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A B S T R A C T

Exploitation of memory corruption vulnerabilities in widely used software has been a
threat for almost three decades and no end seems to be in sight. In particular, code-
reuse techniques such as return-oriented programming offer a robust attack technique
that is extensively used to exploit memory corruption vulnerabilities in modern software
programs (e. g. web browsers or document viewers). Whereas conventional control-flow
attacks (runtime exploits) require the injection of malicious code, code-reuse attacks
leverage code that is already present in the address space of an application to undermine
the security model of data execution prevention (DEP). In addition, code-reuse attacks in
conjunction with memory disclosure attack techniques circumvent the widely applied
memory protection model of address space layout randomization (ASLR). To counter
this ingenious attack strategy, several proposals for enforcement of control-flow integrity
(CFI) and fine-grained code randomization have emerged.

In this dissertation, we explore the limitations of existing defenses against code-reuse
attacks. In particular, we demonstrate that various coarse-grained CFI solutions can be
effectively undermined, even under weak adversarial assumptions. Moreover, we ex-
plore a new return-oriented programming attack technique that is solely based on indi-
rect jump and call instructions to evade detection from defenses that perform integrity
checks for return addresses.

To tackle the limitations of existing defenses, this dissertation introduces the design
and implementation of several new countermeasures. First, we present a generic and
fine-grained CFI framework for mobile devices targeting ARM-based platforms. This
framework preserves static code signatures by instrumenting mobile applications on-
the-fly in memory. Second, we tackle the performance and security limitations of exist-
ing CFI defenses by introducing hardware-assisted CFI for embedded devices. To this
end, we present a CFI-based hardware implementation for Intel Siskiyou Peak using
dedicated CFI machine instructions. Lastly, we explore fine-grained code randomization
techniques.
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Z U S A M M E N FA S S U N G

Laufzeitangriffe nutzen Speicher- und Programmierfehler aus, um beliebiges Schadver-
halten auf einem Computersystem zu verursachen. Obwohl diese Angriffe seit über zwei
Jahrzehnten bekannt sind, stellen sie immer noch eine große Bedrohung für moderne
Software-Programme dar. Dabei benutzen heutige Angriffe eine ausgeklügelte Tech-
nik, die sich Return-Oriented Programming (ROP) nennt. Im Gegensatz zu klassischen
Laufzeitangriffen, die auf das Einschleusen von Schadcode in den Speicher eines Pro-
grammes angewiesen waren, können ROP Angriffe allein über das Zusammensetzen
von vorhandenen gutartigen Code Schadverhalten erzeugen. Weil hierbei kein neuer
Schadcode explizit eingeschleust wird, umgehen ROP Angriffe weit verbreitete Ab-
wehrmechanismen wie beispielsweise Ausführungsschutz für den Arbeitsspeicher. Ins-
besondere können ROP Angriffe in Kombination mit sogenannten Speicherlecks –in
der englischen Fachliteratur häufig als Memory Disclosure bezeichnet– dazu verwendet
werden, um Adress Randomisierung zu umgehen. Um effektiv gegen diese neuartigen
Laufzeitangriffe vorzugehen, wurden in den letzten Jahre eine Vielzahl an Abwehrmeth-
oden vorgeschlagen, die meistens entweder auf Kontrollfluss-Integrität oder auf fort-
geschrittenen Speicheradressen Randomisierungstechniken basieren.

In dieser Dissertation erforschen wir die Grenzen und Einschränkungen von existieren-
den Schutzmechanismen gegen ROP Angriffe und demonstrieren praktische Angriffe
gegen kürzlich präsentierte Kontrollfluss-Integritätslösungen sowie Speicheradressen
Randomisierungstechniken, die nicht selten mit nur minimalen Anforderungen ange-
griffen werden können. Insbesondere präsentieren wir einen neuartigen ROP Angriff,
der ausschließlich indirekte Sprungbefehle missbraucht, um Detektion von Schutzmech-
anismen zu umgehen, die Integritätsprüfungen für Funktionsrücksprünge ausführen.

Um den Sicherheitsproblemen von vorhandenen Schutzmechanismen effektiv entge-
genzutreten, stellen wir in dieser Dissertation die Konzepte und die Implementierungen
von mehreren neuartigen Abwehrmethoden vor. Zuerst präsentieren wir eine allgemeine
und fortgeschrittene Kontrollflussintegritäts-Lösung für mobile Geräte. Unsere Lösung
ist kompatibel zu digitalen Code Signaturen, weil sie nur bereits verifizierten Code
dynamisch im Adressspeicher um Integritätsprüfungen erweitert. Zudem erforschen
wir einen neuen Hardware-basierten Ansatz zur Kontrollflussintegrität, der im Beson-
deren die Leistungseinbußen von existierenden Ansätzen löst. Unser Prototyp basiert
auf der Intel-basierten Platform Siskiyou Peak, die besonders für eingebettete Systeme
geeignet ist. Zuletzt erforschen wir fortgeschrittene Speicheradressen Randomisierung-
stechniken.
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1
I N T R O D U C T I O N

Computing platforms have become an integral part of our society over the last few
decades. The landscape of computing platforms is highly diverse: starting from desk-
top PCs and laptops for end-users, powerful workstations used to perform highly com-
plex calculations (e. g. weather calculations), web servers that need to simultaneously
handle thousands of incoming requests, smartphones and tablets enabling on-the-road
data access, up to tiny embedded devices deployed in sensors, cars, electronic pass-
ports, and medical devices. The inter-connectivity of these devices, i. e. the Internet of
Everything [93], as well as the sensitive operations and everyday tasks we perform on
these devices have made computing platforms an appealing target for various attacks.
In particular, the fact that devices are connected with each other and to the Internet has
facilitated remote attacks, where the attacker does not require any physical hardware
access to compromise the victim’s platform.

A prominent entry point of remote attacks is a vulnerable software program execut-
ing on the target computing platform. In general, computing platforms execute a large
number of software programs to operate correctly and meaningful. Modern platforms
typically include an operating system kernel (Windows, UNIX/Linux, Mac OS X) as well
as user applications that run on top of that operating system, e. g. a web browser, word
processor, video player, or a document viewer. Software is written by diverse developers,
most of which are not security experts. As a consequence, software indeed operates as
expected, but may miss necessary security checks that a sophisticated adversary can ex-
ploit to initiate an attack. That is, the adversary provides a malicious input that exploits
a program bug to trigger malicious program actions never intended by the developer of
the program. This class of software-based attack is generally known as a runtime exploit
or control-flow attack, and needs to be distinguished from conventional malware that en-
capsulates its malicious program actions inside a dedicated executable. This executable
simply needs to be executed on the target system and typically requires no exploitation
of a program bug. While both runtime exploits and malware are important and preva-
lent software-based attacks, we mainly focus in this dissertation on runtime exploits, i. e.
the art of exploiting benign software programs so that they behave maliciously.

In fact, one of the first large-scale attacks against the Internet contained a runtime
exploit: in 1988, the Morris worm affected around 10% of all computers connected to the
Internet disrupting Internet access for several days [28]. The worm exploited a program
bug in fingerd – a service (daemon) that allows exchange of status and user information.
Specifically, the worm initiated a session with the finger server, and sent a special
crafted package that overflowed a local buffer on the stack to (i) inject malicious code on
the stack, and (ii) overwrite adjacent control-flow information (i. e. a function’s return
address located on the stack) so that the program’s control-flow was redirected to the

1
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injected code [177]. Runtime exploits, like the Morris worm, which involve overflowing
a buffer are commonly referred to as buffer overflow attacks.

The exploitation technique used for the Morris worm is typical for runtime exploits:
they first require the exploitation of a program bug to inject malicious code and over-
write control-flow information. In the specific attack against fingerd, the problem is
caused by a default C library function called gets(). This function reads characters, and
stores them into a destination buffer until it reaches a newline character. However, it
does not validate whether the input it processes fits to the destination buffer. Hence, a
large input will exceed the buffer’s bounds, thereby overwriting adjacent information
such as a function’s return address in memory.

Similar severe attacks have threatened end-users over the last years. In 2001, the so-
called Code Red worm infected 250,000 machines within 9 hours by exploiting a known
buffer overflow vulnerability in Microsoft’s Internet Information Server [58]. Another
well-known buffer overflow attack is the SQL Slammer worm which infected 75,000

machines in just 10 minutes causing major Internet slowdowns in 2003 [142].
The continued success of these attacks can be attributed to the fact that large portions

of software programs are implemented in type-unsafe languages (C, C++, or Objective-
C) that do not enforce bounds checking on data inputs. Moreover, even type-safe lan-
guages (e. g. Java) rely on interpreters (e. g. the Java virtual machine) that are in turn
implemented in type-unsafe languages. Sadly, as modern compilers and applications
become more and more complex, memory errors and vulnerabilities will likely continue
to persist, with little end in sight [184, 180].

The most prominent example of a memory error is the stack overflow vulnerability,
where the adversary overflows a local buffer on the stack, and overwrites a function’s
return address [7]. While modern defenses protect against this attack strategy (e. g. by
using stack canaries [52]), other avenues for exploitation exists, including those that
leverage heap [153], format string [86], or integer overflow [27] vulnerabilities.

Regardless of the attacker’s method of choice, exploiting a vulnerability and gaining
control over an application’s control-flow is only the first step of a runtime exploit. The
second step is to launch malicious program actions. Traditionally, this has been realized
by injecting malicious code into the application’s address space, and later executing the
injected code. However, with the wide-spread enforcement of data execution prevention
such attacks are more difficult to do today [132]. Unfortunately, the long-held assump-
tion that only code injection posed a risk was shattered with the introduction of code-
reuse attacks, such as return-into-libc [174, 143] and return-oriented programming [169].
As the name implies, code-reuse attacks do not require any code injection and instead
use code already resident in memory.

Code-reuse attack techniques are applicable to a wide range of computing platforms:
Intel x86-based platforms [169], embedded systems running on an Atmel AVR proces-
sor [79], mobile devices based on ARM [117, 16], PowerPC-based Cisco routers [123],
and voting machines deploying a z80 processor [40]. Moreover, the powerful code-reuse
attack technique return-oriented programming is Turing-complete, i. e. it allows an at-
tacker to execute arbitrary malicious code.
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In fact, the majority of state-of-the-art runtime exploits leverage code-reuse attack tech-
niques, e. g. runtime exploits against Internet Explorer [186, 128], Apple QuickTime [91],
Adobe Reader [110], Microsoft Word [46], or the GnuTLS library [195]. Even large-scale
cyber attacks such as the popular Stuxnet worm, which damaged Iranian centrifuge
rotors, partially deploys code-reuse attack techniques [129].

1.1 goal and scope of this dissertation

The main goals of this dissertation are (1) introducing the design and implementation of
new defenses against code-reuse attacks, and (2) advancing the state-of-the-art in code-
reuse attack exploitation to demonstrate limitations of existing and recently proposed
defenses. In general, we focus on defenses that build on the principle of control-flow in-
tegrity (CFI) [4] and code randomization [50]. The former provides a generic approach
to mitigate runtime exploits by forcing a program’s control-flow to always comply to
a pre-defined control-flow graph. In contrast, the latter does not perform any explicit
control-flow checks. It mitigates code-reuse attacks by randomizing the code layout so
that an attacker can hardly predict where useful code resides in memory. As we will
discuss throughout this dissertation, both security principles have been intensively ex-
plored over the last few years by academia and industry. For instance, Microsoft started
a competition, the Microsoft BlueHat Prize, where three CFI-based proposed defenses
against return-oriented programming have been awarded with 250k dollars [181]. Its
public security tool Microsoft EMET incorporates some of these defenses to mitigate
code-reuse attacks [131].

It is important to note that runtime exploits involve two stages: (1) initial control-flow
exploitation, and (2) malicious program actions. In this dissertation, we focus on the
second stage of runtime exploits, i. e. the execution of malicious computations. Mod-
ern stack and heap mitigations (such as stack canaries [52], or heap allocation order
randomization [147]) do eliminate categories of attacks supporting stage one, but these
mitigations are not comprehensive (i. e. exploitable vulnerabilities still exist). Several ef-
forts have been undertaken to achieve memory safety, i. e. preventing any code pointer
overwrites for type-unsafe languages [53, 139, 140, 119]. However, these solutions nec-
essarily require access to source code and sometimes incur high performance overhead.
Thus, in this dissertation, we assume the adversary is able to exercise one of these pre-
existing vulnerable entry points. As a result, a full discussion of the first stage of runtime
exploits is out of scope for this dissertation.

1.2 summary of contributions

The main contributions of this dissertation are as follows:

Return-oriented Programming without Returns. We demonstrate an advanced code-
reuse attack technique that is solely based on exploiting indirect jump and call instruc-
tions on mobile platforms based on an ARM processor. Hence, our attack cannot be pre-
vented by defenses that aim at protecting return addresses such as stack canaries [52]
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and return address stacks [81, 61]. To this end, we introduce a generic attack method
that emulates the return behavior (without using returns), generate a Turing-complete
gadget set, and demonstrate the feasibility of our approach by applying it to an Android-
based device.

Code-Reuse Attacks against Coarse-Grained Control-Flow Integrity. We provide the
first comprehensive security analysis of various coarse-grained control-flow integrity
(CFI) solutions (covering kBouncer [150], ROPecker [47], CFI for COTS binaries [204],
ROPGuard [83], and Microsoft EMET 4.1 [131]). A key contribution is in demonstrat-
ing that these techniques can be effectively undermined, even under weak adversarial
assumptions. More specifically, we show that with bare minimum assumptions, Turing-
complete and real-world code-reuse attacks can still be launched even when the strictest
of enforcement policies is in use. To do so, we introduce several new code-reuse attack
primitives, and demonstrate the practicality of our approach by transforming existing
real-world exploits into more stealthy attacks that bypass coarse-grained CFI defenses.

Control-Flow Integrity for Mobile Devices. We introduce the design and implementa-
tion of the first generic control-flow integrity (CFI) framework for mobile devices. We
realized MoCFI (Mobile CFI) for ARM-based mobile devices running iOS. For this, we
had to overcome a number of challenges which are mainly caused due to subtle archi-
tectural differences between x86 and ARM, and the unique characteristics of iOS (e. g.
application signing and closed-source OS). To tackle the latter challenge, we developed
a new binary rewriting framework that performs CFI instrumentation for iOS apps at
application load-time in memory in order to not break static code signatures. To demon-
strate the usefulness of MoCFI, we implemented a fine-grained application sandboxing
framework on top of MoCFI that enables user-defined and application-specific sandbox-
ing rules. Our approach tackles the problem of allowing every iOS app to execute under
the same sandboxing profile (privilege level).

Hardware-Assisted Control-Flow Integrity. We present a hardware-assisted CFI design
and implementation to tackle the efficiency and security limitations of existing defenses.
To this end, we implemented and evaluated our hardware-assisted CFI extensions on
real hardware platforms: Intel Siskiyou Peak [156] and SPARC LEON3 [157]. As we will
demonstrate, our approach significantly reduces the code base for code-reuse attacks
and efficiently protects function returns with an overhead of only 2%.

Advanced Code Randomization Techniques and Attacks. To tackle the low random-
ization entropy of existing base address randomization schemes such as ASLR [151],
and effectively mitigate code-reuse attacks via code randomization, we introduce a tool,
called XIFER, that provides per-run basic block randomization with an average overhead
of only 5%. However, we also show that existing approaches to code randomization can
be circumvented with just-in-time code-reuse attacks. Inspired by this advanced code-
reuse attack technique, we developed a novel code randomization framework which
combines code and execution-path randomization to resist conventional and just-in-time
code-reuse attacks.
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1.3 outline

This dissertation is structured as follows: in Chapter 2, we provide comprehensive
background on control-flow attacks covering classic code injection attacks and modern
code-reuse attack techniques. We also describe widely adopted countermeasures against
control-flow attacks such as data execution prevention and base address randomization.
Further, we describe in detail the principle of control-flow integrity (CFI). Next, in Chap-
ter 3, we introduce two advanced code-reuse attack techniques. First, we demonstrate a
new code-reuse attack targeting mobile devices that is based on exploiting indirect jump
and call instructions (Section 3.1). Second, we demonstrate that coarse-grained CFI solu-
tions do not resist sophisticated code-reuse attacks that stitch gadgets from call-preceded
code sequences (3.2). In Chapter 4, we turn our attention to CFI-based countermeasures.
We present mobile control-flow integrity for ARM-based mobile devices running iOS
without requiring source code (Section 4.1), fine-grained application sandboxing for iOS
based on our mobile CFI framework (Section 4.2), and hardware-assisted CFI checks for
Intel Siskiyou Peak (Section 4.3). In Chapter 5, we present advanced code randomization
schemes and attacks: load-time basic block permutation (Section 5.2), just-in-time code-
reuse attacks (Section 5.3), and a combination of code and execution-path randomization
(Section 5.4). We conclude this dissertation in Chapter 6.

1.4 previous publications

This dissertation is based on several previously published publications as listed below.
The full list of publications published by the author of this dissertation can be found in
Chapter 7.
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2
B A C K G R O U N D

In this chapter, we provide basic background information on control-flow attacks and
defenses. The introduced concepts are vital to understand the remainder of this disser-
tation. We first review the most prominent runtime exploit techniques including code
injection and code reuse (Section 2.1). Next, we elaborate in Section 2.2 and 2.3 on two
important defense strategies: code randomization based on address space layout ran-
domization (ASLR), and control-flow integrity (CFI).

Since control-flow attacks operate at the level of assembler instructions, they are typ-
ically tailored to a specific underlying processor architecture. Due to the popularity of
x86-based systems and the many exploits available for this architecture, we take x86 as
our reference architecture throughout this chapter, and use the Intel assembler syntax,
e. g. MOV destination,source. However, note that the subsequent chapters also include
control-flow attacks and defenses on ARM-based mobile devices. Background informa-
tion on ARM and differences to x86 will be provided in Section 3.1.1.

2.1 control-flow attacks

In general, control-flow attacks or allow an adversary to subvert the intended execution-
flow of a program by exploiting a program error. For instance, a buffer overflow error
can be exploited to write data beyond the boundaries of the buffer. As a consequence,
an adversary can overwrite critical control-flow information which is located close to
the buffer. Since control-flow information guide the program’s execution-flow, an adver-
sary can thereby trigger malicious and unintended program actions such as installing a
backdoor, injecting a malware, or accessing sensitive data.

Control-flow attacks are performed at application runtime. Hence, they are often re-
ferred to as runtime exploits. Note that we use both terms interchangeably in this dis-
sertation. In summary, we define a control-flow attack as follows.

Control-Flow Attack (Runtime Exploit): A control-flow attack exploits a program er-
ror, particularly a memory corruption vulnerability, at application runtime to subvert the
intended control-flow of a program. The goal of a control-flow attack is the execution of
malicious program actions.

2.1.1 General Principle of Control-Flow Attacks

Loosely speaking, we can distinguish between two major classes of control-flow attacks:
(1) code injection, and (2) code-reuse attacks. The former class requires the injection of
some malicious executable code into the address space of the application. In contrast,
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code-reuse attacks only leverage benign code already present in the address space of
the application. In particular, code-reuse attacks combine small code pieces scattered
throughout the address space of the application to generate new malicious program
codes on-the-fly.

A high-level representation of code injection attacks is given in Figure 1. It shows a
sample control-flow graph (CFG) with six nodes. The CFG contains all intended execu-
tion paths a program might follow at runtime. Typically, the CFG nodes represent the
so-called basic blocks (BBLs), where a BBL is a sequence of machine/assembler instruc-
tions with a unique entry and exit instruction. The exit instruction can be any branch
instruction the processor supports such as direct and indirect jump instructions, direct
and indirect call instructions, and function return instructions. The entry instruction of
a BBL is an instruction that is target of a branch instruction.

1

2 3

4 5 6

Adversary

A

B
Control-Flow Graph 

(CFG)
Malicious Code / CFG

ii) exploit program error

i) inject malicious code

intended flow

malicious flow

attack steps

Figure 1: Code injection attacks

As shown in Figure 1, the CFG nodes are connected via directed edges. These edges
represent the possible control-flows, e. g. there is an intended control-flow from node n3

to n5 and n6, where n simply stands for node.
A code injection attack first requires the injection of malicious code. As programs

are residing in a dedicated memory location at runtime, i. e. the application’s virtual
address space, the adversary needs to find a free slot where the code can be injected.
Typically, this can be achieved by loading the malicious code into a local buffer that is
large enough to hold the entire malicious code. In Figure 1, the malicious code consists
of the two nodes nA and nB. However, these nodes are not connected to the original
CFG. In order to connect the malicious nodes to the intended program nodes, the adver-
sary needs to identify and exploit a program vulnerability. Exploitation of the program
vulnerability allows the adversary to tamper with a code pointer, i. e. some control-flow
information that guides program execution. A prominent example is a function’s return
address which is always located on the program stack. Other examples are function
pointers or pointers to virtual method tables. In the example exploit shown in Figure 1,
n3 is exploited by the adversary to redirect the execution path to node nA and nB. In
summary, we define code injection attacks as follows.
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Code Injection Attack: A code injection attack is a subclass of control-flow attacks that
subverts the intended control-flow of a program to previously injected malicious code.

Code injection attacks require the injection and execution of malicious code. However,
some environments and operating systems deny the execution of code that has just
been written into the address space of the program. Consider for instance a Harvard-
based computing architecture, where code and data are strictly separated from each
other. Hence, a new form of control-flow attacks re-uses existing code. The high-level
principle of these so-called code-reuse attacks is shown in Figure 2.

1

2 3

4 5 6

Adversary

Control-Flow Graph 
(CFG)

Malicious control-flow
information

ii) exploit program error

i) inject malicious data

intended flow

malicious flow

attack steps

Pointer(4)

Pointer(1)

Figure 2: Code-reuse attacks

In contrast to code injection attacks, the adversary only injects malicious data into
the address space of the application. Specifically in the example shown in Figure 2, the
adversary injects two code pointers; namely pointers to n4 and n1. At the time the
adversary exploits the program vulnerability in n3, the control-flow is redirected to
the code pointers the adversary previously injected. Hence, the code-reuse attack in our
example leads to the unintended execution path: n3 → n4 → n1. In summary, we define
a code-reuse attack as follows.

Code-Reuse Attack: A code-reuse attack is a subclass of control-flow attacks that subverts
the intended control-flow of a program to invoke an unintended execution path inside the
original program code.

Note that the internal workflow and memory layout of a control-flow attack depends
on the kind of vulnerability that is exploited. For better understanding, we describe the
technical details of control-flow attacks based on a classic buffer overflow vulnerability
on the program’s stack. Hence, we briefly recall the basics of a program’s stack memory
and the typical stack frame layout on x86. Afterwards, we present the technical details
of code injection and code-reuse attacks.
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2.1.2 Program Stack and Stack Frame Elements

A program stack operates as a last-in first-out memory area. In particular, it is used in
today’s programs to hold local variables, function arguments, intermediate results, and
control-flow information to ensure correct invocation and return of subroutines. The
stack pointer which is stored in a dedicated processor register plays an important role
as it points to the top of the stack. Typically, the stack is controlled by two operations:
(1) a POP instruction that takes one data word off the stack, and (2) a PUSH instruction
which performs the reverse operation, i. e. it stores one data word on the top of the
stack. Both instructions have direct influence on the stack pointer since they change the
top of the stack. That is, for stacks that grow from high memory addresses towards
low memory addresses (e. g. x86), the POP instruction automatically increments the stack
pointer by one memory word (on x86: 4 Bytes), while the PUSH instruction decrements it
by one word.

Program Memory

Stack

Return Address

Saved Base Pointer

Local Variables

Function Arguments

Stack 
Pointer (SP)

Base Pointer
(BP)

Figure 3: Stack frame memory layout

In general, the stack is divided into multiple stack frames. Stack frames are associated
at function-level, i. e. for each invoked subroutine one stack frame is allocated. The stack
frame has a pre-defined structure for each compiler and underlying processor architec-
ture. An example of a typical x86 stack frame and its elements is shown in Figure 3. The
depicted stack frame is referenced by two processor registers: the stack pointer (on x86

%esp) and the base pointer register (on x86 %ebp). As we already mentioned, the stack
pointer always points to the top of the stack. In contrast to the stack pointer, the base
pointer is constant and fixed per stack frame: it always points to the saved based pointer.
The meaning of the saved base pointer and the other stack frame elements is as follows:
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• Function Arguments: This field holds the arguments which are loaded on the
stack by the calling function.

• Return Address: The return address indicates where the execution-flow needs to
be redirected to upon function return. On x86, the instruction for calling a function
(CALL) automatically pushes the return address on the stack, where the return
address is the address of the instruction that follows the CALL.

• Saved Base Pointer: The base pointer of a function is used to reference function
arguments and local variables on the stack frame. The function prologue of each
subroutine initializes the base pointer. This is achieved in two steps. First, the
base pointer of the calling function is pushed onto the stack via PUSH %ebp. The
base pointer stored onto the stack is then referred to as the saved base pointer.
Next, the new base pointer is initialized by loading the current stack pointer value
into the base pointer register, e. g. MOV %ebp,%esp. The function epilogue reverts
these operations by first setting the stack pointer to point to the saved base pointer
field (MOV %esp,%ebp), and subsequently loading the saved base pointer to the base
pointer register via POP %ebp.

• Local Variables: The last field of a stack frame holds the local variables such as
integer values or local buffers.

2.1.3 Code Injection

In order to perform a code injection attack, the adversary needs to inject malicious
code into the address space of the target application. Typically, this can be achieved by
encapsulating the malicious code into a data input variable that gets processed by the
application, e. g. a string, file, or network packet.

Figure 4 depicts a code injection attack, where a local buffer that can hold up to 100

characters is exploited. The adversary has access to the local buffer, i. e. the application
features a user interface from which it expects the user to enter a data input. On x86,
data is written from low memory addresses towards high memory addresses, i. e. from
the top of the stack towards the saved base pointer in Figure 4.

If the program does not validate the length of the provided data input, it is possible
to provide a larger data input than the buffer can actually hold. As a consequence, the
stack frame fields which are located above the local buffer are overwritten.

This can be exploited for the purpose of a code injection attack: the adversary first
provides a data input which fills the local buffer with arbitrary pattern bytes and the
malicious code. As the main goal of many proof-of-concept exploits is to open a terminal
(shell) to the adversary, the malicious code is often referred to as shellcode. Second,
the adversary overwrites the saved base pointer with arbitrary bytes (here: 0x41414141)
and replaces the original return address with the runtime address of the shellcode. For
systems that do not apply code and data segment randomization, this address is fixed,
and can be retrieved by reverse-engineering the program binary using a debugger.
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Program Memory
(after overflow)

Stack

Addr(SHELLCODE)
0x41414141

Function Arguments

SHELLCODE

Program Memory
(before overflow)

Stack

Return Address
Saved Base Pointer

Local Buffer
[100 Bytes]

Function Arguments

PADDING

SP

SP

Adversary

Figure 4: Memory layout of code injection attacks

When the subroutine – where the overflow occurred – completed its task and executes
its function epilogue instructions, the stack pointer will be re-set to the location, where
the original return address was stored. As the program is not aware of the overflow, it
takes the start address of the shellcode as a return address and redirects execution to
the beginning of the shellcode. Thus, the shellcode executes and opens a new terminal
to the adversary.

2.1.4 Data Execution Prevention

One main observation we can make from the code injection attack described above is
that malicious code can be encapsulated into a data variable and executed from the pro-
gram’s stack. In fact, code injection attacks were easily possible because data and code
got intermixed in memory, and not strictly separated as in Harvard-based processor ar-
chitectures. Hence, data segments like the stack were marked as readable, writable, and
executable (RWX). However, since the main purpose of the stack is still to only hold lo-
cal variables and control-flow information, we simply need a mechanism to prohibit any
code execution from the stack to prevent a code injection attack. As a consequence, ker-
nel patches have been provided to mark the stack as non-executable [173]; e. g. enabled
in Solaris 2.6 [30].

The concept of marking the stack as non-executable has been later included into a
more general security model referred to as Writable XOR eXecutable (W ⊕ X) or data
execution prevention (DEP) [132]. The main idea of W ⊕ X is to prevent any memory
page from being writable and executable at the same time. Hence, memory pages be-
longing to data segments are marked as readable and writable (RW), whereas memory
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pages that contain executable code are marked as readable and executable (RX). This
effectively prevents code injection attacks since an adversary can no longer execute code
that has been written via a data variable to a RW-marked memory page. In summary,
we define the principle W ⊕X as follows.

Writable xor eXecutable (W ⊕ X): The security model of W ⊕ X enforces that memory
pages are either marked as writable or executable. This prevents a code injection attack, where
the adversary first needs to write malicious code into the address space of an application before
executing it.

Today, every mainstream processor architecture features the so-called no-execute bit to
facilitate the deployment of W⊕X in modern operating systems. For instance, Windows-
based operating systems enforce data execution prevention since Windows XP SP2 [132].

2.1.5 Code-Reuse Attacks

After non-executable stacks and W ⊕X have been proposed as countermeasures against
control-flow attacks, attackers have instantly demonstrated new techniques to launch
control-flow attacks. Instead of injecting malicious code into the address space of the
application, an adversary can exploit the benign code which is already present in the ad-
dress space and marked as executable. Such code-reuse attacks have started as so-called
return-into-libc attacks and have been later generalized to return-oriented programming
attacks. We describe the technical concepts of both attack techniques in the following.

2.1.5.1 return-into-libc

The first published exploit that re-uses existing code for a return-into-libc attack has been
presented by Solar Designer in 1997 [174]. The exploit overwrites the original return
address to point to a critical library function. Specifically, it targets the system() function
of the standard UNIX C library libc, which is linked to nearly every process running
on a UNIX-based system. The system() function takes as an input a shell command to
be executed. For instance, on UNIX-based systems the function call system("‘/bin/sh"’)
opens the terminal program. That said, by invoking the system() function, the adversary
can conveniently reconstruct the operations of previously injected shellcode without
injecting any code. In summary, we define a return-into-libc attack as follows.

return-into-libc: Code-reuse attacks that are based on the principle of return-into-libc sub-
vert the intended control-flow of a program and redirect it to security-critical functions that
reside in shared libraries or the executable itself.

Figure 5 shows the typical memory layout of a return-into-libc attack. A necessary
step of our specific return-into-libc attack is the injection of the string /bin/sh since
system() is expecting a pointer to the program path in order to open a new terminal. To
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tackle this issue, one could search for the string inside the entire address space of the
target application. However, this approach is brittle as the string might not always be
present in the address space of the application. A more robust exploitation approach
is to inject the string into a data memory page and record its address. At first glance,
this might seem a trivial step. However, the challenge stems from the fact that the string
needs to be NULL-terminated. Hence, if we attempt to inject the string into the local
buffer, we would need to process a NULL Byte which is impossible for many vulner-
abilities. For instance, classic buffer overflow vulnerabilities introduced via the strcpy()
function terminate the write operation if a NULL Byte is processed. The classic return-
into-libc attacks overcome this issue by injecting the string as an environment variable.
In Figure 5, the adversary defines the $SHELL environment variable which contains the
string /bin/sh.

Program Memory
(before overflow)

Stack

Environment Variables

Code (Executable)

Libraries

system()

Return Address
Saved Base Pointer

Local Buffer
[100 Bytes]

Function Arguments

Program Memory
(after overflow)

Stack

Environment Variables

Code (Executable)

Libraries

system()

$SHELL = /bin/sh

Addr(system)
0x41414141

Local Buffer
[100 Bytes]PADDING

Addr(exit)

Addr($SHELL)

exit() exit()

SP

SP

Adversary

Figure 5: Basic principle of return-into-libc attacks

After the environment variable has been defined, the adversary interfaces to the ap-
plication by providing a data input that exceeds the local buffer’s limits. Specifically, the
adversary fills the local buffer with arbitrary pattern bytes. In addition, the saved base
pointer is overwritten with 4 Bytes of arbitrary data. Finally, the return address is re-
placed with the runtime address of the system() function. Moreover, two other addresses
are written on the stack: the runtime address of the libc exit() function, and the runtime
address of the $SHELL variable. The latter resembles the function argument on the stack
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frame of the invoked system() function. Considering the standard x86-based stack frame
layout (see Figure 3), the former will be used as the return address of system(). In par-
ticular, the exit() function will terminate the process upon return of system(), i. e. at the
time the adversary closes the terminal.

This basic return-into-libc attack requires the knowledge of three runtime addresses.
In case no code and data randomization is applied, these addresses can be retrieved by
reverse-engineering the application using a debugger. Otherwise, an adversary would
need to disclose these addresses using memory disclosure techniques which we discuss
later in Section 2.2.

The basic return-into-libc attacks only allow invocation of two library library func-
tions, while the second function (in Figure 5 the exit() function) needs to be called
without any argument. As this poses restrictions on the operations an adversary can
perform, several advanced return-into-libc attack techniques have been proposed. For
instance, Nergal demonstrated two techniques, called esp-lifting and frame faking, al-
lowing an adversary to perform chained function calls in a return-into-libc attack [143].

2.1.5.2 Return-Oriented Programming

The above described return-into-libc attack technique has some limitations compared to
classic code injection attacks. First, an adversary is dependent on critical libc functions
such as system(), exec(), or open(). Hence, if we either instrument or eliminate these func-
tions, an adversary would no longer be able to perform a reasonable attack. In fact, one
of the first proposed defenses against return-into-libc is based on the idea of mapping
shared libraries to memory addresses that always contain a NULL byte [174]. Second,
return-into-libc only allows calling one function after each other. Hence, an adversary is
not able to perform arbitrary malicious computation. In particular, it is not possible to
perform unconditional branching.

There is also a challenge when applying return-into-libc attacks to Intel 64 Bit based
systems (x86-64). On x86-64, function arguments are passed to a subroutine via proces-
sor registers rather than on the stack. To tackle this challenge, Krahmer [118] suggested
an advanced return-into-libc attack technique called borrowed code chunks exploitation.
The main idea is to borrow a function epilogue consisting of several POP register instruc-
tions. These instructions load the necessary function arguments into processor registers
and subsequently redirect the execution-flow to the target subroutine.

Shacham [169] generalizes the idea of borrowed code chunks exploitation by intro-
ducing return-oriented programming. This attack technique tackles the previously men-
tioned limitations of return-into-libc attacks. The basic idea is to execute a chain of short
code sequences rather than entire functions. Multiple code sequences are combined to
a so-called gadget that performs a specific atomic task, e. g. a load, add, or branch op-
eration. Given a sufficiently large code base, an adversary will most likely identify a
gadget set that forms a new Turing-complete language. That said, the derived gadget
set can be exploited to induce arbitrary malicious program behavior. The applicability of
return-oriented programming has been shown on many platforms including x86 [169],
SPARC [31], Atmel AVR [79], PowerPC [123], ARM [117], and z80 [40].
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Figure 6: Basic principle of return-oriented programming attacks. For simplicity, we highlight a
return-oriented programming attack on the heap using a sequence of single-instruction
gadgets.

The basic idea and workflow of a return-oriented programming attack is shown in
Figure 6. Note that we discuss a return-oriented programming attack that exploits a
heap-based vulnerability to explain all basic attack steps that are taken in modern real-
world code-reuse exploits. First, the adversary writes the return-oriented payload into
the application’s memory space, where the payload mainly consists of a number of
pointers (the return addresses) and any other data that is needed for running the attack
(Step ¬). In particular, the payload is placed into a memory area that can be controlled
by the adversary, i. e. the area is writable and the adversary knows its start address.
The next step is to exploit a vulnerability of the target program to hijack the intended
execution-flow (Step ­). In the example shown in Figure 6, the adversary exploits a
heap vulnerability by overwriting the address of a function pointer with an address that
points to a so-called stack pivot sequence [206]. Once the overwritten function pointer
is used by the application, the execution-flow is redirected to a stack pivot sequence
(Step ®).
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Loosely speaking, stack pivot sequences change the value of the stack pointer (%esp) to
a value stored in another register. Hence, by controlling that register1, the adversary can
arbitrarily change the stack pointer. Typically, the stack pivot directs the stack pointer to
the beginning of the payload (Step ¯). A concrete example of a stack pivot sequence is
the x86 assembler code sequence MOV %esp,%eax; ret. The sequence changes the value
of the stack pointer to the value stored in register %eax and subsequently invokes a
return (RET) instruction. Notice that the stack pivot sequence ends in a RET instruction:
the x86 RET instruction simply loads the address pointed to by %esp into the instruction
pointer and increments %esp by one word. Hence, the execution continues at the first
gadget (STORE) pointed to by Return Address 1 (Step °). In addition, the stack pointer
is increased and now points to Return Address 2.

It is exactly the terminating RET instruction that enables the chained execution of
gadgets by loading the address the stack pointer points to (Return Address 2) in the
instruction pointer and updating the stack pointer so that it points to the next address in
the payload (Return Address 3). Steps ° to ² are repeated until the adversary reaches
her goal. To summarize, the combination of different gadgets allows an adversary to
induce arbitrary program behavior.

As a result, we define a return-oriented programming attack as follows.

Return-Oriented Programming: Code-reuse attacks that are based on the principle of
return-oriented programming combine and execute a chain of short instruction sequences
that are scattered throughout the address space of an application. Each sequence ends with an
indirect branch instruction –traditionally, a return instruction– to transfer control from one
sequence to the subsequent sequence. In particular, return-oriented programming has been
shown to be Turing-complete, i. e. the instruction sequences it leverages can be combined to
gadgets that form a Turing-complete language.

Unintended Instruction Sequences. A crucial feature of return-oriented programming
on Intel x86 is the invocation of the so-called unintended instruction sequences. These can
be issued by jumping into the middle of a valid instruction resulting in a new instruction
sequence neither intended by the programmer nor the compiler. Such sequences can be
found in large number on the Intel x86 architecture due to unaligned memory access
and variable-length instructions. As an example, consider the following x86 code with
the given intended instruction sequence, where the byte values are listed on the left side
and the corresponding assembly code on the right side:

Listing 1: Intended code sequence

b8 13 00 00 00 MOV $0x13,%eax

e9 c3 f8 ff ff JMP 3aae9 �
1 To control the register, the adversary can either use a buffer overflow exploit that overwrites memory areas

that are used to load the target register, or invoke a sequence that initializes the target register and then
directly calls the stack pivot.
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If the interpretation of the byte stream starts two bytes later the following unintended
instruction sequence would be executed by an Intel x86 processor:

Listing 2: Unintended code sequence

00 00 ADD %al,(%eax)

00 e9 ADD %ch,%cl

c3 RET �
In the intended instruction sequence the c3 byte is part of the second instruction. But

if the interpretation starts two bytes later, the c3 byte will be interpreted as a return
instruction.

2.1.6 Hybrid Exploits

Typically, modern systems enforce W ⊕X by default. This forces an adversary to deploy
code-reuse attacks. However, a deeper investigation of real-world code-reuse attacks
quickly reveals that most exploits today use a combination of code-reuse and code injec-
tion. The main idea behind these hybrid exploits is to only use code-reuse attack tech-
niques to undermine W ⊕X protection and launch a code injection attack subsequently.
This is possible due to the fact that W ⊕ X in its basic instantiation only enforces that a
memory page is not writable and executable at the same time. However, a memory page
can be first writable (not-executable) and at a later time executable (not-writable).

Program Binary

MemoryCopy()

ChangePermission(RX)

AllocateMemory(RW)

SHELLCODE

1

SHELLCODE

2

3

4

5

Code Memory
readable-executable (RX)

Linked Libraries

Data Memory
readable-writable (RW)

Figure 7: Hybrid exploitation: combination of code reuse with code injection

Figure 7 demonstrates this combined attack technique by example. The shown mem-
ory layout is divided into a code and data memory area, where the former one is read-
able and executable, and the latter one is marked as readable and writable. In particular,
the code memory holds the program binary and linked shared libraries. In modern op-
erating systems, several important libraries and their functionality are linked by default
into the address space of the application. Consider as an example the UNIX C library
libc. Although the target application may only require the printf() function to print
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strings on the standard output (stdout), other libc functions such as system() or mem-
cpy() will be always mapped into the address space of the application as well.

In our example, we assume that the return-oriented payload and the malicious code
have been already injected into the data memory area. In Step ¬, the payload exploits a
program vulnerability and redirects execution to the shared library segment. Specifically,
the adversary invokes a default function to allocate a new memory page (e. g. the alloc()
function) marked as readable and writable (Step ­). Typically, the return value will be
the runtime address of the newly allocated page. Upon return of the memory allocator,
the return-oriented payload invokes a memory copy function (e. g. the memcpy() function)
to copy the injected shellcode to the newly allocated memory page (Step ® and ¯).
Finally, the payload invokes a system function (e. g. the mprotect() function) to change
the memory page permissions of the newly allocated page to readable and executable
(Step °). Hence, the adversary can now execute the injected shellcode to perform the
actual malicious program actions.

This attack can be further optimized. For instance, if the underlying operating system
allows the allocation of read-write-execute (RWX) memory pages to support code gen-
eration just-in-time, an adversary can skip the ChangePermission() function. Further, it is
possible to skip the AllocateMemory() and CopyMemory() function if the adversary knows
the address of the memory page where the shellcode has been originally injected to. In
that case, we can simply call the ChangePermission() function to mark the corresponding
memory page as executable.

2.2 address space layout randomization (aslr)

A well-accepted countermeasure against code-reuse attacks is the randomization of the
application’s memory layout. The basic idea of address space layout randomization
(ASLR) dates back to Forrest et al. [78], wherein a new stack memory allocator was
introduced that adds a random pad for stack objects larger than 16 Bytes. Today, ASLR
is enabled on nearly all modern operating systems such as Windows, Linux, iOS, or An-
droid. For the most part, current ASLR schemes randomize the base (start) address of
segments such as the stack, heap, libraries, and the executable itself. This basic approach
is depicted in Figure 8, where the start address of the program executable, its shared
libraries, and data segments is relocated between consecutive runs of the application. As
a result, an adversary must guess the location of the functions and instruction sequences
needed for successful deployment of her code-reuse attack. Hence, we define ASLR as
follows.

Address Space Layout Randomization (ASLR): In order to defend against code-reuse
attacks, address space layout randomization randomizes the base address of code and data
segments per execution run. Hence, the memory location of code that the adversary attempts
to use will reside at a random memory location.
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Figure 8: Address space layout randomization (ASLR)

Unfortunately, today’s ASLR realizations suffer from two main problems: first, the
entropy on 32-bit systems is too low, and thus ASLR can be bypassed by means of brute-
force attacks [170, 124]. Second, all ASLR solutions are vulnerable to memory disclosure
attacks [175, 168] where the adversary gains knowledge of a single runtime address and
uses that information to re-enable code reuse in her playbook once again. We remind
the reader that this is possible because ASLR only randomizes the base address of the
segment meaning that the randomization offset within one segment always remains the
same.

For such a memory disclosure attack, consider an application that links to the stan-
dard UNIX C library libc to invoke the printf() function. The adversary’s goal is to
mount a code-reuse attack using various gadgets from libc. At compile-time, the run-
time address of printf() is not known as ASLR allocates libc at a randomized memory
location for each run. However, the compiler will add a placeholder for the runtime
address of printf() into a dedicated data section of the executable that is called global
offset table (GOT). At application runtime, the dynamic loader will resolve and allocate
the runtime address of printf() into the GOT either at load-time of the application or on-
demand when printf() is called for the first time. As the GOT is readable, an adversary
can learn the runtime address of printf(). In practice, this can be achieved by using a non-
randomized gadget [84], or by exploiting a so-called format string vulnerability which
allows arbitrary reads and writes in the address space of an application [86]. Given the
runtime address of printf(), the adversary can determine the start address of libc as the
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offset is constant. Once the start address is known, the adversary dynamically adjusts all
the pointers inside the return-oriented payload using the constant randomization offset.

2.3 control-flow integrity (cfi)

In order to defend against code-reuse attacks, code randomization relies on the secrecy
of the used randomization offset. In contrast, control-flow integrity (CFI) explicitly en-
forces that a program’s control-flow follows a legitimate path in the application’s control-
flow graph (CFG) [1, 4].

Figure 9 shows a high-level representation of CFI: first, and prior to program execu-
tion, the application’s CFG needs to be identified. Next, a CFI check is emitted at the
exit instruction of each CFG node. These CFI checks are executed at runtime to prevent
any attempt of the adversary to hijack the program’s control-flow. For instance, the CFI
check at node n3 validates that the exit instruction only targets either n5 or n6. If the
adversary aims to redirect execution to n4, CFI will immediately terminate the program
execution.

1

2 3

4 5 6

Control-Flow Graph 
(CFG)

intended flow

malicious flow

CFI Check
Allow: 3 → [5,6]
Deny: 3 → ![5,6]

CFI Check 

Figure 9: Control-flow integrity (CFI)

In summary, we define CFI as follows.

Control-Flow Integrity (CFI): CFI offers a generic defense against code-reuse attacks by
validating the integrity of a program’s control-flow based on a pre-defined control-flow graph
(CFG) at runtime.

In particular, Abadi et al. [1, 4] suggest a label-based CFI approach, where each CFG
node is marked with a unique label ID that is placed at the beginning of a BBL. In
order to preserve the program’s original semantics, the label is either encoded as an
offset into a x86 cache prefetch instruction or as simple data word. Inserting labels into
a program binary will require moving instructions from their original position. As a
consequence, CFI requires adjusting all memory offsets embedded into jump/call and
data load/store instructions that are affected by the insertion of the additional prefetch
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instructions. Originally, CFI on x86 builds upon the binary instrumentation framework
Vulcan which provides algorithms to derive the CFG and a binary rewriting engine to
emit labels and CFI checks without breaking the original program-flow.

CFI builds upon several assumptions to effectively defend against code-reuse attacks.
Foremost, it assumes that code is not writable, and that an adversary cannot execute
injected code from data memory. Both is ensured by enforcing the W⊕X security model
which is enabled by default on modern operating systems (cf. Section 2.1.4). However,
this also means that original CFI is not applicable to self-modifying code, or code that
is generated just-in-time.

As code is assumed to be immutable, Abadi et al. [1, 4] take an optimization step to
increase the efficiency of CFI: they only emit and perform CFI checks for nodes that
terminate with an indirect branch instruction. In contrast, direct branch instruction use
a statically encoded offset that cannot be altered by an adversary. In the following, we
discuss in more detail the general usage scenario for different kinds of indirect branches
and how CFI checks are implemented for them.

2.3.1 CFI for Indirect Jumps

Typically, indirect jumps are emitted by the compiler for (i) switch-case statements, and
(ii) dispatch of subroutine calls to shared libraries. We will describe both usage scenarios
before we show how CFI protects this type of indirect branch.

A switch-case statement allows a programmer to execute code based on the content
of a variable which is checked against a list of pre-defined values. An example of a
switch-case statement that consists of three case branches is shown on the left-hand site
of Figure 10. These branches are reached using an indirect jump instruction based on
the content of the variable value that can hold the numbers 1, 2, or 3.

int value = rand() % 3 + 1;

switch(value)
{
case 1:

printf("Case 1");
break;

case 2:
printf("Case 2");
break;

case 3:
printf("Case 3");
break;

}

eax ← value

SHL eax, 2

ADD eax, table_base

MOV eax, [eax]

JMP eax

asm_ins, …case_1:

asm_ins, …case_2:

asm_ins, …case_3:
Addr(case_1)

Addr(case_2)

Addr(case_3)

table_base:

Code Memory Data MemorySource Code

Figure 10: Indirect jumps in switch-case statements

On assembler level, the content of value is loaded to register eax. The same register
is later used in an indirect jump instruction to redirect the control-flow to one of the
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case branches. The main idea is to load the correct target address from a dedicated
jump table based on the content of value. For this, the program performs as follows:
first, eax is left-shifted via SHL by 2 Bits. This is necessary to correctly load the correct
target address from the 4-Byte aligned jump table that contains the three possible case
branch target addresses. As a result, the base address of the table is added to eax after
the left shift. Lastly, eax is de-referenced to load the target branch address into eax.
The subsequent indirect jump takes the address stored in eax to invoke the correct
case statement. Register eax can potentially be controlled by an adversary, e. g. a buffer
overflow is exploited to alter value. Hence, it is crucial to perform a CFI check before
the indirect jump is executed.

Indirect jumps can also take their target address directly from memory. A prominent
example is the dispatch of subroutine calls to shared libraries: consider an application
that invokes printf() from libc. As we explained in Section 2.2, the runtime address
of printf() will be loaded at a designated memory location in the GOT. The function
call to printf() in the main application goes through an indirection using the so-called
procedure linkage table (PLT). The PLT contains stub code that eventually executes an
indirect jump that uses as its target address the runtime address located in the GOT.
However, an adversary may exploit a memory-related vulnerability to corrupt the value
in the GOT thereby hijacking the intended control-flow.
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CMP [eax], 11223344
JNE CFI_violation
LEA eax, [eax+4]
JMP eax

intended flow

CFI Check 
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Basic Block

.data: 11223344 .data: 11223344

Figure 11: CFI indirect jump check

Figure 11 demonstrates how CFI protects indirect jumps from being exploited. In our
example, n1 invokes an indirect jump based on the value stored in eax. Note that n1 is
only allowed to target n2 and n3. Hence, CFI needs to emit the unique label 11223344
at the beginning of n2 and n3. The exit instruction of n1 is instrumented in such a way
that dedicated CFI code validates whether eax targets the label 11223344. Only if this is
the case, the program is allowed to take the indirect jump. As the label occupies 4-Byte
in memory at n2 and n3, it is necessary to update the jump target in eax by using the
load effective address (LEA) instruction with eax+4 as base offset. This ensures that the
indirect jump skips the label.
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2.3.2 CFI for Indirect Calls

In general, indirect call instructions are emitted by commodity compilers for (i) function
calls through function pointers, (ii) callbacks, and (iii) C++ virtual functions. As for
indirect jumps, indirect calls on x86 can either take their target address from a processor
register, or directly from memory.

In the remainder of this section, we briefly describe the usage and exploitation of
indirect call instructions for the invocation of C++ virtual functions. We do so, because
C++ virtual table hijacking belongs to one of the most common exploitation techniques
to instantiate a runtime attack.

Virtual functions support the concept of polymorphism in object-oriented languages.
A prominent example to demonstrate the usefulness of virtual functions is as follows [54]:
a base class shape contains a generic method draw() and declares it as virtual. This al-
lows child classes such as rectangle and oval to define the same method draw() and
implement a specific draw() method based on the shape’s type. In C++, every class that
contains virtual functions gets associated to a virtual table (vtable), where the vtable
contains pointers to virtual functions. At runtime, a vtable is accessed through a vtable
pointer which is stored in the object’s data structure. The vtable itself typically resides
in read-only memory. Hence, an adversary cannot directly compromise the integrity of
the vtable to launch a runtime exploit. On the other hand, the vtable pointer resides
in writable memory and is thereby subject to runtime exploits that inject a fake vtable
and alter the vtable pointer to point to the injected fake vtable [158]. The next time the
compromised program issues a virtual call, it will de-reference the overwritten vtable
pointer and redirect the execution to the address stored in the fake vtable.

The so-called use-after-free vulnerabilities are a well-known entry point to instantiate
vtable hijacking attacks [5]. The main idea of this attack technique is to exploit a dangling
pointer that points to freed memory. In detail the workflow is as follows: a C++ appli-
cation creates a new object of class shape. This leads to the allocation of a pointer that
references the data structure of shape. In this data structure resides the vtable pointer
that points to the vtable of shape. At a later time in program execution, the object is de-
allocated. However, since C++ does not enforce automatic garbage collection, the pointer
to the freed shape object is still intact. Given a buffer overflow vulnerability, the adver-
sary can inject a fake vtable and overwrite the vtable pointer of the freed shape object
to point to the fake vtable. Hence, making a virtual call through the dangled pointer of
the freed object leads to arbitrary code execution.

Control-flow validation for indirect calls is performed as for indirect jumps: CFI as-
signs unique labels to valid call targets, and instruments indirect call instructions (as
shown for indirect jumps in Figure 11) so that they can only target a valid call site.

2.3.3 CFI for Function Returns

As we already described in Section 2.1.5.2, return instructions transfer control to the
address located at the top of the stack. Hence, an adversary can potentially overwrite
the original return address to perform a code-reuse attack.
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Enforcing a label-based CFI approach on return instructions is challenging due to the
fact that a single subroutine can be invoked from diverse call sites, or a single indirect
function call may target multiple subroutines. The resulting control-flow graph for both
cases is shown in Figure 12.
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Figure 12: Static label-based CFI checks for function returns

A CFI label-based approach according to the scheme presented by Abadi et al. [1, 4]
will eventually lead to coarse-grained protection as a single label needs to be emitted
for different call sites. Consider for this the scenario shown in Figure 12-(a): the nodes
nA to nZ all terminate with a function call instruction that redirects execution to the
subroutine at node n1. The exit of n1 –implemented as a return instruction– targets the
call sites nA ′ to nZ ′ depending on which node has called the function, e. g. if the function
call originated from nA then the return should target nA ′ . However, since a label-based
CFI approach is not aware of the runtime state of the program, it needs to emit a generic
label for all call sites nA ′ to nZ ′ thereby giving an adversary the possibility to hijack the
control-flow, e. g. nA → n1 → nZ ′ .

In a similar vein, the scenario shown in Figure12-(b) leads to coarse-grained CFI pro-
tection: an indirect function call at node nA may potentially target many subroutines n1

to ni. Obviously, all the function returns at nodes n1 to ni need to redirect the control-
flow to the call site at node nA ′ . Hence, they all need to check against the same label,
namely the label emitted at node nA ′ . If there is any other node in the program that can
also target one of the subroutines n1 to ni then its corresponding call site needs to be
assigned the same label as the one already emitted at nA ′ . In other words, if there is a
node nB that calls n1 then the call site at node nB ′ is assigned the same label as nA ′ .
Consequently, all calling nodes from n1 to ni will be able to target nB ′ although n1 is
the only node that can be called by nB.

Hence, a static CFI approach for function returns will probably lead to coarse-grained
CFI enforcement where only one generic label is assigned to all call sites [1, 4]. To
remedy this situation, Abadi et al. [1, 4] suggest to leverage a shadow stack [48, 81] to
allow fine-grained integrity checks for return addresses.
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Figure 13: Main principle of shadow stack (return address stack)

Figure 13 depicts the main principle of a shadow stack: at runtime, every call and
return instruction is instrumented. Whenever the program issues a call instruction the
return address it pushes onto the stack is copied to a dedicated memory area called the
shadow stack. Upon function return, we simply need to validate whether the return ad-
dress the program attempts to use equals the one that is maintained on the shadow stack.
This ensures that a return always targets its original caller even when the subroutine is
frequently invoked by diverse function calls.

In order to prevent an attacker from tampering with the shadow stack, Abadi et al. [1]
leverage memory segmentation which is available on x86-based systems. Alternatively,
one could only allow call and return instructions to access the shadow stack using soft-
ware fault isolation techniques [187].

Although the shadow stack approach allows fine-grained CFI for return instructions,
it introduces several practical problems. Foremost, the performance overhead is signif-
icant due to the fact that one needs to instrument direct call instructions which occur
frequently during program execution. Further, the CFI check needs to load and compare
two addresses (one from the program stack and one from the shadow stack). Further,
certain programming constructs violate the assumption that a return always needs to
target its original caller. Famous examples are setjmp/longjmp, C++ exceptions which
rewrite return addresses, or position-independent code that exploits call instructions to
locate the current value of the program counter. Lastly, one needs to keep a shadow
stack for each execution thread. We refer the interested reader to our previous work
on ROPdefender [61], where we leveraged dynamic binary instrumentation to tackle
exceptional return cases.
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In this chapter, we present two advanced code-reuse attacks that undermine control-
flow integrity (CFI) based defenses. Our first attack presented in Section 3.1 circumvents
defenses that only apply their protection to return instructions. Next, we present in Sec-
tion 3.2 a novel code-reuse attack which circumvents various well-known coarse-grained
CFI defenses (covering kBouncer [150], ROPecker [47], CFI for COTS binaries [204], ROP-
Guard [83], and Microsoft EMET [131]). Lastly, we thoroughly elaborate on related work
on code-reuse attack techniques (Section 3.3), and conclude this chapter in Section 3.4.

3.1 return-oriented programming without returns on arm

Conventional return-oriented programming attacks are based on exploiting returns, or
more generally speaking, on function epilogue sequences. As described in Section 2.1.5.2,
return instructions are exploited in a return-oriented programming attack to transfer the
control-flow to the subsequent instruction sequence. Hence, defenses that ensure the in-
tegrity of return addresses [61, 48, 81, 95, 49] can be deployed to defend against return-
oriented programming attacks. In particular, shadow stacks that keep valid copies of
return addresses on a separate stack provide fine-grained return address checks (cf. Sec-
tion 2.3.3). Further, several defenses have emerged that deploy behavioral-based heuris-
tics. For instance, DROP [42] and our tool DynIMA [59] report a return-oriented pro-
gramming attack when there is an excessive use of return instructions within a short
period of time. Further, Li et al. [121] propose a compiler toolchain that eliminates un-
intended return instructions, and adds a layer of indirection for all intended return
instructions to ensure that a return targets an instruction that follows after a function
call.

However, Checkoway and Shacham [39] introduced a new code-reuse attack targeting
Intel x86-based platforms that requires no return instructions. Instruction sequences are
instead chained together by indirect jump instructions. This attack cannot be detected
in the same way as conventional return-oriented programming attacks since there is
no definite convention regarding the target of an indirect jump, i. e. return instructions
typically redirect execution back to the calling function.

Inspired by the approach introduced in [39], we present in this section a jump-oriented
attack method targeting mobile ARM computing platforms. ARM is the standard proces-
sor deployed in mobile devices, and more than 50 billion ARM-powered chips have been
shipped [159]. Our attack exploits ARM’s indirect call instruction Branch-Load-Exchange
(BLX). Hence, we call our attack BLX-Attack. In contrast to [39], we allow an adversary
to exploit an arbitrary processor register to be used as base pointer to jump addresses.
This effectively circumvents those protection mechanisms that specifically trace the stack

27
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pointer to detect code-reuse attacks. We instantiated our attack on an Android device
allowing us to send unauthorized text messages.

Contributions. We present a jump-based attack method on ARM platforms that by-
passes integrity checks for return addresses. Our attack allows us to change program
behavior without code injection. Although in principle we adopt the jump-based attack
presented in [39], developing such an attack on an ARM platform is not straightforward:
due to memory alignment enforced by ARM the code base available to an attacker is
significantly smaller compared to x86. Moreover, Checkoway and Shacham [39] requires
a special dispatcher gadget based on the so-called BYOPJ (Bring your own pop jump)
paradigm. Such a gadget was not available in our target libraries.

To demonstrate the effectiveness of our attack, we mount our BLX-Attack on a Google
Android device by exploiting a heap-overflow vulnerability. We show that it is possible
to attack an Android application to send unauthorized text messages via SMS.

Section Outline. After providing background information on the ARM architecture in
Section 3.1.1, we present in Section 3.1.2 our adversary model and assumptions. We
give an overview of our BLX-Attack in Section 3.1.3, and explain the technical details
of our gadget set in Section 3.1.4. We show how our BLX-Attack can be mounted on an
Android device in Section 3.1.5, and conclude in Section 3.1.6.

3.1.1 Background on ARM

ARM is a 32-Bit processor1 and features 16 general-purpose registers r0 to r15 as de-
picted in Table 1. All these registers can be accessed/changed directly. In contrast to
Intel x86, machine instructions are allowed to directly operate on the program counter
pc (eip on x86). Additionally, ARM processors feature a current program status register
(cpsr), which holds the current state of the system. It contains condition flags, interrupt
enable flags, and the current mode.

Register Purpose

r0 - r3 Arguments into function; function results

r4 - r11 Register variables (must be preserved)

r12 Scratch register (used for long jumps)

r13 (sp) Stack pointer

r14 (lr) Link register (for return address)

r15 (pc) Program counter

cpsr Control program status register

Table 1: ARM registers

1 Recently, ARM also launched a 64-Bit version for its Cortex-A50 Series [15], which is deployed in Apple’s
A7 processor for iPhone 5s.
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In general, ARM follows the Reduced Instruction Set Computer (RISC) design philos-
ophy, e. g. it features dedicated load and store instructions, enforces aligned memory
access, and offers instructions with a fixed length of 32 bits. However, since the in-
troduction of the ARM7TDMI microprocessor, ARM provides a second instruction set
called THUMB which usually has 16 bit instructions. The THUMB instruction set is a
subset of the ARM instruction set and is in particular suitable for embedded systems
which often suffer from greater memory restrictions as PCs. Moreover, THUMB code
provides better performance than ARM for systems shipped with a 16-bit memory. If
instructions have to be fetched from a 16-bit memory then it will take two cycles to fetch
an ARM instruction, whereas only one cycle is needed to fetch a THUMB instruction. In
particular, the Android libraries libc.so and libwebcore.so which we use as the code base
for our BLX-Attack contain mainly THUMB instructions.

Calling Convention. The ARM Architecture Procedure Call Standard (AAPCS) [14] sug-
gests that function calls should be performed either through a BL or through a BLX

instruction. The BL instruction performs a branch-with-link operation, i. e. it enforces
a branch to the specified routine by writing the destination address to the program
counter pc, and by writing the return address to the link register lr. The BLX instruc-
tion additionally allows interworking between ARM and THUMB code. Further, only
the BLX instruction allows indirect function calls (i. e. the target address of the branch is
hold in a register). Note that, in practice, not all function calls follow the AAPCS calling
convention: Instead of transferring the return address to lr, the ARM C compiler may
enforce the return address to be pushed onto the stack and afterwards performs a direct
branch to the function through a B or BX instruction.

Arguments to a function are provided in the registers r0 to r3. If a function requires
more than four arguments then these must be passed on the stack. Additionally, the
output values of a function are returned via these registers. Registers r4 to r8, r10, and
r11 are used for holding local variables of the called function, but THUMB-compiled
code usually uses only r4 to r8. According to the AAPCS, a function must preserve the
callee-save registers r4 to r8, r10, r11, and sp. ARM also supports a base pointer register
to facilitate access to local variables: r11 in ARM mode, and r7 in THUMB mode.

A function return is completed by writing the return address to the program counter
pc. For this, the ARM architecture provides no dedicated return instruction. Instead,
any instruction that is able to write to the program counter can be applied as return
instruction. For instance, one common return instruction is the BX lr instruction that
branches to the address stored in the link register lr. Further, it is also possible to use
the LDM (load multiple) or POP instructions that load the return address from the stack,
e. g. POP r4-r7,pc loads r4 to r7 and the program counter with new values from the
stack.
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3.1.2 Assumptions

We define a strong adversary model. For our attack, we assume the availability of stan-
dard protection mechanisms against code injection and return address corruption at-
tacks.

1. We assume that the target platform enforces the W ⊕ X security model (cf. Sec-
tion 2.1.4). Thus, an adversary cannot use well-known code injection attacks. This
is reasonable because the ARM architecture provides the XN bit (i. e. similar to
Intel’s non-executable bit) which facilitates the enforcement of W ⊕ X. The new
generations of Apple’s smartphone iPhone make use of the XN bit for each mem-
ory page [104]. At the time of developing our jump-based attacks, Android did
not yet leverage the XN bit, thus allowing code injection attacks. However, we as-
sumed a stronger Android architecture, and in fact, since Android version 4, W⊕X

is enabled by default.

2. We assume that the target platform deploys countermeasures to defend/detect
conventional return-oriented programming attacks, e. g. by using [61, 48, 81]. We
believe that fine-grained return address checks that were implemented for the In-
tel x86 architecture can be adopted to ARM architectures and the ARM C compiler.
In fact, as we will show later in this dissertation, we realized and evaluated a
shadow stack on ARM (cf. Section 4.1).

3. We assume that the target platform provides an application with some bug allow-
ing to instantiate a heap-based buffer overflow attack. The reason for instantiat-
ing our attack by means of a heap overflow is that we want to avoid the use of
any return instruction, so that our attack circumvents integrity checks for return
instructions. This is reasonable since attackers have moved to heap-based buffer
overflow exploitation since several years [153].

3.1.3 Overview on BLX-Attack

In this section, we present the high-level idea of our BLX-Attack method. First, we de-
scribe the main aspects of the ARM BLX instruction and how this instruction can be
exploited for our attack. Next, we present the general design of the BLX-Attack such as
the memory layout and the main attack steps.

3.1.3.1 Attack Components

The BLX instruction stands for Branch-Load-Exchange and is usually used for indirect
function calls. A branch is enforced to jump to an address stored in a particular register,
while the return address is loaded into the link register lr, and (if necessary) an instruc-
tion set exchange from ARM to THUMB and vice versa can be enforced. In the following,
we will show how indirect branch instructions such as BLX can be exploited to launch a
code-reuse attack.
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Figure 14: Basic layout of BLX-Attack on ARM

The principle of the BLX-Attack method is depicted in Figure 14. It shows an abstract
view of a program’s memory. The adversary cannot inject own malicious code due to
enabled W ⊕ X protection (cf. Assumption 1). However, an adversary is still able to re-
use existing code of the target program and its libraries. To do so, the adversary corrupts
the control structure (CS) section thereby maliciously redirecting program execution to
a unintended piece of code in the code section. Usually, control structures (such as
return and jump addresses) are located on the program’s stack or on the heap. The
instruction sequence of the linked library is executed until an indirect branch instruction
has been reached which redirects the execution to the next sequence of instructions by
using a trampoline. The trampoline is also part of the code section and is responsible for
loading the address of the subsequent instruction sequence from the control structure
(CS) section.

In contrast to a conventional return-oriented programming attack (see, e. g. [169]),
our BLX-Attack does not use the return instruction as connector for the instruction
sequences. Instead, it exploits ARM’s indirect call instruction BLX.

Checkoway and Shacham [39] already demonstrated that indirect jump instructions
can be exploited to circumvent control-flow checks that solely target return instructions.
However, the attack presented in [39] targets Intel x86 and cannot be applied straight-
forward to ARM-based systems. The code base available to an attacker on ARM is sig-
nificantly smaller compared to Intel x86. Recall that Intel x86 code provides a large code
base for return-oriented attacks due to the presence of many unintended instruction se-
quences (cf. Section 2.1.5.2). In our work, we exclusively focus on original and intended
instruction sequences. Nevertheless, a recent work by Lian et al. [122] demonstrates that
the interworking of 2-Byte/4-Byte THUMB instructions with 4-Byte ARM instructions
can be exploited to execute unintended instructions sequences.
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Moreover, the attack on Intel x86 requires a POP-JMP sequence to realize the trampo-
line in Figure 14. However, such a sequence is rarely available in modern programs.
Hence, Checkoway and Shacham [39] specified the “Bring Your Own Pop Jump (BYOPJ)”
paradigm which requires the target program or one of its libraries to include a POP-JMP.
However, for the typical libraries used on ARM such a trampoline sequence does not
exist. Although typical libraries on ARM do not include POP-JMP sequences2, we show
how to design a Turing-complete attack method for ARM platforms without requiring
the BYOPJ paradigm.

Reasons for using BLX. The BLX instruction is typically not a part of a function epilogue.
Instead, it is typically leveraged as function call instruction inside the function body.
Hence, an attack based on BLX instructions evades detection from defenses that protect
return instructions. Moreover, in contrast to Intel’s x86 indirect call instruction, the BLX

instruction does not impact values on the stack (or generally on the memory), which
makes the BLX instruction very suitable for our attack. However, since the program
counter pc can be accessed as a general purpose register, any instruction that uses the
program counter pc as a destination register could also be exploited for our attack. We
selected the BLX instruction because most of the instruction sequences we identified in
our code base end with BLX.

For extraction of a Turing-complete gadget set we inspected libc.so and libwebcore.so
libraries of an Android 2.0 platform (the most recent version at the time we conducted
this project). Android’s libc version is very compact, hence, we included Android’s Web
Browser library libwebcore.so to enlarge the code base. On Android 2.0, both libraries are
linked by default into the address space of an application to fixed addresses. That said,
no code randomization (cf. Section 2.2) is applied to these libraries.

3.1.3.2 Attack Method Design

In the following, we present the memory layout and each attack step of our BLX-Attack.

Memory Layout. Figure 15 depicts the memory layout and the steps of our BLX-Attack.
The memory area under control of the adversary contains jump addresses and argu-
ments which are clearly separated from each other. Each jump address points to a spe-
cific instruction sequence, where each sequence ends with a BLX instruction in order to
allow chaining of multiple sequences. We misuse the stack pointer RA as a pointer to
arguments and need a second register (denoted with RJA) as a pointer to jump addresses.
The order of jump addresses and arguments highly depends on the appropriate instruc-
tion sequences found on a platform. For instance, if the instruction sequence which
updates RJA adds a positive constant then jump addresses have to go from lower to
higher memory addresses. In Figure 15, jump addresses go from lower to higher mem-
ory addresses and arguments are ordered vice versa. Of course, if jump addresses are
not separated from arguments then one register could be saved. This is actually the

2 Sometimes such a sequence can be found in a function epilogue. However, these sequences can be protected
by enforcing integrity checks for return instructions.
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preferred way proposed by Checkoway and Shacham [39]. However, on Intel x86, ar-
guments are mainly loaded by a POP instruction from the stack which directly updates
the stack pointer. Unfortunately, the typical libraries we examined load arguments with-
out updating the stack pointer. That is the reason why we use RJA as pointer to jump
addresses which is updated after each instruction sequence.
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Figure 15: BLX-Attack method

BLX-Attack Steps. First, the adversary injects jump addresses and arguments to the stack
or the heap (cf. Section 3.1.5 for a concrete example). Our attack method consists mainly
of three parts: (i) setup, (ii) Update-Load-Branch (ULB) sequence, and (iii) gadgets
which consist of several instruction sequences. By subverting the control-flow, the ad-
versary is able to initialize several registers. We refer to this process as a setup (Step ¶).
The setup initializes three registers: RJA, RULB and RA. RJA and RA are used as pointers to
jump addresses and arguments, respectively. Register RULB is loaded with the address
of our ULB sequence (see below). Finally, the last action of our setup phase is to redirect
execution to Sequence 1 (Step · and ¸ in Figure 15). After Sequence 1 completes its
task, the BLX instruction (located at the end of the sequence) redirects execution to our
ULB sequence using register RULB (Step ¹). The ULB sequence is responsible for updat-
ing register RJA, loading the jump address RJA points to (here Sequence 2) into the free
register RJ, and branching to Sequence 2 by using register RJ (Step º and »). That is, our
ULB sequence is the connecting link (the trampoline in Figure 14) for all sequences of
instructions the adversary aims to invoke. In fact, Sequence 2 terminates in a BLX instruc-
tion that transfers control back to our ULB sequence (Step ¼) allowing the adversary to
call the next sequence.
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Principally, the instruction sequences themselves could enforce the branch to the next
sequence. However, most of them do not contain instructions for loading the next jump
address. Hence, we select to load the next jump address by using our ULB sequence.

3.1.4 Turing-Complete Gadget Set

In this section, we present the Turing-complete gadget set for our BLX-Attack allowing
an adversary to generate arbitrary malicious program behavior. The gadgets range from
simple gadgets that load a value into a register up to sophisticated gadgets that enforce
conditional branching.

In general, gadgets consist of several instruction sequences. For our purposes the
instruction sequences have to end with a BLX instruction to redirect execution to our ULB
sequence. Thus, useful instruction sequences must be first extracted form libraries linked
to an application. Previous work [31, 102] has shown how to automate the identification
of gadgets.

A Turing-complete gadget set for a BLX-Attack should at least consists of gadgets
for (i) memory operations (load/store), (ii) data processing (data moving and arith-
metic/logical operations), (iii) control-flow (conditional/unconditional branching), and
(iv) system and function calls. We could construct all these gadgets using the sequences
in our code base, namely the libraries libwebcore.so and libc.so of an Android 2.0 device.
In the following, we will present the technical details for all classes of gadgets.

3.1.4.1 Details of Setup and ULB Sequence

First, we describe the details of our setup and the ULB sequence which are necessary
to successfully initiate and execute our attack. Since our concrete BLX-Attack directly
initializes register r4 to r15 by exploiting a setjmp buffer overflow vulnerability on the
heap [51], we assume for the moment that the adversary can directly initialize these
registers.

In Section 3.1.3, we introduced the registers RJA, RULB, and RA as the fundamental
basis for our attack. The allocation of these registers highly depends on the identified
instruction sequences in our code base and involves technical challenges because these
registers must be preserved during the execution of the gadget chain. For our code base,
we decided for the following allocation: RJA = r6, RULB = r3, and RA = sp. We use the
stack pointer (sp) for RA because many sequences we identified in our code base contain
load/store operations, where sp is used as base register. However, our attack does not
force the adversary to control the stack pointer. Instead, any register (RA) can be used as
pointer to arguments and data.

Further, we use the following sequences for the setup and the ULB sequence:

LDR r 3 , [ sp , # 0 ] ; BLX r 3 /* Setup sequence */
ADDS r 6 , # 4 ; LDR r 5 , [ r 6 , # 1 2 4 ] ; BLX r 5 /* ULB sequence */ �

We use r3 for RULB because most of the sequences in our code base end with a BLX r3

instruction. Our setup sequence initializes r3 (i. e. RULB) by loading the address of the
ULB sequence from the stack through a LDR (load register) instruction. We describe the
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role of the LDR instruction in more detail in Section 3.1.4. Note, since our adversary is
able to directly initialize r4 to r15 by the setjmp vulnerability, we require no additional
setup sequences for RJA and RA.

Recall that the ULB sequence acts as connector for all executed instruction sequences
by updating RJA after each sequence. Since registers r0 to r3 are often used as destination
registers before a BLX instruction, we decided to use r6 as RJA register. The ULB sequence
first increases register r6 by 4 Bytes (Update). Afterwards, it loads the next jump address
(by an offset of 124 Bytes to r6) into r5 (Load). That said, our ULB sequence leverages
r5 for RJ. Finally, we branch to the loaded address (Branch).

In summary, we use r3, r5, r6, and sp as basic registers to ensure execution of our
ULB sequence and actual return-oriented gadgets. Hence, registers r0 to r2 as well as
r7 to r13 (in total ten registers) can be freely used by any of our invoked instruction
sequences to perform exploit operations.

One technical problem we have to address stems from the fact that most of our se-
quences use the pre-indexed addressing mode meaning that sp does not change its value
after it is used as base register in a load operation. It would be desirable to directly load
sp as typically done in stack pivot sequences (cf. Section 2.1.5.2). Unfortunately, we have
no such load operation in the sequences of our code base. Hence, we use the following
sequence to update sp:

SUB sp , # 1 2 ; ADDS r 0 , r 4 , # 0 ; BLX r 3 /* Updating sp */ �
This sequence decreases the value of the stack pointer by 12 Bytes and as a side-effect
overwrites the value of register r0 with the content stored in r4. To preserve register r0,
its value could be stored to memory or moved to a free register before.

3.1.4.2 Memory Operations

Memory operation gadgets are needed for loading and storing values from and to mem-
ory. Due to the RISC architecture of ARM processors load and store operations are only
permitted through dedicated load and store instructions. The ARM instruction set of-
fers for this two instructions, LDR and STR.3 A general-purpose register can be loaded
through a LDR instruction. Storing a register to memory is performed through the STR

instruction. For instance, to load a word from the stack (with zero Bytes offset) to r1, the
following sequence could be used:

LDR r 1 , [ sp , # 0 ] ; BLX r 3 �
Loading an Immediate. Typically, memory operations also include a gadget that loads
an immediate value into a general-purpose register. For instance, to load NULL into
register r2 the following sequence could be used:

MOVS r 2 , # 0 ; BLX r 3 �
3 Despite these two instructions, ARM provides the LDM and STM instructions for a multiple load and store

operation.
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Storing to Memory. For a store operation, we need at least two registers: one holding
the word to be stored, and one holding the target address. Figure 16 depicts our store
gadget which stores the content of several registers (r1, r3, and r4) to a memory address
pointed to by r2.

Data Memory

Store r4

Store r3

Store r1

ULB Address

Store Address

ULB Address

New value of r1

Jump Address 1

Jump Address 2

Code Memory

ADD r6,#4
LDR r5,[r6,#124]
BLX r5

ULB Sequence

STR r4,[r2,#4]
STR r3,[r2,#8]
STR r1,[r2,#12]
LDR r1,[sp,#20]
LDR r3,[sp,#8]
BLX r3

Sequence 2

LDR r2,[sp,#4]
LDR r3,[sp,#0]
BLX r3

Sequence 1

SP

RJA

Figure 16: Store gadget

Sequence 1 consists of two load instructions. The first one loads the target address
for the store operation to register r2. The target address is located in the argument
memory space at [sp,#4]. Unfortunately, the second load instruction overwrites register
r3 (RULB). Therefore, the address stored at [sp,#0] must be the address of our ULB
sequence to preserve RULB. Afterwards, Sequence 2 stores the registers r1, r3, and r4 to
the memory area pointed to by r2. However, Sequence 2 once again overwrites register
r3. Hence, the address of our ULB sequence must also be placed at address [sp,#8]. In
addition, register r1 is assigned a new value located at [sp,#20].

3.1.4.3 Data Processing

Data processing gadgets include gadgets for moving data among registers, logical (AND,
OR, NOT, EOR), and arithmetic (ADD, SUB, MUL, DIV) operations. Basically, data pro-
cessing gadgets need first memory load gadgets to initialize the source registers. After-
wards, the desired operation is performed on the source registers.

Data Movement Gadgets. THUMB compiled code uses for data movement the arith-
metic add instruction ADDS4, where the second operand is simply set to zero:

4 An add instruction with the “S” suffix updates also the CPSR flag register.
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ADDS r 0 , r 1 , # 0 ; ADDS r 1 , r 4 , # 0 ; BLX r 3

ADDS r 5 , r 1 , # 0 ; ADDS r 7 , r 2 , # 0 ; BLX r 3 �
For instance, the first sequence moves r1 to r0 and r4 to r1.

Arithmetic Gadgets. The ADD gadget is realized with the above mentioned arithmetic
add instruction ADDS:

ADDS r 0 , r 0 , r 2 ; BLX r 3 �
This sequence adds the register r0 and r2, and stores the result in register r0.

Our SUB gadget is based on the arithmetic sub instruction SUBS as depicted in Fig-
ure 17. This gadget subtracts r0 from r4. Sequence 1 and 2 load the first operand into r4

through r0. Note that the conditional branch in Sequence 2 is never taken, because r3

holds the address of the ULB sequence (which does obviously not equal to zero). Next,
Sequence 3 loads r0 with the second operand. The fourth sequence loads into register
r2 the address where the result of the subtraction will be stored. Lastly, Sequence 5

performs the subtraction and stores the result at memory position [sp,#32] and in reg-
ister r1.

Data Memory

1st Operand

SP,#28

2nd Operand

Result (r1)

Jump Address 1

Jump Address 2

Code Memory

SUBS r1,r4,r0
STR r1,[r2,#4]
ADDS r0,r5,#0
LDR r1,[sp,#32]
BLX r3

Sequence 5

LDR r2,[sp,#12]
BLX r3

Sequence 4

SP,#0

RJA

Jump Address 3

Jump Address 4

Jump Address 5

SP,#32

+(#4)

LDR r0,[sp,#16]
BLX r3

Sequence 3

CMP r3,#0
MOV r4,r0
BEQ 212b0
BLX r3

Sequence 2

LDR r0,[sp,#4]
BLX r3

Sequence 1

Figure 17: Subtract gadget

The remaining MUL and DIV gadgets can be realized by invoking the ADD and SUB
gadget in a loop.
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Logical Gadgets. As an example for a logical operation gadget, we present the AND
gadget. In general, logical and arithmetic operation gadgets must first load the operands
into source registers. Subsequently, the desired logical/arithmetic operation is performed
on the loaded registers. Our AND gadget is depicted in Figure 18.

Data Memory

1st Operand (r7)

2nd Operand (r1)

Jump Address 1

Jump Address 2

Code Memory

LDR r1,[sp,#16]
BLX r3

Sequence 3

SP

RJA

Jump Address 3

Jump Address 4

ADDS r7,r2
BLX r3

Sequence 2

LDR r2,[sp,#4]
BLX r3

Sequence 1

ANDS r7,r1
BLX r3

Sequence 4

Figure 18: AND gadget

Sequence 1 and 2 are responsible for loading the first operand into register r7. After-
wards, Sequence 3 loads the second operand into register r1 and Sequence 4 performs
the AND operation on register r1 and r7. Lastly, the result is stored into register r7.

One important logical gadget to mention is the NOT gadget that computes the two’s
complement of a specific value. We realize the NOT (based on the ideas presented in [39])
by subtracting the source register (through a SUB gadget) from (-1). The AND and NOT
gadget can be combined to a NAND gadget. All other logical operations (such as OR,
EOR) can be emulated through our NAND gadget.

Similarly, the negate gadget can be simulated through a subtract gadget by subtracting
the source register from NULL.

Shift Gadgets. Although shift gadgets are not always included in Turing-complete gad-
get sets (e. g. [169]), we show how these can be realized by the ASRS (arithmetic right
shift) and LSRS (logical left shift) instructions, as follows:

ASRS r 0 , r 0 , # 1 ; ADDS r 0 , r 2 , r 0 ; BLX r 3

LSLS r 2 , r 2 , # 2 ; ADDS r 2 , r 1 , r 2 ; BLX r 3 �
For instance, the first sequence performs an arithmetic right shift on r0 by one bit. To

preserve the result of the shift operation, r2 has to be loaded with NULL (e. g. by the
load immediate gadget explained in Section 3.1.4.2). Otherwise, the second instruction
would overwrite r0 by adding r2 to r0.
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3.1.4.4 Control-Flow

In contrast to ordinary programs, branching in the context of our BLX-Attack implicates
changing the RJA (r6) register rather than the instruction pointer. The unconditional
branching gadget can be realized by adding an offset to register RJA, or by directly
loading RJA with a new value.

Our conditional branching gadget is based on the ideas presented in [169]: We com-
pare two values and depending on the result, RJA is either changed by an unconditional
branch gadget or remains as before. To realize this gadget, we need a compare operation.
This can be simulated through a SUB gadget updating the carry flag in the cpsr register.
The updated carry bit is subsequently added to the constant 0xFFFFFFFF. Hence, the
result will be either NULL or 0xFFFFFFFF. Finally, the result must be ANDed with the
desired branch offset. The result of this last operation will be either NULL (Carry Bit = 1)
or the offset (Carry Bit = 0), which is finally added to RJA.

3.1.4.5 System and Function Calls

System calls are highly important for runtime exploits. They allow an attacker to invoke
special services of the operating system (like opening a file or executing a new program).
System calls are typically implemented as subroutines in libc. Thus, a program only
needs to invoke the appropriate function for the system call. A common alternative to
this scheme consists of passing arguments in registers and in storing the system call
number in a dedicated register (e. g. on ARM r7, and on Intel eax). The system call is
then invoked through a software interrupt (e. g. on ARM SVC 0x0 (Supervisor Call), and
on Intel INT 0x80).

The libc version of the Android OS implements system calls by transferring the
system call number to r7. Hence, all system call functions only differ in the MOVS

r7,#SYS_NR instruction. For instance, the execve function is implemented as follows:

PUSH { r 4 , r 7 } ;
MOV r 7 , # 1 1 ; 0xb
SVC 0x 00000000

POP { r 4 , r 7 }
MOVS r 0 , r 0

BXPL l r �
Hence, we invoke a system call by calling its appropriate libc function. It is note-

worthy to mention that our system call gadget can be leveraged for calling any other
function.

The memory layout and implementation of our system call gadget is depicted in Fig-
ure 19. We have to take into account that the BLX instruction loads the return address into
the link register lr. Since the BXPL lr (located at the end of the execve function) redirects
execution back to the value stored in the link register, we have to ensure that lr points at
that time to a valid instruction sequence. However, when the BLX instruction is invoked,
lr will be automatically loaded with the address of [pc,#2] (for Thumb compiled code).
Hence, we use an instruction sequence with two BLX instructions (Sequence 1).
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Data Memory

PUSH r7

PUSH r4

ULB Address

Jump Address 1

Code Memory

LDR r3,[sp,#0]
BLX r3

Sequence 2

SP

RJA

BLX r7
ADDS r1,r0,#0
ADDS r0,r5,#0
BLX r4

Sequence 1

ADDS r6,#4
LDR r5,[r6,#124]
BLX r5

ULB Sequence

PUSH {r4,r7}
MOV r7,#11
SVC 0x0
POP {r4,r7}
MOVS r0,r0
BXPL lr

System Call execve

1

2
3

4

5

Figure 19: System call gadget

The arguments for the system call must be initialized by load gadgets (not depicted
in Figure 19). Usually, registers r0-r3 hold arguments for a system call. If a system call
expects an argument in r3 then our RULB will be overwritten. Thus, we must temporarily
change the RULB to a different register if r3 is used as argument.

First, Sequence 1 invokes the system call function (Step ¶ and ·), where the address
of the system call function is stored in r7. After the system call returns, the BXPL lr5

instruction redirects execution back to Sequence 1 (Step ¸). Next, Sequence 1 performs
two data movement instructions and then redirects execution to Sequence 2 (Step ¹).
This sequence re-initializes our RULB register r3 with the address of the ULB sequence.
Finally, Sequence 2 redirects execution to the ULB sequence which loads the next jump
address (Step º).

As can be seen in Figure 19, the system call function pushes two values onto the stack.
Since we separated arguments from jump addresses, push instructions are not as critical
as they are in the original return-oriented programming attack6 [169]. However, a push
instruction could overwrite arguments pointed to by the stack pointer. If this is the case,
the adversary has to use our store and load gadgets to backup the two arguments and
to restore them after the system call returns.

5 The condition flag PL means that the branch will only be executed if the N flag in the cpsr register is not
set. The N flag will be set if r0 holds a negative value. This will only be the case if an error occurred during
the system call.

6 If return addresses and arguments are both located on the stack, a push instruction may overwrite a return
address.
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3.1.5 Proof-of-Concept Exploit on Android

To demonstrate the effectiveness of our BLX-attack, we exploited an own developed
proof-of-concept application on Android. Typically, Android applications are written in
Java, but can also access C/C++ libraries via the Java Native Interface (JNI). Application
developers may use JNI to incorporate C/C++ libraries into their applications. Moreover,
many C libraries are mapped by default to fixed memory addresses in the program’s
memory space. This provides a large C/C++ code base that we exploit for our attack. In
particular, we successfully launched our attack on Android’s device emulator (Android
version 2.0) as well as on the Android Dev Phone 2 Android version 1.6.

3.1.5.1 Vulnerable Application

Our vulnerable application is a standard Android Java application which uses the Java
native interface (JNI) to include our C/C++ code. The included C/C++ code is shown
in the listing below and is mainly based on the ideas presented in [39].

s t r u c t foo
{

char b u f f e r [ 4 6 0 ] ;
4 jmp_buf j b ;

} ;
j i n t Java_com_example_hello jni_HelloJni_doMapFile ( JNIEnv * env , j o b j e c t t h i z )
{

// open binary file

9 s F i l e = fopen ( "/data/ l o c a l /binary " , " r " ) ;
. . .
s t r u c t foo * f = malloc ( s i z e o f * f ) ;
i = set jmp ( f−>j b ) ;
i f ( i ! = 0 ) re turn 0 ;

14 f g e t s ( f−>buffer , sb . s t _ s i z e , s F i l e ) ;
longjmp ( f−>jb , 2 ) ;

} �
The application suffers from a so-called setjmp vulnerability [51]. In general, setjmp

and longjmp are system calls which allow non-local control transfers. For this, setjmp
creates a special data structure (referred to as jmp_buf). The register values from r4 to
r15 are stored in jmp_buf once setjmp has been invoked. When longjmp is called, regis-
ters r4 to r15 are restored to the values stored in the jmp_buf structure. If the adversary
is able to overwrite the jmp_buf structure before longjmp is called then control can be
transferred to arbitrary code sequences without corrupting a single return address.

In Line 14, the fgets() function inserts data provided by a file, called binary, into a
buffer (located in the structure foo) without checking the bounds of the buffer. Note
that the structure foo also contains the jmp_buf structure. Hence, if the binary is larger
than 460 Bytes it will overwrite the contents of the adjacent jmp_buf structure.

However, while reverse-engineering our Android application, we recognized that An-
droid enables heap protection for setjmp by storing a fixed canary directly after the local
buffer and lets the jmp_buf structure start 52 Bytes after that canary. The canary is hard-
coded into libc. Thus, it is device and process-independent. As a consequence, we have
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to take into account the value of the canary and add 52 Bytes space between the canary
and the jmp_buf.

3.1.5.2 Exploitation

In order to mount a BLX-Attack against the vulnerable program, we aim at subverting
the intended execution-flow of the program, and invoke a gadget chain to execute a
malicious Tcl script. This script sends text messages to an adversary-chosen number
(potentially, a high-premium rate number). At C source code level, we desire to execute
the following execve command:

execve ( "/ data/data/com . example . h e l l o j n i /Send_SMS" , NULL, NULL) �
Specifically, this command launches the malicious SEND_SMS binary, which embeds

our target Tcl script to send text messages. For the purpose of our BLX-Attack, we
need to convert the execve command to assembler instructions. Figure 20 shows the
corresponding gadgets and the memory layout of our attack.

Data Memory

_SMS

a/da

/dat

Jump Address 1

Code Memory

LDR r3,[sp,#0]
BLX r3

Sequence 1

SP

RJA

ADDS r6,#4
LDR r5,[r6,#124]
BLX r5

ULB Sequence

ULB Address

PUSH {r4,r7}
MOV r7,#11
SVC 0x0
POP {r4,r7}
MOVS r0,r0
BXPL lr

System Call execve

Jump Address 2

Jump Address 3

Jump Address 4

Jump Address 5

ADDS r0,r4,#0
BLX r3

Sequence 2

MOVS r2,#0
BLX r3

Sequence 3

ADDS r1,r2,#0
BLX r3

Sequence 4

Figure 20: Gadgets used in our BLX-Attack on Android

The attack chain is as follows:

1. Exploit setjmp vulnerability to initialize register r6 and sp for our ULB sequence.

2. Load r3 with the address of our ULB sequence (Sequence 1)

3. Load in r0 the address of the string "/data/data/com.exploit.example/Send_SMS"

(Sequence 2)

4. Load r1 and r2 with NULL (Sequence 3 and 4)
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5. Invoke the execve system call (Sequence 5)

This gadget chain successfully exploited our vulnerable application and sends unau-
thorized text messages.

Remark. In fact, our attack launches a privilege escalation attack on Android since the
vulnerable application has no permission to send any text messages. For this, we ex-
ploited the Android scripting environment (ASE) application as a confused deputy to
perform privileged operations on behalf of our gadget chain. More details on the nature
of the privilege escalation attack we have identified can be found in [60].

3.1.6 Summary and Conclusion

Our BLX-Attack method demonstrates that Turing-complete return-oriented program-
ming attacks can be leveraged on ARM-based mobile devices without using any return
instructions. This allows our attack to evade detection from shadow stack based defenses.
As a result, defenses against return-oriented programming need to enforce fine-grained
protection for both function returns and indirect jumps/calls, i. e. by enforcing control-
flow integrity (CFI) [1, 4]. In fact, to tackle the shortcomings of existing defenses, we
will introduce in Section 4.1 the first fine-grained CFI solution for mobile devices. How-
ever, before turning our attention to advanced defenses against code-reuse attacks, we
explore the limitations of recently introduced efficient but coarse-grained CFI defenses
against code-reuse attacks.
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3.2 on the ineffectiveness of coarse-grained control-flow integrity

Control-flow integrity (CFI) has been proposed as a general and fine-grained defense
approach to thwart code-reuse attacks. As we described in Section 2.3, it derives the
application’s control-flow graph (CFG) prior to execution to determine the valid set of
branch targets for indirect jumps and calls. At runtime, it performs control-flow checks
based on the derived set of valid targets and the shadow stack which contains valid
return addresses a function is allowed to return to. Although CFI requires no source
code of an application, it suffers from practical limitations that impede its deployment
in practice, including performance overhead of 21%, on average [4, Section 5.4], when
function returns are validated based on a return address (shadow) stack. To date, sev-
eral CFI frameworks have been proposed that tackle the practical shortcomings of the
original CFI approach. ROPecker [47] and kBouncer [150], for example, leverage the
branch history table of modern x86 processors to perform a CFI check on a short history
of executed branches. More recently, Zhang and Sekar [204] demonstrate a new CFI bi-
nary instrumentation approach that can be applied to commercial off-the-shelf (COTS)
binaries.

However, the benefits of these state-of-the-art solutions comes at the price of relaxing
the original CFI policy. Abstractly speaking, coarse-grained CFI allows for CFG relax-
ations that contains dozens of more legal execution paths than would be allowed under
the approach first suggested by Abadi et al. [4]. The most notable difference is that the
coarse-grained CFI policy for return instructions only validates if the return address
points to an instruction that follows after a call instruction. In contrast, Abadi et al. [4]’s
policy for fine-grained CFI ensures that the return address points to the original caller
of a function (based on a shadow stack).

Surprisingly, even given these relaxed assumptions, all recent coarse-grained CFI so-
lutions we are aware of claim that their relaxed policies are sufficient to thwart return-
oriented programming attacks7. In particular, they claim that the property of Turing-
completeness is lost due to the fact that the code base which an adversary can exploit is
significantly reduced. Yet, to date, no evidence substantiating these assertions has been
given, raising questions with regards to the true effectiveness of these solutions.

Contribution. We revisit the assumption that coarse-grained CFI offers an effective de-
fense against return-oriented programming. For this, we conduct a security analysis of
the recently proposed CFI solutions including kBouncer [150], ROPecker [47], CFI for
COTS binaries [204], ROPGuard [83], and Microsofts’ EMET tool [131]. In particular, we
derived a combined CFI policy that takes for each indirect branch class (i. e. return, indi-
rect jump, indirect call) and behavioral-based heuristics (e. g. the number of instructions
executed between two indirect branches), the most restrictive setting among these poli-
cies. Afterwards, we use our combined CFI policy and a weak adversary having access
to only a single — and common used system library — to realize a Turing-complete gad-
get set. The reduced code base mandated that we develop several new return-oriented

7 Some of the mechanisms used in kBouncer and ROPGuard (both awarded by Microsoft’s BlueHat
Prize [181]) have already been integrated in Microsoft’s defense tool called EMET [131].
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programming attack gadgets to facilitate our attacks. To demonstrate the power of our
attacks, we show how to harden existing real-world exploits against the Windows ver-
sion of Adobe Reader [110] and mPlayer [36] so that they bypass coarse-grained CFI
protections. We also demonstrate a proof-of-concept attack against a Linux-based sys-
tem.

Section Outline. After elaborating on CFI challenges in Section 3.2.1, we categorize
recently proposed CFI schemes in Section 3.2.2, and derive a combined policy in Sec-
tion 3.2.3. In Section 3.2.4, we present our Turing-complete gadget set. Next, we present
in Section 3.2.5 several useful gadgets for real-world exploitation, and a new gadget
type, denoted as long-NOP, to undermine coarse-grained CFI policies that are based
on behavioral-based heuristics. To prove the effectiveness of our attack, we leverage
our Turing-complete gadget set in Section 3.2.6 to transform existing return-oriented ex-
ploits into more stealthy attacks that cannot be prevented by coarse-grained CFI schemes.
Lastly, we conclude in Section 3.2.7.

3.2.1 Control-Flow Integrity Challenges

There are several factors that have impede the deployment of CFI in practice, such as
CFG coverage, performance, robustness, and ease of deployment. In this section, we
elaborate on each of these factors in more detail.

In their seminal work on CFI, Abadi et al. [4] also included a formal security proof
for the soundness of their solution. The key argument put forth in this work is that
“despite attack steps, the program counter always follows the CFG.” [4]. In other words,
every control-flow is permitted as long as the CFG allows it. Consequently, the security
level highly depends on the level of CFG coverage. And that is exactly where recent CFI
solutions have deviated (substantially) from the original work, primarily as a means to
address performance overhead.

Recall that in the original CFI proposal, the CFG was obtained a priori using binary
analysis techniques supported by a proprietary framework called Vulcan. This frame-
work required debug symbols of the application in order to generate the CFG. However,
debug symbols are rarely available for today’s software programs. Since the CFG is cre-
ated ahead of time, it does not capture the dynamic state of the call stack. That is, with
only the CFG at hand, one can not enforce that functions return to their most recent call
site, but only that they return to any of the possible call sites. This limitation is tack-
led by adding a shadow stack to the statically created CFG to validate if the function’s
return address equals the one pushed onto the safe shadow stack. In this way, many
control-flow transfers are prohibited, largely reducing the gadget space available for a
return-oriented programming attack.

Given the power of CFI, it is surprising that it has not yet received widespread adop-
tion. The reason lies in the fact that extracting the CFG is not as simple as it may appear.
To see why, notice that (i) source code is not readily available (thereby limiting compiler-
based approaches), (ii) binaries typically lack the necessary debug or relocation infor-
mation, as was needed for example, in the Vulcan framework, and (iii) the approach
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Category Policy x86 Example Description

CFIRET RET returns

À CFIJMP JMP reg|mem indirect jumps

CFICALL CALL reg|mem indirect calls

Á CFIHEU heuristics

Â CFITOC time of CFI check

Table 2: Our target CFI policies to validate coarse-grained CFI

induces performance overhead due to dynamic rewriting and runtime checks. Much of
the academic research on CFI in the last few years has focused on techniques for tackling
these drawbacks.

3.2.2 Categorizing Coarse-Grained Control-Flow Integrity Approaches

As noted above, a number of new control-flow integrity (CFI) solutions have been re-
cently proposed to address the challenges of good runtime performance, high robust-
ness and ease of deployment. The most prominent examples include kBouncer [150],
ROPecker [47], CFI for COTS binaries [204], and ROPGuard [83]. To aide in better under-
standing the strengths and limitations of these proposals, we first provide a taxonomy
of the various CFI policies embodied in these works. Later, to strengthen our own anal-
yses, we also derive a combined CFI policy that takes into account the most restrictive
CFI policy.

3.2.2.1 CFI Policies

Table 2 summarizes the five CFI policies we use throughout this paper to analyze the
effectiveness of coarse-grained CFI solutions. Specifically, we distinguish between three
types of policies, namely À policies used for indirect branch instructions, Á general
CFI heuristics that do not provide well-founded control-flow checks but instead try to
capture general machine state patterns of return-oriented attacks and Â a policy class
that covers the time CFI checks are enforced.

We believe this categorization covers the most important aspects of CFI-based de-
fenses suggested to date. In particular, they cover polices for each indirect branch the pro-
cessor supports since all control-flow attacks (including code reuse) require exploiting
indirect branches. Second, heuristics are used by several coarse-grained CFI approaches
(e. g. [150, 83]) to allow more relaxed CFI policies for indirect branches. Finally, the
time-of-check policy is an important aspect because it states at which execution state
return-oriented attacks can be detected. We elaborate further on each of these categories
below.

À – Indirect Branches. Recall that the goal of CFI is to validate the control-flow path
taken at indirect branches, i. e. at those control-flow instructions that take the target ad-
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dress from either a processor register or from a data memory area8. The indirect branch
instructions present on an Intel x86 platform are indirect calls, indirect jumps, and re-
turns. Since CFI solutions apply different policies for each type of indirect branch, it
is only natural that there are three CFI policies in this category, denoted as CFICALL

(indirect function calls), CFIJMP (indirect jumps), CFIRET (function returns).

Á – Behavior-Based Heuristics (HEU). Apart from enforcing specific policies on in-
direct branch instructions, CFI solutions can also validate other program behavior to
detect return-oriented programming attacks. One prominent example is the number of
instructions executed between two consecutive indirect branches. The expectation is that
the number of such instructions will be low (compared to ordinary execution) because
return-oriented programming attacks invoke a chain of short code sequences each ter-
minating in an indirect branch instruction (cf. Section 2.1.5.2).

Â – Time of CFI Check (TOC). Abadi et al. [4] argued that a CFI validation routine
should be invoked whenever the program issues an indirect branch instruction. In prac-
tice, however, doing so induces significant performance overhead. For that reason, some
of the more recent CFI approaches reduce the number of runtime checks, and only en-
force CFI validation at critical program states, e. g. before a system or API call.

Next, we turn our attention to the specifics of how these policies are implemented in
recent CFI mechanisms.

3.2.2.2 kBouncer

The approach of Pappas et al. [150], called kBouncer, deploys techniques that fall in
each of the aforementioned categories. Under category À, Pappas et al. [150] leverage
the x86-model register set called last branch record (LBR). The LBR provides a register
set that holds the last 16 branches the processor has executed. Each branch is stored as
a pair consisting of its source and target address. kBouncer performs CFI validation on
the LBR entries whenever a Windows API call is invoked. Its promise resides in the fact
that these checks induce almost no performance overhead, and can be directly applied
to existing software programs.

With respect to its policy for returns, kBouncer identifies those LBR entries whose
source address belong to a return instruction. For these entries, kBouncer checks whether
the target address (i. e. the return address) points to a call-preceded instruction. A call-
preceded instruction is any instruction in the address space of the application that fol-
lows a call instruction. Internally, kBouncer disassembles a few bytes before the target
address and terminates the process if it fails to find a call instruction.

While kBouncer does not enforce any CFI check on indirect calls and jumps, Pappas
et al. [150] propose behavioral-based heuristics (category Á) to mitigate return-oriented
attacks. In particular, the number of instructions executed between consecutive indirect

8 Typically, CFI does not validate direct branches because these addresses are hard-coded in the code of an
executable and cannot be changed by an adversary when W ⊕X is enforced.
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branches (i. e. “the sequence length”) is checked, and a limit is placed on the number of
sequences that can be executed in a row.9

A key observation by Pappas et al. [150] is that even though pure code-reuse payloads
can perform Turing-complete computation, in actual exploits they will ultimately need
to interact with the operating system to perform a meaningful task. Hence, as a time-of-
CFI check policy (category Â) kBouncer instruments and places hooks at the entry of
a WinAPI function. Additionally, it writes a checkpoint after CFI validation to prohibit
an adversary from simply jumping over the hook in userspace. In their implementation,
the central Windows handler verifies whether the correct checkpoint has been written
before transferring the control-flow to the WinAPI function is executed.

3.2.2.3 ROPGuard and Microsoft EMET

Similar to Pappas et al. [150], the approach suggested by Fratric [83] (called ROPGuard)
performs CFI validation when a critical Windows function is called. However, its policies
differ from that of Pappas et al. [150].

First, with respect to policies under category À, upon entering a critical function,
ROPGuard validates whether the return address of that critical function points to a
call-preceded instruction. Hence, it prevents an adversary from using an instruction
sequence terminating in a return instruction to invoke the critical Windows function. In
addition, ROPGuard checks if the memory word before the return address is the start
address of the critical function. This would indicate that the function has been entered
via a return instruction. ROPGuard also inspects the stack and predicts future execution
to identify gadgets. Specifically, it walks the stack to find return addresses. If any of these
return addresses points to a non-call-preceded instruction, the program is terminated.

Interestingly, there is no CFI policy for indirect calls or indirect jumps. Furthermore,
ROPGuard’s only heuristic under category Á is for validating that the stack pointer does
not point to a memory location beyond the stack boundaries. While doing so prevents
return-oriented payload execution on the heap, it does not prevent traditional stack-
based return-oriented attacks; thus the adversary could easily reset the stack pointer
before a critical function is called.

Lastly, similar to kBouncer, ROPGuard’s CFI validation is executed whenever a critical
Windows function is called. ROPGuard allows to define these functions in a configura-
tion file, whereas in EMET a pre-defined list is used.

Remarks. ROPGuard and its implementation in Microsoft EMET [17] use similar CFI
policies as in kBouncer. One difference is that kBouncer checks the indirect branches
executed in the past, while ROPGuard only checks the current return address of the
critical function, and for future execution of gadgets. ROPGuard is vulnerable to code-
reuse attacks that are capable of jumping over the CFI policy hooks, and cannot prevent
attacks that do not attempt to call any critical Windows function. To tackle the former
problem (i. e. bypassing the policy hook), EMET adds some randomness in the length
and structure of the policy hook instructions. Hence, the adversary has to guess the

9 Specifically, kBouncer reports a return-oriented attack when a chain of 8 short sequences has been executed,
where a sequence is referred to as “short” whenever the sequence length is less than 20 instructions.
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right offset to successfully deploy her attack. However, recent memory disclosure attacks
show that such randomization approaches can be circumvented [172].

3.2.2.4 ROPecker

ROPecker is a Linux-based approach suggested by Cheng et al. [47] that also leverages
the last branch record register set to detect past execution of gadgets. Moreover, it spec-
ulatively emulates the future program execution to detect gadgets that will be invoked
in the near future. To accomplish this, a static offline phase is required to generate a
database of all possible instruction sequences. To limit false positives, Cheng et al. [47]
suggest that only code sequences that terminate after at most n instructions in an indi-
rect branch should be recorded.

For its policies in category À, ROPecker inspects each LBR entry to identify indi-
rect branches that have redirected the control-flow to a gadget. This decision is based
on the gadget database that ROPecker derived in the static analysis phase. ROPecker
also inspects the program stack to predict future execution of gadgets. There is no di-
rect policy check for indirect branches, but instead, possible gadgets are detected via a
heuristic. More specifically, the robustness of its behavioral-based heuristic (category Á)
completely hinges on the assumption that instruction sequences will be short and that
there will always be a chain of at least some threshold number of consecutive instruction
sequences.

Lastly, its time of CFI check policy (category Â) is triggered whenever the program
execution leaves a sliding window of two memory pages. Specifically, ROPecker sets
all memory code pages to non-executable except (i) the page where program execution
is currently performed on, and (ii) the most previously executed page. When the pro-
gram aims to execute code from a non-executable page, ROPecker adjusts the sliding
and performs CFI validation. In addition, ROPecker hooks into some critical Linux func-
tions, namely mprotect(), mmap2(), and execve(). Before executing those functions, CFI
validation is enforced as well.

Remarks. Clearly, ROPecker performs more frequently CFI checks than both kBouncer
and ROPGuard. Hence, it can detect return-oriented attacks that do not necessarily in-
voke critical functions. However, as we shall show later, the fact that there is no policy
for the target of indirect branches is a significant limitation.

3.2.2.5 CFI for COTS Binaries

Most closely related to the original CFI work by Abadi et al. [4] is the proposal of
Zhang and Sekar [204] which suggest an approach for commercial-off-the-shelf (COTS)
binaries based on a static binary rewriting approach, but without requiring debug sym-
bols or relocation information of the target application. In contrast to all the other ap-
proaches we are aware of, the CFI checks are directly incorporated into the application
binary. To do so, the binary is disassembled using the Linux disassembler objdump. How-
ever, since that disassembler uses a simple linear sweep disassembly algorithm, Zhang
and Sekar [204] suggest several error correction methods to ensure correct disassembly.
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Moreover, potential candidates of indirect control-flow target addresses are collected
and recorded. These addresses comprise possible return addresses (i. e. call-preceded in-
structions), constant code pointers (including memory locations of pointers to external
library calls), and computed code pointers (used for instance in switch-case statements).
Afterwards, all indirect branch instructions are instrumented by means of a jump to a
CFI validation routine.

Like the aforementioned works, the approach of Zhang and Sekar [204] checks whether
a return or an indirect jump targets a call-preceded instruction. Furthermore, it also
allows returns and indirect jumps to target any of the constant and computed code
pointers, as well as exception handling addresses. Hence, the CFI policy for returns is
not as strict as in kBouncer, where only call-preceded instructions are allowed. On the
other hand, their approach deploys a CFI policy for indirect jumps, which is largely un-
monitored in the other approaches. However, it does not deploy any behavioral-based
heuristics (category Á).

Lastly, CFI validation (category Â) is performed whenever an indirect branch instruc-
tion is executed. Hence, it has the highest frequency of CFI validation invocation among
all discussed CFI approaches.

Similar CFI policies are also enforced by CCFIR (compact CFI and randomization) [202].
In contrast to CFI for COTS binaries, all control-flow targets for indirect branches are col-
lected and randomly allocated on a so-called springboard section. Indirect branches are
only allowed to use control-flow targets contained in that springboard section. Specifi-
cally, CCFIR enforces that returns target a call-preceded instruction, and indirect calls
and jumps target a previously collected function pointer. Although the randomization
of control-flow targets in the springboard section adds an additional layer of security, it
is not directly relevant for our analysis. Recall that memory disclosure attacks can reveal
the content of the entire springboard section [172]. The CFI policies enforced by CCFIR
are in principle covered by CFI for COTS binaries. However, there is one noteworthy
policy addition: CCFIR denies indirect calls and jumps to target pre-defined sensitive
functions (e. g. VirtualProtect). We do not consider this policy for two reasons: first, this
policy violates the default external library call dispatching mechanism in Linux systems.
Any application linking to such a sensitive (external) function will use an indirect jump
to invoke it.10 Second, as shown in detail by Göktas et al. [89] there are sufficient di-
rect calls to sensitive functions in Windows libraries which an adversary can exploit to
legitimately transfer control to a sensitive function.

Remarks. The approach of Zhang and Sekar [204] is most similar to Abadi et al. [4]’s
original proposal in that it enforces CFI policies each time an indirect branch is invoked.
However, to achieve better performance and to support COTS binaries, it deploys less
fine-grained CFI policies. Alas, its coarse-grain policies allow one to bypass the restric-
tions for indirect call instructions (CFICALL). The main problem is caused by the fact
that only one label is used for all indirect call targets. Given the large set of indirect call
targets in modern applications, an adversary can overwrite a valid function pointer with

10 The target address of an external function is dynamically allocated in the global offset table (GOT) which
is loaded by an indirect memory jump in the procedure linkage table (PLT).
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the address of another function. A typical target is the Linux global offset table (GOT)
which holds branch addresses for library calls. This leaves the solution vulnerable to
so-called GOT-overwrite attacks [35] that overwrite pointers (in the GOT) to external li-
brary calls. We return to this vulnerability in Section 3.2.6. Moreover, even if one would
ensure the integrity of the GOT, we are still allowed to use a valid code pointer de-
fined in the external symbols. Hence, the adversary can invoke dangerous functions
such as VirtualAlloc() and memcpy() that are frequently used in modern applications and
libraries.

3.2.3 Deriving a Combined Control-Flow Integrity Policy

In our analysis that follows, we endeavor to have the best possible protections offered
by the aforementioned CFI mechanisms in place at the time of our evaluation. Therefore,
our combined CFI policy (see Table 3) selects the most restrictive setting for each policy.
Nevertheless, despite this combined CFI policy, we then show that one can still cir-
cumvent these coarse-grained CFI solutions, construct Turing-complete return-oriented
programming attacks (under realistic assumptions), and launch real-world exploits.

At this point, we believe it is prudent to comment on the parameter choices in these
prior works — and that adopted in Table 3. In particular, one might argue that the
prerequisite thresholds could be adjusted to make code-reuse attacks more difficult. To
that end, we note that Pappas et al. [150] performed an extensive analysis to arrive at the
best range of thresholds for the recommended number of consecutive short sequences (s)
with a given sequence length of n <= 20. Their analysis reveals that adjusting the thresh-
olds for s beyond their recommended values is hardly realistic: when every function call
was instrumented, 975 false positives were recorded for s <= 8.

An alternative is to increase the sequence length n (e. g. setting it to n <= 40). Doing
so would require an adversary to find a long sequence of 40 instructions after each
seventh short sequence (for s <= 7). However, increasing the threshold for the sequence
length will only exacerbate the false positive issue. For this reason, Pappas et al. [150]
did not consider sequences consisting of more than 20 instructions as a gadget in their
analyses. We provide our own assessment in Section 3.2.6.3.

The approach of Cheng et al. [47], on the other hand, uses different thresholds for s

and n than in kBouncer. Making the thresholds in ROPecker more conservative (e. g. re-
ducing s and increasing n) will lead to the same false positives problems as in kBouncer.
Moreover, the problem would be worse, since ROPecker performs CFI validation more
frequently than kBouncer. Nevertheless, we show that regardless of the specific choice
of parameter chosen in the recommended ranges, our attacks render these defenses in-
effective in practice (cf. Section 3.2.6).

3.2.4 Turing-Complete Gadget Set

We now explore whether or not it is possible to derive a Turing-complete gadget set
even when all state-of-the-art coarse-grained CFI protections are enforced. In particular,
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we desire a gadget set that still allows an adversary to undermine the combined CFI
policy (see Table 3).

Assumptions. To be as pragmatic as possible, we assume that the adversary can only
leverage the presence of a single shared library to derive the gadget set. This is a
very stringent requirement placed on ourselves since modern programs typically link
to dozens of libraries.

Note also that we are not concerned with circumventing other runtime protection
mechanisms such as ASLR or stack canaries. The reasons are twofold: first, coarse-
grained CFI protection approaches do not rely on the presence of other defenses to
mitigate against code-reuse attacks. Second, in contrast to CFI, ASLR and protection
mechanisms that defend against code pointer overwrites (e. g. stack canaries, bounds
checkers, and pointer encryption) do not offer a general defense, and moreover, are
typically bypassed in practice. In particular, ASLR is vulnerable to memory disclosure
attacks [175, 172]. That said, the attacks and return-oriented programming gadgets we
present in the following can be also leveraged to mount memory disclosure attacks in
the first stage.

Methodology and Outline. Our analysis is performed primarily on Windows as it
is the most widely deployed desktop operating system today. Specifically, we inspect
kernel32.dll (on x86 Windows 7 SP1), a 848kb system library that exposes Windows
API functions and is by default linked to nearly every major Windows process (e. g.
Adober Reader, IE, Firefox, MS Office). It is also noteworthy to mention that our results
do not only apply to Windows. Although we did not perform a Turing-complete gadget
analysis for Linux’s default library (libc.so), to demonstrate the generality of our ap-
proach, we provide a shellcode exploit that uses gadgets from libc (cf. Section 3.2.6.2).
To facilitate the gadget finding process, we developed a static analysis python module in
IDA Pro that outputs all call-preceded sequences ending in an indirect branch. We also
developed a sequence filter in the general purpose D programming language that allows
us to check for sequences containing a specific register, instruction, or memory operand.
Note that in the subsequent discussions, we use the Intel assembler syntax, e. g. MOV
destination, source, and use a semicolon to separate two consecutive instructions.

We first review the basic gadgets that form a Turing-complete language [169, 41].
Similar to our code-reuse attack described in Section 3.1, we require gadgets that re-
alize memory load and store operations, arithmetic/logical gadgets, as well as a gad-
get to realize a conditional branch to achieve Turing-completeness. Afterwards, in Sec-
tion 3.2.5, we present two new gadget types, called the Call-Ret-Pair gadget, and the
Long-NOP gadget. Constructing the latter was a non-trivial engineering task and the
outcome played an important role in “stitching” gadgets together, thereby bypassing
coarse-grained CFI defenses. It should also be noted that we only present a subset of
the available sequences. Eliminating the specific few sequences presented in this section
will not prevent our attack, since kernel32.dll (and many other libraries) provides a
multitude of other sequences we could have leveraged.
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3.2.4.1 Loading Registers

Load gadgets are leveraged in nearly every return-oriented programming exploit to load
a value from the stack into a CPU register. Recall that x86 provides six general-purpose
registers (eax, ebx, ecx, edx, esi, edi), a base/frame pointer register (ebp), the stack
pointer (esp), and the instruction pointer (eip). All registers can be directly accessed
(read and write) by assembler instructions except the eip which is only indirectly influ-
enced by dedicated branch instructions such as RET, CALL, and JMP.

Typically, stack loading is achieved on x86 via the POP instruction. The call-preceded
load gadgets we identified in kernel32.dll are summarized in Table 4. Except for the
ebp register, we are not able to load any other register without inducing a side-effect, i. e.
without affecting other registers. That said, notice that the sequence for esi, edi, and
ecx only modifies the base pointer (ebp). Because traditionally ebp holds the base pointer
and no data, and ordinary programs can be compiled without using a base pointer, we
consider ebp as an intermediate register in our gadget set. The astute reader would have
noticed that the sequences for edi and ecx modify the stack pointer as well through
the LEAVE instruction, where LEAVE behaves as MOV esp,ebp; POP ebp. However, we can
handle this side-effect, since the stack pointer receives the value from our intermediate
register ebp. Hence, we first invoke the load gadget for ebp and load the desired stack
pointer value, and afterwards call the sequence for edi/ecx.

More challenges arise when loading the general-purpose registers eax, ebx, and edx.
While ebx can be loaded with side-effects, we were not able to find any useful stack pop
sequence for eax and edx. This is not surprising given the fact that we must use call-
preceded sequences. Typically, these sequences are found in function epilogues, where
a function epilogue is responsible for resetting the caller-saved registers (esi, edi, epb).
We alleviate the side-effects for ebx by loading all the caller-saved registers from the
stack.

Register Call-Preceded Sequence (ending in RET)

EBP POP ebp

ESI POP esi; POP ebp

EDI POP edi; LEAVE

ECX POP ecx; LEAVE

EBX POP edi; POP esi; POP ebx; POP ebp

EAX MOV eax,edi; POP edi; LEAVE

EDX MOV eax,[ebp-8]; MOV edx,[ebp-4];

POP edi; LEAVE

Table 4: Register load gadgets

For eax and edx, data movement gadgets can be used. As can be seen in Table 4, eax
can be loaded using the edi load gadget in advance. The situation is more complicated
for edx, especially given our choice to only use kernel32.dll. In particular, while there
is a sequence that allows one to load edx by using the ebp load gadget beforehand, it is
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challenging to do so since the adversary would need to save the state of some registers.
That said, other default Windows libraries (such as shell32.dll) offer several more
convenient gadgets to load edx (e. g. a common sequence we observed was POP edx;

POP ecx; JMP eax), and so this limitation should not be a major obstacle in practice.

3.2.4.2 Loading and Storing from Memory

In general, software programs can only accomplish their tasks if the underlying pro-
cessor architecture provides instructions for loading from memory and storing values
to memory. Similarly, return-oriented programming attacks require memory load and
store gadgets. Although we have found several load and store gadgets, we focus on the
gadgets listed in Table 5.

Type Call-Preceded Sequence (ending in RET)

LOAD (eax) MOV eax,[ebp+8]; POP ebp

STORE (eax) MOV [esi],eax; XOR eax,eax;

POP esi; POP ebp

STORE (esi) MOV [ebp-20h],esi

STORE (edi) MOV [ebp-20h],edi

Table 5: Selected memory load and store gadgets

In particular, we discovered load gadgets that use eax as the destination register. The
specific load gadget shown in Table 5 loads a value from memory pointed to by [ebp+8].
Hence, the adversary is required to correctly set the target address of the memory load
operation in ebp via the register load gadget shown in Table 4.

We also identified a corresponding memory store gadget on eax. The shown gadget
stores eax at the address provided by register esi, which needs to be initialized by a load
register gadget beforehand. The gadget has no side-effects since it resets eax (which was
stored earlier) and loads new values from the stack into esi (which held the target
address) and ebp (our intermediate register).

Given a memory store gadget for eax and the fact that we have already identified
register load gadgets for each register, it is sufficient to use the same memory load on
eax to load any other register. This is possible because we use the eax load gadget to
load the desired value from memory, store it afterwards on the stack, and finally use
one of the register load gadgets to load the value into the desired register. Finally, we
also identified some convenient memory store gadgets for esi and edi only requiring
ebp to hold the target address of the store operation.

3.2.4.3 Arithmetic and Logical Gadgets

For arithmetic operations, we utilize the sequence containing the x86 SUB instruction
shown in Table 6. This instruction takes the operands from eax and esi and stores the
result of the subtraction into eax. Both operands can be loaded by using the register
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load gadgets (see Table 4). The same gadget can be used to perform an addition: one
only needs to load the two’s complement into esi. Based on addition and subtraction,
we can realize multiplication and division as well. Unfortunately, logical gadgets are not
as commonplace. There is, however, a XOR gadget that takes its operands from eax and
edi (see Table 4).

Type Call-Preceded Sequence (ending in RET)

ADD/SUB SUB eax,esi; POP esi; POP ebp

XOR XOR eax,edi; POP edi; POP esi;

POP ebp

Table 6: Arithmetic and logical gadgets

3.2.4.4 Branching Gadgets

We remind the reader that branching in return-oriented programming attacks is realized
by modifying the stack pointer rather than the instruction pointer [169]. In general, we
can distinguish two different types of branches: unconditional and conditional branches.
kernel32.dll, for example, offers two variants for a unconditional branch gadget (see
Table 7). The first uses the LEAVE instruction to load the stack pointer (esp) with a new
address that has been loaded before into our intermediate register ebp. The second
variant realizes the unconditional branch by adding a constant offset to esp. Either one
suffices for our purposes.

Conditional branch gadgets change the stack pointer iff a particular condition holds.
Because load, store, and arithmetic/logic computation can be conveniently done for eax,
we could place the conditional in this register. Unfortunately, because a direct load of esp
(that depended on the value of eax) was not readily available, we realized the conditional
branch in three steps requiring the invocation of only four instruction sequences. That
said, our gadget is still within the constraints for the number of allowable consecutive
sequences in the Combined CFI-enforcement Policy (see s <= 7 for CFIHEU in Table 3).

First, we use the conditional branch gadget (see Table 7) to either load 0 or a prepared
value into eax. In this sequence NEG eax computes the two’s complement and, more im-
portantly, sets the carry flag to zero if and only if eax was zero beforehand. This is nicely

Type Call-Preceded Sequence

(ending in RET)

unconditional Branch 1 LEAVE

unconditional Branch 2 ADD esp,0Ch; POP ebp

conditional LOAD(eax) NEG eax; SBB eax,eax;

AND eax,[ebp-4]; LEAVE

Table 7: Branching gadgets
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used by the subsequent SBB instruction, which subtracts the register from itself, always
yielding zero, but additionally subtracting an extra one if the carry flag is set. Because
subtracting one from zero gives 0xFFFFFFFF, the next AND instruction masks either none
or all the bits. Hence, the result in eax will be exactly the contents of [ebp-4] if eax was
zero, or zero otherwise. One might think that it is very unlikely to find sequences that
follow the pattern NEG-SBB-AND. However, we found 16 sequences in kernel32.dll that
follow the same pattern and could have been leveraged for a conditional branch gadget.

We then use the ADD/SUB gadget (see Table 6) to subtract esi from eax so that the
latter holds the branch offset for esp. Finally, we move eax into esp using the stack as
temporary storage. The STORE(eax) gadget (see Table 5) will store the branch offset on
the stack, where POP ebp followed by the unconditional Branch 1 gadget loads it into
esp.

3.2.5 Extended Gadget Set

For those readers who have either written or analyzed real-world code-reuse exploits
before, it would be clear to them that several other gadgets are useful in practice. For
example, modern exploits usually invoke several WinAPI functions to perform mali-
cious actions, e. g. launching a malicious executable by invoking WinExec(). Calling such
functions within a return-oriented programming attack requires a function call gadget
(Section 3.2.5.1). It is also useful to have gadgets that allow one to conveniently write a
NULL word to memory (Section 3.2.5.2) or the stack pivot gadget [206] which is used
by return-oriented attacks exploiting heap overflows (Section 3.2.5.3).

Additionally, to provide a generic method for circumventing the behavioral-based
heuristics of the Combined CFI Policy, we present a new gadget type, coined Long-
NOP, containing long sequences of instructions which do not break the semantics of an
arbitrary return-oriented programming chain (Section 3.2.5.4).

3.2.5.1 Call-Ret-Pair Gadget

CFI policies raise several challenges with respect to calling WinAPI functions within a
code-reuse attack. First, one cannot simply exploit a RET instruction because the CFIRET
policy states that only a call-preceded sequence is allowed — clearly, the beginning of
a function is not call-preceded. Second, the adversary must regain control when the
function returns. Hence, the return address of the function to be called must point to a
call-preceded sequence that allows the code-reuse attack to continue.

To overcome these restrictions, we utilize what we coined a Call-Ret-Pair gadget. The
basic idea is to use a sequence that terminates in an indirect call but provides a short
instruction sequence afterwards that terminates in a RET instruction. Among our possible
choices, the Call 1 sequence shown in Table 8 was selected.

To better understand the intricacies of this gadget, we provide an example in Figure 21.
This example depicts how we can leverage our gadget to call VirtualAlloc(). We start
with a load register gadget which first loads the start address of VirtualAlloc() into esi.
Further, it loads into ebp an address denoted as ADDR. At this address is stored RET 3,
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Type Call-Preceded Sequence

Call 1 LEA eax,[ebp-34h]; PUSH eax;

CALL esi; ret

Call 2 CALL eax

Call 3 PUSH eax; CALL [ebp+0Ch]

Table 8: Function call gadgets

Data Memory

RET 1

Addr(VirtualAlloc)

ADDR + 0x34

Code Memory

ESP

POP esi
POP ebp
RET

Sequence 1

LEA eax,[ebp-34h]
PUSH eax
CALL esi
RET

Call-Ret-Pair

RET 2

ALLOC Memory
...
...
...
...
RET

VirtualAlloc()

RET 3ADDR

1

2

3

4

5

Figure 21: Example for Call-Ret-Pair gadget

the pointer to the instruction sequence we desire to call after VirtualAlloc() has returned.
The next sequence is our Call-Ret-Pair gadget, where the first instruction effectively
loads RET 3 pointed to by [ebp-34h] into eax. Next, RET 3 is stored at ADDR onto the
stack using a PUSH instruction before the function call occurs. The PUSH instruction also
decrements the stack pointer so that it points to RET 2. The subsequent indirect call
invokes VirtualAlloc() and automatically pushes the return address onto the stack, i. e. it
will overwrite RET 2 with the return address. This ensures that the control-flow will be
redirected to the RET instruction in our Call-Ret-Pair gadget when VirtualAlloc() returns.
Lastly, the return will use RET 3 to invoke the next sequence.

Note that this Call-Ret-Pair gadget works for subroutines following the stdcall call-
ing convention. Such functions remove their arguments from the stack upon function
return. For functions using cdecl, we use a Call-Ret-Pair gadget that pops after the
function call, the arguments of the subroutine from the stack. The details of the gadget
we use for a cdecl compiled function can be found in [64, Appendix D].

For code-reuse attacks that terminate in a function call, we leverage the Call 2 and
Call 3 gadgets shown in Table 8. The difference resides in the fact that Call 2 requires
the target address to be loaded into eax, whereas Call 3 loads the branch address from
memory.

Recall that the CFI policy for indirect calls (CFICALL in Table 3) only permits the use of
branch addresses taken from an exported symbol or a valid code pointer place. However,
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as we already described in Section 3.2.2.5, modern applications typically make use of
many WinAPI functions by default. We can indirectly call any one of these functions
using the external symbols as the integrity of code pointers is not guaranteed.

3.2.5.2 NULL-Byte Write Gadget

In real-world exploits it is useful to have gadgets that allow one to conveniently write
a NULL word to memory. This is important as real-world vulnerabilities typically do
not allow an adversary to write a NULL byte in the payload, but such functionality is
indeed needed to write a 32-bit NULL word on the stack when required as a parameter
to function calls.

A prominent example is the traditional strcpy(dest,src) vulnerability, which can be ex-
ploited to write data beyond the boundaries of the src variable. However, strcpy() stops
copying input data after encountering a NULL byte.

Data Memory

RET 1

ADDR + 0x20

RET 2

Code Memory

ESP

POP ebp
RET

Sequence 1

AND [ebp-20h],0
RET

NULL-Byte

RET 3ADDR

1

2

3

Figure 22: Details of NULL-Byte write gadget

Our choice for such a gadget is shown in Figure 22. This gadget first loads the target
address into ebp with the first sequence (Step ¶). The next sequence exploits the AND

instruction to generate a NULL word at the memory location pointed to by [ebp-20h]

(Step · and ¸).

3.2.5.3 Stack Pivot Gadget

We take advantage of two distinct stack pivot gadgets shown in Table 9. The first one
is our unconditional branch gadget, which moves ebp via the LEAVE instruction to esp.
The other sequence takes the value of esi and loads it into esp. In both sequences, the
adversary must control the source register ebp and esi, respectively. This is achieved
by invoking a load register gadget beforehand. Note also that several vulnerabilities
allow an adversary to load these registers with the correct values at the time the buffer
overflow occurs.

3.2.5.4 Long-NOP Gadget

Our final gadget is needed to thwart the restriction that after s = 7 short sequences in
a row is used, another sequence of n >= 20 instructions must follow (see CFIHEU in
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Type Call-Preceded Sequence (ending in RET)

Pivot 1 LEAVE

Pivot 2 MOV esp, esi; POP ebx; POP edi;

POP esi; POP ebp

Table 9: Stack pivot gadgets

Table 3). For this task, we developed a new gadget type that we refer to as the long
no-operation (long-NOP) gadget. Constructing long-NOP in a way that does not break
the semantics of an arbitrary return-oriented programming chain was a non-trivial task.

To identify possible sequences for this gadget type, we let our sequence finder filter
those call-preceded sequences that contain more than 20 instructions. To ensure that
the long sequence does not break the semantics of the return-oriented programming
chain, we further reduced the set of sequences to those that (i) contain many memory-
write instructions, and (ii) make use of only a small set of registers. While the latter
requirement is obvious, the former seems counter-intuitive as it can potentially change
the memory state of the process. However, if we are able to control the destination
address of these memory writes, we can write arbitrary values into the data area of the
process outside the memory used by our code-reuse attack.

Data Memory

Gadget 1 (RET 1)

RET 2

ESI_ADDR (EBP)

Code Memory

ESP

POP ebp
RET

Sequence 2
POP esi; POP edi
POP ebp
RET 8

Sequence 7

RET 3

RET 4

EAX_ADDR (ESI)

EDI_ADDR (EBP)

RET 5

RET 6

RET 7

DATA_ADDR → ESI

DATA_ADDR → EDI

Pattern → EBP

RET 8

Pattern

Pattern

Saved EDI
Saved ESI

Saved EAX → EBX

New Value → EBP

Gadget 2 (RET 1)

ROP Action
RET

Sequence 1

MOV [ebp-20h],esi
RET

Sequence 3

POP esi; POP ebp
RET

Sequence 4

MOV [ebp-20h],edi
RET

Sequence 5

MOV [esi],eax
XOR eax,eax
RET

Sequence 6

PUSH 3
POP eax
13 Memory Writes
(esi,edi)
XOR eax,eax
MOV eax,ebx
POP edi; POP esi
POP ebx; POP ebp
RET

Sequence 8 (Long-NOP)

36 Bytes
Data Memory

DATA_ADDR
O

P
TIO

N
A

L

Figure 23: Flow of Long-NOP gadget
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Among the sequences that fulfill these requirements, we chose a sequence that is
(abstractly)11 shown in Figure 23. It contains 13 memory write instructions using only
the registers esi and edi. We stress that the entire gadget chain for long-NOP does not
induce any side-effects, i. e. the content of all registers and memory area used by the
code-reuse attack is preserved.

We distinguish between mandatory and optional sequences used for long-NOP. The
latter sequences are only required if the content of all registers needs to be preserved. We
classify them as optional, since it is very unlikely that code-reuse attacks need to operate
on all registers during the entire execution phase. If all registers need to be preserved
(worst-case scenario), we require 6 sequences before the long-NOP gadget sequence is
invoked. Since all registers are preserved, we can issue in each round another sequence
until all desired sequences have been executed.

Mandatory Sequences. The mandatory sequences are those labeled Sequence 7 and 8

(in Figure 23). Sequence 7 is used to set three registers: esi, edi, and ebp. We load in
esi and edi the same address, namely DATA_ADDR, which points to an arbitrary data
memory area in the address space of the application, e. g. stack, heap, or any other data
segment of an executable module. Due to the RET 8 instruction, the stack pointer will
be incremented by 8 more bytes leaving space for pattern values. Afterwards, our long-
NOP sequence uses esi and edi to issue 13 memory writes in a small window of 36

bytes. In each round, we use the same address for DATA_ADDR, and hence, we always
write the same arbitrary values in a 36 byte memory space not affecting memory used
by our code-reuse attack. The long-NOP sequence also destroys the value of eax and
loads new values via POP instructions in other registers. However, these register changes
are resolved by our optional sequences discussed next.

Optional Sequences. Sequence 2 to 6 are the optional sequences, and are responsible for
preserving the state of all registers. The optional sequences shown in Figure 23 represent
those already presented in our basic gadget arsenal in Section 3.2.4. Depending on the
specific goals and gadgets of a code-reuse attack, the adversary can choose among the
optional sequences as required.

Sequence 2 and 3 store the value of esi on the stack in such a way that the POP esi

instruction in long-NOP resets the value accordingly. Sequence 4 to 6 store the content
of eax and edi on the stack. Similar to the store for esi, the content is again re-loaded
into these registers via POP instructions at the end of the long-NOP sequence. However,
the content of register eax and ebx is exchanged after the long-NOP sequence since
MOV eax,ebx stores ebx to eax, and the former value of eax is loaded via POP into ebx.
However, we can compensate this switch by invoking the Long-NOP gadget twice so
that eax and ebx are exchanged again.

11 For the interested reader, we have placed the specific assembler implementation of the long-NOP sequence
in [64, Appendix C].
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3.2.6 Hardening Real-World Exploits

We now elaborate on the hardening of two real-world exploits against 32-bit Windows 7

SP1 and a Linux proof-of-concept exploit. Specifically, we transform publicly available
code-reuse attacks against Adobe PDF reader [110] and the GNU mediaplayer mPlayer [36].
We used the gadget set derived in Section 3.2.4 and 3.2.5 to perform the transformation.
Furthermore, our attacks are executed with the Caller, SimExecFlow, StackPivot, LoadLib,
and MemProt option for ROP detection in Microsoft EMET 4.1 enabled. The source code
for both attacks is given in the Appendix of our technical report [65].

3.2.6.1 Windows Exploits

Our Adobe PDF attack exploits the integer vulnerability CVE-2010-0188 in the TIFF
image processing library libtiff. The vulnerability originally targeted Adobe PDF ver-
sions 9.1-9.3 running on Windows XP SP2/SP3. Likewise, the mPlayer attack exploited
a buffer overflow vulnerability that allows the adversary to overwrite an exception han-
dler pointer. Since we perform our analyses on Windows 7, we ported both exploits
from Windows XP to Windows 7. The exploits are provided as a malicious pdf and m3u

video file, respectively.

Exploit Requirements. For both exploits, we need to (1) allocate a new read-write-
execute (RWX) memory page with VirtualAlloc(), (2) copy malicious shellcode into the
newly allocated page by using memcpy(), and (3) redirect the control-flow to the shell-
code. Originally, the exploits made use of non-call-preceded gadgets, and used a long
chain of short instruction sequences. For mPlayer 18 consecutive short sequences are
executed, while for Adobe PDF 11 sequences are executed until the first system call is
issued. Hence, both exploits clearly violate CFIRET and CFIHEU of the combined CFI
policy. That is, these exploits are prevented by Microsoft EMET because of CFIRET , and
are detected by both kBouncer and ROPecker due to violation of the CFIHEU policy.

Replacing Code Sequences. A simplified view of the gadget chain we use for our hard-
ened exploits in the PDF exploit is shown in Figure 24. We first replaced all non-call-
preceded sequences with one of our call-preceded sequences in our gadget set identi-
fied in Section 3.2.4. Both exploits mainly use load register and memory gadgets to set
the arguments for VirtualAlloc() and memcpy(), and function call gadgets to invoke both
functions. By leveraging only call-preceded sequences, our attacks comply to the CFI
policy for returns (CFIRET ).

Since both exploits make use of WinAPI calls, we utilized our Call-Ret-Pair gadget
to invoke VirtualAlloc() and memcpy(). As both functions are default routines used in a
benign execution of Adobe PDF and mPlayer, we are allowed to leverage indirect calls to
invoke these functions (addressing CFICALL). Lastly, we need to tackle the CFI policies
for behavioral heuristics (addressing CFIHEU) by ensuring that we never execute more
than 7 short sequences in a row before calling our long-NOP gadget.

Putting-It-All-Together. Sequence ¶ in Figure 24 loads the target address of VirtualAl-
loc() into esi. The arguments to this function (Arg1-Arg4) are set on the stack. They are
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Figure 24: Simplified view of our hardened PDF exploit. See Appendix in [65] for the full source
code.

chosen in such a way that VirtualAlloc() allocates a new RWX memory page. Sequence ·

leverages our Call-Ret-Pair gadget to call VirtualAlloc(). The start address of the page is
placed by VirtualAlloc() into eax.

Sequence ¸ and ¹ facilitate two goals: first they store the start address of the new
RWX page on the stack. Second, they prepare the execution of the long-NOP gadget.
In particular, they set esi and edi to DATA_ADDR. This address points to an arbitrary
data section of one of the linked libraries. Our long-NOP sequence (Sequence º) will
later perform 13 memory writes on this data region, thereafter setting esi to the start
address of memcpy(). Sequence » invokes memcpy() to copy the malicious shellcode onto
the newly allocated RWX page. Lastly, our return-oriented programming chain transfers
the control-flow to the copied shellcode via Sequence ¼, which in both exploits opens
the Windows calculator.

For the Adobe PDF attack, we used 7 sequences with 52 instructions executed. In the
hardened version of the mPlayer exploit, we used 49 sequences with 380 instructions
executed. Note that the 49 sequences include the interspersed long-NOP sequences to
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adhere to the CFI policy CFIHEU. We used a writable memory area of 36 Bytes for the
long-NOP gadget. The requirement of more sequences for the mPlayer attack can be
attributed to the fact that this exploit did not allow for the use of any NULL bytes in
the payload and so we needed to leverage a NULL-Byte gadget (cf. Section 3.2.5.2) in
this exploit. The mPlayer exploit also required a stack pivot gadget (cf. Section 3.2.5.3).
This attack also required a specific stack pivot gadget adding a large constant to esp.
Unfortunately, our stack pivot sequences in kernel32.dll did not use large enough con-
stants, and the original sequence exploited a non call-preceded one in avformat-52.dll.
However, we identified another useful call-preceded stack pivot sequence in the same
library which allowed us to instantiate the exploit.

The above strategies can be used to easily transform other return-oriented attacks to
bypass current coarse-grained CFI defenses. Furthermore, given our routines for finding
and filtering useful call-preceded instruction sequences, the process of transforming
exploits could be fully automated. We leave that as an exercise for future work.

A final remark concerns the control transfer to the injected shellcode. In both exploits,
we invoke a call-preceded sequence terminating in an indirect jump. While this approach
works for kBouncer, ROPecker, and ROPGuard, it might raise an alarm for CFI for COTS
binaries if the shellcode is placed at an address that is not within the set of valid function
pointers (i. e. indirect jump targets). However, there are several ways to tackle this issue.
A very effective approach has been shown by Göktas et al. [89], where the code section
is simply set to be writable, the shellcode copied to an address which resembles a valid
function pointer, and after which the code section is reset back to be executable.

3.2.6.2 Linux Shellcode Exploit

Since the approach of Zhang and Sekar [204] targets Linux specifically, we also devel-
oped a proof-of-concept exploit that shows how our attack bypasses the CFI policies for
indirect calls. To do so, we use a sample program that suffers from a buffer overflow
vulnerability allowing an adversary to overwrite a return address on the stack. The goal
of our attack is to call execve(), which is a standard system function defined in libc.so to
execute a new program. The challenge, however, is that the example program does not
include execve() in its external symbols, and consequently, we are not allowed to redirect
the control-flow to execve() using an indirect call.

To overcome this restriction, we leverage a well-known attack technique called global
offset table (GOT) overwrite [35]. The basic idea is to write the address of execve() at a
valid code pointer location. A well-known location for doing so is the GOT table, which
contains pointers to library calls such as printf(). We reiterate that the weakness here is
that CFI for COTS binaries deploys only one label for indirect call targets. Given the fact
that the GOT is typically writable in the current design of Linux due to dynamic address
resolution of external library functions and lazy binding, we can invoke gadgets to over-
write the pointers placed in the GOT. Specifically, we first find useful sequences from
the Linux standard library libc.so and use gadgets that perform the GOT overwrite
while using only call-preceded sequences.
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Figure 25: GOT overwrite attack

Putting-It-All-Together. An example on how we bypass the CFI policy for indirect calls
is shown in Figure 25. The approach is as follows: first, Gadget ¶ loads the address of
the GOT entry we want to modify into edx, and loads eax with the address of execve().
Next, Gadget · overwrites the address of printf() with the address of execve() in the
GOT. Finally, Gadget ¸ loads the address of the printf() stub into esi, and Gadget ¹

uses a Call-Ret-Pair gadget to invoke execve(). At this point, the attack succeeds without
violating any of the CFI policies.

3.2.6.3 On Parameter Adjustment

As alluded to in Section 3.2.3, adjusting the parameters for the CFIHEU policy beyond
the recommended settings will negatively impact the false positive rate. To assess that,
we extended the analysis beyond what Pappas et al. [150] originally performed in order
to analyze the impact of increasing n to 30 or 40 instructions — thereby rendering our
Long-NOP gadget (which is only 23 instructions long) stitching ineffective. Specifically,
we performed an experiment using three benchmarks of the SPEC CPU 2006 benchmark
suite: bzip2, perlbench, and xalancbmk. The first two are programmed in C, while the
latter in C++. We developed an Intel Pintool that counts the number of instructions
issued between two indirect branches, and the number of consecutive short instruction
sequences. Whenever a function call occurs, we check how many short sequences (s)
have been executed since the last function call.

As Figure 26 shows, increasing the thresholds for n induces many potential false
positives (y-axis). In particular, for each benchmark (x-axis), we observe that for s > 10

there are about 20,000 potential false positives, i. e. 20,000 times we detected a function
call that was preceded by more than 10 short sequences12.

12 We also simulated the analysis performed in [150] by setting n = 20. However, we arrive at a significantly
higher false positive rate than in [150]. This is likely due to the fact that we perform our analysis on
industry benchmark programs, while their analysis is based on opening web-browsers or document readers.
Furthermore, their focus is on WinAPI calls, whereas in Figure 26 we instrument every call.



66 advanced code-reuse attacks

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

bzip2
(n=30)

perlbench
(n=30)

xalancbmk
(n=30)

bzip2
(n=40)

perlbench
(n=40)

xalancbmk
(n=40)

N
u

m
b

er
 o

f 
P

o
te

n
ti

al
 F

al
se

 P
o

si
ti

ve
s

s=7 s=8 s=9 s=10 s>10

Figure 26: Potential false positives when the parameters for the consecutive sequences (s) and
sequence length (n) are adjusted.

3.2.7 Summary and Conclusion

Without question, control-flow integrity offers a strong defense against runtime exploits.
Its promise lies in the fact that it provides a general defense mechanism to thwart such
attacks. Unfortunately, several pragmatic issues (most notably, its relatively high perfor-
mance overhead), have limited its widespread adoption.

To better tackle the performance trade-off between security and performance, several
coarse-grained CFI solutions have been proposed to date [150, 204, 202, 83, 47]. These
proposals all use relaxed policies, e. g. allowing returns to target any instruction follow-
ing a call instruction.

While many advancements have been made along the way, all to often the relaxed
enforcement policies significantly diminish the security afforded by Abadi et al. [4]’s
seminal work. This realization is a bit troubling, and calls for a broader acceptance that
we should not sacrifice security for small performance gains. Doing so simply does not
raise the bar high enough to deter skillful adversaries. Indeed, our own work shows that
even if coarse-grained CFI solutions are combined, there is still enough leeway to mount
reasonable and Turing-complete code-reuse attacks. Our hope is that our findings will
raise better awareness of some of the critical issues when designing robust CFI mecha-
nisms, all-the-while re-energizing the community to explore more efficient solutions for
empowering CFI.
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3.3 related work

In this section, we provide a comprehensive overview of related code-reuse attacks. Note
that we focus in this section our related work discussion on attack techniques and only
partially discuss countermeasures. We turn our attention to defensive techniques in the
subsequent chapters and elaborate on related work that aims at defending against code-
reuse attacks in Section 4.4 and Section 5.5.

3.3.1 Evolution of Code-Reuse Attacks

Originally, code-reuse attacks have been introduced by Solar Designer in 1997 [174] as
a consequence to the non-executable stack patch. The main idea is to transfer control to
a critical function such as execve() or system() residing in the standard UNIX C library
libc to bypass a non-executable stack. As we already described in Section 2.1.5.1, this
attack technique undermines data execution prevention and is usually referred to as
return-into-libc attack. Whereas the original return-into-libc attack allowed only invoca-
tion of a single function, Nergal demonstrated that techniques such as esp lifting and
frame faking can be leveraged to allow chained function calls inside a return-into-libc
attack [143]. However, chained function calls are challenging on processor platforms
where arguments are passed via registers rather than on the stack. A prominent exam-
ple is the 64-Bit Intel processor version x86-64. To tackle this challenge, Krahmer [118]
introduced a technique, coined borrowed code chunk exploitation, allowing an attacker
to execute just a short sequence inside a function to initialize the necessary arguments.

Shacham [169] generalizes the idea of borrowed code chunk exploitation and demon-
strated for the first time that code-reuse attacks allow arbitrary and Turing-complete
malicious program actions by combining code sequences residing in shared libraries.
The principle of return-oriented programming [160] has been applied and explored on
many processor architectures. The original attack targeted Intel x86 architectures [169]
and exploited mainly the so-called unintended instruction sequences which can be in-
voked on Intel due to variable-length instructions and unaligned memory access (cf.
Section 2.1.5.2). Subsequent work demonstrated that Harvard-based architectures —
where code and data is strictly separated from each other — cannot prevent return-
oriented programming attacks. To this end, Francillon and Castelluccia [79] leverage
return-oriented programming to inject arbitrary malware on an Atmel AVR-powered
sensor. Further, Buchanan et al. [31] apply return-oriented programming to the RISC-
based architecture SPARC, where no unintended code sequences exist by design. In par-
ticular, they introduce a compiler that automatically constructs return-oriented exploits.
In a similar vein, return-oriented programming has been shown on other architectures
including PowerPC-based Cisco routers [123] and ARM-based mobile devices [117, 104].
As real-world example, Checkoway et al. [40] even demonstrate a return-oriented pro-
gramming exploit on z80-powered voting machines (Harvard architecture) to shift votes.

Hund et al. [102] go one step further: they present the first compiler that automatically
identifies return-oriented gadgets in a given binary and compiles (based on the gadget
set) return-oriented programs. In particular, they construct a kernel rootkit that entirely



68 advanced code-reuse attacks

leverages return-oriented programming to undermine kernel integrity protection mecha-
nisms. Interestingly, the evaluation of the return-oriented compiler reveals that quicksort
executes more than 100 times slower when entirely implemented as return-oriented pro-
gram. Unfortunately, none of the countermeasures proposed to date has further inves-
tigated the tremendous performance overhead of return-oriented programming which
could potentially be exploited to detect return-oriented programming execution.

On the one hand, return-oriented programming raised a lot of academic and industrial
research. On the other hand, no real-world exploits using return-oriented programming
have been discovered until 2010. We believe that this is due to the fact that many PC plat-
forms still did not strictly enforce data execution prevention thereby allowing attackers
to launch conventional code injection attacks. However, in 2010, the first return-oriented
exploit targeting Adobe PDF has been discovered [110]. From there on, a number of
return-oriented exploits have appeared [91, 46, 128, 195].

3.3.2 Jump-Oriented Programming

All conventional return-oriented programming attacks discussed so far are based on
return instructions and thus can be defeated by return address checkers. These tools
or compiler extensions ensure the integrity of return addresses, which are corrupted
through the conventional return-oriented programming attack [81, 48, 95, 49, 61]. How-
ever, Checkoway and Shacham [39] propose a new code-reuse attack that does not re-
quire any return instruction. Instead, the attack exploits indirect jump instructions. The
attack is based on the “Bring your own pop jump (BYOPJ)” paradigm which assumes
that a special POP-JMP sequence is either available in the target program or in one of its
libraries. However, such a sequence is rarely found in ordinary program code. Our BLX-
attack demonstrates that similar attacks can be mounted on ARM-powered platforms
through the BLX instruction. In addition, we generalize the attack technique presented
in [39] by introducing our update-load-branch sequence avoiding the presence of a POP-
JMP sequence. Independent to our research, Bletsch et al. [26] introduce jump-oriented
programming (on x86), a code-reuse attack that requires no return instructions and no
POP-JMP sequence. For the latter, Bletsch et al. [26] leverage a generic dispatcher gadget
to transfer control to the subsequent code sequence. In fact, the dispatcher gadget is
similar to our update-load-branch sequence but targets Intel x86. Chen et al. [43] lever-
age jump-oriented programming to construct a rootkit that does not execute any return
instruction.

More distantly related to return-oriented programming is the concept of JIT-spraying
attacks [24]. These attacks allow an adversary to return to benign code the she injected
via a script. This is achieved by forcing a JIT-compiler to allocate new executable memory
pages with attacker-defined code that encapsulates dangerous unintended instruction se-
quences. Since scripting languages do not permit an adversary to directly program x86

shellcode, the attacker must carefully construct the script so that it contains useful gad-
gets in the form of unintended instruction sequences. For instance, Blazakis [24] suggests
using XOR operations where the immediate operand to the XOR instruction embeds the
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malicious instructions. In a recent work, Lian et al. [122] demonstrate that JIT-spraying
attacks are also applicable to architectures that are based on an ARM processor.

3.3.3 Gadget Compilers

Gadget compilers ease the adversary’s job of identifying gadgets in a given binary,
and constructing a return-oriented exploit thereof. We already mentioned two of these
gadget compilers: Buchanan et al. [31] introduce a return-oriented exploit compiler for
SPARC, and Hund et al. [102] a gadget compiler that automatically identifies gadgets
and compiles a return-oriented exploit for x86. However, these two gadget compilers
focus on code sequences ending in a return instruction. A gadget compiler that entirely
focuses on constructing jump-oriented exploits is presented by Chen et al. [44]. The
compiler targets x86-compiled code and leverages the so-called combinational gadget
terminating in a CALL-JMP sequence to invoke a system call in a jump-oriented attack.
Whereas the previously discussed gadget compilers focused on a particular processor
platform, Dullien et al. [70] introduce a gadget discovery tool that operates platform-
independent by decompiling assembler instructions to an intermediate language called
REIL.

Lastly, Schwartz et al. [164] present the Q compiler. This compiler automates the entire
process of identifying gadgets, assembling a return-oriented exploit, and hardening ex-
isting exploits that fail due to code randomization or data execution prevention. Interest-
ingly, the Q compiler is based on semantic definitions, e. g. it considers reg1 ← reg2 ∗ 1

as a data movement gadget rather than a multiplication gadget allowing Q to compen-
sate missing gadget types. This technique allows Q to generate return-oriented exploits
on a small code base (e. g. 20KB code) that does not per-se contain all gadget types.
Related to the small code base leveraged by Schwartz et al. [164], Homescu et al. [98]
demonstrate that a Turing-complete gadget set can be derived from so-called micro-
gadgets, i. e. code sequences that only consist of 2 to 3 Bytes. The probability of finding
these very short sequences among different binaries is higher than compared to complex
gadgets.

3.3.4 Code Reuse in Malware

Code-reuse attack techniques have been also leveraged to hide malicious program be-
havior from static analysis tools or non-ASCII filters. Lu et al. [125] leverage a return-
oriented decoder that only consists of code pointers that represent valid ASCII printable
characters. The decoder takes as an input the encoded code-reuse exploit and outputs
the actual code-reuse exploit at application runtime. Similarly, [188] successfully de-
ployed code-reuse attack techniques to undermine the application vetting process con-
ducted by Apple. To this end, they developed an application that contains an intended
buffer overflow vulnerability which gets exploited under certain conditions (e. g. after
the app is installed on the user’s device). Once the control-flow is hijacked, the exploit
payload leverages return-oriented programming to invoke private iOS APIs. Lastly, Vogl
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et al. [185] introduce persistent data-only malware, i. e. malware that leverages code-
reuse attack techniques to realize a persistent rootkit. With respect to malware detection,
Stancill et al. [178] present an analysis system that detects return-oriented programming
payloads in malicious files. Their system, efficiently analyzes incoming documents (PDF,
Office, or HTML files), and detects whether they contain a return-oriented programming
payload.

In a different domain, code-reuse techniques have been deployed to hide secret pro-
gram actions: Lu et al. [126] introduce program steganography that is based on executing
unintended code sequences to hide program actions from static analysis tools. However,
leveraging code-reuse attack techniques for a legitimate and benign purpose will eventu-
ally lead to false alarms in tools that aim at detecting and preventing code-reuse attacks.

3.3.5 Code Reuse and Code Randomization

A well-known approach to defend against code-reuse attacks is to randomize the code
layout of an application. As a consequence, an adversary can only guess where useful
code resides in memory. Today’s operating systems enforce address space layout ran-
domization (ASLR) to randomize the base address of code and data segments (cf. Sec-
tion 2.2). However, Shacham et al. [170] demonstrate that the entropy on 32-Bit systems
is too low allowing brute-force attacks. The main idea of such attacks is to guess the ad-
dress of a single library function residing in libc. For instance, the attacker attempts to
execute the sleep() function to halt program execution for a pre-defined time. However,
such attacks only succeed if no re-randomization is performed after each guess. Recently,
Bittau et al. [23] demonstrate that even 64-Bit based systems – where the randomization
entropy is significantly larger – can be compromised by means of brute-force attacks on
code randomization. The introduced technique, denoted as BROP (blind ROP), probes
on byte granularity the stack to eventually disclose gadgets based on whether the tar-
get server crashed or execution has continued. However, similar to the attack presented
in [170], BROP only applies to server applications that do not re-randomize after a crash.

As Fresi Roglia et al. [84] and Schwartz et al. [164] demonstrate, code randomization
is only effective if it is applied to every code section mapped into the address space
of an application. Both attacks leverage position-dependent (non-randomized) code of
the main (Linux) executable binary to instantiate a code-reuse attack. Whereas Schwartz
et al. [164] directly derive a Turing-complete gadget set from the non-randomized code,
Fresi Roglia et al. [84] invoke a couple of code sequences to disclose and overwrite
function pointers in the global offset table (GOT) [35], and start a conventional return-
into-libc attack subsequently. However, since the latter attack relies on static offsets, it
can be prevented by randomizing the order of functions residing in libc. Wang et al.
[190] tackle this challenge and dynamically identify function pointers in the GOT. In
particular, their goal is to disclose function pointers that point to a function that includes
a direct call to a system call. Hence, even if the order of functions is randomized, the
single disclosed function pointer already allows invocation of a dangerous system call.
However, the shown attack still requires non-randomized code.
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Fine-grained code randomization [120] applied to all code segments defends against
these attacks by randomizing function order [114], basic blocks [191, 63], instructions [97],
and register allocation [149]. In particular, until recently, it was widely believed that fine-
grained code randomization prevents an attacker from determining a chain of useful
code sequences based on a single leaked function pointer. However, our novel just-in-
time code-reuse attack demonstrates that an attacker can exploit scripting facilities to
disclose the randomized code of a large number of memory pages on-the-fly based on a
single leaked function pointer [172]. In Chapter 5, we elaborate in detail on fine-grained
code randomization schemes, their limitations, and emerging technologies to defend
against just-in-time code reuse.

3.3.6 Code-Reuse Attacks against Coarse-Grained CFI

Concurrent and independent to our work, several research groups have investigated the
security of coarse-grained CFI solutions [108, 89, 90, 37, 162]. However, our analysis dif-
fers from these works as we examine the security of a combination of coarse-grained
CFI policies irrespective of when the CFI check occurs. For instance, the attacks shown
in [89, 37, 162] are prevented by our combined CFI policy which monitors the sequence
length at any time in program execution. Furthermore, unlike these works, we systemat-
ically show the construction of a Turing-complete gadget set based on a weak adversary
that has only access to one standard shared Windows library. On the other hand, con-
current work also investigates some other interesting attack aspects: Göktas et al. [89]
demonstrate attacks against CCFIR [202] using call-preceded gadgets to invoke sensitive
functions via direct calls; Carlini and Wagner [37] and Schuster et al. [162] show flushing
attacks that eliminate return-oriented programming traces before a critical function is
invoked.
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3.4 summary and conclusion

In this chapter, we presented a new runtime exploitation technique to compromise
software running on an ARM-based device. Our attack is based on the principles of
return-oriented programming but does not use any return or function epilogue se-
quences. Instead, our attack chains together instruction sequences from existing libraries
by means of the indirect subroutine call instruction BLX (Branch-Load-Exchange). Hence,
it cannot be detected by return address checkers. In fact, we showed that such attacks
are Turing-complete allowing an attacker to induce arbitrary malicious computation.
Return-oriented programming without returns underlines the need that software pro-
grams need to be protected in a more generic approach such as control-flow integrity
(CFI) which restricts the program’s execution path to a pre-defined control-flow graph.
Unfortunately, several pragmatic issues (most notably, its relatively high performance
overhead), have limited its widespread adoption. To better tackle the performance trade-
off between security and performance, several coarse-grained CFI solutions have been
proposed. However, all too often the relaxed enforcement policies significantly diminish
the security afforded by Abadi et al. [4]’s seminal work. Indeed, our own work shows
that even if coarse-grained CFI solutions are combined, there is still enough leeway to
mount reasonable and Turing-complete code-reuse attacks.
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A D VA N C E S I N C O N T R O L - F L O W I N T E G R I T Y D E F E N S E S

In this chapter, we turn our attention to defensive techniques against code-reuse at-
tacks. In particular, we focus on defenses that are based on the principle of control-flow
integrity (CFI) and resist the attacks that we presented in Chapter 3. In contrast to a
variety of ad-hoc solutions that tackle a specific vulnerability or only a certain class
of runtime exploits, CFI provides a general solution against code-reuse attacks. First,
we present the design and implementation of our CFI framework for mobile devices
(Section 4.1). Second, we demonstrate that our CFI framework enables fine-grained ap-
plication sandboxing on iOS (Section 4.2). Next, we present the design, implementation,
and evaluation of HAFIX, our hardware-assisted flow integrity extensions enabling fine-
grained CFI on Intel Siskiyou Peak and SPARC LEON3 (Section 4.3). Lastly, we elaborate
on related work on CFI (Section 4.4) and conclude this chapter (Section 4.5).

4.1 mobile control-flow integrity

Smartphones and tablet computers are becoming ubiquitous, and the sales figures for
both types of devices are growing rapidly. Probably the most important reason for this
popularity is the availability of a large number of mobile applications, ranging from
simple games over messaging apps to office apps. Consumers can easily download these
apps from app stores, and then install and use them. The recent numbers of published
apps have already reached impressive thresholds, e.g. in July 2014 more than one billion
apps were available on Google Play and Apple’s App Store [179].

On the other hand, privacy and security concerns arise because apps can also access
personal/sensitive information or trigger critical services such as starting a phone call.
In addition, many current systems offer a large attack surface because they still run
software programs implemented in unsafe languages such as C or C++. In particular,
modern mobile platforms like Apple’s iOS and Google’s Android have recently become
appealing attack targets (e. g. [104, 137, 105, 113, 192, 135]), and increasingly leak sensi-
tive information to remote adversaries (e. g. the SMS or contacts database [105, 135]).

A general approach to mitigate runtime exploits is the enforcement of control-flow
integrity (CFI) [4] (cf. Section 2.3). Surprisingly, and to the best of our knowledge, there
exist no CFI framework for mobile platforms.

In this section, we present the design and implementation of MoCFI (Mobile CFI), a
CFI enforcement framework for mobile platforms. Specifically, we focus on the ARM
architecture since it is the standard platform for smartphones and tablets. The imple-
mentation of CFI on ARM is often more involved than on desktop PCs due to several
subtle architectural differences that highly influence and often significantly complicate
a CFI solution: (1) the program counter is a general-purpose register, (2) the processor
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may switch the instruction set at runtime, (3) there are no dedicated return instructions,
and (4) control-flow instructions may load several registers as a side-effect.

Although our solution can be deployed to any ARM-based mobile platform, we chose
Apple’s iPhone for our reference implementation because of three challenging issues:
First, the iPhone platform is a popular target of control-flow attacks due to its use of
the Objective-C programming language. In contrast, Android is not as prone to runtime
exploits, because applications are mainly written in the type-safe Java programming
language. Second, iOS is closed-source meaning that we can neither change the oper-
ating system nor can we access the applications’ source code. Third, applications are
encrypted and signed by default.

Contribution. To the best of our knowledge, MoCFI is the first general CFI enforcement
framework for mobile platforms. Solutions like NativeClient (NaCl) for ARM [166] only
provide a compiler-generated sandbox. NaCl needs access to source code, and currently
does not support 16-Bit THUMB code which is typically used in modern mobile applica-
tions. In contrast, our solution operates on binaries and can be transparently enabled for
individual applications. MoCFI allows us to apply CFI onto mobile applications with
commonly unavailable source code.

To this end, we first implemented a system to recover the control-flow graph (CFG)
of a given iOS application in binary format. In particular, we extend PiOS [72] (a data-
flow analysis framework) to generate the CFG. Based on this information, we perform
control-flow validation routines that are used during runtime to check if instructions
that change the control-flow are valid. Our prototype is based on library injection and
in-memory patching of code which is compatible to memory randomization, static code
signing, and encryption. Finally, our approach only requires a jailbreak for setting a sin-
gle environment variable, installing a shared library, and allowing our library to rewrite
the application code during load-time.

For performance evaluation, we measured the overhead MoCFI introduces as well
the average overhead for typical applications and worst-case scenarios. The evaluation
shows that our implementation is efficient and prevents return-oriented exploits.

Section Outline. The remainder of this section is organized as follows: after recalling
the basics of the iOS smartphone operating system and its security architecture in Sec-
tion 4.1.1, we present the technical challenges when applying CFI to mobile platforms in
Section 4.1.2. Next, we present the design and implementation of MoCFI in Section 4.1.3
and 4.1.4. In Section 4.1.5, we provide a security discussion and explain current limita-
tions. Lastly, we evaluate the performance of MoCFI in Section 4.1.6, and conclude in
Section 4.1.7.

4.1.1 Background on iOS

Apple iOS is a closed and proprietary operating system designed for mobile Apple
devices such as iPhone, iPad, and iPod Touch. iOS applications and the main iOS system
libraries are implemented in Objective-C which is a C-based object-oriented language.
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As iOS defers many decisions from compile-time to runtime, a so-called Objective-C
runtime system is required which is linked to every process.

In general, iOS provides several security features such as application sandboxing,
mandatory code signing, data encryption, data execution prevention, and memory ran-
domization. In the following, we elaborate on the underlying security architecture and
describe each of the enforced security features.

A well-known security feature deployed in iOS is code signing. It ensures that only
Apple-signed software can be executed on an iOS device. To bypass this restriction, users
can jailbreak (root) their devices to install arbitrary non-approved Apple software. Ap-
ple approves signed applications after a vetting process. Although the implementation
details of application vetting are not public, Apple states that it reviews all apps to ensure
they are reliable, perform as expected, and are free of offensive material [8]. Apple also deploys
an AES-256 hardware crypto engine to encrypt the file system of an iOS device.

An abstract view of the security architecture to realize application sandboxing on
iOS is shown in Figure 27. iOS deploys sandboxing to isolate applications from each
other, and to control access of applications to the operating system. In particular, we
distinguish components on three software layers: (1) the kernel layer which provides
basic system services (file system and network) and a kernel module to realize applica-
tion sandboxing, (2) the Objective-C framework layer and a privacy setting service, and
(3) the application layer where third-party and built-in apps are executing.
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The main component to enforce application sandboxing resides in the iOS kernel,
namely a TrustedBSD mandatory access control (MAC) module. This kernel module
enforces sandboxing at the level of system calls and directory paths. Further, sandboxing
is driven by sandboxing profiles which are pre-defined by Apple. The profiles consist of
access control lists (ACLs) that either deny or grant access to certain system calls and
file paths.

Apple defines a single sandboxing profile for third-party apps. Hence, all apps execute
with the same privilege level. In particular, this profile prohibits App A to access code
or data from other applications like App B (see Figure 27).

Apart from the TrustedBSD kernel module, there are several restrictions imposed by
Apple indirectly related to application sandboxing. Apple distinguishes between public
and private frameworks. A framework refers to a shared library and associated resources
to support the framework (e. g. images, header files). Of particular interest are the frame-
works located in the Objective-C framework layer as they provide access to main phone
facilities (such as Location, SMS, Calendar, Contacts, etc.). The private frameworks are
only accessible by system applications. On the other hand, the public frameworks can
be accessed by every third-party application.

Although third-party applications are only allowed to access public APIs of a public
framework, there is no fundamental operating system mechanism that prevents the use
of private APIs. Instead, Apple relies on the application vetting process to discover such
unauthorized access requests.

Finally, since iOS version 6, iOS allows users to specify privacy settings on a per-app
basis. Typically, iOS apps have by default access to private information such as contacts,
device IDs, keyboard cache, or location. In order to restrict the access to this information,
iOS users can arbitrarily configure privacy settings. In fact, this allows users to specify
restrictions on some selected privacy-related public APIs. However, there is yet no option
to enforce access control on non-privacy related public APIs as well as pure private APIs.

Runtime Protection Mechanisms. Since iOS v2.0, Apple enables the W ⊕ X security
model (cf. Section 2.1.4) to prevent code injection. Furthermore, iOS deploys dynamic
code signing enforcement (CSE) at runtime [207]. In contrast to systems that only enable
W⊕X (e. g. Windows or Linux), CSE on iOS prevents an application from allocating new
memory marked as executable. On the other hand, CSE at runtime in conjunction with
W ⊕ X has practical drawbacks because it does not support self-modifying code and
code generated by just-in-time (JIT) compilers. Therefore, iOS provides the so-called
dynamic-codesigning entitlement that allows applications to generate code at runtime. At
the time of writing, only the Mobile Safari Browser and full-screen web applications
are granted the dynamic-codesigning entitlement. However, neither CSE at runtime nor
W⊕X can prevent return-oriented programming attacks that only leverage existing and
signed code pieces. Since iOS v4.3, address space layout randomization (cf. Section 2.2)
is supported by default.
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4.1.2 Challenges

The adoption and adaption of control-flow integrity (CFI) [4] to mobile platforms in-
volves several difficulties and challenges.

The technical challenges are due to the architectural differences between ARM (RISC
design) and Intel x86 (CISC design), and because of the specifics of mobile operating
systems. These highly influence and often complicate a CFI solution as we argue in the
following.

• No dedicated return instruction: As already mentioned in Section 3.1.1, ARM
does not provide dedicated return instructions. Instead, any branch instruction
can be leveraged as a return. Moreover, returns may have side-effects, meaning
that the return does not only enforce the return to the caller, but also loads several
registers within a single instruction. Hence, in contrast to Intel x86, a CFI solution
for ARM has to handle all different kinds of returns, and has to ensure that all
side-effects of the return are properly handled.

• Multiple instruction sets: CFI on ARM is further complicated by the presence of
two instruction sets (ARM and THUMB), which can even be interleaved. Hence, it
is necessary to distinguish between both cases during the analysis and enforcement
phase, and to ensure the correct switching between the two instruction sets at
runtime.

• Direct access to program counter: Another difference is that the ARM program
counter pc is a general-purpose register which can be directly accessed by a num-
ber of instructions, e. g. arithmetic instructions are allowed to load the result of an
arithmetic operation directly into pc. Furthermore, a load instruction may use the
current value of pc as base address to load a pointer into another register. This
complicates a CFI solution on ARM, since we have to consider and correctly han-
dle all possible control-flow changes, and also preserve the accurate execution of
load instructions that use pc as base register.

• Missing binary rewriter: Moreover, in contrast to Intel x86, no binary instrumen-
tation framework exists for the ARM platform which allows the automatic genera-
tion of the control-flow graph and the memory adjustment when new instructions
are inserted into a binary. For instance, the CFI proposal for Intel x86 [4] depends
on the non-public binary instrumentation framework Vulcan [71] which enforces
these operations automatically.

• Application signing and encryption: Mobile operating systems typically feature
application encryption and signing. Since the traditional CFI approach [1] per-
forms changes on the stored binary, the signature of the application cannot be
verified anymore.

• Closed-source OS: Several mobile operating systems (such as iOS) are closed-
source. Hence, we cannot change the actual operating system to deploy CFI on
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smartphones. Moreover, end-users and even App Store maintainers (e. g. Apple’s
App Store) have no access to the applications’ source code.

4.1.3 Design of MoCFI

In this section, we present the design and implementation of MoCFI, our generic frame-
work to mitigate code-reuse attacks on mobile platforms based on the principle of
control-flow integrity (CFI). The general architecture and workflow of MoCFI is shown
in Figure 28. In general, we distinguish in our design two phases: static analysis and run-
time enforcement. The static analysis phase comprise tools to perform an initial analysis
of the compiled application binary. In particular, MoCFI deploys a preprocessor that de-
crypts and disassembles the encrypted application (Step ¶). Afterwards, we perform a
thorough static analysis on the application binary (Step ·): we generate the control-flow
graph (CFG) of the application and employ a branch detector to identify all branches
contained in the binary and extract all information that is necessary to enforce CFI at
runtime. Note that the static analysis needs to be performed only once after compilation
and can be integrated as an additional step in the deployment phase of a typical mobile
application.

In the runtime enforcement phase, we monitor the application while it is executing
using our novel MoCFI shared library that rewrites the application binary in memory at
load-time (Step ¸), and enforces control-flow integrity (CFI) at execution-time (Step ¹).
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Although the depicted design applies in general to all CFI solutions, our design re-
quires a number of changes, mainly due to (i) the architectural differences between ARM
and Intel x86, (ii) the missing binary rewriter and automatic graph generation for ARM,
and (iii) the specifics of mobile operating systems. In the following, we describe each
involved system component and our approach in more detail.

Preprocessor. The first step of our static analysis phase is performed within the prepro-
cessor component, which has mainly two tasks: (1) decrypting, and (2) disassembling
the target application binary. In particular, we faced the challenge that smartphone ap-
plications are often encrypted by default (e. g. iOS applications). We thus obtain the
unencrypted code of a binary through process dumping [72]. For disassembling the appli-
cation binary we deploy standard disassembler tools that support the ARM architecture.

Binary Analysis. The original CFI work for Intel x86 [1] employs the binary instrumenta-
tion framework Vulcan [71] to automatically derive the CFG and to statically rewrite an
application binary. However, such a framework does not exist for ARM. Hence, we devel-
oped own techniques to accurately generate the CFG. After our preprocessor decrypted
and disassembled the application binary, we identify all relevant branches contained in
the binary. By relevant branches, we refer to branch instructions that an adversary may
exploit for a control-flow attack. These mainly comprise indirect branches, such as in-
direct jumps and calls, and function returns. Moreover, we include direct function calls
to correctly validate function returns, i. e. to be able to check if a function return targets
the original caller. We do not instrument direct jump instructions for obvious reasons:
the target address for these are fixed (hard-coded), and cannot be manipulated by an
adversary. Finally, we store meta information for each indirect branch and function call
(e. g. instruction address, length, type, etc.) in a separate patchfile.

Based on the result of the branch detector, we generate the CFG by static tools that we
developed ourselves. In particular, our static tools calculate possible target addresses for
each indirect branch. Finally, a binary representation of the CFG is stored in a separate
file (denoted as Control-Flow Graph), which is linked to the smartphone application at
runtime.

MoCFI Load-Time Module: Binary Rewriting. The binary rewriting engine is respon-
sible for binding additional code to the binary that checks if the application follows
a valid path of the CFG. Typically, one replaces all branch instructions in the binary
with a number of new instructions that enforce the control-flow checks [1]. However,
replacing one instruction with multiple instructions requires memory adjustments be-
cause all instructions behind the new instructions are moved downwards. The Intel x86

approach uses the Vulcan binary instrumentation framework [71] which automatically
accomplishes this task. However, memory adjustment without a full binary rewriting
framework requires high implementation efforts.

Due to the limited possibilities to change smartphone binaries (due to code signing)
and the missing full binary rewriter, we opted for the following rewriting approach
(which has been originally proposed by Winwood et al. [196]). At load-time we replace
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all relevant branches (based on the extracted rewriting) with a single instruction: the so-
called dispatcher instruction. The dispatcher instruction redirects the program’s control-
flow to a code section where the CFI checks reside, namely to the runtime module of
our MoCFI shared library.

This approach also raises several problems: First, accurate branch instructions have to
be implemented that are able to jump to the correct CFI check. Second, the CFI checks
require information from where the dispatch originated. As we will demonstrate, our
solution efficiently tackles the above mentioned problems.

MoCFI Runtime Module: Control-Flow Integrity Enforcement. The key insight of CFI
is the realization of control-flow validation routines. These routines have to validate the
target of every branch to prevent the application from targeting an instruction sequence
that violates CFI. Obviously, each branch target requires a different type of validation.
Whereas the target address of an indirect jump or call can be validated against a list
of valid targets, the validation of function returns requires special handling because
return addresses are dynamic and cannot be predicted ahead of time. To address this
issue, MoCFI reuses the concept of shadow stacks that hold valid copies of return ad-
dresses [48, 81], while the return addresses are pushed onto the shadow stacks when a
function call occurs.

4.1.4 Implementation

In this section, we present the implementation details of MoCFI. Our reference imple-
mentation of MoCFI targets iOS version 4.3.1, which was at the time we conducted this
research project the most recent iOS version. The static analysis tools comprise 842 lines
of code written in the IDC language, which is a scripting language that is deployed
by the well-known disassembler IDA Pro. The runtime module of MoCFI has been de-
veloped in Objective-C and assembly language using Xcode 4. Specifically, the runtime
module of MoCFI is implemented as a shared library consisting of 1,430 lines of code
in total.

Note that our prototype implementation currently protects the application’s main
code, but no dynamic libraries that are loaded into the process. We leave support for
shared libraries open to future work. However, it is straightforward to extend MoCFI
accordingly, there are no new conceptional obstacles to overcome.

We now describe how we generate the CFG and the patchfile of an iOS binary (Sec-
tion 4.1.4.1). Next, we present the implementation details of our MoCFI load-time and
runtime module (Section 4.1.4.2 and 4.1.4.3).

4.1.4.1 Static Analysis

As we mentioned in Section 4.1.2, one challenge for enforcing CFI on iOS stems from the
fact that Apple restricts access to source code. Recall that even developers only submit
the applications’ binary files when uploading applications on the App Store. To tackle
this challenge, we apply our static analysis techniques directly on iOS binaries. This
allows us to generate the application’s CFG and identify all branch instructions inside
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the binary. We need the former one to validate if a branch follows a valid execution path
in the CFG, while the latter one is required to guarantee accurate binary rewriting. To
perform these tasks, we use the IDA Pro v6.0 Disassembler that reliably disassembles
ARM and THUMB code. On top of IDA Pro, we implemented scripts to automate the
analysis and extract the necessary information from a given iOS binary.

Patchfile Generation. As shown in Figure 28 in Section 4.1.3, Step · involves the gener-
ation of rewriting information for each individual binary. This information is required
by the load-time module of MoCFI to instrument each branch instruction with a new
instruction that redirects execution to a CFI validation routine residing in the runtime
module. In order to identify all relevant branch instructions, we evaluate each instruc-
tion belonging to the text segment and check if the instruction is relevant in the con-
text of CFI. Next, we perform a fine-grained instruction analysis and store the derived
meta information (e.g. instruction address, mode, length, type, etc.) in the patchfile. By
bundling the patchfile with the application, we can protect its integrity, as all application
bundle contents are code-signed.

Generation of the Control-Flow Graph (CFG). Typically, a CFG consists of (i) nodes that
represent basic blocks of an application, and (ii) edges connecting the various nodes. The
edges are due to any kind of branch instruction. However, as we argued in Section 4.1.3,
for our purposes it is sufficient to derive a CFG for those basic blocks that terminate in
an indirect branch. Furthermore, function returns cannot be resolved statically as their
destination addresses depend on the program’s dynamic state. Hence, for our CFG, we
first focus on basic blocks that terminate in an indirect call or jump instruction.

To determine the valid set of destination addresses for an indirect jump, we trace back
all registers the indirect jump depends on. As an example, on ARM an indirect branch
could implemented as follows: LDR pc,[r0,r1,LSL #2]. The resulting target address is
calculated at runtime by adding r0 to r1 multiplied by four. Hence, we need to deter-
mine the possible values of r0 and r1 to identify the valid set for this indirect jump.
Similarly, we trace back the possible values of a register that an indirect call depends on
(e. g. r3 for BLX r3).

Indirect jumps are typically emitted by the compiler when a switch-case statement is
used, e. g. depending on the runtime value of a variable, code of a specific case-statement
is executed. The control-flow is redirected to the case-statement by means of an indirect
jump instruction. In our static analysis, we identify such indirect jumps and record all
valid target addresses in our CFG file.

Another challenge with regards to CFG generation arises from the fact how iOS and
particularly Objective-C realizes method calls: at the machine-level, any method call on
an Objective-C object is dispatched via a direct call to a a generic message handling
routine called objc_msgSend. The name of the method to be called (the so-called selec-
tor) and the class instance that should receive the request are provided as parameters
to objc_msgSend. As an adversary might be able to alter these parameters to call an
arbitrary method of her choice, we need to track valid parameters for each method
call and record them in our CFG file. For this, we built upon PiOS [72] and former
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reverse-engineering work on iOS [69, 134] to generate the necessary CFG information
for objc_msgSend calls.

Limitations. Resolving indirect jumps and calls is challenging as the value they depend
on needs to be determined during static analysis. Unfortunately, recovering all indirect
branches is not always feasible. That said, we need to have a fallback mechanism in case
an indirect branch is not per-se resolvable. Note that this is not a specific limitation of
MoCFI, but affects all CFI solutions.

To tackle this challenge, we decided to enforce reliable heuristics that still constrain
the possible set of valid control-flow destinations but at the same time ensure correct
program execution. In particular, we observed that most indirect jumps operate inside
the scope of the function they are executed. In other words, an indirect jump targets a
destination address inside the currently executing function. Hence, for indirect jumps we
cannot resolve, we can restrict the target address to the bounds of the function. Similarly,
a reliable heuristic can be applied to unresolvable indirect calls: we simply restrict the
target address of an indirect call to the beginning of a function. This still allows an
adversary to redirect execution to an arbitrary function, but prevents the adversary from
jumping into the middle of a function as typically done in return-oriented programming
attacks.

4.1.4.2 Load-Time Module

As shown in Figure 28, the MoCFI runtime enforcement consists of two components: the
load-time and runtime module. We present implementation details for both components.
However, we first start our implementation discussion on how we instantiate MoCFI as
a runtime monitor to iOS applications.

MoCFI Instantiation. Recall that one implementation challenge stems from the fact that
mobile operating system apply code signing to application (cf. Section 4.1.2). Hence, we
need a mechanism to instrument an iOS application after the application’s signature has
been verified.

We tackle this challenge by implementing MoCFI as a shared library that instruments
an application on-the-fly in memory (rather than on disk). To inject our shared library,
we leverage standard library injection methods already provided by the operating sys-
tem. On UNIX-based system, this mechanism is provided through the environment
variable LD_PRELOAD. If this environment variable is set then the loader guarantees that
the library to be injected is loaded before any other program binaries. On iOS, the
same mechanism is supported via the DYLD_INSERT_LIBRARIES environment variable [9].
Hence, we simply set this environment variable to point to our MoCFI shared library.
In particular, we set the environment variable for the iOS Springboard process so that
every iOS application launched by the user is automatically protected by MoCFI.

After being loaded into the application’s address space, MoCFI starts to implement
the CFI enforcement by rewriting the code of the application in memory. We call this
part of MoCFI the load-time module in contrast to the runtime module, which enforces the
actual CFI checks.
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In-Memory Instrumentation. In order to rewrite the target iOS application in mem-
ory, the load-time module needs to locate and read the associated patchfile (cf. Sec-
tion 4.1.4.1). However, MoCFI cannot simply rewrite the application as iOS enforces
data execution prevention, i. e. the target memory pages are non-writable. Typically, we
only would need to invoke the mprotect() system call to change the permissions of the
target memory pages. However, iOS prohibits us from invoking mprotect(). Fortunately,
iOS still allows us to re-map memory pages using the mmap() [10] system call. Hence, we
instrument an application using mmap() and set the page permission to non-writable af-
ter our load-time module has completed its rewriting. Note that the presence of mmap()
does not allow an adversary to bypass MoCFI by reverting the MoCFI instrumentation.
In order to do so, the control-flow of the application needs to be altered beforehand.
However, this would lead to a CFI violation, which is in turn detected by MoCFI.

Trampoline Approach. Our binary rewriting engine overwrites the relevant control-flow
instructions with the so-called dispatcher instructions. The dispatcher redirects the pro-
gram flow to a short piece of assembler code, namely to the trampoline, which in turn
transfers the execution to our MoCFI library (see Figure 29). Hence, the trampolines are
used as bridges between the application we aim to protect and our MoCFI library.
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Figure 29: Trampoline approach

Specifically, we allocate dedicated trampolines for each indirect branch (i. e. indirect
jumps/calls and returns), one generic trampoline for direct internal function calls (i. e.
calls within the same code segment), and one generic trampoline for external function
calls. Two example trampolines are shown in Figure 29: the first one (Trampoline 1) is
used for a return instruction, while the second one (Internal Call Trampoline) handles
a (direct) internal function call. In general, each trampoline saves the current execution
state, invokes the appropriate MoCFI validation routine, resets the execution state, and
issues the original branch. Due to the last step, we ensure that all registers are loaded
correctly, even if the branch loads several registers as a side-effect, e. g. the replaced
return POP {r4-r7,pc} is copied by our load-time module at the end of Trampoline 1.



84 advances in control-flow integrity defenses

Hence, we ensure that r4 to r7 are correctly loaded with values from the stack before
the return address is loaded to pc.

Note that, depending on the replaced branch instruction, we allocate a THUMB or
ARM trampoline to ensure the correct interworking between the two instruction sets. In
the following, we present the different kinds of dispatcher instructions our solution uti-
lizes. The specific assembler implementation of the different ARM/THUMB trampolines
are described in [62, Appendix A].

ARM Dispatcher Instruction. As mentioned in Section 3.1.1, each ARM instruction
has a fixed size of 32 bits. Hence, we can simply replace each relevant ARM control-
flow instruction with a generic dispatcher branch (B) instruction. Effectively, this branch
instruction allows us to address any location in the range of ±16MB. Consequently, our
trampolines (see Figure 29) are allocated close to the code section we are instrumenting
so that we never exceed the range of ±16MB. Theoretically, even though we have never
noticed this case for the iOS applications we have tested, an application’s code section
may be larger than 16MB which would impede us from allocating trampolines in±16MB
memory range. In practice, this is very unlikely, but we could still search for empty code
regions (padding bytes) to enlarge the branch target address range.

Note that direct function calls require a different dispatcher instruction as we need to
ensure that the return address is correctly set. Hence, we use instead the BLX instruction
as dispatcher which offers the same target address range of ±16MB. As mentioned in
Section 3.1.1, BLX automatically loads the return address into the lr (link) register. On the
other hand, for indirect function calls MoCFI uses again the B instruction as dispatcher
instruction. In fact, we correctly set the corresponding return address into lr inside the
CFI runtime module based on the fact whether the call is an external (library function)
or internal call (main code function). For external calls, we let lr point to a specialized
code piece of MoCFI to recognize when an external library call returns.

THUMB Dispatcher Instructions. THUMB instructions pose a challenge in our design
as indirect branches such as returns only reserve 2 Bytes in memory. Replacing these
instructions with direct 16-bit THUMB branch B instructions only allows us to address
code in the area of ±512 Bytes. As this range is surely too small to allocate trampolines,
we need to take a different approach. Specifically, we tackle this issue in MoCFI by
replacing a 16 Bit indirect THUMB branch with a 32 Bit THUMB dispatcher instruction.
However, this has the effect that we overwrite 2 Thumb instructions, e. g. in Figure 29 the
original branch (POP {r4-r7,pc}) and the instruction preceding the branch (MOV r1,r2).
To still preserve the program’s semantics, we execute the latter one at the beginning of
our trampolines (Step 1 in Trampoline 1).

Dispatching through Exception Handling. However, replacing 2 THUMB instructions
is not possible if the instruction preceding the branch references the program counter
or is itself a branch. For instance, LDR r2,[pc,#16] in Figure 29 uses the current value
of pc to load a pointer. In such scenarios, we replace the indirect branch instruction
with a pre-defined illegal instruction. This illegal instruction triggers an exception when
executed. To catch this exception, we register an iOS exception handler inside MoCFI,
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and subsequently invoke our CFI validation routines. As exception handling induces
additional performance overhead, we only use it for exceptional cases. To further reduce
the use of the exception handler, one could calculate the address from which pc is loaded
in the static analysis phase, and replace the relevant load instruction with a new memory
load instruction which could be placed at the beginning of the trampoline.

4.1.4.3 Runtime Module

An abstract view of the runtime module is shown in Figure 30: it mainly consists of
dedicated validation routines for each branch type, where each type is represented with
a rectangle in Figure 30. The validation routines have to validate the target of every
branch to prevent the application from targeting a basic block beyond the scope of the
CFG and the current execution path. Obviously, each branch target requires a different
type of validation, as we will describe in the following.

Function Returns

Indirect Jumps

Shadow Stack Branch
valid?

Issue original 
branch

Raise alarm and
stop program

yes

no

Direct
Calls

Indirect
Calls

Objective C 
MsgSend Calls Control-Flow 
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Figure 30: Overview of the runtime module

Function Calls and Returns. To prevent code-reuse attacks, we monitor all function calls
and returns, and apply the shadow stack paradigm: whenever the program invokes a
subroutine (through a direct, indirect, or dispatcher call), we copy the return address
on a dedicated shadow stack. Upon function return, we compare the return address
the program wants to use to the address stored on our shadow stack. Since function
calls (through BL or BLX) automatically store the return address in lr, we simply need
to push lr onto the shadow stack. Further, we maintain a separate shadow stack for
each execution thread to support multi-threaded programs. Upon function return, we
determine the return address the program aims to use and retrieve the required stack
pointer offset from the patchfile.

As mentioned in Section 4.1.2, return instructions can be implemented in many dif-
ferent ways on ARM, and often involve the loading of several general-purpose registers.
We ensure that all side-effects are correctly handled by issuing the original return at the
end of the trampoline (as described in Section 4.1.4.2).

Indirect Jumps and Calls. As already discussed in Section 4.1.4.1, the set of valid tar-
get addresses for indirect jumps and calls has been either determined at static analysis
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time or remains unknown. For those indirect jumps/calls whose set of target addresses
is known, we simply check whether the target address the program attempts to use is
in the set of valid addresses. If not, we abort program execution, and report a CFI vi-
olation. We enforce this check within the MoCFI runtime module: for simple indirect
branch instructions such as MOV pc,r0 or BLX r0, MoCFI simply reads out the target
register (here: r0), and compares it to the valid set of target addresses. For complex
indirect branch instructions such as the LDR pc,[r0,r1,LSL #2] instruction mentioned
in Section 4.1.4.1, MoCFI accurately performs the calculation r0+ r1 ∗ 4 at runtime, and
subsequently checks the output to the set of valid addresses. Recall that the target regis-
ters to perform the latter calculation can be directly retrieved from the patchfile. Finally,
for those indirect branches whose set of target addresses could not be determined at
static analysis time, we apply the heuristics mentioned in Section 4.1.4.1.

Objective-C msgSend Calls. Dispatcher calls via objc_msgSend() require special han-
dling as the method name (selector), and the target class instance are provided as param-
eters to the generic dispatcher routine of objc_msgSend(). As our experiments revealed,
checking the parameters to objc_msgSend() is definitely necessary as the parameters are
loaded from writable memory which an adversary can overwrite to hijack the execution
path of the application. Based on the valid selectors and class instances we collected with
our static analysis tools (cf. Section 4.1.4.1), we check at runtime whether the parameters
provided to objc_msgSend() contain combinations of selectors and class instances that are
in our set of valid combinations.

4.1.5 Discussion and Security Considerations

Our solution effectively detects code-reuse attacks on mobile devices by validating all
indirect branch instructions executed by an iOS app. In particular, we developed static
analysis tools to identify sets of valid branch targets for each indirect branch instruction.
In addition, we also maintain a shadow stack for return addresses to enforce fine-grained
control-flow validation upon function return.

In order to demonstrate that MoCFI detects advanced code-reuse attacks, we adopted
a return-oriented programming attack presented by Iozzo and Miller [104] (developed
for iOS v2.2.1) to iOS v4.3.1. When protecting the vulnerable application with MoCFI,
the attack fails, and we successfully prevent an exploitation attempt. For the interested
reader, the full exploit details can be found in [62, Appendix B].

As we have discussed above, it is not always possible to identify the full set of valid tar-
gets for each indirect branch. If this is the case, we fall-back to heuristics that still prevent
an adversary from arbitrarily changing the control-flow. Moreover, our static tools could
be extended by enhanced backtracking techniques to limit the set of possible branch
targets. However, the design of sophisticated static tools goes beyond the scope of this
project. Instead, our goal is to introduce the first framework that provides system-wide
and efficient CFI enforcement for mobile applications executing on an ARM processor.

Since MoCFI performs binary rewriting after the iOS loader has verified the appli-
cation signature, our scheme is compatible to application signing. On the other hand,
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our load-time module is not directly compatible to the iOS CSE (code signing enforce-
ment) runtime model. CSE prohibits any code generation at runtime on non-jailbroken
devices, except if an application has been granted the dynamic-signing entitlement. To
tackle this issue, one could assign the dynamic-signing entitlement to applications that
should be executed under the protection of MoCFI. On the one hand, this is a reasonable
approach, since the general security goal of CFI is to protect benign applications rather
than malicious ones. Further, the dynamic-signing entitlement will not give an adversary
the opportunity to circumvent MoCFI by overwriting existing control-flow checks in
benign applications. In order to do so, one would have to mount a control-flow attack
beforehand that would be detected by MoCFI. On the other hand, when dynamic-signing
is in place, benign applications may unintentionally download new (potentially) mali-
cious code, or malicious applications may be accidentally granted the dynamic-signing
entitlement (since they should run under protection of MoCFI), and afterwards perform
malicious actions. To address these problems, we can constrain binary rewriting to the
load-time phase of an application, so that the dynamic-signing entitlement is not needed
while the application is executing. Further, new sandbox policies can be specified that
only allow the MoCFI library to issue the mmap() call to replace existing code, e. g. the
internal page flags of the affected memory page are not changed, or their values are
correctly reset after MoCFI completed the binary rewriting process.

Limitations. MoCFI does currently not protect shared libraries. In other words, it only
applies CFI to the main application code. Hence, an adversary may exploit a vulnera-
bility in a shared library to instantiate a code-reuse attack. We leave CFI protection on
shared libraries as future implementation work. In fact, there are no new conceptual
obstacles to solve for applying MoCFI to shared libraries.

As a consequence, we currently disable the return check if an external library calls a
function that resides in the main application. Therefore, MoCFI registers when execution
is redirected to a library and disables the return address check for functions that are
directly invoked by the shared library. However, note that this can be easily fixed by
either applying our trampoline approach to function prologues (i. e. pushing the return
address on the shadow stack at function entry) or by applying MoCFI to shared libraries.

4.1.6 Evaluation of MoCFI

In order to evaluate the performance of MoCFI, we applied it to an iOS benchmark
tool (called Gensystek Lite1), applied it to a full-recursive own developed quicksort
algorithm, and several real-world iOS applications. As we described in Section 4.1.5,
we apply MoCFI to the main application code, and not to the libraries. However, the
benchmark tools we apply perform most part of the computation within the application.

Figure 31 shows the results for the Gensystek Lite application, where the slowdown
factor for each individual benchmark is shown below the x-axis. Remarkably, the FPU/ALU,
PI calculation, and the RAM (memory read/write) benchmarks add the highest over-

1 http://www.ooparts-universe.com/apps/app_gensystek.html

http://www.ooparts-universe.com/apps/app_gensystek.html
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head (3.85x and 5x, respectively). The overhead for the remaining benchmarks is very
low and ranges between 1% to 21%.
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Figure 31: MoCFI performance on Gensystek Lite benchmarks

In order to approximate an upper boundary for performance penalties, we evaluated
MoCFI by running a quicksort algorithm. Our implemented algorithm makes use of re-
cursion and continuously calls a compare function which consists of only 4 instructions
and one return. Hence, MoCFI frequently performs a control-flow check in this worst-
case scenario. Nevertheless it performs quite well and needs 81ms for n = 10, 000 (see
Table 10).

n Without MoCFI With MoCFI

100 0.047 ms 0.432 ms

1000 0.473 ms 6.186 ms

10000 6.725 ms 81.163 ms

Table 10: Performance of MoCFI on quicksort

Moreover, we applied MoCFI to several popular iOS applications, among others Face-
book, Minesweeper, TexasHoldem, and Gowalla. Our experiments showed that MoCFI
does not induce any notable overhead while the applications execute. Further, MoCFI
induces an acceptable overhead at load-time: e. g. for the Facebook application (code size
2.3MB; 33,647 calls; 5,988 returns; 20 indirect jumps) and TexasHoldem (2.8MB; 62,576

calls; 4,864 returns; 1 indirect jump) our rewriting engine required less than half a sec-
ond to rewrite the entire application.

4.1.7 Conclusion and Summary

In this section, we focus on the problem of mitigating runtime exploits on modern
mobile devices. We showed for the first time how the principle of control-flow integrity
(CFI) enforcement can be applied to ARM-powered devices. Our solution tackles several
unique challenges of ARM and mobile operating systems, which we discussed in detail.
We solved all challenges and implemented a complete CFI enforcement framework for
Apple iOS that instruments applications dynamically in memory.
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In particular, MoCFI resists our latest attacks against coarse-grained CFI proposals (cf.
Section 3.2) because it deploys fine-grained CFI for returns. Moreover, it also provides
effective prevention against the latest so-called Jekyll attacks which hide malicious be-
havior encapsulated into a benign-looking app by leveraging return-oriented program-
ming [188]. On the other hand, there are some open implementation aspects which need
to be tackled in future work such as extending our CFI protection to shared libraries,
and integrating MoCFI into the compiler toolchain to avoid jailbreaking the device.



90 advances in control-flow integrity defenses

4.2 psios : application sandboxing for ios based on mocfi

As we have shown in Section 4.2, MoCFI defends against code-reuse attacks on mobile
devices by instrumenting and validating indirect branch instructions. On the other hand,
many attacks launched against mobile devices are based on injection of malicious apps
rather than compromising benign apps. These apps directly access the device’s system
resources to induce malicious behavior or steal private user information. However, the
taken control-flow adheres to the application’s control-flow graph, and thereby does not
violate CFI.

We will show throughout this section that our framework MoCFI can still be leveraged
to protect a user from being compromised by malicious apps. Our key idea is to leverage
MoCFI to enforce policy checks when branch instructions are executed. At the same
time, MoCFI additionally ensures that our policy checks cannot be bypassed by means
of a code-reuse attack.

4.2.1 Motivation and Contributions

Apple iOS is one of the most popular mobile operating systems. As its core security tech-
nology, iOS provides application sandboxing but assigns a generic sandboxing profile
to every third-party application (cf. Section 4.1.1). However, recent attacks and incidents
with benign applications demonstrate that this design decision is vulnerable to crucial
privacy and security breaches, allowing applications (either benign or malicious) to ac-
cess contacts, photos, and device IDs. Moreover, the dynamic character of iOS apps
written in Objective-C renders the currently proposed static analysis tools less useful.

Our goal is to address the open problem of not only detecting privacy leaks for iOS
apps, but actually preventing them. The key idea of our approach is to assign specific
sandboxing profiles to each application to enforce a given fine-grained privacy policy.
Such a profile may either be defined by a user at installation time, or centrally provided
by a system administrator or an enterprise. Logically, we generate a protection layer be-
tween applications and the iOS Objective-C Runtime environment. Further, we monitor
applications at execution time, and ensure that they only perform actions that adhere to
the given sandboxing profiles. Our solution operates directly on the application binary.
Hence, it neither requires recompilation nor access to the source code, which enables
enforcement of policies for arbitrary applications.

In the remainder of this section, we present the design and implementation of PSiOS,
a tool that features a novel policy enforcement framework for iOS. Our reference imple-
mentation deploys control-flow integrity based on our MoCFI framework that protects
applications against runtime exploits (as described above in Section 4.2). PSiOS enables
user-driven and fine-grained application sandboxing: on the one hand, a user can dy-
namically update sandboxing profiles without the need to recompile or reinstall the
application. Hence, end-users can easily revoke or assign privileges. On the other hand,
our framework enables very fine-grained policies in which the user or system admin-
istrator can precisely specify which privileges are assigned to an application. This is
possible, since our sandboxing profiles cover the entire Objective-C runtime, and allows
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argument validations for each API call. Since our framework is based on MoCFI, we
also prevent attackers from exploiting vulnerabilities in the application code to hijack
its assigned rights [105, 135]. We demonstrate that PSiOS effectively prevents privacy
breaches by testing our tool with SpyPhone [138], an iOS app specifically designed to
steal sensitive information from an iOS device.

Note that our approach differs from Apple’s recently introduced entitlement keys (i. e.
permissions). Specifically, Apple provides 25 keys to confine the privileges of apps [11].
However, these keys are specified by the app developer or directly by Apple. Hence, nei-
ther the end-user nor an enterprise can apply custom sandboxing policies to their apps.
Instead, one needs to rely on Apple to apply the appropriate entitlements to each app,
while malware writers will avoid to confine their apps for obvious reasons. Moreover,
as we will elaborate in Section 4.2.2, these entitlements are enforced on the basis of the
built-in iOS sandboxing framework, which (in contrast to PSiOS) cannot enforce fine-
grained sandboxing rules.

It is noteworthy to mention, that independent from our research work on PSiOS, Ap-
ple has recently introduced privacy settings options (starting from iOS 6) where end-
users can disable or enable access to private information on an app-by-app basis [12].
We believe that this new feature is a step in the right direction since iOS devices suffer
from lack of privacy protection. However, we stress that our tool PSiOS does not only
cover the same access rules, but also features argument validation (e. g. to allow access
to a subset of private information), enables fine-grained access control beyond access to
private information (e. g. any system call an application may invoke), and at the same
time prevents runtime exploits.

4.2.2 Problem Description

Recall that iOS sandboxing is realized by a kernel module which has been adopted from
the TrustedBSD kernel. This module mediates and validates every system call and its ar-
guments according to sandboxing profiles already pre-defined by Apple. As already men-
tioned, iOS assigns a generic sandboxing profile to every third-party application which
enables every application to access the public frameworks, and specifically grants access
to contacts, location, device information, call history, keyboard cache, recent searches, e-
mail account configurations, and photos. Recently, several attacks were reported, where
applications abused their privilege set to steal, for instance, the user’s address book [165].
Moreover, whenever an application is exploited by a runtime exploit, the adversary can
misuse the application’s privileges to steal sensitive information as well [105, 135].

Note that iOS already supports sandboxing at the kernel-level, but not within the
Objective-C runtime. The design decision taken by Apple leads to coarse-grained sand-
boxing because the Core OS layer misses the semantics of the Objective-C runtime. In-
stead of enforcing access control on a specific API call, iOS has to enforce access control
based on invoked system calls. In particular, the Core OS layer cannot enforce access
control on the main Objective-C constructs such as used classes, objects, variables, and
methods, which are extensively used by iOS applications and involve a chain of diverse
system calls, files, and memory structures.
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4.2.3 High-Level Idea

To address the mentioned security and design weaknesses of the current iOS sandboxing
scheme, we aim towards a framework that allows access control for the Objective-C
runtime, and the enforcement of the least-privilege principle. Note that realizing such a
system for iOS is highly involved since iOS is closed-source. Hence, we cannot simply
replace or extend existing modules as typically performed in recent Android security
research proposals, e. g. Kirin [73] or TaintDroid [74].
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Figure 32: High-level idea of PSiOS

The high-level idea of PSiOS (Privacy and Security for iOS devices) is shown in
Figure 32. In contrast to Apple’s approach where sandboxing profiles are generic and
pre-defined, PSiOS allows a different and user-defined sandboxing profile for each ap-
plication. Basically, we add a new module that operates between the Application and
Objective-C framework Layer (cf. Section 4.1.1), which we call policy enforcement com-
ponent. As shown in Figure 32, this component mediates every access request to the
Objective-C runtime, the frameworks, and the system call wrapper. It enforces access
control rules on each access request based on the user-defined sandboxing profiles. Only
when the policy has not been violated, we forward the request to its original destination.
Note that the current iOS system does not enforce any access control mechanism to the
Objective-C runtime and frameworks. On the other hand, iOS already enforces access
control on system calls, but our approach allows an individual enforcement policy for
each iOS application.

To monitor if an application adheres to the given sandboxing profile, we instrument
the application so that all access requests are redirected to the policy enforcement. Al-
ternatively, one could directly extend the Objective-C runtime and frameworks with
dedicated interfaces that validate whether the caller has the appropriate privileges (sim-
ilar to the Android permission system [92]). However, the iOS Objective-C runtime and
frameworks are closed-source. Hence, extending them directly is infeasible.

Furthermore, the Objective-C runtime operates on the same level as the application
code. Hence, policy checks inside the runtime can be bypassed by simply jumping over
the policy code using either a control-flow attack or by dynamically calculating the
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relevant offset. Our framework does not suffer from this shortcoming as we have full
control over the application code. Further, an adversary cannot mount a code-reuse
attack to bypass our policy checks as we leverage MoCFI to thwart any CFI violation.

4.2.4 Design of PSiOS

In this section we introduce the design of PSiOS (Privacy and Security for iOS devices)
which enforces our high-level idea presented in Section 4.2.3.

4.2.4.1 Architecture

The general architecture of PSiOS is shown in Figure 33. Basically, our design can be
divided into three distinct phases: (1) static analysis (offline), (2) binary rewriting at
load-time, and (3) runtime CFI and policy enforcement at execution-time. While the static
analysis phase needs to be performed only once, the binary rewriting and runtime en-
forcement phase are performed whenever the application is launched by the user.

The general workflow is as follows: First, we reverse-engineer the application binary
by using automated tools to derive the application’s structure. In particular, we leverage
for Step ¶ the MoCFI’s static analysis components to derive the application’s CFG (cf.
Section 4.1.4.1). Further, we implemented a static Objective-C analyzer that reuses tech-
niques of existing tools such as PiOS [72] and Objective-C helper scripts [69] to identify
used Objective-C classes and methods (Step ·). Note that we extended these tools to
also identify calls to the system call wrapper. In Step ¸, we instrument the application
at load-time to embed CFI checks using MoCFI. Second, we leverage binary rewriting
to insert checkpoints into the application that will be triggered whenever an applica-
tion aims to access the Objective-C runtime, the public frameworks, or the system call
wrapper (Step ¹).

At execution-time, we first use a novel runtime Objective-C analyzer that tackles the
incompleteness of the static analysis, and retrieves important runtime information on
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Objective-C constructs such as registered parent and child classes, and runtime ad-
dresses of invoked methods (Step º). Afterwards, CFI ensures that the control-flow
of an application always follows the legitimate paths of the CFG (Step »). Further, for
all access requests to the Objective-C environment and the system call wrapper, our
policy enforcement component validates if the request adheres to the given policy rules
(Step ¼).

PSiOS supports three enforcement types: Log, Exit, and Replace. The Log enforcement
only records all policy-related events, but does not take any actions when a policy is
violated. This option is useful for training phases allowing a system administrator to
identify all relevant Objective-C and system calls which facilitates the specification of
sandboxing profiles.

The Exit option immediately terminates an iOS application when a policy violations
occurs. Due to legacy compliance, we also support a Replace enforcement optin. This
allows an application to securely continue to execute even though a policy violation oc-
curred. In that specific case, PSiOS replaces the return values of the Objective-C runtime
with fake data. For instance, if the sandboxing profile prohibits access to the address
book, the return value will be either fake contacts or an empty list.

4.2.4.2 Internals of PSiOS Policy Checks

We implemented the design of PSiOS (see Figure 33) in a prototype that supports iOS
version 4.3.2, 4.3.3, 5.0.1, and 5.1.1. The static Objective-C analyzer is realized as a new
Python module for the reverse-engineering tool IDA Pro 6.x. For rewriting the applica-
tion binary and enforcing CFI, we re-use our MoCFI framework. However, we need to
extend MoCFI to introduce the policy enforcement and the runtime Objective-C analyzer.
In particular, the latter component enables runtime analysis of Objective-C constructs.
The entire runtime tools are realized as one shared iOS library that is developed in the
Objective-C++ language. Since Apple prohibits any user from installing a new shared
library, we had to jailbreak our test devices to inject our library to every iOS application,
and to enable binary rewriting at runtime.

The internal workflow of a PSiOS-instrumented application is depicted in Figure 34.
The application to be instrumented consists of several arbitrary machine instructions
(denoted as INS) and branches. Each indirect branch and direct call instruction is instru-
mented using MoCFI. To this end, we simply replace these instructions with a dispatcher
instruction which redirects the control-flow of an application to our runtime module.

The runtime module first saves the current program state by storing all processor
registers. Subsequently, it validates the control-flow based on the information stored in
the control-flow graph (CFG). In Step 3, our modified runtime module invokes our new
PSiOS policy checking component. This component involves two main actions: (i) re-
trieving static and runtime information on API as well as Objective-C calls, and (ii) vali-
dating whether the desired control-flow adheres to the application-specific sandboxing
profile.

Sandboxing Rules. The sandboxing rules are internally encoded in XML, and contain
blacklisted Objective-C and API calls. Each rule contains the following fields/attributes:



4.2 psios : application sandboxing for ios based on mocfi 95

Application Code

Original Image

INS
INS, INS, …

INDIRECT JUMP
INS
INS, INS, …
CALL objc_msgSend

INS
CALL open
INS
RETURN

Application Code

Instrumented Image

INS
INS, INS, …

CALL Runtime Mod.

INS
INS, INS, …
CALL Runtime Mod.

INS
CALL Runtime Mod.

INS
CALL Runtime Mod.

Runtime Module

1. Save Program State
2. Validate Control-
Flow with MoCFI

CFG

3. Invoke PSiOS

4. Reset Program State

PSiOS

PSiOS Sandboxing Rules

objc NSDictionary getContent arg_1 = wifi.plist

api getContacts arg_1 = Contacts

exit

replace

Type Class Method Argument OP Value Action

a) Retrieve Static and 
Runtime Information

b) Validate whether 
call adheres to
Sandboxing Profile

Static
Analysis

Runtime
Analyzer

Objective-C and
API call

information

Figure 34: Internal workflow of PSiOS

• Type: The rule type indicates whether a rule applies to an Objective-C or API call.

• Class: For rules that are of type Objective-C, this field specifies the target class
name.

• Method: For Objective-C calls, this field holds the target selector. Similarly, for API
calls, this field provides the name of the API to be validated.

• Argument: The Argument field holds the number of the argument to be checked.
Note that we support sandboxing rules for each argument. For this, one only needs
to specify one rule per argument. Moreover, it is also possible to apply different
checks to a single argument. This can be realized by defining one rule per check.

• Operand (OP): The operand holds the compare method which can be of form:
(=, !,<,>,>=,<=)

• Value: This field provides the value to compare with.

• Action: The action field holds the enforcement type Log, Exit, or Replace.

Specifically, the two sandboxing rules given in Figure 34 prohibit an iOS app to access
the WiFi configuration file wifi.plist (Rule 1), and return an empty list whenever the
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application attempts to access the address book (Rule 2). Note that both is allowed by
default for all iOS apps. Rule 1 applies to Objective-C type calls. In particular, the class
of interest is NSDictionary with the selector getContent(). For this specific class-selector
pair, our rule targets the first argument which in case it is equal to wifi.plist results
in a policy violation, and termination of the application.

In contrast, Rule 2 applies to the standard iOS API call to retrieve contacts information.
For the API call getContacts(), we validate whether the first argument equals to Contacts.
If so, we replace the actual contact list with an empty list.

4.2.5 Evaluation of PSiOS

In this section, we analyze the effectiveness and efficiency of PSiOS by using the Spy-
Phone application [138] as proof-of-concept since it demonstrates which private data
can be accessed by every iOS application. SpyPhone is an open-source proof-of-concept
application that demonstrates which data can be collected by iOS third-party applica-
tions. As SpyPhone is able to retrieve a significant amount of private and sensitive data
about the user and the device, we thoroughly analyzed how this is achieved and how
the data harvesting can be prevented using PSiOS.

Basically, SpyPhone retrieves Wi-Fi configurations, location, call histories, and e-mail
account information by accessing property lists that are stored as XML files on any iOS
device at the Core OS layer. For instance, the information about a user’s email accounts
is retrieved from the file com.apple.accountsettings.plist. In general, access to these
files can be denied by restricting the Objective-C dictionaryWithContentsOfFile() method
of the NSDictionary class, which is used to parse the XML file into an Objective-C data
structure. For each file, we defined one rule that restricts the first parameter of the
method, namely the file name.

SpyPhone also accesses sensitive information by calling appropriate Objective-C meth-
ods at the Core Services Layer. For instance, this applies to the user’s address book or
when requesting device information (e. g. the user’s phone number). In particular, the
address book is used to store private phone numbers, email addresses, and home ad-
dresses. We specified policy rules that prohibit SpyPhone from using these Objective-C
methods (e. g. ABAddressBookCopyArrayOfAllPeople to access the user’s address book).
For the interested reader, the entire sandboxing profile (including all policy rules) for
SpyPhone can be found in [194, Appendix B].

Applying PSiOS to iOS Apps. To demonstrate the effectiveness of our approach, we
also applied PSiOS to a number of popular iOS applications such as Facebook, What-
sApp, ImageCrop, BatteryLife, Flashlight, ImageCrop, InstaGram, MusicDownloader,
MyVideo, NewYork (Game), Quickscan, LinPack, Satellite TV and the Audi App. For
each app, we defined a specific sandboxing profile that prevents the app from accessing
private user information. In particular, PSiOS successfully prevents access to the address
book (for Quickscan, Facebook, and Whatsapp), to personal photos (for ImageCrop and
InstaGram), and to the iOS universal unique identifier, abbr. UUID (for Quickscan, Bat-
terLife, Flashlight, MusicDownloader, MyVideo, NewYork, and Audi).
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Figure 35: Comparing performance overhead of MoCFI and PSiOS

Performance Overhead. We performed runtime measurements based on the iOS Gensys-
tek benchmark app to directly compare the overhead introduced by PSiOS compared to
native CFI protection with MoCFI. For PSiOS, we applied several policies on Objective-C
selectors (such as NSString and NSBundle) which frequently trigger a policy validation
for each of the individual benchmarks. The results of our measurements are shown in
Figure 35. Compared to native CFI execution with MoCFI, PSiOS only adds a negligible
overhead ranging from 0.28% to 6.58%.

4.2.6 Discussion

The runtime components of PSiOS are completely implemented inside our MoCFI shared
library. We opted for this implementation approach because it enables a system-centric
CFI-based sandboxing solution, and allows every iOS app to immediately benefit from
our tools. As for MoCFI, to install and push our library on an iOS device, we require a
jailbreak of the device, since Apple is closed-source and strictly prohibits any installation
of a new shared library. For MoCFI and PSiOS, we only require a jailbreak for setting
a single environment variable, installing a shared library, and allowing our library to
rewrite the application code during load-time. Setting the variable as well as installing
and signing our library can be easily done by Apple for future iOS releases. Further,
for binary rewriting, our library only needs to be assigned the dynamic code signing
entitlement which allows an application generate code just-in-time.

Note that similar approaches targeting Android require the rooting of an Android-
powered device as well (e. g. TaintDroid [74] or AppFence [101]). Moreover, PSiOS does
not necessarily require a jailbreak. For instance, PSiOS could be provided as a static
rewriting tool that Apple applies to all app binaries before releasing them on the App
Store. The static analysis (which requires IDA Pro at the moment) could be incorporated
using cloud services. Further, app developers could run PSiOS before submitting their
applications to the App Store. Both approaches are compatible to Apple’s signature
scheme since PSiOS rewrites the app before it is signed by Apple.
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4.2.7 Previous Work

In this section, we elaborate on previous work in the area of mobile security and appli-
cation sandboxing.

Research on iOS. The closest work to our framework is PiOS [72] which is a static
analysis tool to detect privacy leaks of iOS applications. PiOS generates an application’s
control-flow graph by backtracking all Objective-C calls and by reconstructing the class
inheritance relationships. However, PiOS suffers from some shortcomings: First, its anal-
ysis does not cover embedded metaclasses (i. e. root classes of Objective-C classes), which
frequently occur in iOS applications. Second, it does not support class clusters. Third, it
mainly uses a backtracking of ARM processor registers to determine used classes and se-
lectors. However, as our experiments have shown this approach often fails to resolve the
used class. In contrast, PSiOS tackles this problem by including the Objective-C sections
in its analysis and by retrieving runtime information. To summarize, PiOS is constrained
in its analysis because it fails to cover the full picture of the Objective-C runtime, partic-
ularly when an adversary deploys obfuscation techniques to circumvent static analysis
tools.

MobileSubstrate [161] is a framework for jailbroken iOS devices that provides run-
time patching of existing programs. To this end, application code can be rewritten to
install hooks for Objective-C message handlers and C/C++ functions. The rewriting
engine works similar to our approach, however, MobileSubstrate merely provides hook-
ing support. Further, it does not provide protection against runtime exploits that can
undermine policy validation code.

Research on Android. In the last years Android has been an appealing subject of re-
search. Kirin [73] is an extended application installer that checks application’s permis-
sion combinations according to a given policy. Apex [141] goes a step further and allows
end-users to choose permissions at install-time. However, since iOS is closed-source,
these approaches are not feasible on iOS.

TaintDroid [74] is a framework to detect data leakage attacks on Android. It uses dy-
namic taint analysis, and warns the user whenever sensitive data leaves the device at
a taint sink (e. g. the network interface). The AppFence [101] framework builds upon
TaintDroid and enables fine-grained privacy rules, and enables the return of shadow
data when a policy rule has been violated. However, TaintDroid does not fully cover
native code, and could be subverted by runtime exploits. Moreover, it is directly imple-
mented into Android’s Java virtual machine (Dalvik). Since iOS use Objective-C rather
than the interpreted Java language, it remains open how such a system could be inte-
grated in iOS. Further, in parallel to our work, several security extensions have been
proposed to enable fine-grained sandboxing rules (Aurasium [198]) or fine- grained pri-
vacy controls [34], but on Android, while we focus on iOS.

Finally, there are several works on Android that tackle privilege escalation attacks at
application-level [77, 68, 33]. These attacks are based on the observation that two applica-
tions merge their permissions (either directly or indirectly) resulting in a larger sandbox.
However, inter-app communication is still an exceptional event on iOS. Nevertheless, in
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our future work we aim to investigate the feasibility and detection of privilege escalation
attacks on iOS with PSiOS.

4.2.8 Summary and Conclusion

PSiOS is a novel policy enforcement framework for the closed-source mobile operating
system iOS providing fine-grained, application-specific, and user-driven sandboxing for
third-party applications without requiring access to source code. It demonstrates the use-
fulness of MoCFI which provides secure execution of the policy enforcement framework.
We implemented a fully working prototype and demonstrated that PSiOS effectively pre-
vents privacy breaches by testing our reference implementation with SpyPhone [138], a
tool specifically designed to steal data from an iOS device. PSiOS significantly raises
the bar of application sandboxing attacks. In particular, its policy framework prevents
recent attacks that have successfully undermined Apple’s vetting process [96, 188].
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4.3 hafix : hardware-assisted control-flow integrity extension

Although control-flow integrity (CFI) offers high protection against code-reuse attacks,
it either suffers from performance overhead or its implementations deploy too coarse-
grained policies that a sophisticated adversary can bypass (cf. Section 3.2). Up to now,
the majority of research on CFI has focused on software-based solutions.

In this section, we take a hardware-based CFI approach that has several advantages
over software-based counterparts: First, it is significantly more efficient, as we demon-
strate. Second, compiler support is simplified by reducing complex CFI checking code
to single CFI instructions. Third, dedicated CFI hardware instructions and separate CFI
memory provide strong protection of critical CFI control-flow data.

Our Goal and Contributions. We present the design and implementation of a hardware-
assisted CFI solution, called HAFIX (Hardware-Assisted Flow Integrity eXtension). Our
CFI proposal is based on a state model and a per-function CFI label approach. We focus
on backward-edge CFI, that is, CFI for indirect branches through function return instruc-
tions in the program’s CFG. In contrast, forward-edge CFI handles indirect branches in
the CFG that are caused by jumps and function calls [182].

In terms of performance, protecting backward edges is more challenging, simply due
to the fact that function returns occur far more frequently than indirect calls and jumps.2

Existing backward-edge CFI schemes either suffer from large performance degradation
(when using a shadow stack for return addresses), or they deploy too coarse-grained
CFI policies that can be bypassed as mentioned before.

We developed and extensively evaluated for the first time a fine-grained backward-
edge CFI system in hardware. To develop HAFIX, we had to tackle several challenges:
(i) efficient and secure access to CFI control-flow data (i. e. label memory), (ii) specifying
and realizing new CFI instructions that perform efficiently in one cycle, and (iii) auto-
matically emitting these instructions to program binaries during compilation. On top
of this, we also tackled the challenge of providing CFI protection for recursive function
calls.

We present real hardware implementations of backward-edge CFI targeting bare metal
code. Specifically, we extend the processors’ instruction set with new CFI assembler in-
structions, and also modify the commodity compilers to automatically emit our new
instructions into applications. We developed proof-of-concept implementations on two
different processor architectures: The first is the Intel Siskiyou Peak platform which
primarily targets embedded applications [156]. The second is the open source LEON3

microprocessor which is compatible with the SPARC V8 instruction set and has been
developed by the European Space Agency for avionic applications [157]. In this disser-
tation, we focus on the implementation on Intel Siskiyou Peak.

In our implementation of HAFIX, we focus on embedded systems which have be-
come pervasive, and are built into a vast number of devices such as sensors, vehicles,
mobile and wearable devices. However, due to resource constraints, they fail to provide

2 Recall that most jumps and calls are direct, and require no CFI protection as their branch target is statically
encoded.
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sufficient security, and are particularly vulnerable to runtime exploits. Establishing se-
curity and trust in embedded systems introduces specific security challenges that go
beyond that of traditional PC platforms [116]. As a consequence, security is usually
only introduced if the corresponding resource usage is minimal. A second challenge is
that embedded systems are usually programmed using native (unsafe) programming
languages such as C or assembly language. Hence, they frequently suffer from vulner-
abilities that can be exploited by means of code-reuse attacks. For instance, Francillon
and Castelluccia [79] demonstrated that return-oriented programming can be leveraged
on an embedded Atmel AVR-powered sensor to persistently inject a malicious firmware
based on code reuse.

One significant aspect of our work is the performance and security evaluation of fine-
grained hardware-based (backward-edge) CFI that we conducted on embedded systems
under different security scales. We evaluated our HAFIX implementation using standard
embedded benchmarks (including Dhrystone and CoreMark), and show that it only
adds 2% of performance overhead on average. Moreover, we provide a detailed security
evaluation to demonstrate that HAFIX reduces the available gadget space to 19.82%
on average compared to recently proposed coarse-grained CFI defenses in a worst-case
setup.

4.3.1 System Model

In this section, we present our target threat model, main assumptions, and requirements.

Threat Model. Our main goal is to thwart code-reuse attacks launched through CFG
backward edges (function returns). The adversary i) has full control over the program’s
stack and heap to inject new and overwrite existing return addresses, ii) has access to
the application’s code including linked libraries, iii) can exploit a memory corruption
error to instantiate a code-reuse attack, and iv) even can bypass any deployed code
randomization (e. g. ASLR), i. e. the adversary has full knowledge of the application’s
memory layout.

Assumptions. As the main scope of this paper are CFG backward edges, we assume that
the target system deploys software-based CFI protection for forward edges. Recently, it
has been shown by Tice et al. [182] that compiler-based forward-edge CFI protection
can be efficiently implemented in LLVM and GCC. We also assume that the target hard-
ware platform enforces protection against code injection (e. g. data execution prevention)
currently deployed by default on many platforms.

Requirements. The main objectives of our CFI solution are efficiency/practicability, as
well as enforcing fine-grained CFI protection on CFG backward edges. As mentioned
before, fulfilling both requirements is highly challenging, as function returns occur fre-
quently at runtime. Recent research has shown that coarse-grained CFI policies for re-
turns, i. e. restricting returns to target a call-preceded instruction, are insufficient and
can be bypassed (cf. Section 3.2).
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4.3.2 Design

In this section, we introduce the design and implementation of our novel security hard-
ware architecture that provides fine-grained protection against code-reuse attacks based
on control-flow integrity (CFI).

Our basic design modeled as a state machine is shown in Figure 36. The main idea
of our protection mechanism is to enforce CFI based on label state, and decouple source
from destination labels. For this, we distinguish between three states: (0) for ordinary
program execution, (1) function entry, and (2) function exit. To enforce our CFI label
approach, we introduce two new CFI label instructions, namely CFIBR and CFIRET. As
the names imply, we use one label instruction for function calls and another one for
returns. This distinction allows us to deploy different policies for calls and returns, and
at the same time ensures that an indirect call cannot target a label instruction used for
returns and vice versa.

State 0
Normal Execution

State 1
Function Entry

Direct and 
Indirect Calls

Returns

State 2
Function Exit

CFIBR label

CFIRET label

Label State 
Memory

Figure 36: HAFIX CFI state machine

Inspired by the state model proposed by Budiu et al. [32], we enforce that after a call
or return instruction, the next instruction to be executed has to be a CFI instruction. That
said, any other instruction will immediately terminate the program execution. Further,
valid execution of CFI instructions in State 1 and 2 trigger state transitions to State 0

allowing the program to continue ordinary execution.
In the following, we describe in detail our CFI policies enforced in HAFIX.

4.3.2.1 Call Instrumentation

Direct and indirect calls will lead to a transition from State 0 to State 1 (function entry).
In this state, we only allow the program to use a CFIBR instruction. Any other instruction
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will lead to a CFI violation, and subsequently to a program termination (kill). Each CFIBR

instruction contains a label, which is hard-coded as an immediate. Specifically, we use
labels on a per-function level. In other words, every function in the program is assigned
one unique label.

The effect of a CFIBR is twofold: first, it loads the used label in a dedicated and iso-
lated memory storage that we refer to as Label State Memory. This operation effectively
activates a label, i. e. it indicates that a function has been entered. The second effect is
that after CFIBR has been executed, the processor changes back to State 0. Our mecha-
nism ensures that an indirect call must target a CFIBR instruction. Since these are placed
at each function entry, we prevent the adversary from jumping into the middle of a
function. Note that we elaborate on fine-grained call checks in Section 4.3.5.

4.3.2.2 Return Instrumentation

Fine-grained software-based CFI approaches validate function returns based on the
shadow stack (or return address stack) paradigm (cf. Section 2.3.3): all return addresses
that are pushed on the program’s stack through call instructions are backed-up on a sep-
arate protected shadow stack. Upon function return, CFI verifies whether the program
uses a return address that is held on the shadow stack. Although shadow stacks pro-
vide fine-grained protection, they (i) significantly decrease performance and (ii) lead to
false positives for certain programming constructs (C++ exceptions with stack unwind-
ing, setjmp/longjmp). Recent work demonstrates that performance can be increased by
leveraging a parallel shadow stack [57]. However, the parallel stack still resides in the
same address space of the target application.

In our solution HAFIX, we force a return to target a call-preceded instruction inside
a function that is currently executing. As we will show, this CFI policy can be efficiently
implemented in hardware and requires only minimal changes to the compiler.

The underlying design to enforce this CFI policy is depicted in Figure 37. In order to
monitor functions that are currently executing, HAFIX requires the compiler to assign
unique labels to each function. Further, it forces the first instruction of each function
to be a CFIBR. This instruction loads the label of the function into a our label state
memory, to indicate that the function is active (Step ¶). Internally, direct and indirect
call instructions lead to a processor state switch in which the processor only accepts
CFIBR. To deactivate a function, HAFIX uses the CFIDEL instruction which effectively
removes the label from the label state memory (Step ·). Hence, CFIDEL instructions are
executed just before a function return instruction.

The critical point of backward-edge CFI is the final return instruction of the subrou-
tine. This indirect branch instruction can be exploited by the adversary to hijack the
program’s control-flow based on a malicious return address. However, in HAFIX return
instructions need to target an active call site. To enforce this, only returns to the CFIRET

instruction are permitted, in particular those CFIRET instructions that define a currently
active label in the label state memory (Step ¸). The dashed line in Figure 37 indicates
that CFIRET does not change the label state, but only checks whether a label is active. We
will give a concrete code example in Section 4.3.3.2.
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Figure 37: Call-Return policy check in HAFIX

Implementation Requirements. We need to define new hardware instructions CFIBR,
CFIDEL, and CFIRET. Further, we need to implement a state model that switches states
on function call and returns to only accept as next instructions CFIBR and CFIRET respec-
tively. On the compiler side, we need to emit these instructions at their corresponding
places: CFIBR at function start, CFIRET at all call sites, and CFIDEL at function return.

4.3.2.3 Special Case of Recursive Functions

Our design and implementation needs to tackle an important challenge of handling
recursive function calls. They lead to a number of store operations of the same label
since a recursive function invokes itself several times before each instance returns. To
solve this problem, we only store the label once and record the number of invocations in
a separate (hidden) register. For this, we introduce a new CFI instruction called CFIREC

and a new shadow register called CFIREC_CNTR.
The abstract workflow of a recursive call under our new CFI instrumentation is shown

in Figure 38. First, the compiler emits CFIREC at the beginning of all recursive functions
(rather than a standard CFIBR). Upon execution, CFIREC activates the label of the recur-
sive function but only if the CFIREC_CNTR is set to zero (Step ¶). In addition, and also
in case the label is already activated, CFIREC increments the CFIREC_CNTR (Step ·). Inter-
nally, we also associate the label of the recursive function to the CFIREC_CNTR register.

Upon function return, the CFIDEL instruction validates whether the current label is
associated to CFIREC_CNTR. If the link exists, HAFIX knows that a recursive function at-
tempts to return. Hence, we subsequently check whether CFIREC_CNTR > 1. If so, we only
decrement CFIREC_CNTR (Step ¸) as more returns from the same function are expected.
Only if CFIREC_CNTR is equal to 1, we remove the label from our memory (Step ¹) as the
last function instance of the recursive function returns. Note that our mechanism targets
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Figure 38: Recursion handling in HAFIX

non-nested recursive functions. Nested recursive functions are rare in embedded appli-
cations, e. g. none of our benchmarks contained nested recursive calls (cf. Section 4.3.4).

4.3.3 Implementation

In this section, we present the implementation of HAFIX on our target architecture Intel
Siskiyou Peak. We refer the interested reader to [13] for the SPARC implementation
details. We give a short overview on Siskiyou Peal, present HAFIX-instrumented code,
and finally describe the implementation of the CFI instructions and the label memory
in hardware.

4.3.3.1 Intel Siskiyou Peak

Intel’s Siskiyou Peak is a 32-bit, fully synthesizable core intended for deeply embedded
applications [156]. The core is highly configurable and features a 5-stage, single-issue
processor pipeline. Major configuration options include a Memory Protection Unit, var-
ious branch predictors, I&D caches and multiplier performance options. Siskiyou Peak
also includes a variety of micro-architectural options to trade off clock frequency for im-
proved instructions-per-cycle. The processor is organized as a Harvard architecture with
separate busses for instruction, data and memory mapped IO spaces. The instruction set
is a small subset of the 32-bit x86 instruction set and shares the same variable-length bi-
nary encoding.

4.3.3.2 Code Instrumentation

Figure 39 shows HAFIX-instrumented assembler code targeting Intel Siskiyou Peak. The
example shows two sample functions with their function prologue and epilogue instruc-
tions, where funct_A simply calls funct_B. The emitted CFI instructions are highlighted
with bold font.
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Siskiyou Peak Code

<funct_a>

PUSH ebp

CFIBR 0x15

MOV ebp,esp

CALL <funct_b>

CFIRET 0x15

MOV esp,ebp

POP ebp

CFIDEL 0x15

RET

1:

2:

3:

4:

5:

6:

7:

8:

9:

<funct_b>

PUSH ebp

CFIBR 0x16

MOV ebp,esp

asm_ins...

MOV esp,ebp

POP ebp

CFIDEL 0x16

RET

a:

b:

c:

d:

e:

f:

10:

11:

Figure 39: HAFIX-instrumented code

Our instrumented compiler prepends CFIBR to function prologues that activate the
unique label of the function in the label state memory. Further, CFIDEL is appended to
function epilogues to mark the end of a function resulting in a label de-activation (see
also Figure 37). Lastly, CFIRET is inserted after a CALL instruction.

Unique labels are added to these instructions within their context with a program
that is executed after the linker. We modified the customized LLVM compiler toolchain
(shipped already with Siskiyou Peak) to generate HAFIX-instrumented code. Moreover,
during a post-compilation processing phase, we identify recursive function calls and
replace the corresponding CFIBR with CFIREC instructions.

Detailed Code Example for Siskiyou Peak. A detailed flow of the CFI protection of-
fered by HAFIX is shown in Figure 40. It shows a sample program consisting of three
functions: A, B, and C. Each function is assigned a label, e. g. label 0025 is used for Func-
tion A. As described above this label is written to our CFI label state memory through
the CFIBR instruction at the beginning of each function (Step ¬).

Note that Function A performs a subroutine call to Function B (Step ­). Hence, the
processor switches to State 1, and the CFIBR of Function B activates label 0050 in the
label state memory (Step ®). The critical point with regards to CFI is the function return
in Function B. Potentially, the adversary could have manipulated the return address to
hijack the execution-flow. To prevent this attack, we apply our CFI policy for returns
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Code Memory

Function A

Instruction 1

CFIBR 0025

Instruction 2

CALL Function B

CFIRET 0025

CFIDEL 0025

RET

Function B

Instruction 3

CFIBR 0050

CFIDEL 0050

RET

Function C

CALL Function X

CFIBR 0272

CFIRET 0272

CFIDEL 0272

Label State 
Memory

0025

0050

LabelActivate Label 0025

Activate Label 0050

Deactivate Label 0050

Label 0272 not active
→ Stop execution

1

32

4

RET

Control-Flows
CFI Operations

Figure 40: Workflow of call/return CFI checks in HAFIX

ensuring that a return can only target a CFIRET instruction using an active label. In the
example shown in Figure 40, our CFI policy is preserved when the program returns
to Function A, because at its call side the CFI compiler has emitted a CFIRET 0025

instruction. Consequently, the adversary has no chance to redirect the control-flow to
the call side of Function C, since label 0272 is not active. Recall that coarse-grained CFI
protection schemes that only deploy one label for returns would have not prohibited
this malicious execution-flow.

4.3.3.3 Hardware CFI and Label Memory

Hardware CFI enforcement on Siskiyou Peak is achieved by augmenting the execution
stage of the processor pipeline with a CFI control unit and associated label state memory,
see Figure 41. The CFI control unit monitors CFI instruction sequencing and manages
CFI label state. In the event of a CFI violation being detected, a processor exception is
issued allowing a software handler to take appropriate action.

Label state memory is implemented as a tightly-coupled 16384x1 memory with the
CFI label employed as the index. This facilitates highly efficient CFI instructions: For a
given label, CFIBR sets the memory location indexed by the label while a CFIDEL clears it.
The CFIRET instruction reads the location indexed by the label and raises an exception
if not set. In the target platform of Xilinx Spartan-6 this approach allows CFI label state
to be efficiently mapped onto two synchronous Block RAMs. Due to the low logic com-
plexity of the indexing mechanism, it is feasible to clock the Block RAM on the opposite
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clock edge removing a cycle of read latency and enabling single-cycle performance for
all CFI instructions.

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Execute
Memory

Stage
Exception

Stage Write Back

CFI
Control

CFI Label
State

CFI
Control

CFI Label
State

Common
SPARC extra pipeline stages
CFI additions on Siskiyou Peak
CFI additions on SPARC

Figure 41: CFI pipeline integration

4.3.4 Evaluation

In this section, we evaluate the performance and security of HAFIX.

4.3.4.1 Performance

The system impact was evaluated using a suite of microprocessor benchmarks including
CoreMark, Dhrystone, cover, crc, matmult and recursion. The performance overhead for
the HAFIX-enhanced Siskiyou Peak and LEON3 cores is shown in Figure 42 with the
respective unmodified stock core used as the baseline. The overall performance over-
head is around 2% for both architectures with backward-edge CFI enabled. The largest
increases, as expected, are seen in those benchmarks that include many short function
calls such as Dhrystone and recursion. None of our benchmarks programs raised a false
CFI violation. As discussed by Dang et al. [57] several shadow stack implementations
require special handling of certain programming constructs (e.g., setjmp/longjmp) to
avoid a false alarm.

CoreMarkDhrystone cover crc matmult recursion
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Stock LEON3-CFI Siskiyou Peak-CFI

Figure 42: CFI extension overhead w.r.t stock core for LEON3 and Siskiyou Peak

The performance of the implemented architecture with respect to area was evaluated
using results from the Xilinx place and route (PAR) tools. The HAFIX enhanced Siskiyou
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Peak core consumes an additional 2.49% registers and less than 1% additional LUTs
(Look Up Tables). The CFI label state memory is implemented using 2 Block RAMs.

4.3.4.2 Security

To measure to what extent HAFIX reduces the set of valid branch addresses, we record
the label state memory at each function return for all of our benchmark programs under
the CFI implementation for Siskiyou Peak. The chart shown in Figure 43 demonstrates
that on average only 0.70% of all program instructions are addressable by a function
return; with a maximum of 2.2% (CoreMark).
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Figure 43: Percentage of program instructions that a function return is allowed to target
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Figure 44: Percentage of CFIRET instructions that a function return is allowed to target

In order to give our evaluation more meaning, we directly compare our backward-
edge CFI realization to recent CFI-based approaches that restrict returns to target a
call-preceded instruction [150, 204, 83]. For this, we validate how many CFIRET instruc-
tions (i.e., call-preceded instructions) a function can target on average. Figure 44 shows
that the median percentage of valid CFIRET instructions for the individual benchmarks
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ranges from 3.13% (matmult) to 25.36% (cover). Hence, HAFIX significantly reduces the
gadget space (to 19.82% on average) compared to recent CFI-based approaches.

Note that using static-linked benchmark programs for our security evaluation resem-
bles a worst-case scenario. In fact, all the numbers reported would be tremendously
lower for dynamically-linked programs for two reasons. First, shared libraries introduce
a large amount of code that is never used during program execution. In coarse-grained
CFI, all call sites inside the shared library are valid targets, but in HAFIX only those
call sites of the invoked shared library function are valid. Second, benchmark programs
typically contain a large (main) function that invokes a number of subroutines. As the
main function remains active almost throughout the entire program execution, all its
call sites (i. e. CFIRET instructions) are valid targets for function returns. As an example,
Dhrystone contains a large main function with 87 call sites out of 419 call sites in total.
However, even in this circumstance, HAFIX still reduces the gadget space to 20% com-
pared to recent CFI-based approaches. In order to further reduce the space, we can emit
multiple labels into the main function, e.g., splitting the Dhrystone main function into
four parts reduces the set of addressable CFIRET instructions to 5%.

Note that an adversary cannot undermine HAFIX by modifying the CFI label state
or the CFIREC_CNTR register simply due the fact that both are not directly accessible by
software, but only by our CFI instructions. Since all modern platforms as well as our
target architectures prevent code injection attacks (using data execution prevention), an
adversary can neither modify the CFI-protected code nor inject malicious CFI instruc-
tions.

Practical Exploits. We also evaluated the effectiveness of HAFIX using code-reuse ex-
ploits against self-developed vulnerable programs. Our attack on SPARC is initiated by
overflowing a buffer, which results in the eventual overwrite of the register holding
the return address, %i7. Similar to a conventional return-into-libc attack, our malicious
return address points to the start of a payload. However, upon returning from the func-
tion, HAFIX reports a control-flow violation since the exploit jumps to an address that
does not match a valid CFIRET site. Similarly, on Siskiyou Peak our exploit returns to an
invalid CFIRET site. Once the HAFIX invalidation occurs, a CPU reset trap terminates
code execution in the exception detection stage.

4.3.5 Extensions

In the following, we discuss possible extensions to enforce hardware-assisted CFI for
indirect call and jump instructions.

4.3.5.1 Fine-grained Indirect Call Instrumentation

To prevent code-reuse attacks from jumping into the middle of a function, HAFIX en-
forces that call instructions target a valid function start. This would still allow an ad-
versary to launch pure return-into-libc attacks, in which only entire functions are in-
voked by exploiting indirect calls. Note that such attacks are not specific to our design,
but apply to previous CFI solutions as well. However, return-into-libc attacks typically



4.3 hafix : hardware-assisted control-flow integrity extension 111

still need to invoke at least some instruction sequences to prepare function arguments,
which is detected by our approach. Moreover, assuming a precise control-flow graph
as in [4, 32], our design can be easily leveraged to enforce fine-grained CFI checks for
indirect calls. We would only need to load all valid labels of an indirect call in a second
label memory area (Call Labels) and, restrict the subsequent CFIBR label instruction to
use a label that can be found in Call Labels.

4.3.5.2 Indirect Jump Detection

CFI protection for indirect jumps is challenging due to the fact that many indirect jumps
cannot be resolved prior to execution, i. e. their set of target addresses are hard to predict.
Given the imperfection of static analysis tools to resolve indirect branches, we investi-
gated a hardware-assisted behavioral-based approach. In our experimental setup, we
keep track of several counters in the window of five indirect jumps. One counter keeps
track of the number of direct branches executed between our sliding window. In fact,
direct branches are rarely used in return-oriented exploits since these target hard-coded
addresses. Another two counters are deployed to keep track of stack pushes and pops.
Typically, return-oriented programming attacks do not use push instructions [169] as
they potentially overwrite return addresses of the return-oriented payload. That said, if
many pop but only a few push instructions are issued in our window, we have another
indicator that a return-oriented programming attack is currently executing.

It is envisaged that the heuristics associated with indirect jump detection will be imple-
mented in an fully autonomous manner with software only responsible for configuring
the appropriate indirect jump window size and thresholds for direct jumps and push
and pop stack operations. More specifically, indirect jumps will be counted, and when
the window size, e. g. 5, is reached the direct jump, push, and pop counters will be com-
pared against configurable thresholds. If these thresholds are exceeded, a CFI violation
is reported. Conversely, if no thresholds have been exceeded the counters will be reset
and monitoring will continue.

For our indirect jump heuristics, we tested several thresholds using SPEC CPU2006

benchmarks. Our experiments reveal that between a sliding window of five indirect
jumps there are never execution traces that contain less than 3 direct jumps and 3 push
instructions. Although heuristic-based approaches will never provide an ultimate solu-
tion to runtime exploitation prevention, they can significantly raise the bar for control-
flow attacks.

Another alternative we are currently investigating is a new CFI policy for indirect
jumps that ensures indirect jumps can only target a function whose label is active. Since
indirect jumps typically remain in the boundaries of the currently executing functions3,
it seems to be a promising direction that we will explore. In particular, we will investi-
gate whether such a strict CFI policy will raise false positives.

3 There are some known exceptions such as stub code for calls to external library functions in the Linux PLT
(Procedure Linkage Table) section. To support these indirect jumps, we could enforce that indirect jumps
are allowed to target functions whose label is active or whose next instruction is a CFIBR L.
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4.3.6 Conclusion and Future Work

For the first time, we present the implementation and evaluation of a fine-grained
hardware-assisted CFI scheme HAFIX that provides integrity checks for backward edges
(returns). Our implementation of HAFIX on Intel Siskiyou Peak and SPARC LEON3 pro-
vides new dedicated CFI instructions that efficiently perform CFI checks in a single cycle.
We require minimal changes to the compiler toolchain to emit our new CFI instructions.
Our security evaluation demonstrates that HAFIX significantly reduces the code base an
adversary can leverage to perform code-reuse attacks. Compared to recently proposed
software-based CFI approaches, HAFIX reduces the gadget space to 19.82% with an
average performance overhead of only 2%.

In our reference implementation of HAFIX we target bare metal code. Ideally, HAFIX
needs to be applied to all code running on the target system, including the operating
system. We are currently working on an operating system CFI support module that
handles label states for different processes. Specifically, this extension will store and
restore labels whenever a context switch occurs.

Another ongoing work concerns the label space for programs that link to several
shared libraries. In this case, we need to ensure that our compiler emits unique labels
per library. We are also currently exploring new CFI instructions that facilitate hardware-
assisted forward-edge CFI.
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4.4 related work

In this section, we survey related work on control-flow integrity (CFI). We investigate
both software-only and hardware-assisted CFI solutions.

4.4.1 Software-only CFI Schemes

The basic principle of monitoring the control-flow of an application in order to enforce
a specific security policy has been introduced by Kiriansky et al. [115] in their seminal
work on program shepherding. This technique allows arbitrary restrictions to be placed
on control transfers and code origins to confine a given application. Program shepherd-
ing employs dynamic binary instrumentation based on the DynamoRIO framework [29].
In its prototype implementation, it provides return address protection allowing a return
only to target an instruction that is preceded by a call instruction. Thus, its implementa-
tion is vulnerable to the advanced code-reuse attacks we presented in Section 3.2.

A more fine-grained analysis was presented by Abadi et al., who proposed control-
flow integrity enforcement [1, 4]. This technique asserts the basic safety property that
the control-flow of a program follows only the legitimate paths determined in advance
(cf. Section 2.3). If an adversary hijacks the control-flow, CFI enforcement can detect this
deviation and prevent the attack. In contrast to a variety of ad-hoc solutions, CFI pro-
vides a general solution against runtime exploits. In particular, Abadi et al. [2] develop
a framework that is based on an abstract machine model and an instruction set to prove
that CFI enforcement is sound. Lastly, they present a hardware-based implementation
of CFI enforcement [32] which we discuss in detail in Section 4.4.4. We use CFI as the
basic technique and show that this principle can be applied on the ARM processor archi-
tecture to protect mobile devices against runtime exploits (cf. Section 4.1), and enforce
fine-grained application sandboxing in iOS (cf. Section 4.2). To do so, we had to over-
come several obstacles due to the subtle architectural differences between x86 and ARM,
and the specifics of mobile operating systems. In particular, we demonstrate how to emit
CFI checking code on-the-fly at application load-time.

A number of binary-instrumentation based CFI schemes have appeared to tackle the
performance overhead incurred by original CFI for x86 [4] and our tool MoCFI [62] for
ARM. We described in detail kBouncer[150], ROPGuard (Microsoft EMET) [83, 131], CFI
for COTS binaries [204], ROPecker [47], and CCFIR [202] in Section 3.2.2. In particular,
we demonstrate in Section 3.2 that even if these CFI schemes and their policies are
combined with each other, they can be bypassed by advanced code-reuse attacks under
weak adversarial assumptions.

The CFI schemes discussed so far employ binary instrumentation to enforce CFI. In
contrast, Pewny and Holz [152] present a CFI compiler, called Control-Flow Restrictor
(CFR), targeting iOS. Similar to MoCFI, CFR checks at each indirect branch whether
it follows a legitimate path in the control-flow graph (CFG). However, CFR deploys a
coarse-grained policy for returns which makes it vulnerable to advanced code-reuse
attacks.
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Onarlioglu et al. [148] propose a compiler extension, called G-Free, for Intel x86 to
eliminate unintended instruction sequences of a program binary. Further, it encrypts
return addresses with a random key, and constrains indirect jumps to a local function.

Control-flow locking (CFL) proposed by Bletsch et al. [25] also follows the compiler-
based approach. Their technique is inspired by the hardware-assisted CFI solution pre-
sented by Budiu et al. [32]: it inserts lock code before each indirect branch, and unlock
code at each possible branch destination. Whereas the lock code sets a label, the unlock
code checks if the correct label has been set. That is, the control-flow checks occur after
the indirect branch has been taken. This allows the adversary to hijack the control-flow
once. However, before the next indirect branch is executed, CFL checks whether an un-
lock operation has been executed. To prevent the adversary from calling a system call
in-between, CFL inserts lock checks before each system call. On the other hand, CFL de-
ploys coarse-grained policies: indirect jumps/calls can target every function entry and
any code location whose symbol is used as data. Further, returns from indirectly callable
functions can return to any instruction that follows after a call. Lastly, checking against
a static label before a return from a directly callable function will eventually lead to
coarse-grained CFI (cf. Section 2.3.3): all possible call sites to the target function need to
share the same label.

CFI enforcement has been also leveraged to ensure benign execution in hypervisor
code. Wang and Jiang [189] introduce HyperSafe which protects x86 hypervisors by
enforcing hypervisor code integrity and CFI. With respect to returns, HyperSafe only
validates if the return address is within a set of possible return addresses which has
been calculated offline. However, the dynamic nature of mobile applications prevents us
from calculating return addresses offline. A more recent approach by Criswell et al. [56]
explores CFI for operating system kernels, but their system only enforces coarse-grained
CFI policies.

Classic CFI schemes do not support separate compilation meaning that they do not
support separate instrumentation of program modules that are later linked to one single
program. As a consequence, CFI typically requires all program modules to be available
at instrumentation time to assign unique labels. Niu and Tan [145] tackle this short-
coming by encoding CFG information (including labels) into dedicated tables that are
consulted at runtime to perform CFI validation. In particular, MCFI merges these CFG
tables when program modules need to be linked dynamically. Their tool, called MCFI,
enforces fine-grained CFI based on a compiler-based approach. However, MCFI does not
enforce fine-grained return address checks, i. e. a static call-graph is used to determine
possible call sites for a given return instruction. In a follow-up work, Niu and Tan [146]
expand MCFI protection to just-in-time (JIT) compilers. Their approach, called RockJIT,
takes a hybrid approach: it enforces fine-grained CFI for the JIT compiler code, and
coarse-grained CFI for code generated just-in-time.

Lastly, Prakash et al. [154] aim at enforcing system-wide CFI for kernel code and
user processes. Their solution, called Total-CFI, deploys a shadow stack to enforce fine-
grained checks for returns, and validates indirect jumps and calls based on a whitelist
of valid targets taken from relocation tables. In its prototype implementation, Total-CFI
employs dynamic translation based on QEMU to virtualize an entire guest operating sys-
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tem. Hence, Total-CFI incurs a large performance overhead since it requires a software
emulator for the entire operating system.

4.4.2 Non-Control Data Attacks

Our focus in this dissertation are attacks and defenses against code-reuse attacks. In
particular, we consider attacks that hijack the intended control-flow of an application
(cf. Section 1.1). On the other hand, Chen et al. [45] demonstrate that non-control-data
attacks are realistic and can be launched against modern applications. The main idea of
these attacks is to alter application data such as user input, configuration data, user ID,
or authentication data to execute privileged code without violating control-flow integrity.
Although non-control-data attacks are beyond the scope of this dissertation, we briefly
review some schemes that aim at mitigating these attacks because they also include
mechanisms to prevent runtime exploits.

Data-flow integrity (DFI) proposed by Castro et al. [38] aims at preventing non-control-
data attacks. To do so, DFI derives the static data-flow graph (DFG) of an application,
and inserts runtime checks to validate if read and write operations follow the legitimate
data flow given in the DFG. However, this compiler-based approach incurs significant
performance overhead. Write Integrity Testing (WIT) proposed by Akritidis et al. [6]
extends the original DFI work. It leverages interprocedural points-to analysis which
outputs the CFG, and computes the set of objects that can be written by each instruction
in the program. Based on the result of the points-to analysis, WIT assigns a color to
each object and each write instruction. WIT enforces write-integrity by only allowing
the write operation if the originating instruction and the target object share the same
color. As a second line of defense, it also enforces CFI to check if an indirect call targets
a valid execution path in the CFG. However, WIT does not prevent return-oriented
attacks, because it does not check function returns.

4.4.3 Inlined Reference Monitors

In general, one can classify CFI as an instantiation of an inlined reference monitor (IRM).
To insert an IRM into an application, a rewriter or compiler produces — based on a
given security policy and the original program’s binary or source code — a secured
application [75]. The IRM ensures that program execution does never violate the security
policy. In CFI [4], the IRM consists of CFI label checks and the shadow stack for returns
to ensure that the control-flow always follows a legitimate path in the CFG. In fact, the
CFG resembles the security policy.

Apart from CFI, there are several other well-known IRM schemes such as software
fault isolation (SFI) [187] and data-flow integrity [38]. Although their goals slightly differ
from CFI, they share many similarities to CFI. Moreover, many SFI and DFI schemes
are combined with some form of CFI to ensure that the IRM is not compromised by
runtime exploits. As an example, recall that our tool PSiOS (cf. Section 4.2) employs CFI
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to enforce fine-grained application sandboxing on iOS. In the following, we provide a
brief overview of SFI and DFI schemes.

The basic idea of SFI is to isolate code and data of an untrusted module in a sepa-
rate fault domain [187]. Afterwards, the untrusted module is instrumented to ensure
that the code cannot jump or reference data beyond its fault domain. The original SFI
proposal targeted RISC architectures, and is not applicable to architectures that fea-
ture variable-length instructions. McCamant and Morrisett [130] tackle this shortcoming
and presented a SFI scheme, called PittSFIeld, for the CISC-based architecture Intel x86.
PittSFIeld aligns branch instructions to a 16-Byte boundary. To do so, it emits NOP in-
structions to ensure that all possible branch targets are aligned to 16 Bytes. NativeClient
(NaCl) [199, 166] builds upon SFI and enables a sandboxed environment for native
code plugins in web browsers. Our iOS policy framework is closely related to these
works. In particular, we enable SFI for iOS applications, by instrumenting all calls to
the Objective-C runtime. However, note that the existing works either focus on entirely
different computing platforms or are incompatible to Objective-C.

Abadi et al. [3] propose XFI as an extension to their original x86-based CFI scheme [4].
In particular, XFI allows enforcement of fine-grained memory access control rules. For
this, it employs a XFI rewriter and verifier to insert software guards that perform run-
time checks on control-flow and memory access. However, the additional integrity con-
straints on memory and the stack incur a higher performance overhead.

Zeng et al. [200] showed that CFI combined with static analysis enables the enforce-
ment of efficient data sandboxing. In particular, the presented scheme provides confi-
dentiality of critical memory regions by constraining memory reads to uncritical data
regions. This is achieved by placing guard zones before and after the uncritical data
area. The solution has been implemented in the LLVM compiler infrastructure (similar
to the NaCl compiler [199, 166]), targets the Intel x86 platform, and slightly increases
performance compared to XFI at the cost of relaxing the integrity constraints for return
addresses.

The aforementioned schemes have a practical limitation: they target a specific hard-
ware architecture and porting them to other architectures involves significant effort. To
address this limitation, Zeng et al. [201] propose Strato which is a framework that en-
ables IRM implementations at the compiler intermediate-representation (IR) level.

Although CFI offers a viable defense to protect IRM schemes, it typically does not
allow separate compilation. Niu and Tan [144] tackles this limitation by dividing code
into chunks and restricting indirect branches to only target the first instruction of a
chunk. The boundaries of code chunks are stored in the module’s chunk table. The
tool, called Monitor Integrity Protection (MIP), maintains a bitmap per chunk table, and
supports static as well as dynamic combination of program modules by merging chunk
tables on-demand. However, with respect to CFI, MIP only deploys coarse-grained CFI
policies. Hence, an adversary can leverage our advanced code-reuse attack techniques
to undermine MIP.
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4.4.4 Hardware-Assisted CFI Schemes

Several approaches leveraged (or introduced new) hardware-based mechanisms to miti-
gate runtime exploits. For instance, kBouncer and ROPecker use the Last Branch Record-
ing (LBR) history table of recent Intel processors [150, 47]. They add hooks into API
call sites, and once these are triggered at runtime, validate the LBR entries based on a
CFI policy. However, the deployed CFI policies and behavioral-based heuristics are too
coarse-grained and can be bypassed as we have shown in Section 3.2.

Similarly, Xia et al. [197] use performance counters and Intel’s Branch Trace Store
(BTS) to detect control-flow deviations. Zhang et al. [205] aim at detecting program
execution anomalies based on a new hardware architecture that validates all branch in-
structions [205]. However, both approaches require an offline training phase [197, 205],
and assume a precise and static control-flow graph (CFG). Deriving a complete CFG is
hardly possible given the complexity and dynamic nature of modern programs. In par-
ticular, statically determining valid return addresses leads to coarse-grained CFI policies
as described in [4].

Our hardware-assisted CFI design presented in Section 4.3 is closely related to the
design presented by Budiu et al. [32]. In their work, new hardware CFI instructions
are introduced to enforce label checks on each indirect branch. For this, each branch
target is annotated with a label instruction (CFILABEL L), and every indirect branch is
replaced by a corresponding CFI instruction, e. g. JMPC reg,L. The latter CFI instruction
jumps to the address specified in reg and at the same time sets a label L in a dedicated
(new) CFI register. After the indirect branch has been executed, the processor changes
state such that CFILABEL is the only permissible next instruction. In particular, the state
will only change back to the ordinary execution state after a CFILABEL instruction has
been executed using exactly the label L that has been stored in the CFI register by the
indirect branch. In fact, our CFI state model in HAFIX is inspired by Budiu et al. [32].
However, the CFI scheme proposed by Budiu et al. [32] leads to coarse-grained CFI
policies. Consider a subroutine that can be called by different callers. Since the return
of the subroutine can only use one label, e. g. RETC L1, the compiler needs to insert a
label instruction using L1 for each possible call site. This allows the adversary to choose
to which call side she wants to return to. Moreover, another related problem arises for
those indirect calls that can potentially target many diverse functions. As an example,
consider an indirect call that can possibly target 200 functions (which is not an artificial
scenario even if source code is available, see e. g. [6]). To ensure fine-grained CFI, one
would need to assign a unique label for each of the 200 function return instructions. As
such, the compiler needs to add 200 corresponding label instructions at the call side (the
instruction after the indirect call), i. e. 200 CFILABEL L1-L200 instructions. This leads to a
significant space and performance overhead. Given these problems, using the approach
presented in [32] will with high probability lead to a coarse-grained CFI policy, where
identical labels will be used for a subset of returns.

Branch regulation as proposed by Kayaalp et al. [111] requires identifying function
bounds and a shadow stack to enforce fine-grained CFI. However, their approach suffers
from the basic problems of shadow stacks.
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Francillon et al. [80] introduce an embedded microprocessor that includes memory
access control for the stack, which is split into data-only and call/return addresses-only
parts. The processor enforces access control that does not allow to overwrite the call/re-
turn stack with arbitrary data. This effectively prevents stack-based return-oriented at-
tacks. However, it requires major software changes to support a system-wide split-stack
scheme.

A hardware-facilitated solution has been proposed by Frantzen and Shuey [81]. Their
scheme, called StackGhost, targets SPARC-based systems. It leverages stack cookies that
are XORed with return addresses at function entry, and XORed again upon function re-
turn. The design of StackGhost also includes a return address stack (i. e. shadow stack),
but to the best of our knowledge, this has not been implemented and benchmarked. Fur-
ther, StackGhost depends on specific features, which are unique to SPARC, and which,
according to Frantzen and Shuey [81], cannot be easily adopted to other hardware plat-
forms.

4.4.5 Backward-Edge CFI Schemes

Several CFI schemes focus exclusively on enforcing integrity checks for return instruc-
tions. These backward-edge CFI schemes aim at mitigating conventional return-oriented
programming attacks (cf. Section 2.1.5).

Chiueh and Hsu [48] present a compiler-based implementation of a shadow stack.
Several approaches aim to detect malicious change of return addresses by using instru-
mentation techniques without requiring source code. Gupta et al. [95] and Chiueh and
Prasad [49] rewrite function prologue and epilogue instructions to incorporate a return
address check on each function return. However, both approaches are not able to detect
return-oriented attacks that use unintended instruction sequences, because they only
instrument intended function epilogues.

In contrast, TRUSS (Transparent Runtime Shadow Stack) [171] and our tool ROPde-
fender [61] are based on just-in-time based instrumentation. These approaches leverage
a shadow stack to perform integrity checks for return addresses. Due to just-in-time
instrumentation, TRUSS and ROPdefender are able to detect execution of unintended
sequences issued.

Recently, Dang et al. [57] review several shadow stack-based CFI schemes and demon-
strate that performance can be increased by leveraging a parallel shadow stack. However,
in contrast to HAFIX, the parallel stack still resides in the same address space of the tar-
get application.

4.4.6 Forward-Edge CFI Schemes

As there exist CFI schemes that focus on return instructions (backward-edge CFI), there
exist schemes whose target are indirect jumps and calls (forward-edge CFI). For instance,
the approaches of Tice et al. [182] and Jang et al. [109] focus on protecting indirect calls
to virtual methods in C++. Both approaches have been implemented as a compiler exten-
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sion and ensure that an adversary cannot manipulate a virtual table (vtable) pointer so
that it points to an adversary-controlled (malicious) vtable. Unfortunately, these schemes
do not protect against classical return-oriented attacks which exploit return instructions.

The aforementioned approaches require the source code of the application which
might not be always readily available. In order to protect binary code, a number of
forward-edge CFI schemes have been presented recently [85, 203, 155]. Although these
approaches require no access to source code, they are not as fine-grained as their compiler-
based counterparts. A novel attack technique, called COOP (counterfeit object-oriented
programming), undermines the CFI protection of these binary instrumentation-based
defenses by invoking a chain of virtual methods through legitimate call sites to induce
malicious program behavior [163].
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4.5 summary and conclusion

Defending against code-reuse attacks is challenging. In particular, it is highly challeng-
ing to design and implement a defense that is efficient, effective, and practical at the
same time. In this chapter, we take a software-only and hardware-assisted control-flow
integrity (CFI) approach to prevent these attacks, where we focus on fine-grained protec-
tion to mitigate our advanced code-reuse attacks presented in Chapter 3. Our software-
only approach MoCFI targets mobile platforms running an ARM processor. It keeps
compatibility to application signatures by instrumenting applications in memory after
the loader has verified the signature. Further, it resists advanced code-reuse attacks by
enforcing fine-grained checks for each indirect branch, and can be leveraged as an in-
lined reference monitor to enable fine-grained application sandboxing on iOS. On the
other hand, we observed performance bottlenecks when enforcing software-only based
fine-grained CFI. To tackle the performance problem, we explore a hardware-assisted
CFI scheme. Our approach HAFIX introduces dedicated hardware CFI instructions and
isolated storage for CFI data. In fact, HAFIX demonstrates that a hardware-software
co-design allows fine-grained and efficient CFI enforcement.



5
A D VA N C E S I N C O D E R A N D O M I Z AT I O N

Code randomization defends against code-reuse attacks by randomizing the memory
location of code segments. The most well-known instantiation of code randomization
is address space layout randomization (ASLR) which randomizes the base address of
shared libraries and the main executable. Unfortunately, ASLR is often bypassed in prac-
tice due to its low randomization entropy. Advanced code randomization schemes that
randomize the internal code layout of a program aim at tackling this limitation. We elab-
orate on these so-called fined-grained randomization approaches and present our tool
XIFER [63] which enables basic block permutation per application run. We also present a
novel just-in-time code-reuse attack that demonstrates the limits of existing fine-grained
randomization approaches [172]. As we will show, such advanced attacks can be tackled
by combining code randomization with execution-path randomization [66].

5.1 background on fine-grained code randomization

A widely deployed countermeasure against code-reuse attacks is the randomization of
the applications’ memory layout. The idea of software diversity (or program evolution)
has been introduced by Cohen [50] in his seminal work on how to protect computer
systems and their running software programs against software exploits. The basic ob-
servation is that an adversary typically generates an attack vector and aims to simulta-
neously compromise as many systems as possible using the same attack vector (i. e. one
attack payload). To mitigate this so-called ultimate attack, Cohen proposes to diversify
a software program into multiple and different instances while each instance still covers
the entire semantics of the root software program. The goal is to force the adversary to
tailor a specific attack vector/payload for each software instance and computer system
making the attack tremendously expensive. Different approaches can be taken for real-
izing software diversity, e. g. memory randomization (ASLR) [78, 151], based on a com-
piler [50, 82, 106], or by means of binary rewriting and instrumentation [149, 97, 191, 63].

As we described in Section 2.2, base address randomization via ASLR [151] cannot
resist control-flow attacks that exploit a memory disclosure vulnerability beforehand.
To tackle this limitation, a number of so-called fine-grained ASLR, i. e. fine-grained code
randomization schemes1, have recently appeared in the academic literature [22, 114, 149,
97, 191, 63]. The underlying idea in these works is to randomize the code structure, for
instance, by shuffling functions, basic blocks, or instructions (ideally for each program
run [191, 63]).

Figure 45 demonstrates how fine-grained ASLR is applied to an application with three
code blocks. For each execution, base address randomization ensures that the executable

1 Note that we use both terms interchangeably.

121



122 advances in code randomization

Program Memory

Executable

Code Block A

Code Block B

Code Block C

Program Memory

Executable

Execution i Execution i + 1

0x08000000:

0x07000000:

Code Block C

Code Block A

Code Block B

Figure 45: Fine-grained code randomization

is loaded at a start address different from the previous execution. In addition, fine-
grained ALSR permutes the code blocks such that an adversary can no longer deploy a
code-reuse attack by disclosing a single runtime address. Obviously, changing the order
of code blocks requires adjusting memory offsets used in the code blocks. For instance,
if Code Block B in Figure 45 issues a branch instruction to redirect execution to Code
Block C, it will be necessary to adjust the branch target as Code Block C has been moved
to the beginning of the executable.

Chapter Outline. The remainder of this chapter is organized as follows. In Section 5.2,
we present our fine-grained ASLR scheme XIFER which enables basic block permutation
per application run. Next, we present in Section 5.3 a just-in-time code-reuse attack that
poses a severe threat to all fine-grained ASLR solutions proposed so far. In Section 5.4,
we present our advanced fine-grained ASLR scheme called Isomeron to tackle just-in-
time code-reuse attacks. Lastly, we elaborate on related work in Section 5.5, and conclude
this chapter in Section 5.6.

5.2 xifer : a randomization tool for basic block permutation

In this section, we present our randomization tool, called XIFER, to defend against code-
reuse attacks based on fine-grained ASLR. Our tool performs fine-grained memory di-
versification for each program run. Basically, we transform the control-flow graph (CFG)
of an application at load-time by means of binary rewriting. Our CFG transformations
include permutation of small code pieces at basic block (BBL) level, splitting of BBLs,
and injection of new instructions. The novelty of our approach resides in the fact that all
three techniques are entirely enforced at runtime in memory without requiring source
code.

In summary, our contributions are the following:

• Mitigation of code-reuse attacks: Our diversification techniques adequately miti-
gate code-reuse attacks such as return-into-libc and return-oriented programming
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because all instructions are moved from their original location. In contrast to re-
cent compiler-based [50, 82] and static rewriting-based approaches [149, 97], we re-
diversify the program at each run. Further, our permutation can be applied down
to a single instruction.

• Prototype for x86/ARM: Our prototype implementation targets both mainstream
processor architectures Intel x86 and ARM, and can be applied to all binaries
that use the standard Linux ELF executable format. Intel’s IA-32 (x86) platform
is widespread in the desktop market, and ARM processors are deployed in most
well-established tablets and smartphones.

• Compliance to code signing: The design of our tool is compliant to code signing,
which is a standard feature in modern app store distribution models. In contrast
to static rewriting approaches [149, 97, 114, 191], our tool rewrites the application
after the OS loader has already verified the signature.

• Evaluation: We evaluated our prototype for x86 and ARM by using the standard
benchmark suite SPEC CPU2006. Our evaluation results demonstrate that our tool
efficiently performs software diversity with an average runtime overhead of only
5%, and a load-time overhead of only 1s for a 5MB executable.

Section Outline. After presenting the high-level idea of XIFER in Section 5.2.1 and its
design in Section 5.2.2, we elaborate in detail on technical challenges we had to overcome
to implement basic block permutation in Section 5.2.3. Lastly, in Section 5.2.4 we present
our evaluation results.

5.2.1 High-Level Idea

In general, an application is represented by its corresponding control-flow graph (CFG)
which covers all valid execution paths. Due to the linear program memory layout, the
CFG will be represented flattened in memory when the program is loaded (see Fig-
ure 46). After the program has been loaded into the memory, and its signature has been
verified, we transform (including random code permutation) the layout of the control-
flow graph (CFG) G to G ′. The transformed CFG G ′ is isomorphic to G. Hence, it covers
the entire control-flows and semantics of the original CFG G.

As core diversification techniques we leverage BBL permutation [67], splitting [50], and
injection [50], while the novelty of our approach resides in the fact that we entirely per-
form these operations at runtime directly after the OS linker has loaded the application
into memory:

• Permutation: We permute BBLs in memory to move them from their original mem-
ory position. For instance, in Figure 46, BBL E is moved from the end to the middle
of the memory space. Moreover, we distribute BBLs belonging to a single function
across the entire memory space. This introduces a highly randomized memory
layout, and tremendously increases the randomization entropy compared to pro-
posals that only reorder functions [22, 114].
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Figure 46: High-level idea of XIFER

• Splitting: In addition, we further increase the entropy, by splitting a single BBL
in multiple BBLs, and distributing these across the memory space with the same
permutation. Hence, our permutation can be applied from BBL down to instruc-
tion granularity. The number of those artificial splittings is based on a security
parameter. For instance, BBL A has been split into two BBLs A1 and A2.

• Injection: Finally, we inject new instructions within a BBL (e.g., BBL B is trans-
formed to BBL B ′), and insert new (dummy) BBLs into the application. To preserve
the program’s semantics, the new code will perform only NOP operations.

Note that G ′ only represents one possible control-flow graph, and the number of pos-
sible graph transformations is extremely high: only for the BBL permutation we already
achieve an entropy of n!, while n denotes the number of BBLs within an application.

Even if the adversary knows that the application suffers from a vulnerability, she can-
not launch a code-reuse attack, since the location and structure of all BBLs has been
randomized. In addition, our approach is secure against disclosure attacks, where the
address of a known function is leaked to the adversary. This is due to the fact that all off-
sets between functions and BBLs have been randomly changed. Even if the permutation
and the memory layout of one specific instance is known, the adversary cannot assume
that the target device is using this instance, since our diversification is applied for each
application run.
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5.2.2 Design of XIFER

The design of XIFER is depicted in Figure 47. The workflow is as follows: after the app
has been loaded by the OS linker into the memory, we first disassemble the applica-
tion on-the-fly (Step ¶). Next, we identify all BBLs that belong to the application and
derive the basic control-flow graph (CFG) of the application (Step ·). The next steps
(Step ¸ to º) involve the diversification of the application which is performed within
our runtime rewriter. More precisely, we inject new BBLs and NOP instructions into the
application, split BBLs to multiple BBLs, and finally permute the BBLs in memory based
on the output of a Pseudo Random Number Generator (PRNG). Since we move and in-
ject BBLs in memory, our rewriter needs to adjust all relative memory offsets and branch
targets.

Runtime
RewriterApp Disassembler

BBL Identifier

Injection

Splitting

Permutation

PRNG

CFG G

CFG G‘

1

2

3

4

5

XIFER

Figure 47: Design of XIFER

5.2.3 Implementation and Technical Challenges

The core component of XIFER is the binary rewriter which we implemented for the
Android/Linux version for Intel x86 and ARM.

In summary, the main steps involved in the rewriting process of XIFER are (1) loading
the executable, (2) disassembling the bytecode on-the-fly, (3) building a reference graph
of the executable, (4) applying code transformation, and (5) finally writing the executable
back to memory so that it can start executing. To accurately rewrite the application,
XIFER only requires relocation information which is also required to enable conventional
ASLR protection. We implemented our rewriter and our runtime software diversifier for
the popular Linux ELF executable format.

Recall that our goal is to achieve runtime diversification at load-time. This poses sev-
eral technical challenges as code does no longer reside at its original position. For better
understanding, we describe these challenges using an abstract intermediate notation:
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the CFG of the application is a directed graph G = (V ,E), where V denotes the set of
vertices and E the set of edges. Each vertex v ∈ V denotes a basic block (BBL) of the appli-
cation. Each vertex v ∈ V consists of a sequence of ordered instructions v = (i1, i2, ..., in),
where iindex denotes a single instruction and n indicates the length of the BBL. The last
instruction of the BBL in is any branch instruction the processor supports (e.g., direc-
t/indirect jump or call, and function return) and allows the transition from one BBL to
another. Finally, an edge e ∈ E is an ordered tuple e = (i, j), where i; j ∈ V .

Function Returns. BBL permutation is technically more involved than function permu-
tation because the semantics of each function return and conditional branch changes,
whenever BBLs belonging to one function are no longer located next to each other.

Consider the example shown in Table 11, where for simplicity we assume that every
instruction reserves one byte in memory: in the original program, BBL v1 terminates
with a call instruction that targets BBL v3 located at address 0x06. Typically, the call
instruction will automatically set the return address to the succeeding instruction (i.e.,
i3 of BBL v2). The return instruction of BBL v3 will exactly use this return address to
transfer the execution back to the caller; in this case to i3 at 0x03.

Addr Original Program G Diversified Program G ′

0x00: v1 = (i1, i2,CALL {0x06}) . . .

0x03: v2 = (i3, i4, i5) . . .

0x06: v3 = (i6, i7,RET) . . .

. . . . . . . . .

0x20: . . . v1 = (i1, i2, CALL {0x40})

0x23: . . . v4 = (JMP {0x60})

. . . . . . . . .

0x40: . . . v3 = (i6, i7,RET)

. . . . . . . . .

0x60: . . . v2 = (i3, i4, i5)

Table 11: Support of BBL permutation for function returns

After moving and permuting BBLs in memory, BBL v1 is located at 0x20, BBL v2 at
0x60, and BBL v3 at 0x40. Hence, the BBLs are no longer next to each other. To preserve
the program’s semantics, our tool rewrites the call instruction of BBL v1 so that it uses
0x40 as target address. However, the call instruction would automatically set the return
address to 0x23, but i3 is now located at 0x60. To tackle this issue, we insert a new
branch (jmp {0x60}) after the call instruction. Hence, the return instruction of BBL v2
will still return to 0x23, but the new inserted branch at this address will redirect the
execution to i3.2

Conditional Branches. A similar challenge is caused by conditional branches. In gen-
eral, these branches are only enforced if a specific condition is met (e.g., one operand

2 Note that it is not possible to replace the return with a fixed branch to address 0x60, because BBL v3 may
be called by other BBLs as well.
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is greater than the other). If the condition is not met, the control-flow will automatically
continue at the instruction which succeeds the conditional branch. To tackle this chal-
lenge we use the same technique as for function returns: we insert an (unconditional)
branch directly after the conditional branch, which redirects the execution to the original
intended instruction (see Table 12).

Addr Original Program G Diversified Program G ′

0x00: v1 = (i1, i2, JMPEQ {0x06}) . . .

0x03: v2 = (i3, i4, i5) . . .

0x06: v3 = (i6, i7) . . .

. . . . . . . . .

0x20: . . . v1 = (i1, i2, JMPEQ {0x40}, JMP {0x60})

. . . . . . . . .

0x40: . . . v3 = (i6, i7)

. . . . . . . . .

0x60: . . . v2 = (i3, i4, i5)

Table 12: Support of BBL permutation for conditional branches

Position-Independent Code (PIC). Code that is compiled as position-independent can
be executed at an arbitrary memory address. In order to correctly de-reference data
from memory, PIC usually looks-up the current value of the program counter. As we
will describe in the following, this look-up mechanism will fail if BBLs are no longer
next to each other, raising another challenge for our tool.

Table 13 shows a typical example for this look-up: BBL v1 terminates in a call instruc-
tion that simply targets the subsequent instruction (POP {r0}) at address 0x03. On x86,
the call instruction pushes the return address (0x03) on the stack, and POP {r0} will load
this address in register r0. Hence, the program knows (by looking-up r0) that it is cur-
rently executing at memory address 0x03. The second instruction of BBL v2 leverages
this information to de-reference data (AA) located at address 0x10 and loading it into
r1.

In the diversified program, BBL v1, BBL v2, and the data are at different memory
locations. Hence, the former “call-pop” sequence will no longer de-reference the correct
data. To tackle this challenge, our tool performs two operations: it rewrites the call
instruction so that it correctly transfers the execution to BBL v2, and it changes the
offset used in the load instruction from 0x07 to 0x3F. Hence, the load instruction will
de-reference data from r0 + 0x3D which equals 0x23+ 0x3D = 0x60, exactly the address
where the intended data (AA) resides in the diversified program.

5.2.4 Evaluation

To measure the runtime overhead induced by XIFER, we applied the well-known indus-
try benchmark tool SPEC CPU2006. We performed the evaluation on an Intel Core i5
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Addr Original Program G Diversified Program G ′

0x00: v1 = (i1, i2,CALL {0x03}) . . .

0x03: v2 = (POP {r0} , . . .

LOAD {r1, (r0 + 0x07)} , i3)

. . . . . . . . .

0x10 AA . . .

. . . . . . . . .

0x20: . . . v1 = (i1, i2, CALL {0x40})

. . . . . . . . .

0x40: . . . v2 = (POP {r0} ,

LOAD {r1, (r0 + 0x3D)} , i3)

. . . . . . . . .

0x60: . . . AA

Table 13: Support of BBL permutation for PIC code

(Intel Q57 Chipset) PC that was equipped with 4GB DDR-3 RAM and a 500GB hard disk.
On our evaluation PC, we installed Xubuntu 12.04. In particular, we chose the SPEC inte-
ger benchmarks 401.bzip2, 429.mcf, 456.hmmer, 458.sjeng, 462.libquantum, 464.h264ref, and
473.astar. We compiled all benchmarks using gcc-4.5.3 and the uClibc C library. Since
our tool does not currently diversify shared libraries we linked all libraries statically to
the executable.

We also specified three diversification configurations: (Config-1) only BBL permuta-
tion, (Config-2) BBL permutation and BBL splitting after every 7th instruction, and
(Config-3) BBL permutation and insertion of two NOPs that are inserted after every
10th instruction.

The results of our evaluation are summarized in Figure 48: for Config-1 the average
overhead is only 5%. This basic configuration already has a much higher entropy than
most existing software diversity tools and demonstrates the efficiency of our approach.
BBL permutation in conjunction with BBL splitting (Config-2) induces a slightly higher
overhead (11%). On the other hand, this configuration provides a higher diversification
entropy compared to Config-1. Finally, Figure 48 demonstrates that our BBL injection
method (Config-3) induces almost the same overhead as Config-1. Hence, BBL injection
only adds negligible overhead to BBL permutation.

In contrast to our evaluation on x86, we conducted micro benchmarks for ARM. For
this, we used an Android Nexus S device running Android version 4.0.3. To perform
precise measurements, we leveraged the ARM hardware clock cycle counter (CCNT)
which is part of the system co-processor (CP15). To measure the runtime overhead on
ARM, we developed an application that calculates 100 times a SHA-1 hash of a 1K buffer.
In addition, we apply a standard bubble sort algorithm on an array of 1024 elements. In
average, the runtime overhead for the diversified executable is only 1.52% for the SHA-1
benchmark, and 1.92% for the bubble sort algorithm.
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401.bzip2 429.mcf 456.hmmer 458.sjeng 462.libquantum 464.h264ref 473.astar AVERAGE

Config-1 1.78% 0.79% 0.86% 20.84% 1.01% 4.93% 3.72% 4.85%

Config-2 4.42% 1.59% 5.41% 42.70% 3.97% 12.35% 5.84% 10.90%

Config-3 2.40% 0.60% 1.11% 25.03% 0.54% 5.76% 3.40% 5.55%
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Figure 48: Performance measurements for XIFER

We also measured the performance of the entire rewriting process which is always
performed at application load-time. For a 5MB large binary, our XIFER rewrites the
entire application after 1.2s.

The XIFER code only reserves 100kb code on disk. Since XIFER instruments an ap-
plication at load-time, it requires no additional disk space. If only BBL permutation
is applied the memory overhead is negligible. Obviously, BBL splitting and injection
add new instructions to the address space of the application (depending on the chosen
security parameter).

5.3 just-in-time code reuse : on the limitations of code randomization

Fine-grained code randomization schemes, including our tool XIFER, have been intro-
duced to tackle the limitations of base address randomization. Indeed, with fine-grained
code randomization enabled, an adversary cannot reliably determine the addresses of
interesting gadgets based on disclosing a single runtime address. This is mainly due
to the fact that existing code-reuse attacks require the adversary to perform static and
offline analysis on the application’s binary files to identify useful gadgets. Since ideal
fine-grained code randomization performs code randomization at application load-time
(e. g. as performed by our tool XIFER and STIR [191]), an adversary can hardly mount
any code-reuse attack due to the lack of runtime information.

In order to perform a code-reuse attack on randomized code, an adversary needs to
defer gadget discovery to application runtime. This is challenging since an adversary
needs to locate and read valid code pages in memory. In addition, it requires a disas-
sembly engine and a gadget finding tool which both need to be executed at runtime.
On the other hand, many of the modern applications today feature a scripting engine
to support client-side scripting, e. g. JavaScript for web browsers, VBScript for Microsoft
Office applications, or ActionScript for Adobe Flash Player. That is, an adversary can ex-
ecute some well-defined code (embedded into a script) on the target platform. Although
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scripting languages do not provide low-level interfaces to directly access and modify
memory pages, they allow us to instantiate a new class of code reuse that we denoted
as just-in-time return-oriented programming (JIT-ROP).

5.3.1 Assumptions and Adversary Model

We now turn to our assumptions and adversarial model. In general, an adversary’s
actions may be enumerated in two stages: (1) exercise a vulnerable entry point, and
(2) execute arbitrary malicious computations. Similar to previous work on runtime ex-
ploits (e. g. the original paper on return-oriented programming by Shacham [169]), our
assumptions cover defense mechanisms for the second stage of runtime exploits, the
execution of malicious computations.

In what follows, we assume that the target platform uses the following mechanisms
to mitigate the execution of malicious computations:

• Data execution prevention: We assume that the security model of data execution
prevention is applied to the stack and the heap (cf. Section 2.1.4). Hence, the ad-
versary is not able to inject code into the program’s data area. Further, we assume
that the same mechanism is applied to all executables and native system libraries,
thereby preventing one from overwriting existing code.

• JIT mitigations: We assume a full-suite of JIT-spraying mitigations, such as ran-
domized JIT pages, constant variable modifications, and random NOP insertion.
As our approach is unrelated to JIT-spraying attacks [24], these mitigations pro-
vide no additional protection against our code-reuse attack.

• Base address randomization: We assume that the target platform deploys base ad-
dress randomization by means of ASLR, and that all useful, predictable, mappings
have been eliminated.

• Fine-grained ASLR: We assume that the target platform enforces fine-grained code
randomization on executables and libraries. In particular, we assume a strong fine-
grained randomization scheme, which (i) permutes the order of functions [22, 114]
and basic blocks [191, 63], (ii) swaps registers and replaces instructions [149], and
(iii) performs randomization upon each run of an application [191, 63].

Nevertheless, even given all these fortified defenses, we show that our framework
for code-reuse attacks can readily undermine the security provided by these techniques.
We only assume that the adversary can provide a single leaked runtime address (e. g. a
function pointer) to our framework.

5.3.2 Basic Attack Principle

JIT-ROP circumvents fine-grained ASLR by finding gadgets and generating the return-
oriented payload on-the-fly at runtime. As for any other real-world code-reuse attack, it
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Figure 49: Workflow of a JIT-ROP attack

only requires a memory disclosure of a single runtime address. However, in contrast to
standard code-reuse attacks against ASLR, JIT-ROP only requires the runtime address of
a valid code pointer, without knowing to which precise code part or function it points
to. Hence, JIT-ROP can use any code pointer such as return addresses on the stack
to instantiate the attack. Based on that leaked address, JIT-ROP discloses the content
of multiple memory pages and generates the return-oriented payload at runtime. The
detailed workflow of a JIT-ROP attack is shown in Figure 49, where we assume that
fine-grained ASLR has been applied at application load-time to each executable module
in the address space of the vulnerable application.

First, the adversary exploits a memory disclosure vulnerability to retrieve the runtime
address of a code pointer (Step ¶). One of the main observations of JIT-ROP is that
the disclosed address will reside on a 4KB-aligned memory page (Page0 in Figure 49).
Hence, at runtime, we can identify the start and end of Page0 (Step ·). Afterwards,
JIT-ROP deploys a runtime disassembler, whose task is to disassemble Page0 on-the-
fly (Step ¸). The disassembled page (Step ¹) provides 4KB of gadget space, but more
importantly, it will likely contain direct branch instructions to other pages, e.g., a call
to Func_B (Step º). Since Func_B resides on another memory page (namely Page1), JIT-
ROP can again determine the page start and end, and disassemble Page1 (Step »). This
procedure can be repeated as long as JIT-ROP identifies new direct branches pointing
to yet undiscovered memory pages (Step ¼). Based on the disassembled pages, JIT-ROP
deploys a runtime gadget finder to identify useful gadgets such as LOAD, STORE, or
an ADD (Step ½). Finally, JIT-ROP generates the return-oriented payload based on the
discovered gadgets and a high-level description provided by the adversary (Step ¾).
All the different components involved in a JIT-ROP attack are embedded into a single
exploit file (such as a JavaScript file for browser-based attacks).

5.3.3 Implications

Due to the fact that JIT-ROP entirely performs at runtime and does not rely on any
offline static analysis, it can circumvent conventional as well as fine-grained ASLR solu-
tions. Since it also requires only a single code pointer to instantiate the attack (without
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precisely knowing to which specific code or function the code pointer points to), we
believe that JIT-ROP will soon be leveraged in real-world return-oriented exploits.

In our evaluation, we demonstrate the power of JIT-ROP by applying it to exploit Inter-
net Explorer (IE) 8 running on Windows 7 using CVE-2012-1876. As a proof-of-concept,
the vulnerability is used to automatically load the Windows Calculator application upon
browsing a HTML page. The memory disclosure vulnerability we exploited to instanti-
ate our attack allowed us to harvest 301 code pages from the Internet Explorer process
(including those pages harvested from library modules). That is, the adversary can dis-
close the content of ≈ 1.2MB randomized code. The leaked code pages provided us
with a large code base (including a large amount of gadgets) to perform code-reuse at-
tacks. In particular, we discovered many useful call sites to dangerous functions such
as LoadLibrary() and GetProcAddress() which allow us to invoke any function we desire.
The number of code pages leaked naturally depends on the starting pointer. For the in-
terested reader, we performed an extensive evaluation on how many pages and gadgets
can be discovered starting code page harvesting from different pointers [172].

A knee-jerk reaction to mitigate JIT-ROP attacks is to simply re-randomize code pages
at a high rate; doing so would render our attack ineffective as the disclosed pages might
be re-randomized before the just-in-time payload executes. While this may indeed be
one way forward, we expect that the re-randomization costs [191, 63] would make such
a solution impractical. In fact, re-randomization is yet to be shown as an effective mech-
anism for user applications.

Another potential mitigation technique is instruction set randomization (ISR) (e. g. [20,
112]), which mitigates code injection attacks by encrypting the binary’s code pages with
a random key and decrypting them on-the-fly. Although ISR is a defense against code
injection, it complicates code-reuse attacks when it is combined with fine-grained ASLR.
In particular, it can complicate the gadget discovery process because the entire mem-
ory content is encrypted. On the other hand, ISR has been shown to be vulnerable to
key guessing attacks [176, 193]—that become more powerful in the face of memory
disclosure attacks like ours,—suffers from high performance penalties [20], or requires
hardware assistance that is not yet present in commodity systems [112].

5.4 isomeron : execution-path randomization

Unfortunately, just-in-time return-oriented programming (JIT-ROP) effectively under-
mines code randomization. To counter that threat, we investigated a hybrid approach
that leverages code and execution-path randomization to address the shortcomings of
fine-grained code randomization techniques proposed to date. In particular, our ap-
proach dynamically randomizes the execution-path between the original application and
a diversified – but semantically equivalent – application. Our prototype implementation,
dubbed Isomeron [66], can be readily applied to existing applications since it neither
requires access to source code nor an offline static analysis phase. In general, our new
defense framework performs as follows:
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1. It takes the original executable code (C) and creates a copy C ′. In addition, it
deploys a code diversifier to apply fine-grained ASLR to C ′.

2. We load the original and diversified executable code (C and C ′) in the address
space of the application.

3. A coin is flipped to continuously randomize the execution-path between C and
C ′. Specifically, each time a function is called, a coin is flipped and the program
continues execution either in the original C or C ′.

In contrast to previous work on fine-grained ASLR, our solution prevents both tradi-
tional return-oriented programming attacks and JIT-ROP attacks. Due to the continuous
random choice between C and C ′, the adversary’s gadget chain will break. In particular,
the adversary can no longer predict whether C or C ′ will be executed next.

5.4.1 Assumptions

In this section, we describe our assumptions with regards to defense mechanisms in-
place on the target system, and the capabilities of the adversary.

5.4.1.1 Deployed Defense Mechanisms

On the target platform, we assume the enforcement of the non-executable memory se-
curity model and fine-grained address space layout randomization (ASLR).

• Data execution prevention: We assume that the target platform deploys the data
execution prevention (cf. Section 2.1.4).

• Fine-grained ASLR: We also assume the presence of fine-grained ASLR (cf. Sec-
tion 5.1). In particular, we require that fine-grained ASLR eliminates and breaks
the return-oriented gadgets inside an executable module. Note that breaking and
eliminating in this context does not mean that the new executable module pro-
duced by fine-grained ASLR will not contain any useful return-oriented gadgets.
Instead, it means that the original return-oriented gadgets either (i) do reside at a
different offset in the randomized executable, (ii) are eliminated in the randomized
executable by replacing instructions with an equivalent instruction3, or (iii) are bro-
ken because of instruction reordering or register replacement. This requirement is
fulfilled by all the proposed fine-grained ASLR solutions [149, 97, 191, 63].

3 Recall that, on x86, return-oriented programming attacks can leverage unintended instruction sequences.
Since fine-grained ASLR replaces instructions with equivalent instructions the bytestream changes. Hence,
the unintended instruction will have a different semantic than before.
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5.4.1.2 Capabilities of Adversary

The capabilities of the adversary are as follows.

• Exploiting memory vulnerabilities: Memory vulnerabilities such as buffer over-
flow errors are one of the most common types of vulnerabilities we found in
today’s software programs. Hence, we assume that the software running on the
target platform suffers from a vulnerability allowing an adversary to instantiate a
runtime exploit.

• Exploiting memory disclosure: We also assume that an adversary can gain access
to all code pages of the main application and its shared libraries. Such memory dis-
closure attacks are indeed realistic as recent attacks like JIT-ROP have shown [172].
This also implies that we target an adversary who can circumvent fine-grained
code randomization schemes, which we assume to be deployed on the target sys-
tem. At first glance, it seems contradictory that our adversary can bypass one of
our defense mechanisms we assume. However, as we will show in the remainder
of this section, our defense mechanism deploys some techniques of fine-grained
ASLR without being vulnerable against memory disclosure attacks.

On the other hand, we assume that a very small amount of data memory, maintained
by Isomeron to correctly enforce execution-path randomization, is not accessible to
the adversary. This can be either achieved through hardware-based isolation techniques
such as segmentation or by deploying software fault isolation techniques [187]. That
said, we assume the adversary to gain access to all code and data memory except the
data area of Isomeron.

5.4.2 High-Level Idea

In this section we present the high-level idea of our defense technique to protect against
traditional and just-in-time return-oriented programming attacks.

Our idea is to enforce code and execution-path randomization simultaneously. Fig-
ure 50 shows a simplified view of the address space of such a protected application: it
contains the original application as well as linked libraries. Further, for each of these ex-
ecutable segments, we create a diversified copy, and maintain them in the same address
space of the application. Hence, in the same address space resides the original and a
corresponding diversified program image. To create the diversified program, we deploy
the principles of fine-grained ASLR, where we pose the requirement that fine-grained
ASLR eliminates or breaks the gadgets in the diversified image (cf. Section 5.4.1.1).

The novelty of our approach is to combine fine-grained code randomization with
execution-path randomization at runtime. At the granularity of function calls, we randomly
decide whether to continue execution on the diversified or the original program image.
This random decision is repeated whenever a function call occurs, and our execution
diversifier ensures that a function is completely executed either from the original or
diversified program image.
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Figure 50: High-level approach to defeat traditional and just-in-time return-oriented program-
ming attacks

5.4.2.1 Step One: Program Twinning

We first tackle the problem of cloning a program image within a single virtual address
space. Our solution applies for this principles of dynamic instrumentation. Similar to
common instrumentation frameworks, we instrument code on the granularity of ba-
sic blocks (BBLs). However, instead of emitting a single BBL into one instrumentation
cache, our framework can emit multiple (diversified) copies into multiple instrumenta-
tion caches. This specific feature of program twinning required us to develop our own
instrumentation framework, since currently available solutions do not per-se support
code duplication.

5.4.2.2 Step Two: Twin Diversification

At runtime, we apply fine-grained ASLR on the executable code of an application. The
level of fine-grained ASLR is configurable, but we require and ensure that each possible
instruction sequence and gadget is placed at a different address. In other words, it
should not happen that an instruction sequence resides at the same offset in the original
and diversified version [114, 149, 97, 191, 63].
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5.4.2.3 Step Three: Coin-Flip Instrumentation

At the granularity of function calls, we randomly decide whether to continue execu-
tion on the diversified or the original program image. This random decision is repeated
whenever a function call occurs, and our execution diversifier ensures that a function is
completely executed either from the original or diversified program image to preserve
the program’s original semantics. The rationale behind performing the random decision
on a per-function level stems from the fact that we can only preserve the original seman-
tics of the application when a function is entirely executed from either the original or
the diversified address space.

Instrumentation of Direct Function Calls. In order to perform the random decision, we
need to ensure that we gain control when a function call occurs. Figure 51 shows in detail
the instrumentation of function calls. As a running example, we use an application that
consists of only two functions: Func_A() and Func_B(). The latter function only contains
the x86 return instruction (RET), while the former one contains two instructions (INS1
and INS2), and a function call to Func_B(). The only code diversification we apply in this
example is that INS1 has been exchanged with INS2.
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…

Func_BDIV:
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Figure 51: Instrumentation of function calls in Isomeron

For our running example, the function call to Func_B() will either be triggered on
the original or diversified program image. This depends on where the program has
started executing, which is randomized in our approach as well. Since the call has been
instrumented, the control-flow will be dispatched to our execution diversifier (Step ¶).

Since the (instrumented) function call will automatically push the return address onto
the stack, our execution diversifier can easily identify from where it has been invoked
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(Step ·). Note that the memory layout of the running application is known to our exe-
cution diversifier.

Next, we perform a random coin flip (Step ¸) that outputs a random bit b ∈ (0, 1).
Further, our execution diversifier calculates the memory distance between the diversified
and original image. Note that this calculation only needs to be performed once, and
can be looked-up in future coin-flip rounds. Based on the origin and the value of b,
we calculate the offset to be added on the instruction pointer. In general, the offset is
zero, when execution should be continued on the image from where the function call
originates. If a program image transition is needed, the offset will simply be the distance
between the two program images.

In Step ¹ and º, we look-up the original target address of the call by using the
original binary, and add the offset (calculated in Step ¸) to determine the new value of
the instruction pointer (on x86: EIP).

In addition, we ensure that the return address on the stack always points to the orig-
inal program modules (Step »). Otherwise, an adversary could determine which func-
tions are currently executing in the original and the diversified version by inspecting
the stack. Hence, to ensure that function returns are correctly returning to their caller
in the correct program version, we also record each diversifier decision (Step ¼). Recall
that we assume that the adversary cannot access this memory area (cf. Section 5.4.1.2).
Lastly, our execution diversifier redirects the control-flow to Func_B() (Step ½).

Instrumentation of Function Returns. Figure 52 depicts the instrumentation for func-
tion returns. We instrument function returns similar to function calls. That is, we gain
control in our execution diversifier whenever the program issues a return instruction
(Step ¶). To identify the origin, we use a slightly different approach from the one used
for function calls. Specifically, we read the current value of the stack pointer because it
points to the return address the program attempts to use. Recall that the return address
will always point to the original program image, but we stored the corresponding deci-
sion in our execution diversifier. Hence, we make a request to our decision database for
the current stack pointer (Step ¸). In case execution needs to be redirected to the diversi-
fied program version, we add the distance between the two program images. Otherwise,
we take the return address from the program stack. Since the adversary does not know
the previous diversifier decisions, she can only guess where execution will continue.
However, this information is crucial because either INS1 or INS2 will be executed next.

Instrumentation of Indirect Jumps and Calls. The case of indirect jump and calls is
handled similar to their direct counterparts, with the exception that the target address is
calculated at runtime. To mitigate the misuse of indirect branches, we limit the possible
destination addresses to those, which are included in the relocation information. Using
the relocation information, we can reliable identify jump tables and limit the indirect
jumps to targets within the jump table. Due to the fine-grained randomization, we also
have to ensure that jumps take place within the same copy. For indirect calls, we de-
termine the target address, make sure that it is a valid target address according to our
policies, and proceed then in the same way as we are handling direct calls.
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Figure 52: Instrumentation of function returns in Isomeron

Isomeron prevents conventional and JIT-ROP attacks because the adversary cannot
reliably build a return-oriented gadget chain. Each image will contain a different set
of gadgets since fine-grained ASLR eliminates or breaks the original gadgets in the
diversified program image. Due to execution-path randomization, the adversary has
a probabilistic chance of 50% for each pointer in the return-oriented payload that the
execution will transfer to the attacker’s intended gadget.

5.4.3 Implementation and Evaluation

In this subsection, we briefly summarize the implementation details and evaluation re-
sults of Isomeron. For a more detailed description, we refer the reader to [66].

In general, Isomeron can be either implemented as a compiler extension or a bi-
nary instrumentation-based solution. We opted for the binary instrumentation-based
approach as it allows us to instrument applications where source code is not readily
available. To this end, we developed a novel dynamic binary instrumentation (DBI)
framework which performs instrumentation at application runtime. Note that we could
not re-use existing DBI frameworks such as Pin [127] or DynamoRIO [29] since these
frameworks do not allow us to emit differently instrumented copies of the same code.

Our new DBI framework is realized as a Windows dynamically linked library (DLL).
We intercept basic blocks, analyze, translate, and emit them into a code cache. One
major difference to existing instrumentation frameworks is that our translator emits an
additional instrumented, diversified basic block into a second code cache. Our execution-
path diversifier switches the execution between both code caches.
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Performance. DBI frameworks generate a significant performance overhead by design.
This is due to the fact that code is instrumented at runtime. While DBI supports dy-
namically generated code, and allows us to avoid any static analysis, it adds additional
performance overhead. To measure the performance overhead, we applied Isomeron

to SPEC CPU2006 benchmark tools. As a baseline, we used Intel’s DBI PIN [127] with-
out any instrumentation. That is, we just let the benchmarks execute under PIN. We
observed an average overhead of 19% which indicates that Isomeron add modest per-
formance overhead compared to a state-of-the-art DBI framework running without any
instrumentation.
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5.5 related work

In this section, we elaborate on related work on code randomization. First, in Sec-
tion 5.5.1, we investigate classic fine-grained code randomization schemes that do not re-
sist just-in-time code-reuse attacks. Afterwards, in Section 5.5.2, we elaborate on recently
proposed code randomization schemes that aim at preventing just-in-time code-reuse
attacks. We also refer the reader to a recently published systematization of knowledge
paper by Larsen et al. [120] that provides a detailed comparison of fine-grained code
randomization schemes.

Note that we will not elaborate on randomization schemes that target the data area of
an application. Such schemes typically tackle the first step of a runtime exploit, i. e. the
initial pointer overwrite. As mentioned before, we assume the target program to suffer
from a memory corruption error that an attacker can exploit to instantiate a runtime
exploit.

5.5.1 Classic Code-Randomization Schemes

We distinguish between compiler-based and binary-instrumentation based approaches
to classic fine-grained code randomization.

5.5.1.1 Source Code and Compiler-Based Solutions

The original software diversity approach targets and proposes a compiler-based solu-
tion [50]. In particular, Cohen [50] elaborates on a number of randomization techniques
such as instruction equivalence, garbage insertion, instruction reordering, as well as
adding/removing jump and call instructions. Franz [82] and Jackson et al. [106] have
explored the feasibility of a compiler-based approach for large-scale software diversity
in the mobile market. The authors suggest that app store providers integrate a multi-
compiler (diversifier) in the code production process. However, this approach has some
shortcomings. Typically, app store providers have no access to the applications’ source
code. Hence, they cannot generate thousand of diversified app copies. Further, once an
app instance is installed on the customer’s device, it remains unchanged until an update
is provided, which increases the chance of an adversary compromising this particular
instance.

Whereas the aforementioned schemes do not provide any implementation details and
evaluation, Jackson et al. [107] implement and evaluate a diversity compiler for LLVM
and GCC. Their randomization technique is solely based on inserting non-alignment
NOP instructions allowing protection of the entire system including the kernel. To
improve performance, Homescu et al. [100] apply profiling techniques to identify fre-
quently executed code parts. For these hot code parts, Homescu et al. [100] sparsely in-
sert NOP instructions, which yields significantly better performance. Moreover, Home-
scu et al. [99] explore NOP diversification for dynamically-generated code. However,
emitting NOP instructions does not yield a high randomization entropy, because basic
block and function order remain unchanged.
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As demonstrated by Shacham et al. [170], randomizing an application only once al-
lows an attacker to launch brute-force attacks. In particular, code-reuse attacks are easily
possible if an attacker gains access to the applications’ binary files, because code random-
ization is only applied at compile-time. To tackle this shortcoming, Bhatkar et al. [22]
presented an automatic source code transformer and its implementation for x86/Linux.
The main idea is to transform the source code of an application to a source code that
supports re-diversification for each run. In particular, the authors perform function re-
ordering to mitigate code-reuse attacks with an average overhead of 11%.

Most fine-grained randomization schemes focus on applying code randomization to
user-level applications. Instead, Giuffrida et al. [88] introduce a fine-grained code ran-
domization scheme that is specifically tailored to randomize operating system kernels.
The presented solution operates on the LLVM intermediate representation, and applies
a number of randomization techniques. However, the approach of Giuffrida et al. [88]
is best suited to microkernels, while most modern operating systems (Windows, Linux,
Mac OSX) still follow a monolithic design.

In general, compiler-based solutions have the potential to provide among all software
diversity approaches the highest degree of entropy due to the access to source code.
However, source code is rarely available in practice, and current app store models are
not compatible to a multicompiler approach. In contrast, our fine-grained ASLR tool
XIFER can directly be applied to third-party apps, and keeps compliance to code signing
by diversifying the application in memory.

5.5.1.2 Binary-Instrumentation Based Solutions

These techniques directly operate on the application binary to perform software diver-
sity. Bhatkar et al. [21] analyze and propose enhanced randomization techniques such
as code transformation and insertion of random gaps between adjacent objects. How-
ever, the authors only implemented a tool that performs base address randomization
and insertion of random gaps, while code transformation techniques such as function
permutation have not been realized.

Kil et al. [114] address this shortcoming, and introduce address space layout permu-
tation (ASLP), a fine-grained randomization scheme performing function permutation.
The proposed scheme statically rewrites ELF executables to permute all functions and
data objects of an application. Moreover, the underlying Linux kernel has been instru-
mented to increase the randomization entropy for the base address randomization of
shared libraries.

Whereas Kil et al. [114] target Linux and require accurate disassembly, Pappas et al.
[149] explore fine-grained code randomization for Windows executables where no side
information (e. g. relocation information) is available. Their tool, called ORP, randomizes
instructions and registers within a basic block to mitigate return-oriented programming
attacks, but leaves all functions at their original position. Hence, it cannot prevent pure
return-into-libc attacks. A more fine-grained randomization approach is taken by Hiser
et al. [97]: ILR (instruction location randomization) randomizes the location of each sin-
gle instruction in the virtual address space, while the execution is guided by a so-called
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fall-through map. For this, a program needs to be analyzed and re-assembled during
a static analysis phase. In particular, the static analysis phase creates the fall-through
map and applies binary rewriting to diversify the location of each instruction. However,
ILR induces significant performance overhead, is not compatible to memory models that
deploy a cache, and suffers from a high space overhead. In fact, the rewriting rules re-
serve on average 104 MB for only one benchmark of the SPEC CPU benchmark suite.
Furthermore, ILR suffers from code coverage deficiencies because it does not randomize
many instructions of the program due to imprecision of the static analysis phase. This
concerns in particular the destination addresses of indirect jumps, indirect calls, and
function returns. Still, ILR randomizes the location of these instructions in memory, but
deploys a translation mechanism that maps the non-randomized destination addresses
to randomized addresses at runtime.

In contrast to ILR and ORP, XIFER efficiently mitigates return-into-libc attacks by
randomizing function entry points for each run, without deploying a translation mecha-
nism. Furthermore, ASLP, ORP, and ILR rewrite the binary in an (offline) static analysis
phase, and thereby are not compatible to application signatures. Static rewriting has
also another obvious drawback: a program will be only re-diversified if the static analy-
sis phase is repeated. Static analysis requires relatively long time. For instance, in [97] it
takes already 36s for only randomizing the binary; not including the time for generating
the rewriting rules. Hence, it is very likely that most program binaries will repeatedly
execute with the same diversification layout, increasing the chance for an adversary to
learn the program layout.

Wartell et al. [191] presented binary stirring (STIR). Similar to our approach, STIR
performs basic block permutation for each application. For this, STIR leverages static
analysis and load-time randomization. In the static analysis phase the binary is trans-
formed to facilitate load-time randomization. In particular, STIR creates a copy of the
code section. The original code section is treated as a data-only section to preserve static
data interleaved with code at its original address. In contrast, the copy of the code section
is disassembled to allow load-time basic block randomization. At runtime, a trusted li-
brary takes control first and performs basic block permutation before the program starts
executing. Similar to the aforementioned approaches, STIR is not compatible to code sig-
natures since it statically transforms the binary. In addition, it significantly increases the
file size; on average by 73%. On the other hand, it performs highly efficient incurring
only 1.6% performance overhead. In addition, it requires no relocation information. An
open security issue concerns the address translation from old target addresses to new
randomized addresses. According to the description given by Wartell et al. [191], STIR al-
lows translation for all function start addresses. As a consequence, in contrast to XIFER,
it cannot prevent return-into-libc attacks.

Whereas our tool XIFER and STIR [191] focus on randomizing basic blocks, Gupta
et al. [94] focus on function permutation for Linux ELF binaries. Their fine-grained
randomization scheme, called Marlin, identifies function blocks by using the public tool
Unstrip, a tool that restores symbol information. Marlin is based on randomizing the
functions’ symbols to enable function permutation.
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5.5.2 Advanced Code-Randomization Schemes

Unfortunately, conventional approaches to fine-grained code randomization can be cir-
cumvented with our just-in-time return-oriented programming (JIT-ROP) attack (cf. Sec-
tion 5.3). This is mainly due to the fact that randomization in these schemes only occurs
once at compile-time or load-time. Hence, disclosure of a large amount of code pages al-
lows an adversary to read randomized code and build a return-oriented exploit thereof.

To tackle the limitations of conventional code randomization schemes one could con-
tinuously re-randomize the program layout. That is, an adversary would still be able
to read randomized code, but the randomized code is replaced before the adversary
launches the return-oriented exploit. In fact, one of the schemes we have discussed above
enables re-randomization: Giuffrida et al. [88] allow program modules of a microkernel
to be re-randomized after a specified time period. Unfortunately, re-randomization in-
duces significant runtime overhead, e. g. nearly 50% overhead when applied every sec-
ond. In addition, it remains questionable whether re-randomization can be applied to
user-level applications.

As a matter of fact, the aforementioned instruction location randomization (ILR) pro-
posal suggested by Hiser et al. [97] cannot be directly bypassed by JIT-ROP attacks. This
is because execution is guided based on a fall-through map that defines the successor
instruction of each single instruction. On the other hand, as we discussed above, ILR suf-
fers from several practical problems. As a consequence, a number of new and advanced
code randomization schemes have been suggested to efficiently and effectively prevent
JIT-ROP attacks.

Backes and Nürnberger [18] propose Oxymoron, a fine-grained code randomization
scheme that enables code sharing for randomized shared libraries. In particular, Oxy-
moron hides direct code references embedded in direct call and jump instructions to
defend against JIT-ROP attacks. Recall that JIT-ROP attacks follow these references to
identify and disassemble valid code pages. As such, the adversary is restricted to a sin-
gle code page, i. e. the page that is referenced by the initial leaked pointer (Page0 in
Figure 49). The hiding of these crucial references is achieved by exploiting memory seg-
mentation on Intel x86, and adding an extra layer of indirection. That is, direct calls and
jumps are replaced with indirect calls and jumps that leverage a segment register and
an index as their base register to redirect control-flow to a secret table that contains the
original target addresses. Unfortunately, Oxymoron can be bypassed with an improved
version of JIT-ROP attacks [66]: an attacker can harvest multiple function pointers and
return addresses residing on the application’s stack and heap. These pointers allow the
attacker to reliably locate and disclose many code pages, and launch a return-oriented
exploit.

The improved JIT-ROP attack is possible because code pages still remain readable
in Oxymoron. Hence, any valid code pointer leads to a 4 KB code page that can be
leveraged for a code-reuse attack. As a consequence, Backes et al. [19] set code pages to
non-readable in a follow-up work. Their approach, denoted as XnR (eXecute-no-Read),
sets all code pages except the page on which execution currently takes place to non-
present. Hence, an adversary can only read from the currently executing code page, but
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not from any other page. A dedicated page fault handler is triggered whenever the pro-
gram leaves the current page, and aims to execute code from a non-present page. In
such cases, the non-present page is set to executable and readable, while the previous
page is set to non-present. To improve performance, XnR keeps a window of multiple
memory pages that are set to executable and readable. XnR is only effective against
conventional code-reuse attacks if it is deployed in conjunction with a fine-grained ran-
domization scheme. However, it remains unclear which randomization scheme is best
suited to work in conjunction with XnR. Further, code pages, where execution currently
takes place, still need to be mapped as readable. This allows an attacker to read the
currently executing page. Hence, if an attacker continuously reads code pages during
program execution, she might be able to collect a sufficiently large code base to launch
a return-oriented exploit. In particular, this is a security problem when code is not re-
randomized per application run. Gionta et al. [87] tackle this shortcoming by leveraging
a split Translation Lookaside Buffer (TLB) architecture which allows code pages to be
only executable and not readable. However, split-TLB based architectures do no longer
exist in modern processor architectures.

Recently, we investigated a hardware-based approach to enable execute-only mem-
ory [55]. Our framework Readactor exploits Intel’s extended page tables (EPT) to con-
veniently mark memory pages as non-executable. In addition, we developed a LLVM-
based compiler that i) performs function permutation, ii) strictly separates code from
data, and iii) hides code pointers. We require the latter to tackle entropy problems
of several fine-grained randomization schemes. Consider a fine-grained randomization
scheme that only performs randomization at the granularity of pages [18] or at the gran-
ularity of functions [114]. Although these schemes are more efficient than instruction-
level randomization, they allow an attacker to determine a reasonable code base: given
a single leaked function pointer, the attacker can statically determine all gadgets on the
corresponding memory page (for page-level randomization), and all gadgets inside the
corresponding function (for function-level randomization). In Readactor, we limit such
memory disclosure threats by introducing a layer of indirection. Specifically, we dispatch
all indirect branches through dedicated non-readable trampolines. The attacker has only
access to the trampoline addresses, but not to the actual runtime addresses of functions
and call sites. However, the trampoline addresses provide a small code base which may
be exploited for a code-reuse attack.
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5.6 conclusion and summary

The principle of software diversity has recently facilitated the design and implementa-
tion of many new defenses against code-reuse attacks. In particular, fine-grained code
randomization aims at significantly complicating code-reuse attacks which rely on stati-
cally determined code sequences (gadgets). Whereas most schemes proposed so far only
perform fine-grained code randomization once, we introduce a tool, called XIFER, which
efficiently enforces basic block permutation for each application run without requiring
the source code of the application.

We also examined the underlying assumptions of fine-grained code randomization
schemes (including our own approach), and noticed that they only defend against code-
reuse attacks where the attacker determines gadgets within an offline static analysis
phase. As a consequence, we investigated the feasibility of dynamic code-reuse attacks
which determine gadgets on-the-fly without any static analysis. Our analysis reveals
that just-in-time return-oriented programming (JIT-ROP) attacks can be generated and
applied to modern applications such as web browsers. In fact, our attack demonstrates
that memory paging in modern processor architectures can be exploited to disclose the
randomized code of many memory pages based on a single leaked runtime address. To
tackle these novel code-reuse attacks, we explored a combination of code randomiza-
tion with execution-path randomization in our binary instrumentation tool Isomeron.
Although our new approach to fine-grained randomization resists JIT-ROP attacks that
acquire knowledge of all randomized code pages, it currently suffers from performance
overhead which is due to dynamic binary instrumentation. Hence, we will investigate
compiler-based and approaches based on static rewriting to improve the performance
of Isomeron.





6
D I S C U S S I O N A N D C O N C L U S I O N

Modern runtime exploits perform malicious program actions based on the principle of
code reuse. These attacks require no code injection, bypass widely-deployed defense
mechanisms, allow Turing-complete computation, can be applied to many processor
architectures, and are highly challenging to prevent. Large-scale cyber attacks that have
been recently discovered such as the well-known Stuxnet virus include code-reuse attack
techniques [129].

As we have shown in this dissertation, a large number of defenses and improved code-
reuse attacks have appeared in the academic literature. Moreover, Microsoft recently
released a new exploitation defense tool, called EMET, which includes a number of miti-
gation techniques to prevent runtime exploits [131]. Furthermore, the upcoming version
of Windows 10 will include a new feature, called control-flow guard, which aims at
enforcing control-flow checks for indirect calls to limit code-reuse attacks [133]. Google
recently explored defenses against code-reuse attacks and introduced an instrumented
compiler toolchain that enables control-flow checks for indirect calls [182].

The main objective of this dissertation is to explore the limitations of existing defenses
against code-reuse attacks, and introduce the design and implementation of novel de-
fense schemes that mitigate these attacks. We briefly summarize the main results of this
dissertation in Section 6.1. Next, in Section 6.2, we provide a discussion on control-flow
integrity (CFI) and fine-grained code randomization schemes. Lastly, we elaborate on
future research directions in Section 6.3.

6.1 dissertation summary

In Chapter 3, we presented two advanced code-reuse attacks. Our first attack demon-
strates that defense mechanisms that are solely enforcing control-flow checks for return
instructions can be bypassed. Our attack technique introduces Turing-complete code-
reuse attacks based on the exploitation of indirect jump and call instructions targeting
mobile devices with an underlying ARM processor [41]. The second attack demonstrates
limitations of recently proposed control-flow integrity (CFI) schemes. In particular, we
are able to stitch gadgets from call-preceded sequences thereby undermining behavioral-
based heuristics [64].

In Chapter 4, we introduce new CFI-based defenses against code-reuse attacks. CFI
inserts control-flow checks for indirect branch instructions that validate at runtime
whether an application follows a legitimate control-flow path [4]. Our CFI framework
MoCFI enables for the first time CFI for mobile devices [62]. To this end, we developed a
binary rewriter that instruments mobile applications at application load-time to preserve
static code signatures. Our reference implementation of MoCFI targets the closed-source
iOS operating system. We also demonstrated that MoCFI can be leveraged as an inlined
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reference monitor to enable fine-grained application sandboxing for iOS-based devices.
However, we also observed that software-based CFI schemes (including MoCFI) suf-
fer from performance overhead. As a consequence, we explored hardware-assisted CFI
for embedded systems, and introduced a CFI hardware implementation targeting Intel
Siskiyou Peak. Our approach, called HAFIX, features dedicated CFI instructions and CFI
memory, and efficiently protects function returns while only incurring 2% performance
overhead.

In Chapter 5, we investigate fine-grained code randomization as an alternative de-
fense approach to defend against code-reuse attacks. Our tool XIFER performs basic
block permutation for each application run [63]. Hence, the adversary can no longer stat-
ically determine the memory addresses of useful code sequences for a code-reuse attack.
However, most fine-grained code randomization schemes can be bypassed by means of
just-in-time code-reuse attack technique. These attacks exploit a memory disclosure vul-
nerability to disclose a large amount of code pages, and generate gadgets thereof [172].
To tackle this attack, we present Isomeron, a dynamic binary instrumentation tool that
combines fine-grained code randomization with execution-path randomization [66].

6.2 comparing control-flow integrity and code randomization

In this dissertation, we explored the most prominent defense principles against code-
reuse attacks: control-flow integrity (CFI) [4] and software diversity [50] such as fine-
grained code randomization. CFI is based on explicit checks, while software diversity
relies on a secret, i. e. the randomization offset for base address randomization, mak-
ing code-reuse attacks highly cumbersome. Both approaches have their advantages and
disadvantages. In the remainder of this section, we discuss and compare both defense
approaches. We focus our discussion on security aspects since performance highly varies
among different instantiations and deployed instrumentation techniques.

CFI provides provable security [2]. That is, one can formally verify that CFI enforce-
ment is sound. In particular, the explicit control-flow checks inserted by CFI into an
application provide strong assurance that a program’s control-flow cannot be arbitrarily
hijacked by an adversary. In contrast, code randomization does not put any restriction
on the program’s control-flow. In fact, the attacker can provide any valid memory ad-
dress as an indirect branch target.

Both schemes assume that code is not writable. Hence, an attacker cannot simply
replace the original code with malicious code. In addition, classic fine-grained code
randomization schemes (cf. Section 5.5.1) assume that the adversary does not possess
full knowledge of the program’s memory layout. Otherwise, an attacker could leverage
this information to perform just-in-time code-reuse attacks [172]. Due to explicit control-
flow checks full knowledge of the program’s memory layout still does not allow an
attacker to undermine CFI protection. Another related problem of protection schemes
based on code randomization are side-channel attacks [103, 167]. These attacks exploit
timing and fault analysis side channels to infer randomization information.

On the other hand, CFI relies on the precision of the application’s control-flow graph
(CFG). If valid branch addresses cannot be identified during static analysis, CFI needs
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to make security compromises, and expands the set of valid addresses to preserve the
program’s functionality. In the worst-case, this taken compromise introduces malicious
control-flow paths that an attacker can exploit. In particular, coarse-grained CFI solu-
tions that intentionally allow many branch addresses introduce a large number of new
control-flow paths that an attacker can exploit. For instance, many CFI schemes allow re-
turn instructions to target any call-preceded instruction [150, 204]. Such coarse-grained
policies allow an attacker to construct return-oriented exploits from legitimate control-
flow paths as we have shown in Section 3.2.

CFG imprecision allows an attacker to easily generate generic attack vectors that can
be mounted on all computer systems that deploy the CFI-protected software program.
This is not directly possible if programs are protected with fine-grained code random-
ization, because the code layout will differ for each platform.

In conclusion, CFI provides stronger security guarantees than code randomization
schemes. However, CFI relies on an accurate and precise CFG. If the CFG is incomplete
or includes too many valid control-flow paths, fine-grained code randomization can
provide better security.

Recently, several defense mechanisms started to combine CFI with code randomiza-
tion. For instance, Zhang et al. [202] allocate for each possible branch target a code stub
on a Springboard section. All code stubs on the Springboard section are randomized to
prevent an adversary from exploiting code stubs to construct return-oriented exploits. In
particular, Mohan et al. [136] present the design and implementation of opaque CFI (O-
CFI). This binary instrumentation-based solution leverages coarse-grained CFI checks
and code randomization to prevent return-oriented exploits. For this, O-CFI identifies a
unique set of possible target addresses for each indirect branch instruction. Afterwards,
it uses the per-indirect branch set to restrict the target address of the indirect branch
to only its minimal and maximal members. To further reduce the set of possible ad-
dresses, it arranges basic blocks belonging to an indirect branch set into clusters (so that
they are located nearby to each other), and also randomizes their location. However, O-
CFI relies on precise static analysis. In particular, it statically determines valid branch
addresses for return instructions which typically leads to coarse-grained policies. Nev-
ertheless, Mohan et al. [136] demonstrate that combining CFI with code randomization
is a promising research direction.

6.3 future research directions

Preventing return-into-libc Attacks. Most proposed control-flow integrity (CFI) and
fine-grained code randomization defenses focus on the detection and prevention of
return-oriented programming attacks, but do not provide full protection against return-
into-libc attacks. This is only natural, given the fact that the majority of code-reuse
attacks require a few return-oriented gadgets to initialize registers and prepare mem-
ory before calling a system call or critical function. However, Schuster et al. [163] have
recently demonstrated that code-reuse attacks based on only calling a chain of virtual
methods allow arbitrary malicious program actions. In addition, Tran et al. [183] have
demonstrated that pure return-into-libc attacks can achieve Turing-completeness. De-
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tecting such attacks is highly challenging: modern programs link to a large number of
libraries, and require dangerous API and system calls to operate correctly [89]. Hence,
for these programs, dangerous API and system calls are legitimate control-flow targets
for indirect and direct call instructions; even if fine-grained CFI policies are enforced.
In order to detect code-reuse attacks that exploit these functions, CFI needs to be com-
bined with additional security checks, e. g. with dynamic taint analysis or techniques
to perform argument validation. We believe that developing such CFI extensions is an
important future research direction.

Memory Safety. In this dissertation, we have focused on the second stage of runtime
exploits, i. e. the malicious computation after the control-flow of a program has been
hijacked. Until recently, defenses that aim at preventing the first stage of a runtime
exploit, i. e. the initial code pointer overwrite, were either incomplete or incurred too
high performance overhead. Recently, Szekeres et al. [180] presented the idea of code
pointer integrity (CPI), and its implementation on x86 and x86-64 [119]. CPI separates
code pointers as well as pointers to code pointers in a safe memory region that can only
be accessed by instructions that are proven to be safe at compile-time. CPI operates very
efficient on C code, but may incur performance overhead of more than 40% for C++-
compiled code. With respect to security, CPI relies on the protection of the safe memory
region which is efficiently possible on x86 leveraging segmentation. However, on x86-64

where segmentation is not fully available, CPI relies on hiding the safe memory region.
Unfortunately, Evans et al. [76] have recently demonstrated that side-channel attacks
can be leveraged to locate and alter the safe memory region on x86-64. Given the new
approaches and attacks in this area, we believe that defenses that aim at memory safety
for type-unsafe languages are a promising future research direction.
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