability allows the adversary to
tamper with a code pointer, i.e., some control-flow information that guides program
execution. A prominent example is a function’s return address which is always
located on the program stack. Other examples are function pointers or pointers to
virtual method tables. In the example exploit shown in Fig. 2.1, n3 is exploited by the
adversary to redirect the execution path to node n4 and ng. In summary, we define
code injection attacks as follows.

2.1 General Principle of Control-Flow Attacks 9

ii) exploit program error :

i) inject malicious data

Pointer(4
@) — intended flow
Pointer(1) — malicious flow
Control-Flow Graph Malicious control-flow ---- attack steps
(CFG) information

Fig. 2.2 Code-reuse attacks

Code Injection Attack: A code injection attack is a subclass of control-flow
attacks that subverts the intended control-flow of a program to previously
injected malicious code.

Code injection attacks require the injection and execution of malicious code.
However, some environments and operating systems deny the execution of code
that has just been written into the address space of the program. For instance, a
Harvard-based computing architecture strictly separates code and data memory. As
a response, a new control-flow attack emerged that only reuses existing code. The
high-level principle of these so-called code-reuse attacks is shown in Fig. 2.2.

In contrast to code injection attacks, the adversary only injects malicious data into
the address space of the application. Specifically, in the example shown in Fig. 2.2,
the adversary injects two code pointers; namely pointers to ny and n;. At the time
the adversary exploits the program vulnerability in 3, the control-flow is redirected
to the code pointers the adversary previously injected. Hence, the code-reuse attack
in our example leads to the unintended execution path: n3 — n4s — n;. In summary,
we define a code-reuse attack as follows.

Code-Reuse Attack: A code-reuse attack is a subclass of control-flow attacks
that subverts the intended control-flow of a program to invoke an unintended
execution path inside the original program code.

Note that the internal workflow and memory layout of a control-flow attack
depend on the kind of vulnerability that is exploited. For better understanding,
we describe the technical details of control-flow attacks based on a classic buffer
overflow vulnerability on the program’s stack. Hence, we briefly recall the basics of

10 2 Background and Evolution of Code-Reuse Attacks

a program’s stack memory and the typical stack frame layout on x86. Afterwards,
we present the technical details of code injection and code-reuse attacks.

2.2 Program Stack and Stack Frame Elements

A program stack operates as a last-in first-out memory area. In particular, it is used in
today’s programs to hold local variables, function arguments, intermediate results,
and control-flow information to ensure correct invocation and return of subroutines.
The stack pointer which is stored in a dedicated processor register plays an important
role because it points to the top of the stack. Typically, the stack is controlled by
two operations: (1) a POP instruction that takes one data word off the stack, and
(2) a PUSH instruction which performs the reverse operation, i.e., it stores one
data word on the top of the stack. Both instructions have direct influence on the
stack pointer since they change the top of the stack. That is, for stacks that grow
from high memory addresses towards low memory addresses (e.g., x86), the POP
instruction automatically increments the stack pointer by one memory word (on x86
by 4 Bytes), while the PUSH instruction decrements it by one word.

In general, the stack is divided into multiple stack frames. Stack frames are
associated at function-level, i.e., for each invoked subroutine one stack frame
is allocated. The stack frame has a pre-defined structure for each compiler and
underlying processor architecture. An example of a typical x86 stack frame and
its elements is shown in Fig.2.3. The depicted stack frame is referenced by two
processor registers: the stack pointer (on x86 $esp) and the base pointer register
(on x86 $ebp). As we already mentioned, the stack pointer always points to the top
of the stack. In contrast to the stack pointer, the base pointer is constant and fixed
per stack frame: it always points to the saved base pointer. The meaning of the saved
base pointer and the other stack frame elements is as follows:

¢ Function Arguments: This field holds the arguments which are loaded on the
stack by the calling function.

* Return Address: The return address indicates where the execution-flow needs
to be redirected to upon function return. On x86, the instruction for calling a
function (CALL) automatically pushes the return address on the stack, where the
return address is the address of the instruction that follows the CALL.

» Saved Base Pointer: The base pointer of a function is used to reference function
arguments and local variables on the stack frame. The function prologue of each
subroutine initializes the base pointer. This is achieved in two steps. First, the
base pointer of the calling function is pushed onto the stack via PUSH %ebp.
The base pointer stored onto the stack is then referred to as the saved base pointer.
Next, the new base pointer is initialized by loading the current stack pointer value
into the base pointer register, e.g., MOV %ebp, $esp. The function epilogue
reverts these operations by first setting the stack pointer to point to the saved

2.3 Code Injection 11

Fig. 2.3 Stack frame
memory layout

Stack
Function Arguments
_ Return Address
Base Pointer » Saved Base Pointer
(BP)
Local Variables
Stack N
Pointer (SP) ~

Program Memory

base pointer field (MOV %$esp, $ebp), and subsequently loading the saved base
pointer to the base pointer register via POP %ebp.

* Local Variables: The last field of a stack frame holds the local variables such as
integer values or local buffers.

2.3 Code Injection

In order to perform a code injection attack, the adversary needs to inject malicious
code into the address space of the target application. Typically, this can be achieved
by encapsulating the malicious code into a data input variable that gets processed
by the application, e.g., a string, file, or network packet.

Figure 2.4 depicts a code injection attack, where a local buffer that can hold up
to 100 characters is exploited. The adversary has access to the local buffer, i.e., the
application features a user interface from which it expects the user to enter a data
input. On x86, data is written from low memory addresses towards high memory
addresses, i.e., from the top of the stack towards the saved base pointer in Fig. 2.4.

If the program does not validate the length of the provided data input, it is
possible to provide a larger data input than the buffer can actually hold. As a
consequence, the stack frame fields which are located above the local buffer are
overwritten.

12 2 Background and Evolution of Code-Reuse Attacks

@ Stack Stack

Function Arguments Function Arguments
Return Address SP Addr(SHELLCODE)
Saved Base Pointer 0x41414141

Local Buffer

[100 Bytes]
PADDING
—) P
Program Memory Program Memory
(before overflow) (after overflow)

Fig. 2.4 Memory layout of code injection attacks

This can be exploited for the purpose of a code injection attack: the adversary
first provides a data input which fills the local buffer with arbitrary pattern bytes and
the malicious code. As the main goal of many proof-of-concept exploits is to open a
terminal (shell) to the adversary, the malicious code is often referred to as shellcode.
Second, the adversary overwrites the saved base pointer with arbitrary bytes (here:
0x41414141) and replaces the original return address with the runtime address of
the shellcode. For systems that do not apply code and data segment randomization,
this address is fixed, and can be retrieved by reverse-engineering the program binary
using a debugger.

When the subroutine—where the overflow occurred—completed its task and
executes its function epilogue instructions, the stack pointer will be reset to the
location, where the original return address was stored. As the program is not aware
of the overflow, it takes the start address of the shellcode as a return address and
redirects execution to the beginning of the shellcode. Thus, the shellcode executes
and opens a new terminal to the adversary.

2.4 Data Execution Prevention

One main observation we can make from the code injection attack described above
is that malicious code can be encapsulated into a data variable and executed from
the program’s stack. In fact, code injection attacks were easily possible because
data and code got intermixed in memory, and not strictly separated as in Harvard-
based processor architectures. Hence, data segments like the stack were marked as
readable, writable, and executable (RWX). However, since the main purpose of the

2.5 Code-Reuse Attacks 13

stack is to only hold local variables and control-flow information, we simply need a
mechanism to prohibit any code execution from the stack to prevent a code injection
attack. As a consequence, kernel patches have been provided to mark the stack as
non-executable [34]; e.g., enabled in Solaris 2.6 [3].

The concept of marking the stack as non-executable has been later included into
a more general security model referred to as Writable XOR eXecutable (W & X) or
data execution prevention (DEP) [29]. The main idea of W @ X is to prevent any
memory page from being writable and executable at the same time. Hence, memory
pages belonging to data segments are marked as readable and writable (RW),
whereas memory pages that contain executable code are marked as readable and
executable (RX). This effectively prevents code injection attacks since an adversary
can no longer execute code that has been written via a data variable to a RW-marked
memory page. In summary, we define the principle W & X as follows.

Writable xor eXecutable (W @ X): The security model of W @X enforces that
memory pages are either marked as writable or executable. This prevents a
code injection attack, where the adversary first needs to write malicious code
into the address space of an application before executing it.

Today, every mainstream processor architecture features the so-called no-execute
bit to facilitate the deployment of W & X in modern operating systems. For instance,
Windows-based operating systems enforce DEP since Windows XP SP2 [29].

2.5 Code-Reuse Attacks

After non-executable stacks and W & X have been proposed as countermeasures
against control-flow attacks, attackers have instantly demonstrated new techniques
to launch control-flow attacks. Instead of injecting malicious code into the address
space of the application, an adversary can exploit the benign code which is already
present in the address space and marked as executable. Such code-reuse attacks
have started as so-called return-into-libc attacks and have been later generalized to
return-oriented programming attacks. We describe the technical concepts of both
attack techniques in the following.

2.5.1 Return-Into-Libc

The first published exploit that reuses existing code for a return-into-libc attack has
been presented by Solar Designer in 1997 [33]. The exploit overwrites the original

14 2 Background and Evolution of Code-Reuse Attacks

return address to point to a critical library function. Specifically, it targets the
system() function of the standard UNIX C library 1ibc, which is linked to nearly
every process running on a UNIX-based system. The system() function takes as an
input a shell command to be executed. For instance, on UNIX-based systems the
function call system(“/bin/sh”) opens the terminal program. That said, by invoking
the system() function, the adversary can conveniently reconstruct the operations of
previously injected shellcode without injecting any code. In summary, we define a
return-into-libc attack as follows.

Return-Into-Libc: Code-reuse attacks that are based on the principle of
return-into-libc subvert the intended control-flow of a program and redirect it
to security-critical functions that reside in shared libraries or the executable
itself.

Figure 2.5 shows the typical memory layout of a return-into-libc attack. A
necessary step of our specific return-into-libc attack is the injection of the string
/bin/sh since system() is expecting a pointer to the program path in order to
open a new terminal. To tackle this issue, one could search for the string inside the

@ Stack Stack
[———

Function Arguments Addr($SHELL)
Addr(exit)

Return Address 1 SP Addr(system)

Saved Base Pointer | —— 0x41414141
4 N

Local Buffer

[100 Bytes] |:> PADDING

— N J
R SSHELL =/bin/sh

Environment Variables Environment Variables
Code (Executable) e Code (Executable)
Libraries Libraries

Program Memory Program Memory
(before overflow) (after overflow)

Fig. 2.5 Basic principle of return-into-libc attacks

2.5 Code-Reuse Attacks 15

entire address space of the target application. However, this approach is unreliable
as the string might not always be present in the address space of the application. A
more robust exploitation approach is to inject the string into a data memory page
and record its address. At first glance, this might seem a trivial step. However, the
challenge stems from the fact that the string needs to be NULL-terminated. Hence,
if we attempt to inject the string into the local buffer, we would need to process
a NULL Byte which is impossible for many vulnerabilities. For instance, classic
buffer overflow vulnerabilities introduced via the strcpy() function terminate the
write operation if a NULL Byte is processed. The classic return-into-libc attacks
overcome this issue by injecting the string as an environment variable. In Fig. 2.5,
the adversary defines the SSHELL environment variable which contains the string
/bin/sh.

After the environment variable has been defined, the adversary interfaces to
the application by providing a data input that exceeds the local buffer’s limits.
Specifically, the adversary fills the local buffer with arbitrary pattern bytes. In
addition, the saved base pointer is overwritten with 4 Bytes of arbitrary data. Finally,
the return address is replaced with the runtime address of the system() function.
Moreover, two other addresses are written on the stack: the runtime address of
the 1ibc exit() function, and the runtime address of the $SHELL variable. The
latter resembles the function argument on the stack frame of the invoked system()
function. Considering the standard x86-based stack frame layout (see Fig.2.3), the
former will be used as the return address of system(). In particular, the exit() function
will terminate the process upon return of system(), i.e., at the time the adversary
closes the terminal.

This basic return-into-libc attack requires the knowledge of three runtime
addresses. In case no code and data randomization is applied, these addresses can
be retrieved by reverse-engineering the application using a debugger. Otherwise,
an adversary would need to disclose these addresses using memory disclosure
techniques which we discuss in detail in Chap. 4.

The basic return-into-libc attacks only allow invocation of two library library
functions, while the second function (in Fig.2.5 the exi#() function) needs to
be called without any argument. As this poses restrictions on the operations an
adversary can perform, several advanced return-into-libc attack techniques have
been proposed. For instance, Nergal demonstrated two techniques, called esp-lifting
and frame faking, allowing an adversary to perform chained function calls in a
return-into-libc attack [30].

2.5.2 Return-Oriented Programming

The above described return-into-libc attack technique has some limitations com-
pared to classic code injection attacks. First, an adversary is dependent on critical
1libc functions such as system(), exec(), or open(). Hence, if we either instrument
or eliminate these functions, an adversary would no longer be able to perform a

16 2 Background and Evolution of Code-Reuse Attacks

reasonable attack. In fact, one of the first proposed defenses against return-into-libc
is based on the idea of mapping shared libraries to memory addresses that always
contain a NULL byte [33]. Second, return-into-libc only allows calling one function
after each other. Hence, an adversary is not able to perform arbitrary malicious
computation. In particular, it is not possible to perform unconditional branching.

There is also a challenge when applying return-into-libc attacks to 64 Bit based
systems (x86-64). On x86-64, function arguments are passed to a subroutine via
processor registers rather than on the stack. To tackle this challenge, Krahmer [23]
suggested an advanced return-into-libc attack technique called borrowed code
chunks exploitation. The main idea is to borrow a function epilogue consisting of
several POP register instructions. These instructions load the necessary function
arguments into processor registers and subsequently redirect the execution-flow to
the target subroutine.

Shacham generalizes the idea of borrowed code chunks exploitation by intro-
ducing return-oriented programming. This attack technique tackles the previously
mentioned limitations of return-into-libc attacks. The basic idea is to execute a chain
of short code sequences rather than entire functions. Multiple code sequences are
combined to a so-called gadget that performs a specific atomic task, e.g., a load,
add, or branch operation. Given a sufficiently large code base, an adversary will
most likely identify a gadget set that forms a new Turing-complete language. That
said, the derived gadget set can be exploited to induce arbitrary malicious program
behavior. The applicability of return-oriented programming has been shown on
many platforms including x86 [32], SPARC [4], Atmel AVR [14], PowerPC [25],
ARM [22], and z80 [5].

The basic idea and workflow of a return-oriented programming attack is shown
in Fig. 2.6. Note that we discuss a return-oriented programming attack that exploits
a heap-based vulnerability to explain all basic attack steps that are taken in
modern real-world code-reuse exploits. First, the adversary writes the return-
oriented payload into the application’s memory space, where the payload mainly
consists of a number of pointers (the return addresses) and any other data that is
needed for running the attack (Step @). In particular, the payload is placed into a
memory area that can be controlled by the adversary, i.e., the area is writable and
the adversary knows its start address. The next step is to exploit a vulnerability of
the target program to hijack the intended execution-flow (Step @). In the example
shown in Fig. 2.6, the adversary exploits a heap vulnerability by overwriting the
address of a function pointer with an address that points to a so-called stack pivot
sequence [39]. Once the overwritten function pointer is used by the application, the
execution-flow is redirected to a stack pivot sequence (Step ®).

Loosely speaking, stack pivot sequences change the value of the stack pointer
(¥esp) to a value stored in another register. Hence, by controlling that register,' the

To control the register, the adversary can either use a buffer overflow exploit that overwrites
memory areas that are used to load the target register, or invoke a sequence that initializes the
target register and then directly calls the stack pivot.

2.5 Code-Reuse Attacks 17

k
Caaversay > T
L SP—>

A 4

@ Return Address 3
: Return Address 2
Return Address 1

5 Sy R

:} Heap Vulnerability }—

Heap

Code (Executable)

@ Libraries

» ADD Gadget | RET |

» LOAD Gadget | RET |

®
®

> STORE Gadget | RET |

=} Stack Pivot ‘ RET ‘

Program Memory

Fig. 2.6 Basic principle of return-oriented programming attacks. For simplicity, we highlight a
return-oriented programming attack on the heap using a sequence of single-instruction gadgets

adversary can arbitrarily change the stack pointer. Typically, the stack pivot directs
the stack pointer to the beginning of the payload (Step @). A concrete example of
a stack pivot sequence is the x86 assembler code sequence MOV %esp, $eax;
ret. The sequence changes the value of the stack pointer to the value stored in
register $eax and subsequently invokes a return (RET) instruction. Notice that the
stack pivot sequence ends in a RET instruction: the x86 RET instruction simply loads
the address pointed to by $esp into the instruction pointer and increments $esp
by one word. Hence, the execution continues at the first gadget (STORE) pointed to
by Return Address 1 (Step ®). In addition, the stack pointer is increased and now
points to Return Address 2.

It is exactly the terminating RET instruction that enables the chained execution
of gadgets by loading the address the stack pointer points to (Return Address 2) in
the instruction pointer and updating the stack pointer so that it points to the next
address in the payload (Return Address 3). Steps ® to @ are repeated until the

18 2 Background and Evolution of Code-Reuse Attacks

adversary reaches her goal. To summarize, the combination of different gadgets
allows an adversary to induce arbitrary program behavior.
Hence, we define a return-oriented programming attack as follows.

Return-Oriented Programming: Code-reuse attacks that are based on the
principle of return-oriented programming combine and execute a chain of
short instruction sequences that are scattered throughout the address space
of an application. Each sequence ends with an indirect branch instruction—
traditionally, a return instruction—to transfer control from one sequence to
the subsequent sequence. In particular, return-oriented programming has
been shown to be Turing-complete, i.e., the instruction sequences it leverages
can be combined to gadgets that form a Turing-complete language.

Unintended Instruction Sequences A crucial feature of return-oriented program-
ming on x86 is the invocation of the so-called unintended instruction sequences.
These can be issued by jumping into the middle of a valid instruction resulting in
a new instruction sequence neither intended by the programmer nor the compiler.
Such sequences can be found in large number on the x86 architecture due to
unaligned memory access and variable-length instructions. As an example, consider
the following x86 code with the given intended instruction sequence, where the byte
values are listed on the left side and the corresponding assembly code on the right
side:

Listing 2.1 Intended code sequence
b8 13 00 00 00 MOV $0x13,%eax
e9 c3 f8 ff ff JMP 3aae9

If the interpretation of the byte stream starts two bytes later the following
unintended instruction sequence would be executed:

Listing 2.2 Unintended code sequence
00 00 ADD %al, (%eax)
00 e9 ADD %ch,% cl

c3 RET

In the intended instruction sequence the c3 byte is part of the second instruction.
However, if the interpretation starts two bytes later, the c3 byte will be interpreted
as a return instruction.

2.6 Hybrid Exploits

Typically, modern systems enforce W @ X by default. This forces an adversary to
deploy code-reuse attacks. However, a deeper investigation of real-world code-reuse
attacks quickly reveals that most exploits today use a combination of code-reuse and

2.6 Hybrid Exploits 19

{A llocateMemory(R W)}—

[ChangePermission(RX)]——I—’ SHELLCODE

@ [MemoryCopy() }

Linked Libraries

. ® SHELLCODE
Program Binary
Code Memory Data Memory
readable-executable (RX) readable-writable (RW)

Fig. 2.7 Hybrid exploitation: combination of code-reuse with code injection

code injection. The main idea behind these hybrid exploits is to only use code-reuse
attack techniques to undermine W @ X protection and launch a code injection attack
subsequently. This is possible due to the fact that W & X in its basic instantiation
only enforces that a memory page is not writable and executable at the same time.
However, a memory page can be first writable (not-executable) and at a later time
executable (not-writable).

Figure 2.7 demonstrates this combined attack technique by example. The shown
memory layout is divided into a code and data memory area, where the former one
is readable and executable, and the latter one is marked as readable and writable. In
particular, the code memory holds the program binary and linked shared libraries.
In modern operating systems, several important libraries and their functionality
are linked by default into the address space of the application. Consider as an
example the UNIX C library 1ibc. Although the target application may only
require the printf() function to print strings on the standard output (stdout), other
libc functions such as system() or memcpy() will be always mapped into the
address space of the application as well.

In our example, we assume that the return-oriented payload and the malicious
code have been already injected into the data memory area. In Step @, the payload
exploits a program vulnerability and redirects execution to the shared library
segment. Specifically, the adversary invokes a default function to allocate a new
memory page (e.g., the alloc() function) marked as readable and writable (Step @).
Typically, the return value will be the runtime address of the newly allocated page.
Upon return of the memory allocator, the return-oriented payload invokes a memory
copy function (e.g., the memcpy() function) to copy the injected shellcode to the
newly allocated memory page (Step @ and @). Finally, the payload invokes a system
function (e.g., the mprotect() function) to change the memory page permissions of
the newly allocated page to readable and executable (Step ®). Hence, the adversary
can now execute the injected shellcode to perform the actual malicious program
actions.

20 2 Background and Evolution of Code-Reuse Attacks

This attack can be further optimized. For instance, if the underlying operating
system allows the allocation of read—write-execute (RWX) memory pages to
support code generation just-in-time, an adversary can skip the ChangePermission()
function. Further, it is possible to skip the AllocateMemory() and CopyMemory()
function if the adversary knows the address of the memory page where the shellcode
has been originally injected to. In that case, we can simply call the ChangePermis-
sion() function to mark the corresponding memory page as executable.

2.7 Advanced Code-Reuse Attack Research

Subsequent work demonstrated that Harvard-based architectures—where code and
data are strictly separated from each other—cannot prevent return-oriented pro-
gramming attacks. To this end, Francillon and Castelluccia [14] leverage return-
oriented programming to inject arbitrary malware on an Atmel AVR-powered
sensor. Further, Buchanan et al. [4] apply return-oriented programming to the RISC-
based architecture SPARC, where no unintended code sequences exist by design. In
particular, they introduce a compiler that automatically constructs return-oriented
exploits. In a similar vein, return-oriented programming has been shown on other
architectures including PowerPC-based Cisco routers [25] and ARM-based mobile
devices [20, 22]. As real-world example, Checkoway et al. [5] even demonstrate
a return-oriented programming exploit on z80-powered voting machines (Harvard
architecture) to shift votes.

Hund et al. [19] go one step further: they present the first compiler that
automatically identifies return-oriented gadgets in a given binary and compiles
(based on the gadget set) return-oriented programs. In particular, they construct
a kernel rootkit that entirely leverages return-oriented programming to undermine
kernel integrity protection mechanisms. Interestingly, the evaluation of the return-
oriented compiler reveals that quicksort executes more than 100 times slower
when entirely implemented as return-oriented program. Unfortunately, none of
the countermeasures proposed to date has further investigated the tremendous
performance overhead of return-oriented programming which could potentially be
exploited to detect return-oriented programming execution.

On the one hand, return-oriented programming raised a lot of academic and
industrial research. On the other hand, no real-world exploits using return-oriented
programming have been discovered until 2010. We believe that this is due to the fact
that many PC platforms still did not strictly enforce DEP thereby allowing attackers
to launch conventional code injection attacks. However, in 2010, the first return-
oriented exploit targeting Adobe PDF has been discovered [21]. From there on, a
number of return-oriented exploits have appeared [9, 16, 28, 38].

More distantly related to return-oriented programming is the concept of JIT-
spraying attacks [1]. These attacks allow an adversary to return to code she injected
via a script. This is achieved by forcing a JIT-compiler to allocate new executable
memory pages with attacker-defined code that encapsulates dangerous unintended

2.7 Advanced Code-Reuse Attack Research 21

instruction sequences. Since scripting languages do not permit an adversary to
directly program x86 shellcode, the attacker must carefully construct the script so
that it contains useful gadgets in the form of unintended instruction sequences. For
instance, Blazakis [1] suggests using XOR operations where the immediate operand
to the XOR instruction embeds the malicious instructions. In a recent work, Wilson
et al. [24] demonstrate that JIT-spraying attacks are also applicable to architectures
that are based on an ARM processor.

2.7.1 Jump-Oriented Programming

All conventional return-oriented programming attacks discussed so far are based on
return instructions and thus can be defeated by return address checkers. These tools
or compiler extensions ensure the integrity of return addresses, which are corrupted
through the conventional return-oriented programming attack [10-12, 15, 17].
However, Checkoway et al. [6] propose a new code-reuse attack that does not require
any return instruction. Instead, the attack exploits indirect jump and call instructions
on x86 and ARM-based platforms.

Similarly, Bletsch et al. [2] introduce jump-oriented programming (on x86), a
code-reuse attack that also requires no return instructions. Bletsch et al. [2] leverage
a generic dispatcher gadget to transfer control to the subsequent code sequence.
Chen et al. [7] leverage jump-oriented programming to construct a rootkit that does
not execute any return instruction.

2.7.2 Gadget Compilers

Gadget compilers ease the adversary’s job of identifying gadgets in a given binary,
and constructing a return-oriented exploit thereof. We already mentioned two of
these gadget compilers: Buchanan et al. [4] introduce a return-oriented exploit
compiler for SPARC, and Hund et al. [19] a gadget compiler that automatically
identifies gadgets and compiles a return-oriented exploit for x86. However, these
two gadget compilers focus on code sequences ending in a return instruction.
A gadget compiler that entirely focuses on constructing jump-oriented exploits is
presented by Chen et al. [8]. The compiler targets x86-compiled code and leverages
the so-called combinational gadget terminating in a CALL-JMP sequence to invoke
a system call in a jump-oriented attack. Whereas the previously discussed gadget
compilers focused on a particular processor platform, Dullien et al. [13] introduce a
gadget discovery tool that operates platform-independent by decompiling assembler
instructions to an intermediate language called REIL.

Lastly, Schwartz et al. [31] present the Q compiler. This compiler automates
the entire process of identifying gadgets, assembling a return-oriented exploit, and
hardening existing exploits that fail due to code randomization or DEP. Interestingly,

22 2 Background and Evolution of Code-Reuse Attacks

the Q compiler is based on semantic definitions, e.g., it considers reg; < regy * 1
as a data movement gadget rather than a multiplication gadget allowing Q to
compensate missing gadget types. This technique allows Q to generate return-
oriented exploits on a small code base (e.g., 20 KB code) that does not per-se contain
all gadget types. Related to the small code base leveraged by Schwartz et al. [31],
Homescu et al. [18] demonstrate that a Turing-complete gadget set can be derived
from so-called microgadgets, i.e., code sequences that only consist of 2-3 Bytes.
The probability of finding these very short sequences among different binaries is
higher than compared to complex gadgets.

2.7.3 Code-Reuse in Malware

Code-reuse attack techniques have been also leveraged to hide malicious program
behavior from static analysis tools or non-ASCII filters. Lu et al. [26] leverage
a return-oriented decoder that only consists of code pointers that represent valid
ASCII printable characters. The decoder takes as an input the encoded code-reuse
exploit and outputs the actual code-reuse exploit at application runtime. Similarly,
Wang et al. [37] successfully deployed code-reuse attack techniques to undermine
the application vetting process conducted by Apple. To this end, they developed
an application that contains an intended buffer overflow vulnerability which gets
exploited under certain conditions (e.g., after the app is installed on the user’s
device). Once the control-flow is hijacked, the exploit payload leverages return-
oriented programming to invoke private iOS APIs. Lastly, Vogl et al. [36] introduce
persistent data-only malware, i.e., malware that leverages code-reuse attack tech-
niques to realize a persistent rootkit. With respect to malware detection, Stancill
et al. [35] present an analysis system that detects return-oriented programming
payloads in malicious files. Their system efficiently analyzes incoming documents
(PDF, Office, or HTML files), and detects whether they contain a return-oriented
programming payload.

In a different domain, code-reuse techniques have been deployed to hide secret
program actions: Lu et al. [27] introduce program steganography that is based on
executing unintended code sequences to hide program actions from static analysis
tools. However, leveraging code-reuse attack techniques for a legitimate and benign
purpose will eventually lead to false alarms in tools that aim at detecting and
preventing code-reuse attacks.

This concludes our discussion on research on code-reuse attacks. However, note
that we will discuss more advanced code-reuse attacks in the subsequent chapters. In
particular, we will elaborate on those attacks that bypass defenses based on control-
flow integrity enforcement or fine-grained code randomization.

References 23

References

10.

11

12.

13.

15.

. Blazakis, D.: Interpreter exploitation. In: Proceedings of the 4th USENIX Conference

on Offensive Technologies, WOOT’10 (2010). http://dl.acm.org/citation.cfm?id=1925004.
1925011

. Bletsch, T., Jiang, X., Freeh, V.W., Liang, Z.: Jump-oriented programming: a new class of

code-reuse attack. In: Proceedings of the 6th ACM Symposium on Information, Computer
and Communications Security, ASIACCS’11 (2011). http://doi.acm.org/10.1145/1966913.
1966919

. Brunette, G.: Solaris non-executable stack overview. https://blogs.oracle.com/gbrunett/entry/

solaris_non_executable_stack_overview (2007)

. Buchanan, E., Roemer, R., Shacham, H., Savage, S.: When good instructions go bad: general-

izing return-oriented programming to RISC. In: Proceedings of the 15th ACM Conference
on Computer and Communications Security, CCS’08 (2008). http://doi.acm.org/10.1145/
1455770.1455776

. Checkoway, S., Feldman, A.J., Kantor, B., Halderman, J.A., Felten, E.W., Shacham, H.:

Can DREs provide long-lasting security? The case of return-oriented programming and the
AVC advantage. In: Proceedings of the 2009 Conference on Electronic Voting Technology/-
Workshop on Trustworthy Elections, EVI/WOTE’09 (2009). http://dl.acm.org/citation.cfm?
id=1855491.1855497

. Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.R., Shacham, H., Winandy, M.:

Return-oriented programming without returns. In: Proceedings of the 17th ACM Conference
on Computer and Communications Security, CCS’10 (2010). http://doi.acm.org/10.1145/
1866307.1866370

. Chen, P, Xing, X., Mao, B., Xie, L.: Return-oriented rootkit without returns (on the x86).

In: Information and Communications Security. Lecture Notes in Computer Science, vol. 6476
(2010). http:/link.springer.com/chapter/10.1007 %2F978-3-642-17650-0_24

. Chen, P., Xing, X., Mao, B., Xie, L., Shen, X., Yin, X.: Automatic construction of jump-

oriented programming shellcode (on the x86). In: Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security, ASIACCS’11 (2011). http://doi.acm.
org/10.1145/1966913.1966918

. Chen, X., Caselden, D., Scott, M.: The dual use exploit: CVE-2013-3906 used in both targeted

attacks and crimeware campaigns. https://www.fireeye.com/blog/threat-research/2013/11/the-
dual-use-exploit-cve-2013-3906-used-in-both-targeted-attacks-and-crimeware-campaigns.
html (2013)

Chiueh, T., Hsu, E.H.: RAD: a compile-time solution to buffer overflow attacks. In: Proceedings
of the 21st International Conference on Distributed Computing Systems, ICDCS’01 (2001).
http://dl.acm.org/citation.cfm?id=876878.879316

. Chiueh, T., Prasad, M.: A binary rewriting defense against stack based overflow attacks. In:

Proceedings of the 2003 USENIX Annual Technical Conference, ATC’03 (2003). https://www.
usenix.org/legacy/event/usenix03/tech/full_papers/prasad/prasad_html/camera.html

Davi, L., Sadeghi, A.R., Winandy, M.: ROPdefender: a detection tool to defend against return-
oriented programming attacks. In: Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security, ASIACCS’11 (2011). http://doi.acm.org/10.1145/
1966913.1966920

Dullien, T., Kornau, T., Weinmann, R.P.: A framework for automated architecture-independent
gadget search. In: Proceedings of the 4th USENIX Conference on Offensive Technologies,
WOOT’10 (2010). http://dl.acm.org/citation.cfm?id=1925004.1925012

. Francillon, A., Castelluccia, C.: Code injection attacks on Harvard-architecture devices. In:

Proceedings of the 15th ACM Conference on Computer and Communications Security,
CCS’08 (2008). http://doi.acm.org/10.1145/1455770.1455775

Frantzen, M., Shuey, M.: StackGhost: hardware facilitated stack protection. In: Proceedings
of the 10th USENIX Security Symposium (2001). http://dl.acm.org/citation.cfm?id=1251327.
1251332

http://dl.acm.org/citation.cfm?id=1925004.1925011
http://dl.acm.org/citation.cfm?id=1925004.1925011
http://doi.acm.org/10.1145/1966913.1966919
http://doi.acm.org/10.1145/1966913.1966919
https://blogs.oracle.com/gbrunett/entry/solaris_non_executable_stack_overview
https://blogs.oracle.com/gbrunett/entry/solaris_non_executable_stack_overview
http://doi.acm.org/10.1145/1455770.1455776
http://doi.acm.org/10.1145/1455770.1455776
http://dl.acm.org/citation.cfm?id=1855491.1855497
http://dl.acm.org/citation.cfm?id=1855491.1855497
http://doi.acm.org/10.1145/1866307.1866370
http://doi.acm.org/10.1145/1866307.1866370
http://link.springer.com/chapter/10.1007%2F978-3-642-17650-0_24
http://doi.acm.org/10.1145/1966913.1966918
http://doi.acm.org/10.1145/1966913.1966918
https://www.fireeye.com/blog/threat-research/2013/11/the-dual-use-exploit-cve-2013-3906-used-in-both-targeted-attacks-and-crimeware-campaigns.html
https://www.fireeye.com/blog/threat-research/2013/11/the-dual-use-exploit-cve-2013-3906-used-in-both-targeted-attacks-and-crimeware-campaigns.html
https://www.fireeye.com/blog/threat-research/2013/11/the-dual-use-exploit-cve-2013-3906-used-in-both-targeted-attacks-and-crimeware-campaigns.html
http://dl.acm.org/citation.cfm?id=876878.879316
https://www.usenix.org/legacy/event/usenix03/tech/full_papers/prasad/prasad_html/camera.html
https://www.usenix.org/legacy/event/usenix03/tech/full_papers/prasad/prasad_html/camera.html
http://doi.acm.org/10.1145/1966913.1966920
http://doi.acm.org/10.1145/1966913.1966920
http://dl.acm.org/citation.cfm?id=1925004.1925012
http://doi.acm.org/10.1145/1455770.1455775
http://dl.acm.org/citation.cfm?id=1251327.1251332
http://dl.acm.org/citation.cfm?id=1251327.1251332

24

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

2 Background and Evolution of Code-Reuse Attacks

Goodin, D.: Apple quicktime backdoor creates code-execution peril. http://www.theregister.co.
uk/2010/08/30/apple_quicktime_critical_vuln/ (2010)

Gupta, S., Pratap, P., Saran, H., Arun-Kumar, S.: Dynamic code instrumentation to detect and
recover from return address corruption. In: Proceedings of the 2006 International Workshop
on Dynamic Systems Analysis, WODA’06, pp. 65-72 (2006). http://doi.acm.org/10.1145/
1138912.1138926

Homescu, A., Stewart, M., Larsen, P., Brunthaler, S., Franz, M.: Microgadgets: size does
matter in Turing-complete return-oriented programming. In: Proceedings of the 6th USENIX
Conference on Offensive Technologies, WOOT’12 (2012). http://dl.acm.org/citation.cfm?id=
2372399.2372409

Hund, R., Holz, T., Freiling, F.C.: Return-oriented rootkits: bypassing kernel code integrity
protection mechanisms. In: Proceedings of the 18th Conference on USENIX Security Sympo-
sium (2009). http://dl.acm.org/citation.cfm?id=1855768.1855792

Iozzo, V., Miller, C.: Fun and games with Mac OS X and iPhone payloads. In: Black Hat
Europe (2009). http://www.blackhat.com/presentations/bh-europe-09/Miller_lozzo/BlackHat-
Europe-2009-Miller-lozzo-OSX-IPhone-Payloads- whitepaper.pdf

jduck: The latest Adobe exploit and session upgrading. http://bugix-security.blogspot.de/2010/
03/adobe- pdf-libtiff-working-exploitcve.html (2010)

Kornau, T.: Return oriented programming for the ARM architecture. Master’s thesis, Ruhr-
University Bochum (2009). http://static.googleusercontent.com/media/www.zynamics.com/
en//downloads/kornau-tim--diplomarbeit--rop.pdf

Krahmer, S.: x86-64 buffer overflow exploits and the borrowed code chunks exploitation
technique. http://users.suse.com/~krahmer/no-nx.pdf (2005)

Lian, W., Shacham, H., Savage, S.: Too lejit to quit: extending JIT spraying to ARM. In: 22nd
Annual Network and Distributed System Security Symposium, NDSS’ 15 (2015). http://www.
internetsociety.org/doc/too-lejit-quit-extending-jit-spraying-arm

Lindner, F.: Router exploitation. http://www.blackhat.com/presentations/bh-usa-09/
LINDNER/BHUSAO09-Lindner-RouterExploit-SLIDES.pdf (2009)

Lu, K., Zou, D., Wen, W., Gao, D.: Packed, printable, and polymorphic return-oriented
programming. In: Proceedings of the 14th International Conference on Recent Advances in
Intrusion Detection, RAID’11 (2011). http://dx.doi.org/10.1007/978-3-642-23644-0_6

Lu, K., Xiong, S., Gao, D.: Ropsteg: program steganography with return oriented program-
ming. In: Proceedings of the 4th ACM Conference on Data and Application Security and
Privacy, CODASPY’ 14 (2014). http://doi.acm.org/10.1145/2557547.2557572

Marschalek, M.: Dig deeper into the ie vulnerability (cve-2014-1776) exploit. https://www.
cyphort.com/dig-deeper-ie- vulnerability-cve-2014-1776-exploit/ (2014)

Microsoft: Data execution prevention (DEP). http://support.microsoft.com/kb/875352/EN-US/
(2006)

Nergal: The advanced return-into-lib(c) exploits: PaX case study. Phrack Mag. 58(4) (2001).
http://www.phrack.org/issues.html?issue=58&id=4#article

Schwartz, E.J., Avgerinos, T., Brumley, D.: Q: Exploit hardening made easy. In: Proceedings
of the 20th USENIX Security Symposium (2011). http://dl.acm.org/citation.cfm?id=2028067.
2028092

Shacham, H.: The geometry of innocent flesh on the bone: return-into-libc without function
calls (on the x86). In: Proceedings of the 14th ACM Conference on Computer and Communi-
cations Security, CCS’07 (2007). http://doi.acm.org/10.1145/1315245.1315313

Solar Designer: lpr LIBC RETURN exploit. http://insecure.org/sploits/linux.libc.return.Ipr.
sploit.html (1997)

Solar Designer: Non-executable stack patch. http://lkml.iu.edu/hypermail/linux/kernel/9706.0/
0341.html (1997)

Stancill, B., Snow, K., Otterness, N., Monrose, F., Davi, L., Sadeghi, A.R.: Check my profile:
leveraging static analysis for fast and accurate detection of rop gadgets. In: Research in Attacks,
Intrusions, and Defenses. Lecture Notes in Computer Science, vol. 8145 (2013). http://dx.doi.
org/10.1007/978-3-642-41284-4_4

http://www.theregister.co.uk/2010/08/30/apple_quicktime_critical_vuln/
http://www.theregister.co.uk/2010/08/30/apple_quicktime_critical_vuln/
http://doi.acm.org/10.1145/1138912.1138926
http://doi.acm.org/10.1145/1138912.1138926
http://dl.acm.org/citation.cfm?id=2372399.2372409
http://dl.acm.org/citation.cfm?id=2372399.2372409
http://dl.acm.org/citation.cfm?id=1855768.1855792
http://www.blackhat.com/presentations/bh-europe-09/Miller_Iozzo/BlackHat-Europe-2009-Miller-Iozzo-OSX-IPhone-Payloads-whitepaper.pdf
http://www.blackhat.com/presentations/bh-europe-09/Miller_Iozzo/BlackHat-Europe-2009-Miller-Iozzo-OSX-IPhone-Payloads-whitepaper.pdf
http://bugix-security.blogspot.de/2010/03/adobe-pdf-libtiff-working-exploitcve.html
http://bugix-security.blogspot.de/2010/03/adobe-pdf-libtiff-working-exploitcve.html
http://static.googleusercontent.com/media/www.zynamics.com/en//downloads/kornau-tim--diplomarbeit--rop.pdf
http://static.googleusercontent.com/media/www.zynamics.com/en//downloads/kornau-tim--diplomarbeit--rop.pdf
http://users.suse.com/~krahmer/no-nx.pdf
http://www.internetsociety.org/doc/too-lejit-quit-extending-jit-spraying-arm
http://www.internetsociety.org/doc/too-lejit-quit-extending-jit-spraying-arm
http://www.blackhat.com/presentations/bh-usa-09/LINDNER/BHUSA09-Lindner-RouterExploit-SLIDES.pdf
http://www.blackhat.com/presentations/bh-usa-09/LINDNER/BHUSA09-Lindner-RouterExploit-SLIDES.pdf
http://dx.doi.org/10.1007/978-3-642-23644-0_6
http://doi.acm.org/10.1145/2557547.2557572
https://www.cyphort.com/dig-deeper-ie-vulnerability-cve-2014-1776-exploit/
https://www.cyphort.com/dig-deeper-ie-vulnerability-cve-2014-1776-exploit/
http://support.microsoft.com/kb/875352/EN-US/
http://www.phrack.org/issues.html?issue=58&id=4#article
http://dl.acm.org/citation.cfm?id=2028067.2028092
http://dl.acm.org/citation.cfm?id=2028067.2028092
http://doi.acm.org/10.1145/1315245.1315313
http://insecure.org/sploits/linux.libc.return.lpr.sploit.html
http://insecure.org/sploits/linux.libc.return.lpr.sploit.html
http://lkml.iu.edu/hypermail/linux/kernel/9706.0/0341.html
http://lkml.iu.edu/hypermail/linux/kernel/9706.0/0341.html
http://dx.doi.org/10.1007/978-3-642-41284-4_4
http://dx.doi.org/10.1007/978-3-642-41284-4_4

References 25

36. Vogl, S., Pfoh, J., Kittel, T., Eckert, C.: Persistent data-only malware: function hooks without
code. In: Proceedings of the 21st Annual Network and Distributed System Security Sym-
posium, NDSS’14 (2014). http://www.internetsociety.org/doc/persistent-data-only-malware-
function-hooks-without-code

37. Wang, T., Lu, K., Lu, L., Chung, S., Lee, W.: Jekyll on iOS: when benign apps become evil.
In: Proceedings of the 22nd USENIX Security Symposium (2013). http://dl.acm.org/citation.
cfm?id=2534766.2534814

38. Westin, K.: GnuTLS crypto library vulnerability CVE-2014-3466. http://www.tripwire.com/
state- of-security/latest-security-news/gnutls-crypto-library- vulnerability-cve-2014-3466/
(2014)

39. Zovi, D.D.: Practical return-oriented programming. SOURCE Boston. http://trailofbits.files.
wordpress.com/2010/04/practical-rop.pdf (2010)

http://www.internetsociety.org/doc/persistent-data-only-malware-function-hooks-without-code
http://www.internetsociety.org/doc/persistent-data-only-malware-function-hooks-without-code
http://dl.acm.org/citation.cfm?id=2534766.2534814
http://dl.acm.org/citation.cfm?id=2534766.2534814
http://www.tripwire.com/state-of-security/latest-security-news/gnutls-crypto-library-vulnerability-cve-2014-3466/
http://www.tripwire.com/state-of-security/latest-security-news/gnutls-crypto-library-vulnerability-cve-2014-3466/
http://trailofbits.files.wordpress.com/2010/04/practical-rop.pdf
http://trailofbits.files.wordpress.com/2010/04/practical-rop.pdf

	2 Background and Evolution of Code-Reuse Attacks
	2.1 General Principle of Control-Flow Attacks
	2.2 Program Stack and Stack Frame Elements
	2.3 Code Injection
	2.4 Data Execution Prevention
	2.5 Code-Reuse Attacks
	2.5.1 Return-Into-Libc
	2.5.2 Return-Oriented Programming

	2.6 Hybrid Exploits
	2.7 Advanced Code-Reuse Attack Research
	2.7.1 Jump-Oriented Programming
	2.7.2 Gadget Compilers
	2.7.3 Code-Reuse in Malware

