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Abstract—As control-flow hijacking defenses gain adoption,
it is important to understand the remaining capabilities of
adversaries via memory exploits. Non-control data exploits are
used to mount information leakage attacks or privilege escalation
attacks program memory. Compared to control-flow hijacking at-
tacks, such non-control data exploits have limited expressiveness;
however, the question is: what is the real expressive power of non-
control data attacks? In this paper we show that such attacks are
Turing-complete. We present a systematic technique called data-
oriented programming (DOP) to construct expressive non-control
data exploits for arbitrary x86 programs. In the experimental
evaluation using 9 programs, we identified 7518 data-oriented
x86 gadgets and 5052 gadget dispatchers, which are the building
blocks for DOP. 8 out of 9 real-world programs have gadgets to
simulate arbitrary computations and 2 of them are confirmed
to be able to build Turing-complete attacks. We build 3 end-to-
end attacks to bypass randomization defenses without leaking
addresses, to run a network bot which takes commands from the
attacker, and to alter the memory permissions. All the attacks
work in the presence of ASLR and DEP, demonstrating how
the expressiveness offered by DOP significantly empowers the
attacker.

I. INTRODUCTION

Control-hijacking attacks are the predominant category of

memory exploits today. The early generation of control-

hijacking attacks focused on code injection, while in recent

years advanced code-reuse attacks, such as return-oriented

programming (ROP) and its variants, have surfaced [1]–

[5]. In response, numerous principled defenses for control-

hijacking attacks have been proposed. Examples of these

include control-flow integrity (CFI) [6]–[11], protection of

code pointers (CCFI, CPI) [12], [13], timely-randomization

of code pointers (TASR) [14], memory randomization [15],

and write-xor-execute (W⊕X, or data-execution prevention,

DEP) [16]. All of these defenses aim to ensure that the control

flow of the program remains legitimate (with high probability)

under all inputs.

A natural question is to analyze the limits of protection

offered by control-flow defenses, and the remaining capabil-

ities of the adversary. In a concrete execution, the program

memory can be conceptually split into the control plane and

the data plane. The control plane consists of memory variables

which are used directly in control-flow transfer instructions

(e.g., returns, indirect calls, and so on). In concept, control-

flow defenses aim to ensure that the execution of the program

stays legitimate — often by protecting the integrity of the

control plane memory [12], [14] or by directly checking the

targets of control transfers [6]–[10], [17], [18]. However, the

data plane, which consists of memory variables not directly

used in control-flow transfer instructions, offers an additional

source of advantage for attackers. Attacks targeting the data

plane, which are referred to as non-control data attacks [19],

are known to cause significant damage — such as leakage of

secret keys (HeartBleed) [20], enabling untrusted code import

in browsers [21], and privilege escalation in servers [22]. How-

ever, non-control data attacks provide limited expressiveness

in attack payloads (e.g., allowing corruption or leakage of a

few security-critical data bytes).

In this paper, we show that non-control data attacks with

rich expressiveness can be crafted using systematic construc-

tion techniques. We demonstrate that non-control data attacks

resulting from a single memory error can be Turing-complete.

The key idea in our construction is to find data-oriented
gadgets — short sequences of instructions in the program’s

control-abiding execution that enable specific operations sim-

ulating a Turing machine (e.g., assignment, arithmetic, and

conditional decisions). Then, we find gadget dispatchers which

are fragments of logic that chain together disjoint gadgets in an

arbitrary sequence. Such expressive attacks allow the remote

adversary to force the program to do its bidding, carrying

out computation of the adversary’s choice on the program

memory. Our constructions are analogous to return-oriented

programming, wherein return-oriented instruction sequences

are chained [1]. ROP attacks are known to be Turing-complete

because of a similar systematic construction [1], [23]. Thus,

our attacks enable data-oriented programming (DOP), which

only uses data plane values for malicious purposes, while

maintaining complete integrity of the control plane.

Experimental Findings. To estimate the practicality of DOP

attacks, we automate the procedure for finding data-oriented

gadgets in a tool for Linux x86 binaries. In our evaluation

of 9 programs, we statically find 7518 data-oriented gadgets

in benign executions of these programs. 1273 of these are

confirmed to be reachable from known proof of concept

exploits for known CVEs. Gadgets offer a variety of computa-

tion controls, such as arithmetic, logical, bit-wise, conditional

and assignment operations between values under attacker’s

influence. Chaining of such gadgets is possible with memory

errors if we find dispatchers. We automate the finding of

dispatcher loops, such that the vulnerabilities could be used

to corrupt the control variable. This allows the attacker to

create infinite (or attacker-controlled) repetition. We find 5052
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of such dispatcher loops in x86 applications. To determine

the final feasibility of chaining gadgets using dispatchers

(which is a search problem with a prohibitively large space),

we resorted to constructing proof-of-concept exploits semi-

manually guided by intuition. We show 3 end-to-end exploits

in our case-studies. All of our exploits leave the control-plane

data unchanged, including all code pointers, and control-flow

execution always conforms to the static control-flow graph

(CFG). Further, our exploits execute reliably with commodity

ASLR and DEP implementations turned on.

Implications. In our first end-to-end exploit, we show how

DOP attacks result in bypassing ASLR defenses without

leaking addresses to the network. High expressiveness in DOP

attacks also allows the adversary to interact repeatedly with

the program memory, acting out arbitrary functionality in

each invocation. Our second exploit uses the interaction to

simulate an adaptive adversary with arbitrary computation

power running inside the program’s memory space (e.g., a

bot on the victim server). We probe the application over 700

times to effect the final attack! Finally, we discuss how to use

DOP to subvert several CFI defenses which trust the secrecy

or integrity of the security metadata in memory. Specifically,

our third exploit changes the permissions of read-only pages

to bypass a specific implementation of CFI. As a consequence,

we recommend future purely control-flow defenses to consider

an adversary model with arbitrary computation and access to

memory at the point of vulnerability.

Contributions. In summary, we make the following contribu-

tions in this paper:

• DOP. We propose data-oriented programming (DOP), a

general method to build Turing-complete non-control data

attacks against vulnerable programs. We propose con-

crete methods to identify data-oriented gadgets, gadget

dispatchers and a search strategy to stitch these gadgets.

• Prevalence. Our evaluation of 9 real world applications

shows that programs do have a large number (1273) of

data-oriented gadgets reachable from real-world vulnera-

bilities, which are required by data-oriented programming

operations.

• Practicality. We show that Turing-complete non-control

data exploits for common memory errors are practical.

8 out of 9 applications provide data-oriented gadgets to

build Turing-complete attacks. We build 3 end-to-end

non-control data exploits which work even in the presence

of DEP and ASLR, demonstrating the effectiveness of

data-oriented programming.

Our attacks and tools are available at http://huhong-nus.
github.io/advanced-DOP/ .

II. PROBLEM

A. Background: Non-control Data Attacks

Non-control data attacks tamper with or leak security-

sensitive memory, which is not directly used in control transfer

instructions. Such attacks were conceptually introduced a

decade ago by Chen et al. to show that they can have serious

1 FILE * getdatasock( ... ) { ...
2 seteuid(0);
3 setsockopt( ... ); ...
4 seteuid(pw->pw_uid); // corrupted uid (0)
5 ...
6 }

Code 1. Code snippet from wu-ftpd to demonstrate non-control data
attacks. Attackers change pw->pw_uid to 0 before the 2nd seteuid call
to get the root user’s privilege.

implications [19]. Recently, Hu et al. provided a general

construction for automatically synthesizing simple payloads

to effect such attacks [22]. Their construction shows that two

existing dataflows in the program can be stitched automati-

cally, therefore alleviating the effort for human analysis. The

constructed payload required the corruption of a small number

(up-to 2 or 3) of non-control-pointers. The attack payloads,

however, exhibit limited expressiveness, such as writing a

target variable of choice or leaking contents of a sensitive

memory region. Such simple payloads can enable privilege

escalation and sensitive data-leakage attacks — for instance,

Code 1 shows a well-known attack that escalates the program’s

privileges to root by corrupting one variable (pw_uid).

Is corruption of a few bytes of memory sufficient to

enable Turing-complete attacks for remote adversaries? In

some programs, the answer is yes. Consider web browsers,

which embody interpreters for web languages such as CSS,

HTML, JavaScript, and so on. The data consumed by the

interpreter is inherently under the remote attacker’s control.

Further, browsers can import machine code and directly use

it, like ActiveX code. By using a few bytes of corruption, it

is possible to cause the web browser to making it interpret

Turing-complete functionality in another website’s origin, or

execute arbitrary untrusted code. Such attacks are known in

the wild [21], [24]. However, one may argue that such attacks

apply only to limited applications such as browsers, which can

use process-sandboxing as a second line of defense.

Recently, Carlini et al. showed a more subtle example of

“interpreter-like” functionality embedded in many common

applications [25]. Their work show that certain functions, such

as printf, take format string arguments and are Turing-

complete “interpreters” for the format-string language. There-

fore, if a non-control data attack can allow the adversary

completely control over the format string argument, then the

attacker can construct expressive payloads. However, these

examples are specific to certain (4 or 5) functions such as

printf which permit expressiveness in their format-string

language. One way to disable such attacks is to limit the

expressiveness of these handful of functions — for instance,

the implementation of printf in Linux [26] 1 and Win-

dows [27] 2 sanitizes or blocks the use of %n, which severely

limits the expressiveness of the attack. The question about

how expressive are non-control data attacks arising from

common memory errors in arbitrary pieces of code is not

well-understood. Since non-control data attacks cannot divert

1A compile-time flag called FORTIFY SOURCE enables this check.
2“%n” is disabled by default in Visual Studio.
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the control flow to arbitrary locations, unlike ROP attacks [1],

[23], the expressiveness is believed to be very limited.

B. Example of Data-oriented Programming

In fact, non-control data attacks can offer rich exploits

from common vulnerabilities. To see an example, consider the

vulnerable code snippet shown in Code 2. The code is modeled

after an FTP server, which processes network requests based

on the message type. It truncates the “STREAM” message

(line 10), maintains the total size of bytes received (line

13) and throttles user requests to a maximum upper limit

(line 6). Let us assume that the code has a buffer overflow

vulnerability on line 7, failing to check the bounds of the fixed-

size buffer buf in function readData. As a consequence,

all local variables, including srv, connect_limit, size
and type are under the control of attackers.

1 struct server{ int *cur_max, total, typ;} *srv;
2 int connect_limit = MAXCONN; int *size, *type;
3 char buf[MAXLEN];
4 size = &buf[8]; type = &buf[12];
5 ...
6 while(connect_limit--) {
7 readData(sockfd, buf); // stack bof
8 if(*type == NONE ) break;
9 if(*type == STREAM) // condition

10 *size = *(srv->cur_max); // dereference
11 else {
12 srv->typ = *type; // assignment
13 srv->total += *size; // addition
14 } ... (following code skipped) ...
15 }

Code 2. Vulnerable FTP server with data-oriented gadgets.

1 struct Obj{struct Obj *next; unsigned int prop;}
2 void updateList(struct Obj *list, int addend) {
3 for(; list != NULL; list = list->next)
4 list->prop += addend;
5 }

Code 3. A function increments the integer field of a linked list by a given
value. It can be simulated by chaining data-oriented gadgets in Code 2.

This code does not invoke any security-critical functions in

its benign control-flow, and the vulnerability just corrupts a

handful of local variables. Could the adversary exploit this

vulnerability to simulate an expressive computation on the

program state? A closer inspection reveals that the answer

is yes. Consider the individual operations executed by the

program. The line 12 is an assignment operation on memory

locations pointed by two local variables (srv and type),

which are under the influence of the memory error. Line 10 has

a dereference operation, the source pointer (srv) for which

is corruptible. Similarly, Line 13 has a controllable addition

operation. We can think of each of these micro-operations

in the program as data-oriented gadgets. If we can execute

these gadgets on attacker-controlled inputs, and chain their

execution in a sequence, then an expressive computation can

be executed. Notice that the loop in line 6 to 15 allows

chaining and dispatching gadgets in an infinite sequence, since

the loop condition is a variable (i.e., connect_limit) that

is under the memory error’s influence. We call such loops

gadget dispatchers. A sequence of data-oriented gadgets in

buf[] type size srv 

“AAA…AAA” p q 0x100 n-8 

“AAA…AAA” m p 0x100 p 

stack layout 

malicious  
input for  

one round 

stack growth 

connect_limit 

Fig. 1. Malicious input to trigger the loop body in Code 3 by stitching data-
oriented gadgets in Code 2. The upper side is the stack layout of Code 2.
Refer Table I for details of p, q, m and n.

TABLE I
Simulating the loop body in Code 3 with the data-oriented gadgets in

Code 2. In column “Simulated Instr.”, highlighted instructions are useful for
the simulation, while other instructions are side effects of the attack.

Overflow Executed Instr. (Code 2) Simulated Instr. (Code 3)

type ← p
size ← q
srv ← n-8

if(*type == NONE) break; if(list == NULL) break;
srv->typ = *type; srv = list;
srv->total += *size; list->prop += addend;

type ← m
size ← p
srv ← p

if(*type == NONE) break; if(list == NULL) break;
if(*type == STREAM) if(list == STREAM)

*size = *(srv->cur max); list = list->next;
p – &list; q – &addend; m – &STREAM; n – &srv

Code 2 would allow the remote adversary to simulate the

function shown in Code 3, which maintains a linked list of

integers in memory and increments each integer by a desired

value. Table I illustrates how the code in the loop body gets

simulated with the malicious input in Figure 1. Attackers can

repeatedly send the same input sequence to implement the

updateList function in Code 3.

This non-control data attack shows subtle expressiveness in

payloads and prevalence: with a single memory error, it re-

interprets the vulnerable server as a virtual CPU, to perform

an expressive calculation on behalf of attackers. It does not

require any specific security-critical data or functions to enable

such attack. The control flow conforms to the precise CFG.

C. Research Questions

In this paper, we aim to answer the following questions

about non-control data attacks:

• Q1: How often do data-oriented gadgets arise in real-

world programs? How often do gadget dispatchers exist?

• Q2: Is it possible to chain gadgets for a desired compu-

tation? Can attackers build Turing-complete attacks with

this method?

• Q3: What is the security implication of this attack method

for current defense mechanisms?

III. DATA-ORIENTED PROGRAMMING

We illustrate the idea behind a general technique called

Data-Oriented Programming (DOP) that can simulate Turing-

complete computations by exploiting a memory error.

A. DOP Overview

Data-oriented programming is a technique that allows the

attacker to simulate expressive computations on the program

memory, without exhibiting any illegitimate control flow with

respect to the program CFG. As shown in Section II-B, the

key is to manipulate non-control data such that the executed
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TABLE II
MINDOP language. To simulate (conditional) jump, data-oriented gadget

changes the virtual input pointer (vpc) accordingly.

Semantics Instructions
in C

Data-Oriented
Gadgets in DOP

arithmetic / logical a op b *p op *q
assignment a = b *p = *q
load a = *b *p = **q
store *a = b **p = *q
jump goto L vpc = &input
conditional jump if a goto L vpc = &input if *p

p – &a; q – &b; op – arithmetic / logical operation

instructions do the attacker’s bidding. In order to give a

concrete and systematic construction, we define a simple mini-

language called MINDOP with a virtual instruction set and

virtual register operands, in which the attacker’s payload can

be specified. We show how MINDOP can be simulated by

small snippets of x86 instructions that are abundant in common

real-world programs on Linux, as our empirical evaluation in

Section V confirms. MINDOP is Turing-complete, which we

establish in Section III-D.

The MINDOP language (shown in Table II) has 6 kinds

of virtual instructions, each operating on virtual register

operands. The first four virtual instructions include arithmetic /

logical calculation, assignment, load and store operations. The

last two virtual operations, namely conditional and uncondi-

tional jumps, allow the implementation of control structures

in a MINDOP virtual program. Each virtual operation is

simulated by real x86 instruction sequences available in the

vulnerable program, which we call data-oriented gadgets. The

control structure allows chaining of gadgets, and the x86

code sequences that simulate the virtual control operations

are referred to as gadget dispatchers. None of the gadgets

or dispatchers modify any code-pointers or violate CFI in the

real program execution. We next explain each virtual operation

and show concrete real-world gadgets that simulate them.

B. Data-Oriented Gadgets

Virtual operations in MINDOP are simulated using concrete

x86 instruction sequences in the vulnerable program execution.

Such instruction sequences or gadgets read inputs from and

write outputs to memory locations which simulate virtual

register operands in MINDOP. Hardware registers are not a

judicious choice for simulating virtual registers because the

original program frequently uses hardware registers for its

own computation. Gadgets are scattered in the program logic,

within the legitimate CFG of the program. As a result, between

two gadgets there may be several uninteresting instructions

which may clobber hardware registers and the memory state

outside of the attacker’s control. Therefore, in MINDOP

we implement virtual registers with carefully-chosen memory

locations (not hardware registers) used only under the control

of gadget operations.

Conceptually, a data-oriented gadget simulates three logical

micro-operations: the load micro-operation, the intended vir-

tual operation’s semantics, and the final store micro-operation.

The load micro-operation simulates the read of the virtual

TABLE III
Example data-oriented gadget of addition operation. The first row is the C

code of the gadget, and the second row is the corresponding assembly code.

C Code srv->total += *size;

ASM Code

1 mov (%esi), %ebx //load micro-op
2 mov 0x4(%edi), %eax //load micro-op
3 add %ebx, %eax //addition
4 mov %eax, 0x4(%edi) //store micro-op

register operand(s) from memory. The store micro-operation

writes the computation result back to a virtual register. The

operation’s semantics are different for each gadget. A number

of different x86 instruction sequences can suffice to simulate

a virtual operation. The x86 instruction set supports several

memory addressing modes, and as long as the order of the

micro-operations is correct, different sequences can work. As

a concise example, the x86 instruction add %eax, (%ecx)
performs all three micro-operations (load, arithmetic and store)

in a single x86 instruction. We later provide other gadget

implementations as well.

Data-oriented gadgets are similar to code gadgets employed

in return-oriented programming (ROP) [1], or in jump-oriented

programming (JOP) [2]. They are short instruction sequences

and are connected sequentially to achieve the desired function-

ality. However, there are two differences between data-oriented

gadgets and code gadgets. First, data-oriented gadgets require

to deliver operation result with memory. In contrast, code

gadgets can use either memory or register to persist outputs

of a gadget. Second, data-oriented gadgets must execute in

at least one legitimate control flow, and need not execute

immediately one after another. In fact, they can be spread

across several basic blocks or even functions. In contrast, code

gadgets need not execute in any benign control-flow path of the

program, and may even start at invalid instruction boundaries.

Data-oriented gadgets have more stringent requirements than

code gadgets in general. However, we show that such gadgets

exist with examples from real-world applications.

Simulating Arithmetic Operations. Addition and subtraction

can be simulated using a variety of x86 instructions sequences

that we find empirically. Table III shows one example of

addition gadget with C and the assembly representation. This

gadget is modeled from the real-world program ProFTPD [28].

In the assembly representation, the code in line 1 and line 2

constitute the load micro-operation. The code in line 3 imple-

ments the addition, and line 4 is the store micro-operation.

With addition over arbitrary values, it is possible to simulate

multiplication efficiently if the language supports conditional

jumps. MINDOP supports conditional jumps which allow to

check if a value is smaller / greater than a constant. To see

why this combination is powerful, note that we can compute

the bit-decomposition of a finite-size integer. To compute the

most significant bit of a, we can add a to itself (equivalently

left-shifting it) and conditionally jump based on the carry bit.

Proceeding by repetition, we can obtain the bit-decomposition

of a. With bit-decomposition, simulating a multiplication a·b
reduces to the efficient shift-and-add procedure, adding a to

itself in each step conditioned on the bits in b. Converting a
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TABLE IV
Example data-oriented gadget of assignment operation.

C Code srv->typ = *type;

ASM Code
1 mov (%esi), %ebx // load micro-op
2 mov %ebx, %eax // move
3 mov %eax, 0x8(%edi) // store micro-op

TABLE V
Example data-oriented gadget of dereference operation. The first row gives
three examples. The second row shows the assembly code of the first one.

C Code LOAD1: *size = *(srv->cur_max);
LOAD2: memcpy(dst, *src_p, size);
STORE: memcpy(*dst_p, src, size);

ASM Code (of LOAD1)
1 mov (%esi), %ebx // load micro-op
2 mov (%ebx), %eax // load
3 mov %eax, (%edi) // store micro-op

bit-decomposed value to its integer representation is similarly

a multiply-and-add operation over powers of two. Bit-wise op-

erations are simply arithmetic on the bit-decomposed versions.

Simulating Assignment Operations. In MINDOP, assign-

ment gadgets read data from one memory location and directly

write to another memory location. In this case, we can skip

the load section of the destination operand. The C code and

ASM code of an assignment gadget is shown in Table IV.

Simulating Dereference (Load / Store) Operations. The

load and store instructions in C require memory dereferences,

which take one register as address and visits the memory

location for reading or writing. In data-oriented programming,

registers are simulated by memory, therefore the memory

dereference is simulated by two memory dereferences: the

first memory dereference to simulate the register access, and

a second memory dereference with the first dereference result

(the register value) as the address. As shown in Table II,

the memory dereference *b in the load instruction in C is

represented by **q, where q is the address of b, *q is

the value of b, and **q is the final memory value *b. A

similar representation is used in the store gadget. We show two

examples of load gadgets and one example of a store gadget in

Table V in C representation, and the assembly representation

of the first load gadget. As we can see from the assembly

code, there are still three sections in load / store gadgets, with

the semantics on memory dereference with loaded operands.

C. Gadget Dispatcher

Various gadgets can be chained sequentially by gadget dis-

patchers to enable recursive computation. Gadget dispatchers

are sequences of x86 instructions that equip attackers with the

ability to repeat gadget invocations and, for each invocation,

to selectively activate specific gadgets. One common sequence

of x86 instructions that can simulate gadget dispatchers is a

loop, which iterates over computation that simulates gadgets

and should have a selector in it. Each iteration executes a

subset of gadgets using outputs from gadgets in the previous

iteration. To direct the outputs of one gadget in iteration i into

the inputs to a gadget in iteration i+1, the selector changes the

load address of iteration i+1 to the store addresses of iteration

i. The selector’s behavior is controlled by attackers through the

memory error. In our running example in Code 2, line 6 and

Gadget Dispatcher 

gadget1 

gadget1 

gadget4 

gadget2 gadget3 

gadget2 gadget3 

gadget5 

…… …… …… 

round1 

round2 

round3 

roundN 
…… 

loop selector 

corruptible by mem-err 

Fig. 2. The design model of DOP in MINDOP. The gadget dispatcher
includes a loop and a selector. The loop keeps the program passing by the
selector and various data-oriented gadgets. For each round, the selector is
controlled by the memory error to activate particular data-oriented gadgets.

7 in the loop constitute a dispatcher. The selector on line 7 is

the memory error itself, which repeatedly corrupts the local

variables to setup the execution of gadgets in that iteration. The

corruption is done in a way that it enables only the gadgets of

the attacker’s choice. These gadgets take as input the outputs of

the previous round’s gadget by selectively corrupting operand

pointers. The remaining gadgets may still get executed, but

their inputs and outputs are set up such that they behave

like NOPs (operating on unused memory locations). Figure 2

shows the design model of data-oriented programming in

MINDOP. The left part is the gadget dispatcher inside the

vulnerable program, which is corruptible by the memory error;

the solid gadgets are activated in iteration i and the gray

gadgets are executed like NOPs.

It remains to explain in iteration i, how to selectively

activate a particular gadget in that iteration and whether the

simulation should continue to iteration i + 1. Our running

example in Code 2 shows a scenario where the attacker can

“interact” with the program by repeatedly corrupting program

variables at line 7 using a buffer overflow. This attack is an

interactive attack, where the attacker can prepare the memory

state at the start of loop iteration i in a way that the desired

gadget works as required and other gadgets operate on unused

memory. Let Mj be the state of memory for executing gadget

j selectively. In an interactive attack, the attacker can corrupt

local variables to configure Mj to execute j in that round, and

provide multiple rounds of such malicious inputs to perform an

expressive computation. When the attacker wishes to terminate

the loop, it can corrupt the loop condition variable to stop.

Another class of DOP attacks are non-interactive, whereby

the attacker provides the entire malicious input as a single

data transmission. In such a scenario, all the memory setup

and conditions for deciding loop termination and selective

gadget activation need to be encoded in a single malicious

payload. To support such attacks, MINDOP has two virtual

operations that enable conditional chaining of operations, or

virtual jumps. The basic idea is as follows: the attacker

provides the memory configuration Mj necessary for each

gadget j to be selectively executed in a particular iteration

in the input payload. In addition, it keeps a pointer called

the virtual PC which points to the desired configuration Mj

at the start of each iteration. It suffices to corrupt only the

virtual PC, so that the program execution in that iteration

operates on the configuration Mj . To decide how to switch to
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Mk in the next iteration, MINDOP provides virtual operations

that set the virtual PC, conditionally or unconditionally. The

dispatcher loop can be conditionally terminated by using a

specific memory configuration Mexit which sets the loop

condition variable appropriately. We provide example gadgets

that simulate such virtual operations below.

Simulating Jump Operations. The key here is to identify

a suitable variable to implement a virtual PC which can be

corrupted in each loop iteration. One example of such a gadget

is the Code 4 taken from the real ProFTPD program [28]3.

There is a memory pointer pbuf->current that points to

the buffer of malicious network input. In each loop iteration,

the code reads one line from the buffer and processes it in

the loop body — thus the pointer is a useful candidate to

simulate a virtual PC. To simulate an unconditional jump,

attackers just prepare the memory configuration to trigger

another operation gadget (e.g., addition, assignment) to change

the value of the virtual PC. For example, if attackers want

the MINDOP program to jump from operation i to j, they

just need to prepare the memory configuration Mk after Mi,

so that the operation k will change the virtual PC to point to

Mj . Furthermore, there are two ways to simulate a conditional

jump. One case is that reading the memory configuration with

virtual PC is conditional. Attackers just use operation k to set

the proper variable as the reading condition. Another case is

that the operation k’s execution conditionally depends on a

data variable.

1 void cmd_loop(server_rec *server, conn_t *c) {
2 while (TRUE) {
3 pr_netio_telnet_gets(buf, ..);
4 cmd = make_ftp_cmd(buf, ...);
5 pr_cmd_dispatch(cmd); // dispatcher
6 }
7 }
8 char *pr_netio_telnet_gets(char * buf, ...) {
9 while(*pbuf->current!=’\n’ && toread>0)

10 *buf++ = *pbuf->current++;
11 }

Code 4. Example data-oriented gadget of jump operation.

The virtual PC in non-interactive mode requires a dedicated

space for malicious input and a controllable input pointer. In

Section V we show the details of the identified virtual PCs in

real-world programs. Note that interactive attack model does

not require a virtual PC as attackers can dynamically decide

the next gadget based on the network message received from

the victim program in each iteration.

D. MINDOP is Turing-Complete

To show that MINDOP is Turing-complete, we show how

the classical construction of a Turing machine can be simulated

in MINDOP. A Turing machine M is a tuple (Q, q0,Σ, σ0, δ)
where,

– Q is a finite set of states,

– q0 is a distinguished start state such that q0 ∈ Q
– Σ is a finite set of symbols

3Although ProFTPD provides an interactive attack mode, it also allows
non-interactive attack with this jump gadget.

– σ0 is a distinguished blank symbol such that σ0 ∈ Σ
– δ is a transition table mapping a partial function Q×Σ �→
Σ× {L,R} ×Q

Representation. In the context of DOP, we set-up the fol-

lowing data structures in the victim program’s memory to

represent our Turing Machine: A qcur to hold the current

state, where qcur is a member of set of all possible states (Q).

A pointer tapehead to track the cell on the tape containing

the current symbol Scur, where Scur is a member of set of

all possible symbols (Σ). Note that since the tape is linear,

tapehead − 1 points to left part of the tape w.r.t. current

position, and tapehead +1 points to the right part to the tape.

A pointer TTbase to access a two-dimensional array that stores

the transition table. The transition table uses the current state

qcur and the current symbol Scur as indexes. Pointers qnext,
Snext, D hold the next state, next symbol and the movement

direction (left or right) respectively.

Simulating Steps of A Turing Machine. In the first step

of the attack, we invoke the memory gadgets to load the

input and transition table into the program memory. We also

initialize qcur to q0 and tapehead to Scur. For achieving this,

the attacker crafts a payload which will execute the sequence

of operations shown in Listing 5. This requires three basic

types of gadgets: assignment (MOV), dereference (LOAD and

STORE) and addition (ADD).

1 MOV tape_head, temp
2 STORE input_0, temp ;start writing input
3 ADD temp, 1
4 STORE input_1, temp
5 ....
6 STORE input_n, temp ;end writing input
7 LOAD tape_head,S_0 ;init S_0
8 MOV q_0, q_cur ;init q_cur
9 MOV TT_base, address ;start writing trans tab

10 MOV temp, TT_base
11 STORE value_0, temp
12 ADD temp, 1
13 STORE value_1, temp
14 ADD temp, 1
15 ....
16 STORE value_n, temp ;end loading trans tab

Code 5. Data-oriented gadget sequence to initialize the Turing Machine.

Once the attacker sets up the Turing machine, the next aim

is to execute the machine with the provided input on the tape.

The classical Turing machine step comprises of four sub-steps:

(a) read the current tape symbol (b) use the symbol and the

state to consult the transition table and get the next state and

symbol (c) write the new symbol to the tape and update the

state (d) move the tape head to left or right. Listing 6 shows

the sequence of gadgets that should be chained together to

simulate such a step in the attacker’s Turing machine. Note that

it is a fixed chain of gadgets only comprising of assignment,

dereference and addition operations.

Accessing Transition Tables. Each step in the machine

consults the transition table by using the current state and

the current tape symbol. We place our transition table in the

memory in such a way that the comparison operation to search

the transition table is folded into a direct lookup in a two-
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dimensional array. Specifically, we use the addition gadget to

first calculate the offset in the transition table. This calculation

is done dynamically based on the current symbol and state.

Once we obtain the offset, we use it to lookup the next state

and symbol. Next, we update the current state, write the new

symbol, and move the tape head (See Appendix A for an

example). The attacker aims to carry out all the above sub-

steps repeatedly until the Turing machine reaches the final

or halt state. When the machine does reach a halt state, the

lookup-table can encode a specific output symbol to terminate.

For instance, the output symbol could terminate the dispatcher

loop to proceed with the original program execution.

1 LOAD vptr, s_cur ;read from tape
2 MOV TT_base, temp
3 ADD temp, q_cur ;get the row
4 LOAD temp, temp
5 ADD temp, s_cur ;get the column
6 LOAD temp, TT
7 LOAD TT, q_cur ;set the new state
8 ADD TT, 1
9 LOAD TT, s_cur

10 ADD TT, 1
11 LOAD TT, D
12 STORE s_cur, tape_head ;write to tape
13 ADD tape_head, D ;move the head
14 MOV loop_counter, temp
15 ADD temp, 16
16 MOV temp, loop_counter

Code 6. Gadget sequence to simulate one step in the Turing Machine.

Putting It All Together. To cascade multiple Turing machine

steps, the attacker has to ensure that the victim program’s

dispatcher loop does not exit. Line 14-16 in Code 6 show one

possible way to achieve this by incrementing the vulnerable

program’s loop counter variable at the end of every step in

the Turing machine. Depending on the nature of the gadget

dispatcher in the program, the attacker can chose alternative

ways to achieve the same. In order to successfully execute any

arbitrary computation in the vulnerable program’s memory,

the attacker constructs a payload such that it first executes

the gadgets for initialization and then keeps pumping the

payload to execute machine step gadgets repeatedly until the

victim program terminates. Thus, we prove that if the program

has three stitchable gadgets for assignment, dereference and

addition within a dispatcher loop, then it is possible to mount

Turing-complete DOP attacks.

IV. DOP ATTACK CONSTRUCTION

Constructing DOP attacks against a vulnerable program

requires a concrete memory error and specification of the ma-

licious behavior. Our analysis first identifies concrete program

gadgets and dispatchers to simulate MINDOP operations, and

then we synthesize a malicious input to execute MINDOP

operations exploiting an existing concrete memory error.

A. Challenges

Though the concept of data-oriented programming is in-

tuitive, it is challenging to construct data-oriented attacks in

real-world programs. Unlike in ROP, where attackers com-

pletely harness the control flow, DOP is constrained by the

application’s original control flow. Following challenges arise

in constructing DOP attacks:

• Data-oriented gadget identification. To perform arbi-

trary computations, we need to find data-oriented gadgets

to simulate basic MINDOP operations. However, most of

the data-oriented gadgets are scattered over a large code

base, which makes manual identification difficult. We use

static analysis as an aid in identifying these gadgets.

• Gadget dispatcher identification. Our gadget dispatcher

requires a loop with various gadgets and a selector

controlled by the memory error. But it is possible to

have the selector and gadgets inside the functions called

from the loop body. We should take such cases into

consideration to identify all dispatchers.

• Data-oriented gadget stitching. The reachability of gad-

gets depend on concrete memory errors. We need to find

malicious input that makes the program execute selected

gadgets with the expected addresses and order. Since

data-oriented programming corrupts substantial memory

locations, we also need to avoid program crashes.

In the rest of this section, we discuss our techniques to

address the challenges in identifying data-oriented gadgets,

gadget dispatchers and stitching them for real-world attacks.

B. Gadget Identification

A useful data-oriented gadget needs to satisfy the following

requirements:

• MINDOP semantics. It should have instructions for

the load micro-operation, the store micro-operation, and

others simulating semantics of MINDOP, as we discuss

in Section III-B.

• Gadget internal order. The three micro-operations

should appear in the load-operation-store order, and this

correct order should show up in at least one legitimate

control flow.

We perform static data-flow analysis to aid the identification

of such data-oriented gadgets and generate a set of over-

approximated gadgets verifiable by manual / dynamic analysis.

We compile the program source code into LLVM intermediate

representation (IR) and perform our analysis on LLVM IR.

LLVM IR provides more program semantics than binary while

avoiding the parsing of program source code. It also allows

language-agnostic analysis of the source code written in any

language that has a LLVM frontend. Our analysis iterates

through all functions in the program (See Algorithm 1). We

treat each store instruction in the function as a store micro-

operation of a new potential gadget. Then our analysis uses

a backward data-flow analysis to identify the definitions of

the operands in the store instruction. The generated data-flow

contains the instructions that derive the operands, like loaded

from memory or calculated from registers. If there is at least

one load operation present in the data-flow, we mark it as a

data-oriented gadget.

Gadget Classification. We classify data-oriented gadgets into

different categories based on their semantics and computed
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Algorithm 1: Data-oriented gadget identification.

Input: G:- the vulnerable program
Output: S:- data-oriented gadget set

1 S = ∅;
2 FuncSet = getFuncSet(G)
3 foreach f ∈ FuncSet do
4 cfg = getCFG(f)
5 for instr = getNextInstr(cfg) do
6 if isMemStore(instr) then
7 gadget = getBackwardSlice(instr, f)
8 input = getInput(gadget)
9 if isMemLoad(input) then

10 S = S ∪ {gadget}

variables. Gadgets with the same semantics are functional-

equivalent to simulate one MINDOP operation. The assign-

ment gadgets can be used to prepare operands for other

gadgets. Conditional gadgets are useful to implement advanced

calculations from simple gadgets (like simulating multiplica-

tion with conditional addition in Section III-B). There are

no function call gadgets in data-oriented programming, as it

does not change the control data. Based on the computed

variables, we further classify gadgets into three categories:

global gadget, function-parameter gadget and local gadget.
Global gadgets operate on global variables. Memory errors

can change these variables from any location. A function-

parameter gadget operates on variables derived from func-

tion parameters. Memory errors that can control the function

parameters can use gadgets in this category. Local gadgets

compute on local variables, where only the memory errors

inside the function can activate them. One concrete memory

error can use gadgets in various categories. For example, a

stack buffer overflow vulnerability can use local gadgets if it

can corrupt related local variables. It can also use function-

parameter gadgets if the corrupted local variables are used

as parameters of function calls. If the buffer overflow can be

exploited to achieve arbitrary memory writing, even the global

gadgets can be used to build attacks 4.

We use classification to prioritize gadget selection: global

gadgets are prioritized over function-parameter gadgets, and

local gadgets are considered at last. We further prioritize the

identified potential gadgets based on their features, which

include the length of the instruction sequence and the number

of simulated operations. Shorter instruction sequences with

single MINDOP semantic are prioritized over longer, multi-

semantic instruction sequences.

C. Dispatcher Identification

We use static analysis on LLVM IR for the initial phase

of dispatcher identification. In this step, our method does not

consider any specific memory error. Algorithm 2 gives the

dispatcher identification algorithm. Since loops are necessary

for attackers to repeatedly connect gadgets, we first identify

all possible loops in the program. For each loop, we scan

the instructions in the loop body to find interesting gadgets

4Like the cases in Section V

Algorithm 2: Gadget dispatcher identification.

Input: G:- the vulnerable program
Output: D:- gadget dispatcher set

1 D = ∅;
2 FuncSet = getFuncSet(G)
3 foreach f ∈ FuncSet do
4 foreach loop = getLoop(f) do
5 loop.gadgets = ∅
6 foreach instr = getNextInstr(loop) do
7 if isMemStore(instr) then
8 loop.gadgets ∪= getGadget(instr)
9 else if isCall(instr) then

10 target = getTarget(instr)
11 loop.gadgets ∪= getGadget(target)
12 if loop.gadgets != ∅ then
13 D = D ∪ {loop}

with Algorithm 1. For function calls within the loop, we

step into functions through the call graph and iterate through

all instructions inside. This gives us an over-approximate set

of gadget candidates for a particular dispatcher. As with the

gadget finding, we also prioritize dispatchers based on loop

size and loop condition.

The second phase of dispatcher identification correlates

the identified dispatcher candidates with a known memory

error. In this phase, we use a static-dynamic approach to

provide identification results with varying degrees of coverage

and precision. Static analysis provides a result with larger

coverage but less precise, while dynamic analysis allows for

the converse. In our static analysis, the correlation is done by

reachability analysis of loops based on program’s static CFG.

We mark a loop as reachable if it enfolds the given memory

error. For dynamic analysis, we consider the function call trace

after the execution of the vulnerable function until the program

termination. Any loops inside the called functions are treated

to be under the control of memory error. We merge the static

analysis result and dynamic analysis result as the final set of

gadget dispatchers.

D. Attack Construction

We manually construct our final attacks with data-oriented

programming using the results of our previous analysis. For

a given concrete memory error, the available gadgets and

dispatchers rely on the location of the vulnerable code in the

program, while the stitchability of gadgets depends on the

corruptibility of the memory error. To connect two disjoint

data-oriented gadgets, attackers should have the control over

the address in the load micro-operation of the second gadget

or the address in the store micro-operation of the first gadget.

Attackers can modify the addresses into expected values when

the address values are known in advance (through information

leakage or deterministic address analysis [22]). Based on the

gadget classification, we complete the stitching steps manually,

with the following method.

1) Gadget preparation (Semi-automated). Given a mem-

ory error, we locate the vulnerable function from the
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TABLE VI
Prevalence of DOP gadgets & dispatchers. Columns 1-3 present the details of the selected 9 programs. Columns 4 denotes the total number of identified
dispatchers, while Column 5 represents the number of dispatchers containing at least one gadget. Columns 6-20 report the number of gadgets for each type

where, G denotes global gadgets, FP denotes function-parameter gadgets, and H denotes the operands in the gadgets are hybrid.

Vulnerable Application Dispatchers Assignment Load / Store Arithmetic Logical Conditional
Name Version LOC Total Used G FP H G FP H G FP H G FP H G FP H

bitcoind 0.11.1 455041 88 9 0 2 0 0 0 0 0 50 0 0 40 0 0 6 0
musl libc 1.1.7

84643 2165 768 80 303 126 935 321 76 595 542 54 160 292 17 70 55 17
BusyBox 1.24.1
Wireshark 1.8.0 2629412 961 102 33 33 41 49 41 4 37 125 8 3 13 6 3 7 4
nginx 1.4.0 100252 689 204 12 69 54 32 974 40 12 177 26 28 265 7 3 22 6
mcrypt 2.6.8 51673 71 9 65 6 0 0 0 8 13 0 0 21 10 0 9 0 1
sudo 1.8.3 94492 67 16 11 9 0 11 8 5 3 9 2 5 0 2 3 0 0
ProFTPD 1.3.0 202206 586 180 6 23 15 43 81 48 53 23 2 16 13 2 7 2 0
sshd 1.2.27 38236 222 88 3 45 28 6 174 9 10 232 17 6 305 24 3 28 0
WU-FTPD 2.6.0 25968 203 67 40 3 9 34 1 1 114 0 0 5 3 0 3 2 3

TOTAL 5052 1443 7518

program source code. Then we identify the gadget dis-

patchers that enfold the vulnerable code and collect the

data-oriented gadgets.

2) Exploit chain construction (Manual). We take the

expected malicious MINDOP program as input. Each

MINDOP operation can be achieved by any data-oriented

gadget in the corresponding functional category. We

select gadgets based on their priorities.

3) Stitchability verification (Manual). Once we get a chain

of data-oriented gadgets for desired functionality, we

verify that every stitching is possible with the gadget

dispatcher surrounding them. We feed concrete input to

the program to trigger memory errors to connect expected

gadgets. If the attack does not work, we roll back to Step

2) to select different gadgets and try the stitching again.

V. EVALUATION

In this section, we measure the feasibility of data-oriented

programming and answer the research questions outlined in

Section II-C. We first show the prevalence of data-oriented

gadgets and gadget dispatchers in real-world x86 programs

(Q1). We sample the identified gadgets and empirically verify

if they are stitchable with known CVEs. We find both Turing-

complete data-oriented gadgets as well as dispatchers in inter-

active and non-interactive mode (Q2). We demonstrate three

end-to-end case-studies which use DOP to exploit the program

while bypassing ASLR and DEP to highlight the utility of

Turing-completeness (Q3).

Selection of Benchmarks. We select 9 widely used ap-

plications with publicly known CVEs for our evaluation.

These applications provide critical network services (like

FTP, HTTP, cryptocurrency) and thus are common targets

of real-world exploits. Specifically, we study FTP servers

(WU-FTPD [29], ProFTPD [28]), HTTP server (nginx [30]),

daemons (bitcoind [31], sshd [32]), network packet analyzer

(Wireshark [33]), user library musl libc 5 [36], and common

user utilities (mcrypt [37], sudo [38]).

5We analyze standard C library musl libc instead of glibc [34] because
glibc cannot be compiled with LLVM. In our analysis, we use BusyBox [35]
built against musl libc.

A. Feasibility of DOP

We study our 9 applications and measure how many x86

gadgets in these programs can simulate MINDOP operations.

We aim to evaluate the following four aspects in our analysis:

• Empirically justify the choice of operations in MINDOP

based on the prevalence of x86 gadgets.

• Study the distribution of various types of gadgets based

on the scope of input operands.

• Measure the reachability of these x86 gadgets in concrete

executions in presence of an exploitable memory error.

• Verify if the memory errors (in the public CVEs) have

the capability to control the input operands and activate

the gadgets in concrete executions.

Choice of MINDOP Operations. Table VI shows our static

analysis results, including the number of x86 gadgets and

gadget dispatchers to simulate MINDOP operations.

• x86 Gadgets. We identified 7518 data-oriented gadgets

from 9 programs. 8 programs provide x86 data-oriented

gadgets to simulate all MINDOP operations. In fact, there

are multiple gadgets for each operation. These gadgets

provides the possibility for attackers to enable arbitrary

calculations in program memory. Another program, bit-

coind, contains x86 gadgets to simulate MINDOP op-

erations except load and store. This result implies that

real-world applications do embody MINDOP operations

and are fairly rich in DOP expressiveness.

• x86 Dispatchers. Our programs contain 5052 number of

gadget dispatchers in total, such that each program has

more that one dispatcher (See Column 4 in Table VI).

1443 of these dispatchers contain x86 gadgets of our

interest (See Column 5 in Table VI). More importantly,

programs such as sudo with relatively fewer number of

loops w.r.t LOC, still contains 16 dispatchers to trigger

x86 gadgets. This means that the dispatchers are abundant

in real-world programs to simulate MINDOP operations.

Gadgets Classification. We classify our x86 gadgets into three

categories based on the scope of the operands as discussed in

Section IV-B. The inputs of global gadgets can be controlled

by a memory error from any location. The inputs of function-

parameter gadgets can be controlled only if the memory error
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TABLE VII
Reachability and corruptibility of x86 gadgets in the presence of a specific memory error. Columns 2-4 present the CVE number, type and capacity of

the vulnerability as format string vulnerability (FSV), integer overflow (IO), stack buffer overflow (SBO), arbitrary write (AW) and stack write (SW).
Column 5 denotes the number of functions executed after the vulnerable function in the program. Columns 6-7 report the total number of dispatcher loops
executed and how many of them execute at least one data gadget respectively. Columns 8-12 represent the number of gadgets in each type executed within

these dispatchers and a �implies that at least one gadget is confirmed to be stitchable. Column 13 reports the total number of gadgets. Columns 14-15
report if the vulnerability can be used to maintain a virtual PC and build Turing-complete exploit respectively.

Vulnerable Application Func
Exec

Dispatchers Assign-
ment

Load /
Store

Arith-
metic Logical Condi-

tional
Total
Gadgets

Virtual
PC?

Is
TC?Name CVE Type Cap Exec Used

bitcoind 2015-6031 [39] SBO SW 0 0 0 0 0 0 0 0 0
musl libc + ping 2015-1817 [40] SBO AW 83 88 16 18 � 45 6 � 19 � 0 88
Wireshark 2014-2299 [41] SBO AW 152 44 1 1 � 1 � 2 � 0 1 � 5 � �
nginx 2013-2028 [42] SBO AW 82 91 30 39 441 68 � 119 11 678
mcrypt 2012-4409 [43] SBO AW 31 10 2 1 � 0 5 1 0 7
sudo 2012-0809 [44] FSV AW 27 9 2 3 12 4 � 2 2 23
ProFTPD 2006-5815 [45] SBO AW 146 92 31 15 � 69 � 22 � 18 2 � 126 � �
sshd 2001-0144 [46] IO AW 91 34 20 10 11 19 � 120 0 160
WU-FTPD 2000-0573 [47] FSV AW 23 36 9 47 � 21 � 102 � 8 8 186 �

TOTAL 635 404 110 134 600 228 287 24 1273 3 3

occurs before the parent function. We currently ignore the local

gadgets as it requires the memory error to occur in the func-

tion body before it. Instead, we consider the gadgets taking

both global inputs and function-parameter inputs, classified as

hybrid gadgets. An arbitrary memory error provides partial

control over hybrid gadgets. Table VI reports the number of

gadgets in each category for our examples. 8 out of 9 programs

have at least one class of gadget for each operation, which

shows that highly controllable gadgets are common in real-

world vulnerable programs.

Execution Reachability from Memory Errors. The nature

of the memory vulnerability — location in the code and the

corruptible memory region — decides if the execution can

reach a specific gadget or not. To estimate how many gadgets

in the program are reachable, we select one concrete vulner-

ability from the CVE database per program (See Column 2

in Table VII). We run the vulnerable program with the given

CVE PoC to get the dynamic function call trace, including the

vulnerable function. From the function call trace, we identify

the functions invoked by the vulnerable function, and loops

surrounding the vulnerable function during the execution. The

gadgets inside the invoked functions and enfolding loops are

the reachable gadgets from the dispatcher. Table VII shows the

number of reachable gadgets in our programs. In total there

are 1273 reachable gadgets via the listed CVEs. 4 out of 9
programs have at least one dispatcher and one gadget of each

type reachable from the selected CVE, which can be used to

simulate all operations in MINDOP. Thus, these selected real-

world vulnerabilities have the ability to reach a large number

of data-oriented gadgets and invoke many dispatchers.

Corruptibility of the CVE. The fact that a gadget is reachable

does not necessarily imply that the attacker can always control

the inputs to the gadget. For example, memory errors with only

stack access can use function-parameter gadgets and hybrid

gadgets at most, while memory errors with arbitrary read-

write access can activate any x86 gadgets. To this end, we

dynamically analyze the actual corruptibility of memory errors

confirmed with concrete execution of PoC exploits. The data

provide evidence of the prevalence of reusing existing CVEs

to construct DOP attacks. For example, 5 out of the 6 stack-

based buffer overflow vulnerabilities can use the assignment

operations to achieve arbitrary write access (Column 3, 4 in

Table VII). 8 out of 9 vulnerabilities enable arbitrary write

capabilities with which the attacker can trigger a total of 1273
global gadgets (Column 13 in Table VII). In case of bitcoind,

the attacker can only control local variables within the function

using the CVE. Since we ignore the local gadgets in our

analysis, we cannot simulate any MINDOP operations with

this particular memory error.

Manually Confirmed Stitchability. Note that we have not

checked each of 1273 gadgets against each CVE run to

construct complete exploits — this is an onerous manual task.

We have sampled a few cases and manually executed and

verified if they are triggerable and stitchable using the CVE.

The cases that we confirmed as exploitable by running the

exploits and dynamically analyzing the execution are denoted

by a check-mark (�) in Table VII. We have also constructed

end-to-end attacks using some of these gadgets as discussed

in Section V-C.

B. Turing-Complete Examples

We have established that x86 data-oriented gadgets required

to simulate MINDOP exist in real-world applications and can

be triggered by the concrete vulnerabilities. Next we evaluate

the ease of stitching multiple gadgets for building Turing-

complete exploits. Currently we resorted to prioritizing cases

and manually checking a random sample of gadgets based

on their type and concrete memory errors. We present the

details of two representative examples wherein the attacker: (1)

actively interacts with the program, observes the behavior and

crafts the next attack payload; (2) sends a single payload which

triggers all the gadgets to execute the attacker’s MINDOP

program. Readers interested in end-to-end real attacks can read

Section V-C first, where we show expressive attacks with these

Turing-complete gadgets.
1) Interactive — ProFTPD: ProFTPD is a light-weight

file server and its 1.2-1.3 versions have a stack-based buffer

overflow vulnerability in the sreplace function (CVE-

2006-5815 [45]). Line 14 in Code 7 shows the string copy
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which overflows the stack buffer buf. We confirm that the

dispatcher around this memory error and the data-oriented

gadgets can be used to build Turing-complete calculation. We

use the following methodology to implement MINDOP virtual

operations with the x86 data-oriented gadgets in ProFTPD.

1 //memory error & assignment :
2 // cmd_loop()->pr_cmd_dispatch()->_chdir()
3 // ->pr_display_file()->sreplace()
4 char *sreplace(char * s, ...) {
5 char *src,*cp,**mptr,**rptr;
6 char *marr[33],*rarr[33];
7 char buf[PR_TUNABLE_PATH_MAX] = {’\0’};
8 src = s; cp = buf; mptr=marr; rptr=rarr;
9 ...

10 while (*src)
11 for (; *mptr; mptr++, rptr++) { ...
12 //1st round: memory error
13 //2nd round: assignment
14 sstrncpy(cp,*rptr,blen-strlen(pbuf)); ...
15 }
16 }

Code 7. Code snippet of ProFTPD, with a stack-based buffer overflow. This
code is also used to simulate the assignment gadget.

• Conditional assignment operation. We use the

sstrncpy function to simulate an assignment

which moves data from one arbitrary location to another

arbitrary location. In the first iteration of the while
loop (Line 10-15 in Code 7), the memory error corrupts

the variable cp and content of the array rarr. So in

the next iteration, both the source and the target of the

string copy sstrncpy are controlled by the attacker.

This way, the attacker simulates a MINDOP assignment

operation. This gadget is conditional because the attacker

can corrupt src, which is the condition for the second

round of the loop body. If the condition is not satisfied,

the assignment operation will not be executed.

1 //load : cmd_loop()->pr_cmd_dispatch()->_chdir()
2 // ->pr_display_file()
3 int pr_display_file(...) {...
4 outs = sreplace(p, buf, ...,
5 "%V", main_server->ServerName,);
6 pr_response_send_raw("%s-%s", code, outs);
7 }
8 void pr_response_send_raw(const char *fmt,...){
9 vsnprintf(resp_buf, size, fmt, msg);

10 }

Code 8. Simulated load gadget. This code copies data from a global variable
ServerName to a global buffer resp_buf. With the assignment gadget
that reads *resp_buf to &ServerName, we get the load gadget.

• Dereference operations (Load / Store). The load operation

takes two memory addresses as input (say p and q) and

performs operation *p=**q. We decompose the opera-

tion into two sub-operations: *ptmp=*q and *p=*tmp,

such that the ptmp is the address of tmp. In ProFTPD,

we use the assignment gadget to move data from the

resp_buf to &ServerName as the first dereference.

Then we use the function pr_display_file (Line

4, Code 8), which reads the content of ServerName
to the buffer resp_buf as the second dereference.

These two dereferences form a MINDOP load operation

*resp_buf=**resp_buf. The MINDOP store oper-

ation is simulated by a similar method.

1 //addition : cmd_loop()->pr_cmd_dispatch()
2 // ->xfer_log_retr()
3 MODRET xfer_log_retr(cmd_rec *cmd) {
4 session.total_bytes_out += session.xfer.

total_bytes;
5 }

Code 9. Simulated addition gadget. This code adds two fixed memory
locations. Arbitrary memory addition can be achieved by combining this
gadget with the assignment gadget.

• Addition operation. Code 9 shows the code in ProFTPD

which adds two variables. The structure session is

a global variable and hence all the operands of this

gadget are the under attacker’s control. To achieve an

addition operation on arbitrary memory locations, we

use the MINDOP assignment operation to load operands

from desired source locations to the session structure,

perform the addition, and then move the result to the

desired destination location.

1 //dispatcher & jump :
2 void cmd_loop(server_rec *server,conn_t *c) {
3 while (TRUE) {
4 pr_netio_telnet_gets(buf, ..);
5 cmd = make_ftp_cmd(buf, ...);
6 pr_cmd_dispatch(cmd); //calls functions
7 // with memory errors and gadgets
8 }
9 }

10 char *pr_netio_telnet_gets(char *buf,...) {
11 while(*pbuf->current != ’\n’ && toread>0)
12 //reads through virtual PC
13 *buf++ = *pbuf->current++;
14 }

Code 10. Gadget dispatcher and simulated jump gadget. pbuf->current
is the virtual PC pointing to the malicious input.

• (Conditional) jump operation. Code 10 shows the

ProFTPD program logic to read the next command

from an input buffer. pbuf->current is a pointer to

the next command in the input, thus forming a virtual

PC for the attacker’s MINDOP program. By corrupting

pbuf->current, the attacker can select a particular

input that invokes a specific MINDOP operation. We

use the assignment operation to conditionally update the

virtual PC, thus simulating a conditional jump operation.

To stitch these identified gadgets together, we identified a

gadget dispatcher (Code 10) in the function cmd_loop. It

contains an infinite loop that repeatedly reads requests from

the remote attackers or cached in the buffer and dispatches the

request to functions with various gadgets. For each request,

the attacker embeds a malicious input which first exploits the

memory error to prepare the memory state for one of these

gadgets and then triggers the expected gadget to achieve the

MINDOP operation. In Section V-C we show the case studies

of expressive exploits against ProFTPD.

2) Non-interactive – Wireshark: Wireshark is a

widely-used network packet analyzer and its versions

before 1.8.0 have a stack-based buffer overflow

vulnerability (CVE-2014-2299 [41]). The fixed-size
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buffer pd (shown on Line 5 of Code 11) in function

packet_list_dissect_and_cache_record accepts

frame data from a mpeg trace file. If the attacker

sends a malicious trace file containing a large frame

(larger than 0xffff), the frame data overflows the

buffer. This is used to overwrite variables col, cinfo,

and parameter packet_list with malicious input.

These corrupted values are then passed to the function

packet_list_change_record which contains all the

x86 data gadgets of our interest.

1 //vulnerable function
2 void packet_list_dissect_and_cache_record
3 (PacketList *packet_list, ...) {
4 gint col; column_info *cinfo;
5 guint8 pd[WTAP_MAX_PACKET_SIZE]; //vul buf
6 //memory error function
7 cf_read_frame_r(...,fdata,...,pd);
8 packet_list_change_record(packet_list,
9 ...,col, cinfo);

10 }
11 //gadgets: assignment/load/store/addition
12 void packet_list_change_record(PacketList *
13 packet_list,..,gint col,column_info *cinfo)
14 {
15 record = packet_list->physical_rows[row];
16 record->col_text[col] =
17 (gchar *) cinfo->col_data[col];
18 if (!record->col_text_len[col])
19 ++packet_list->const_strings;
20 }
21 void gtk_tree_view_column_cell_set_cell_data(..)
22 {
23 for (cell_list = tree_column->cell_list;
24 cell_list; cell_list = cell_list->next) {
25 ....
26 //finally calls vulnerable function
27 show_cell_data_func();
28 }
29 }

Code 11. Wireshark code snippet of the vulnerable function and gadgets.

• Assignment operation. We identify an assignment op-

eration from the function packet_list_change
_record, called after the memory error function. Line

16 in Code 11 shows the gadget, where memory copy

addresses are under the attack’s control. col_text and

col_data are of gchar ** type, so the assignment

operation performs two dereferences per operand. To

simulate a simple assignment from one memory location

to another, the attacker corrupts record->col_text
and cinfo->col_data. This is achieved by corrupting

record and cinfo to point to controllable memory

regions, where the value of record->col_text and

cinfo->col_data will be retrieved.

• Dereference operations (Load / Store). Line 16 in

Code 11 also serves gadgets for simulating load and

store operations of MINDOP, as it has two dereference

operations. To simulate a load operation, the attacker

corrupts record->col_text and cinfo. To simulate

a store operation, the attacker can change the value of

record and cinfo->col_data.

• Conditional addition operation. Lines 18-19 in Code 11

show a data gadget to perform a conditional increment

operation. At each time this gadget is invoked it adds 1 to

the target location. With the condition, we can implement

an addition operation over arbitrary memory locations,

where the attacker controls the condition as well as the

operand of the increment.

• Conditional jump operation. The memory error is trig-

gered by the file read, and the program maintains a file

position indicator in the FILE structure. The attacker can

change the file position indicator to force the program to

non-linearly access the data frames in the file. This way

the file position indicator serves as a virtual PC for the

MINDOP program in Wireshark. Using the conditional

addition operation, the attacker can simulate the MIN-

DOP conditional jump operation by manipulating the file

position indicator.

Since all the gadgets are executed after the

memory error, each execution of the memory error

can stably invoke at least one MINDOP operation.

To chain a large number of gadgets together, we

identify a gadget dispatcher from the parent function

gtk_tree_view_column_cell_set_cell_data, as

shown in Line 21-27, Code 11. In the first invocation of the

memory error, the attacker uses the assignment operation to

corrupt the loop condition cell_list, and points it to a

fake linked-list in the malicious payload, making it an infinite

loop. In each of the subsequent executions, the program reads

malicious frame data to trigger different gadgets to synthesize

the execution of expected MINDOP operations.

C. Why are Expressive Payloads Useful?

We demonstrate the stitchability of identified data-oriented

gadgets by building concrete end-to-end exploits. We discuss

three case studies to highlight the importance of expressive

payloads. Specifically, we demonstrate how MINDOP empow-

ers attackers to (a) bypass randomization defense without leak-

ing addresses, (b) run a network bot which takes commands

from attackers and (c) alter the memory permission.

1) Example 1 — Bypassing Randomization Defenses:
Typical memory error exploits bypass Address Space Layout

Randomization (ASLR) by mounting a memory disclosure

attack to leak randomized addresses to the network [15]. But if

the memory corruption vulnerability cannot leak / disclose the

addresses then the attack fails. We show how to defeat ASLR

with DOP without leaking any addresses to the network. As a

real example, consider the vulnerable ProFTPD server, which

internally uses OpenSSL for authentication. Our goal is to

leak the server’s OpenSSL private key. The program stores

this key in a randomized memory region, so a direct access to

it in presence of ASLR is not viable. We find that the private

key has a chain of 8 pointers pointing the private key buffer, as

shown in Figure 3. The locations of all the pointers except the

base pointer are randomized; only the base pointer is reliably

readable from the memory error. However, creating a reliable

exploit needs to de-randomize 7 out of 8 pointers successfully

to leak the key without any network disclosure of addresses!
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@0x080dbc28 

Private Key 

SSL_CTX * ssl_ctx 

CERT_PKEY * key 

struct rsa_st * rsa 

EVP_PKEY*privatekey 

struct cert_st * cert 

BIGNUM * d 

BN_ULONG * d 

MOV 
ADD 
MOV 
LOAD 

*addr1 = *0x080dbc28  (ssl_ctx) 
*addr1 = *addr1 + offset1 
*addr2 = *addr1 
*addr3 = **addr2           (cert) 

MOV 
ADD 
MOV 
LOAD 

*addr1 = *addr3  
*addr1 = *addr1 + offset2 
*addr2 = *addr1 
*addr3 = **addr2           (key) 

MOV 
ADD 
MOV 
LOAD 

*addr1 = *addr3  
*addr1 = *addr1 + offset3 
*addr2 = *addr1 
*addr3 = **addr2           (privatekey) 

MOV 
ADD 
MOV 
LOAD 

*addr1 = *addr3  
*addr1 = *addr1 + offset4 
*addr2 = *addr1 
*addr3 = **addr2           (rsa) 

MOV 
ADD 
MOV 
LOAD 

*addr1 = *addr3  
*addr1 = *addr1 + offset5 
*addr2 = *addr1 
*addr3 = **addr2           (d) 

MOV 
ADD 
MOV 
LOAD 

*addr1 = *addr3  
*addr1 = *addr1 + offset6 
*addr2 = *addr1 
*addr3 = **addr2           (d)  

Proftpd’s memory DOP attack steps 

Fig. 3. Pointer dereference chain and malicious MINDOP program in
attack against ProFTPD. The attack requires 8 memory dereferences from
the deterministic location to the private key. Each dereference is implemented
by 4 gadgets.

DOP is able to successfully construct such an attack. The

key idea is to use a short MINDOP virtual program that starts

from the base pointer (of known location) and dereferences it

7 times within the server’s memory to correctly determine the

randomized location of the private key. The virtual program

needs to perform additions to compute the correct offsets

within structures of intermediate pointers. In total, the virtual

program takes 24 iterations, computing a total of 23 interme-

diate values to obtain the final address of the private key. Once

we have the private key buffer’s address, we simply replace

an address used by a public output function, causing it to leak

the private data to the network. We use the vulnerability CVE-

2006-5815 [45] to simulate the malicious MINDOP program

(as shown in Figure 3), and create an interactive DOP program

that corrupts the program memory repeatedly. Each group

of 4 gadgets performs one complete dereference operation.

Note that addr1, addr2 and addr3 are fixed addresses in

the gadgets. Therefore, the MOV between ADD and LOAD is

necessary to deliver operands between operations.

Remark. TASR, a recent improvement in randomization de-

fense, proposes to re-randomize the locations of code pointers

frequently, such as on each network access system call (read
or write) [14]. The primary goal of this defense is to reduce

the susceptibility of commodity ASLR to address disclosure

attacks. DOP can work even in the presence of such timely

re-randomization because of two reasons. Firstly, TASR is

applied to code pointers only, whereas our attack executes

completely in the data-plane. Secondly, non-interactive DOP

attacks can perform all the necessary computation in-place be-

tween two system-calls. For example, given simple programs

Malicious payload
(in Proftpd’s memory)

1

head

dlopen(...) 
{ /* use head */ }

head
X

@fixed_addr

@rand_addr 2

STORE
MOV

Prepare
payload

Trigger

… ...

Proftpd’s 
Memory

MOV
MOV
MOV

…….

MOV
MOV

Fig. 4. Simulating a network bot. There are two steps in this attack: 1©
Prepare the payload in Proftpd’s memory; 2© Trigger the memory error. Each
step uses many data-oriented gadgets.

in Code 12 and Code 13 (in Appendix B and Appendix C),

TASR cannot defend it against DOP attacks. We refer inter-

ested readers to Appendix for details.

2) Example 2 — Simulating A Network Bot: One con-

sequence of rich expressiveness in DOP exploits is that a

vulnerable program can simulate a remotely-controlled net-

work bot on the victim program. Though conceptually feasible,

executing an end-to-end attack of such expressiveness requires

careful design, which we illustrate in our concrete attack in

ProFTPD.

ProFTPD invokes the dlopen function in its PAM module

to dynamically load libraries. We analyzed dlopen to confirm

that it has all the gadgets to simulate MINDOP (also see

Shapiro et al. [48]). If the memory error allows the attacker

to control a global metadata structure, ProFTPD provides

the Turing-complete computation. In a normal execution, this

metadata is loaded from a local object file; however, the remote

attacker does not have the ability to create malicious object

files on the server to misuse dlopen. To circumvent this,

the attacker uses DOP to construct a first-stage payload in-

memory and delivers it to dlopen which in turn executes

the payload.

The main challenge in achieving this is ProFTPD’s network

input sanitization logic. It does not allow the attacker to

directly supply the payload metadata object via a remote attack

exploit. ProFTPD imposes several constraints on network

inputs — inputs cannot contain a set of bytes such as zero,

newline, and several other characters. To bypass these restric-

tions we build an interactive virtual program that serves as a

first-stage payload. It sends malicious input that respects the

program’s constraints, and constructs the second-stage payload

in the program’s memory. It does so by copying the existing

program memory bytes (instead of network input) to the

payload address using MOV operations (Step 1 in Figure 4). In

our end-to-end exploit, we perform over 700 interactions with

the server to compose the malicious second-stage payload.

Then we use movement and dereference operations to trigger

the memory error (Step 2 in Figure 4). With these steps,
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our exploit bypasses all the constraints on network inputs

and enables arbitrary computation in the second-stage of the

exploit. Finally, we force the program to invoke dlopen
and execute the second-stage of the exploit. This simulates a

bot that can repeatedly react to network commands sent to it

remotely. We confirm that the bot performs arbitrary MINDOP

program computation we request.

3) Example 3 — Altering Memory Permissions: Several

control-flow and memory error defenses use memory page

protection mechanisms as an underlying basis for defense. For

instance, CFI defenses use read-only legitimate address tables

to avoid metadata corruption [8] and DEP uses non-executable

memory regions to prevent code injection attacks [16]. How-

ever, some critical functions, such as those in the dynamic

linker, disable all memory protections temporarily to perform

in-place address relocations. This gives the attacker a window

of opportunity to violate the assumptions of the aforemen-

tioned defenses. To construct a successful exploit, the attacker

utilizes the logic of the dynamic linker to corrupt the locations

of its choice at runtime. The expressiveness of DOP is vital

here — we have successfully built a second-stage exploit

for dlopen (using a crafted metadata similar to Example

2 above) that permits arbitrary memory corruption or leakage

of attacker-intended locations. We experimentally confirm that

such exploits can bypass CFI implementations, like binCFI

(utilizing read-only address translation tables [8]) or fixed-

tag based solutions (assuming non-writable code region) [6],

to effect control-hijacking exploits in ProFTPD. We refer

interested readers to Appendix D for details.

D. Immunity against Control-Oriented Defenses

We have experimentally checked that our end-to-end ex-

ploits work when ASLR and DEP are enabled on the victim

system. All 3 attacks work without reporting any error or

warning. The first attack successfully sends the server’s private

key to the malicious client. For the second attack, we confirm

that the bot performs arbitrary MINDOP program computation

we request. While for the third attack, we modify the code

section (provided by DEP) to start a shell in the server process.

VI. DISCUSSION

We have shown that DOP exploits can create semantically

expressive payloads without violating the integrity in the

control plane. In this section we discuss their implication,

in particular, the effectiveness in re-enabling control-hijacking

exploits and possible defenses to mitigate them.

A. Re-Enabling Control-Hijacking Attacks

A natural question is whether DOP can undermine control-

flow defenses to re-enable attackers to perform control-

hijacking attacks. First, our results have shown that bypassing

commodity ASLR is feasible, without the need for memory

disclosures. Commodity ASLR implementations randomize

memory segments at the start of the application [15]. Newer

defenses propose to re-randomize the program memory peri-

odically, say at certain I/O system calls, thereby increasing

resistance to disclosed addresses. One such proposal, called

TASR [14], restricts randomization to code pointers. As we

have discussed, it can be bypassed using a non-interactive

DOP attack. Code randomization defenses typically aim to

prevent ROP gadgets from either preventing their occurrence

or randomizing their locations. If these defenses rely on

keeping secret metadata in memory, then DOP offers a way to

bypass protection. However, some randomization techniques

do not make such assumptions [49], and conceptually not

bypassable by DOP attacks.

A number of solutions for enforcing control-flow integrity

have been proposed. Some of them rely on memory page

permission to protect code integrity or metadata integrity. For

example, Abadi et al. uses non-writable target IDs in memory

to identify legitimate control transfer targets [6]. BinCFI relies

on non-writable address translation table to enforce target

checking [8]. DOP attacks can corrupt such non-writable IDs,

or non-writable translation tables, and thus re-enable code

reuse attacks. More seriously, DOP can directly modify non-

writable code region to re-enable code-injection attacks, as we

discuss in Section V-C3. Even if the IDs values are randomized

to avoid effective guessing (an alternative to read-only IDs),

DOP can still read the ID content and reuse it to build

“legitimate” code blocks.

Furthermore, a class of defenses aims to protect integrity

of code pointers, either via cryptographic techniques or via

memory isolation and segmenting [12], [13]. Code pointer

integrity (CPI) is one such defense, which is based on memory

isolation [13]. CPI is designed to isolate code pointers and data

pointers that eventually point to code into another protected

memory region. Since the defense accounts for data pointers,

one way to bypass it is to break the isolation primitives (e.g.,

SFI [50]). Conceptually, DOP attacks so far have not yet been

able to demonstrate such capability. Cryptographicaly enforced

CFI (CCFI) is another technique which cryptographically

protects code pointers [12]. The authors acknowledge that

protecting data pointers that may point to code pointers is

important for achieving control-flow safety; however, this is

left out of scope of the paper’s proposals. DOP attacks can

easily change data pointers that point to code pointers to

violate CFI if they are left unprotected. We have checked the

possibility for a simple proof-of-concept program against the

CCFI implementation (details in Appendix B).

Finally, we point out that our discussion here pertains to ex-

plicitly subverting the goals of control-flow hijacking defenses.

If subverting control-flow is not the goal, DOP executes in the

presence of all such defenses without disturbing any control-

flow properties or code pointers. We have experimentally

checked for these in Section V-D.

B. Potential Defenses for DOP

1) Memory Safety: Memory safety prevents memory errors

in the first place, by detecting any malicious memory corrup-

tion. For example, Cyclone and CCured introduce a safe type

system to the type-unsafe C language [51], [52]. SoftBound

with CETS stores metadata for each pointer inside a disjointed
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memory for bound checking and identifier matching to force

a complete memory safety [53], [54]. Cling enforces the

temporal memory safety through type-safe memory reuse [55].

Data-oriented programming utilizes a large number of mem-

ory errors to stitch various data-oriented gadgets. Hence a

complete memory safety enforcement will prevent all possible

exploits, including DOP. However, high performance overhead

prevents the practical deployment of current memory safety

proposals. For example, SoftBound+CETS suffers a 116%

average overhead. Development of practical memory safety

defense is an active research area [56].

2) Data-Flow Integrity: Data-flow integrity (DFI) gener-

ates the static data-flow graph (DFG) before the program

execution [57]. The data-flow graph is a database of define-use

relationship. DFI instruments the program to check whether

each memory location is defined by legitimate instructions be-

fore read operations. This way DFI prevents malicious define

behaviors that corrupt program memory. Recent work uses

DFI to protect kernel security-critical data [58]. A complete

enforcement of data flow integrity in all memory regions can

mitigate data-oriented programming. However complete DFI

has a high performance overhead (44% for intraproc DFI and

103% for interproc DFI). Note that selective protection on

security-critical data [58] may work on DOP, as it protects

some pieces of data, but not a panacea for all data.

3) Fine-grained Data-Plane Randomization: We have

shown in Section V-C that coarse-grained randomization or

randomization on code region cannot prevent DOP attacks.

Fine-grained data-plane randomization can mitigate DOP at-

tacks as DOP still needs to get the address of some non-

control data pointers [59], [60]. For example, to stitch one

gadget with another, DOP corrupts the store address of the first

gadget or the load address of the second gadget to make them

the same. However, a fine-grained randomization on data-

plane may occur a high performance overhead as all the data

(both control- and non-control- data) should be randomized

frequently. A data-plane randomization with high performance

and strong security guarantee is still an open question.

4) Hardware and Software Fault Isolation: Memory iso-

lation is widely used to prevent unauthorized access to high-

privileged resources. Only legitimate code region has access to

particular variables. This can be used to prevent unexpected

access to security-critical data, like user identity. This way

it can prevent some direct-data-corruption attacks [19], [22].

However DOP does not rely on the availability of security-

critical data – it can corrupt pointers only to stitch data-

oriented gadgets. To prevent such attacks, memory isolation

has to protect all pointers from pure data. However, it is

challenging to accurately identify pointers. Further there are

numerous pointers in the program. Protecting all of them will

introduce high-performance overhead. Therefore isolation only

prevents a part of data-oriented programming attacks when the

program is correctly protected with pointer isolation.

VII. RELATED WORK

In Section VI, we have discussed potential defenses against

control-hijacking attacks and non-control data attacks. In this

section, we focus on the most closely related work.

Non-Control Data Attacks. In Section II-A, we have an

in-depth discussion on non-control data attacks, including

Chen et al. [19], control-flow bending attack [25] and FLOW-

STITCH [22]. The difference between DOP and previous

work is that DOP does not rely on any specific security-

critical data or functions, like system call parameters or printf-

like functions. Instead, it only reuses abundant data-oriented

gadgets to build expressive attacks. Due to this feature, it is

more challenging to prevent DOP attacks. Simple defenses

mechanisms can sanitize critical data at particular program lo-

cations with acceptable performance overhead. But protecting

all data pointers will introduce extremely high overhead.

Return-Oriented Programming. ROP technique and its vari-

ants have been extensively explored recently [1]–[5], [23],

[61], [62]. For example, counterfeit object oriented program-

ming (COOP) demonstrates that Turing-complete attacks can

be built with only virtual function calls in C++ [62]. How-

ever, ROP attacks change the control flow of the vulnerable

program, which can be mitigated by rapidly advancing control-

flow integrity solutions [6]–[8], [10], [11], [17], [18]. In

contrast, data-oriented programming manipulates variables in

the data plane and keeps the original control-flow. It works

even when advanced control-flow defenses are deployed.

Turing-Complete Weird Machines. Several work exploits

auxiliary features in software to provide Turing-complete

computation, called weird machines. Shapiro et al. used the

dynamic loader on Linux system to provide such computation

ability [48], which is used by DOP to build further attacks.

Other weird machines can be built with DWARF (Debugging

With Attribute Records Format) bytecode [63], the page fault

handling mechanism [64] or the DMA (direct memory access)

component [65]. DOP demonstrates the Turing-completeness

in the data plane of arbitrary x86 programs.

VIII. CONCLUSION

In this paper, we show that with a single memory error, non-

control data attack can mount Turing-complete computations

using data-oriented programming. Our experiments on 9 real-

world applications show that data-oriented gadgets and gadgets

dispatchers required for DOP are prevalent. We build 3 end-

to-end attacks to demonstrate the practical implications of not

protecting the program’s data-plane.
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APPENDIX

A. Example of a Transition Table in MINDOP

Table VIII shows one example of transition table for simu-

lating a Turing machine that shifts the given input by one bit.

TABLE VIII
Transition table for a Turing machine that shifts the binary input by one bit

(equivalent to SHL instruction).

����Q

Σ Scur = 0 Scur = 1 Scur = σ0
qnxt Snxt D qnxt Snxt D qnxt Snxt D

q0 q1 0 1 q1 1 1 q0 σ0 1

q1 q1 0 1 q1 1 1 q2 0 0

q2 q3 0 1 q3 1 1 q3 σ0 1

q3 HALT - - HALT - - HALT - -

B. A Program Allowing DOP to Bypass TASR and CCFI

1 typedef struct _mystruct {
2 void (*foo)();
3 } mystruct;
4
5 void m1() = { printf{‘‘hello from m1’’}; }
6 void m2() = { printf{‘‘hello from m2’’}; }
7
8 mystruct ms1 = { .foo = m1 };
9 mystruct ms2 = { .foo = m2 };

10 mystruct *pms1 = &ms1, *pms2 = &ms2;
11
12 int main(int argc, char * argv[]) {
13 int old_value, new_value;
14 int *p = &old_value, *q = &new_value;
15 char buf[64];
16
17 memcpy(buf, argv[1]); // memory error
18 *p = *q; // assignment gadgets
19
20 pms1.foo();
21 }

Code 12. A simple program that enables DOP to build control attacks even
if TASR and CCFI are in place, as the data pointers are not protected.

Code 12 shows a simple program where TASR and CCFI

cannot prevent the control attack built with the help of DOP,

as the data pointers are not protected by TASR or CCFI [12],

[14]. There are two data pointers, pms1 and pms2 and

they are also pointing to code pointers foo in corresponding

structures. Legitimately, the indirect function call in line 20

will call the function m1. With the memory error in line 17

and the assignment gadget in line 18, attackers can construct

non-control data exploit to swap the value of pms1 and pms2.

Then the code in line 20 will call function m2 instead.

C. Another Program Allowing DOP to Bypass TASR

1 Disassembly of section .plt
2
3 0804ada0 <system@plt>:
4 jmp *0x08104000
5 0804adb0 <setuid@plt>:
6 jmp *0x08104004
7 0804adc0 <read@plt>:
8 jmp *0x08104008
9

10 int server(int sockfd) {
11 int old_value, new_value;
12 int *p = &old_value, *q = &new_value;
13 int connect_limit = 100;
14 char buf[64];
15
16 while(connect_limit--) {
17 read(sockfd, buf); // memory error
18 *p = *q; // assignment gadgets
19 }
20 }

Code 13. A simple program that enables DOP to break TASR, as no write
operation is necessary during attack.

Code 13 shows a piece code to illustrate another method to

bypass TASR with DOP. This code invokes library functions,

like system and setuid, thus having the function addresses

in the .plt section. With the assignment gadget in line 18, the

attackers can copy the function addresses (e.g., addresses of

setuid and system) from the .plt section to the selected

memory region, like the stack location for server return

address. The gadget dispatcher in line 16 and 17 enables

attackers to prepare a complete stack context for a return-to-

libc attack. When the function returns, the return-to-libc attack

will be launched. TASR fails to prevent such attack as attackers

use DOP to prepare the payload on the stack in the memory,

without any address leakage through the write system call.

D. Using DOP to Break CFI Implementations and DEP

BinCFI. BinCFI uses a read-only table to store all legitimate

function entries and call-sites [8]. Each function call is allowed

to jump to any function entry, and each function return is

permitted to return to any call-site. A successful BinCFI attack

should lead the program call / return to arbitrary locations. We

show one vulnerable program in Code 14 that allows DOP

to mount a BinCFI attack. With the memory error in line

15, attackers can deliver malicious relocation metadata on the

stack and change the value of p and q. With the store gadget
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1 typedef struct _mystruct {
2 void (*foo)();
3 } mystruct;
4
5 void m1() = { printf{‘‘hello from m1’’}; }
6
7 mystruct ms1 = { .foo = m1 };
8 mystruct *pms1 = &ms1;
9

10 int main(int argc, char * argv[]) {
11 int old_value, new_value;
12 int *p = &old_value, *q = &p;
13 char buf[64];
14
15 memcpy(buf, argv[1]); // memory error
16 **q = *p; // store gadgets
17 *p = *q; // assignment gadgets
18
19 dlopen("mylib.so");
20 pms1.foo();
21 }

Code 14. A simple program that enables DOP to build control attacks to
bypass Bin-CFI and non-writable-tag based CFI.

in line 16, attackers can change the link_map structure link

list to make it link the malicious relocation metadata. One

functionality of dlopen is to patch the relocated addresses

before real execution. This makes dlopen able to modify

arbitrary memory location, even code pages or read-only data

sections. When dlopen is invoked, the malicious metadata

will trigger the dlopen’s internal gadgets to corrupt the read-

only table. By adding expected code addresses into the table,

attackers is allowed to make the execution jump to arbitrary

code region (line 19).

Protections based on Non-Writable Code Section. W⊕X

disallows the write permission on code section, or execute

permission on data section, to protect code integrity [16]

and control-flow integrity. For example, the CFI proposed

by Abadi et al. relies on read-only tags inside code region

to enforce the security check [6]. Specifically, it places tags

before legitimate control-flow transfer targets and checks the

target tag with the predefined tag before each control-flow

transfer at runtime. DOP can help break defenses that are

based on non-writable code. First, attackers can use DOP to

invoke dlopen to corrupt arbitrary code region to mount

code injection attacks. Note that the data region is still non-

executable, even with DOP attacks. Second, DOP can help

change the CFI tags in code region to bypass the CFI solution.

Attackers either copy the tag from the legitimate code target

to the illegal location, or just overwrite both the checking code

to disable CFI.
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