HTML and PDF fuzzing methodology in iOS

Je-Gyeong Jo
Dept. of Computer Engineering
Chungnam National University
Daejeon, South Korea
+82-42-821-7443
oroi@cnu.ac.kr

ABSTRACT

i0S is well-known operating system which is strong in security.
However, many attacking methods of iOS have recently been
published which are called “Masque Attack”, “Null Dereference”
and “Italy Hacking Team’s RCS”. Therefore, security and safety
is not suitable word to 10S. In addition, many security researchers
have a problem to analyze iOS because the i0S is difficult to
debug because of closed source. So, we propose a new security
testing method for i0S. At first, we perform to fuzz iOS’s web
browser called MobileSafari. The MobileSafari is possible to
express HTML, PDF and mp4, etc. We perform test abnormal
HTML and PDF using our fuzzing method. We hope that our
research can be helpful to i0S’s security and safety.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection;

General Terms
Security

Keywords
i0S, HTML, PDF, Fuzzing, Jailbreak, MobileSafari

1. INTRODUCTION

Recently, Mobile market has increased because mobile device
has become one of ubiquitous device so it is found easy in our
around. With the explosion of mobile device, mobile devices are
used not only for private purpose but also for business purpose.
However, security of mobile device may not follow to mobile
device’s development and mobile market increasing. For example,
hacking team of Italy can control iOS device using "Remote
Control System (RCS)". Therefore, such release of security issues
is a chance that we have consideration to solve.

Most mobile device is using android or iOS for operating
system. Android is open source and released by Google, however,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

IMCOM '16, January 04-06, 2016, Danang, Viet Nam

© 2016 ACM. ISBN 978-1-4503-4142-4/16/01 $15.00

DOL: http://dx.doi.org/10.1145/2857546.2857555

Jae-cheol Ryou
Dept. of Computer Engineering
Chungnam National University

Daejeon, South Korea
+82-42-821-7443
jeryou@home.cnu.ac.kr

i0OS is partially open source and released by Apple. So,
manufacturer can modify the Android but iOS is only possible to
be modified by Apple. Therefore, Android is easy to be modified
by many security researchers who perform to analyze android
vulnerability. As a result, many researches of android have
performed. i0OS, however, is difficult to gain information and
analyze so i0S needs reverse engineering for analysis. So, many
researchers in security avoid analyzing. Therefore, we propose
i0S security research to find vulnerability in MobileSafari, and
we hope it to be base technology for automation tool for i0S
security.

2. RELATED WORK

2.1 Fuzzing the Phone in your Phone

This research performs by Charlie Miller who is famous in i0S
security to research and discuss Android, Windows Mobile and
i0S [1]. It tries to fuzz SMS in mobile device. In general, iOS is
used CommCenter service that can control WiFi, Bluetooth, 2G
and 3G. CommCenter, other service and most app have PLIST
file for control and management. In this research, it modifies
“DYLD_INSERT_LIBRARIES” property of PLIST file, which
works like “LD_PRELOAD?” in Linux. The PLIST file can use as
library preload attack, so it makes some function and inject to
CommCenter. Especially, it can hook “Open” function and get
SMS information. Therefore, it can fuzz SMS in mobile device.
This research find two vulnerabilities in 10S using SMS fuzzing.

However, this research must operate in jailbreak environment,
because this research uses library preload attack to iOS service.
So it is different from our research that works without jailbreak
environment. In addition, our research has a goal that it finds
remote vulnerability in MobileSafari. That is main difference
from our research is to find remote vulnerability in SMS.

2.2 Find Your Own iOS Kernel Bug

This research is progressed by Chen Xiaobo and Xu Hao and
they perform to fuzz iOS Kernel [2]. iOS and OSX use XNU
kernel which are based on BSD, so some code of kernel is opened
to public. So, they get kernel information from kernel source is
opened. Because of opened kernel source, they can extract kernel
I/O signal and structure for fuzzing. They use two types of
fuzzing, "Passive fuzz" and "Active fuzz". In case of "Passive
Fuzz", it uses “DYLD_INSERT LIBRARIES” property in PLIST
file like Charlie Miller’s research. They developed client program
to send specific signal to kernel. On the other hands, "Passive

Fuzz" uses to hooking specific function. This program sends
IOKIT signal to kernel and checks crash info. However, this
research have a problem, which must operate in jailbreak
environment. Without jailbreak, hooking and sending IOKit
signal cannot work. In addtion, this research tries to find local
vulnerability. Our research, however, has a goal that work without
jailbreak environment, and finding remote vulnerability. So, this
research is not similar with our research.

2.3 Making iOS MobileSafari Fuzzer and

Fuzzing

This research was announced CodeEngn Conference in Korea
[3]. Target of this research is similar to our research. This
research performs to fuzz MobileSafari through abnormal HTML
files. However, method of sending abnormal HTML data to
MobileSafari is different from our research. They develop server
and client program, and analyze MobileSafari's memory structure
to send abnormal data’s URL. For this sending, it also operates in
jailbreak environment. Without jailbreak environment, there is
problem at recursive call, which reloads changed HTML data. So,
they call directly related class in jailbreak environment. However,
this research must refresh memory address with every update of
i0S because it needs to access specific memory address.

Table 1. Compare Table with related work

Target Remotle/Loca Environment
Fuzzing the
Phone in your SMS Remote Jail-Break
Phone
Find Your
Own iOS Kernel Local Jail-Break
Kernel Bug
Making iOS
MobileSafari Mob11§ Remote Jail-Break
Fuzzer and Safari
Fuzzing
Mobile None Jail-
Our Research Safari Remote Break

These three researches must operate to fuzz in jailbreak
environment. On the other hands, our research need not any
condition like jailbreak. So, our contribution to fuzz MobileSafari
is without jailbreak environment and need not use any client or
app. This is main difference to other research. Our scheme can be
proved just using HTML but we extend function to fuzz PDF.
Because COMEX who are famous in iOS Jailbreak find PDF
vulnerability using fuzzing. And they use that vulnerability to
jailbreak i0S devices. So, we extend PDF fuzzing and we perform
the research of PDF and HTML fuzzing without jailbreak.

3. METHODOLOGY

Most fuzzing programs use debugging tool to check crash.
However, i0S does not support debugging tool except own app
which is registered to apple developer center. If we want to fuzz
default app MobileSafari from i0S, we will not use debugging
tool to check crash. So existing researches for MobileSafari
fuzzing use debugging tool in jailbreak environment. Current iOS,

however, uses memory protection technology so they are not
proper recently iOS 6, 7 and 8.

Therefore, we propose to check crash using system monitoring
and logging without jailbreak. However, there is problem, which
iO0S has no way to read automatically abnormal HTML or PDF
data such as android or desktop. To solve this problem, we also
propose how to read abnormal HTML or PDF data at
MobileSafari automatically.

In conclusion, our research proposes five steps for HTML and
PDF fuzzing without Jailbreak. The five steps are as below; 1)
method of monitoring system status, 2) method of checking crash
information, 3) method of create abnormal HTML and PDF data,
4) method of read abnormal HTML and PDF data in iOS, 5)
method of checking fuzzing state.

3.1 System monitoring for crash

Most fuzzing program are used debugger to check crash, but iOS
does not support use of debugger without jailbreak environment.
So, we need to find a way to check crash and get crash
information without jailbreak environment. In case of Android,
Logcat provides system crash information with CPU register and
memory, etc. [4]. So, we propose to use function for system
monitoring (syslogd) and logging (CrashReport). We have been
try to check crash by using syslogd, but it only shows either
crashed or not. In addition, syslogd has another problem that
shows too many logs, so there is overhead to check it and it
makes our research to be slow by parsing the all logs.

To solve these problems, we use "CrashReport" to check crash.
CrashReport in i0S-only software provides crash information
files. If we found crash file using CrashReport, we can think our
fuzzing tool to make crash through abnormal data. However,
Apple does not open to public API of CrashReport and control
message of i0S service so we need to solve these problems by
using open source library(libimobiledevice) [5].

3.2 Analyze crash information

Getting crash information is possible to call CrashReport.
However, CrashReport may create many files like usage status of
CPU or memory, etc. So we must filter files which are results of
CrashReport and get specific information to check crash. i0OS’s
CrashReport provides crash file which has extension of “ips” and
it will be created to “TXT” format. To get information, we have
to analyze the files, which are “Crash Time”, “Exception Type”,
“Exception Subtype”, “App launch time”, “CPU Register” and etc.

If CrashReport creates crash file of system usage like CPU and
memory, they do not have “Exception Type”, “Exception
Subtype”, CPU Register’s “PC” (Program Counter). If we get
three information from crash file, it will be crash file of app or
system libraries. Especially, we focus to the “Exception Type”.
"Exception Type” is defined by CrashReport and does not open to
public. So, we analyze CrashReport by performing reverse
engineering. After that, we get twelve “Exception Type”. Our
fuzzing method can use “EXC_BAD_ACCESS”,
“EXC _BAD_ INSTRUCTION”, “EXC_SOFTWARE”,
“EXC_SYSCALL” and “EXC_MACH_SYSCALL” among
twelve types. And there are subtypes under the “Exception Type”,
but we need to get experience of fuzzing to define useful
“Exception Subtype”. So we remain the further issue to define sub

types.

Information that we extract from crash file saves to database and
synchronize with fuzzing log. To synchronize with fuzzing log,
we use fuzzing time and “Crash Time” of crash file. We operate
to read abnormal data automatically every two seconds, so we
make check at the same time or before one second of “Crash
Time” (Crash Time — 1). At this sync time, we can get abnormal
data, which occurs crash at HTML or PDF. In addition, we can
replay crash by using saved information. It is helpful to know
crash or exploitable.

3.3 Create abnormal HTML and PDF

There are a lot of method to create abnormal data to fuzz. In
general, method to fuzz is smart, mutation and generation [6].
Smart fuzzing changes specific data after it analyzes file structure.
Specific data can guess data type like numeric, memory value,
address and string value, etc. Mutation fuzzing changes data
without analysis. Mutation fuzzing tests from the beginning to the
end without analysis. Before we perform this research, we
perform android fuzzing and use smart fuzzing method. However,
the result of smart fuzzing is slightly better than mutation fuzzing
because mobile fuzzing can perform to fuzz multiple devices at
one desktop PC. Most mobile device libraries are support multi-
connection through device id. iOS also supports multiple
connection, so we can test faster than smart fuzzing using
multiple device. Fuzzing at desktop has the problem, which needs
a lot of desktop for multiple fuzzing, but multiple fuzzing in
mobile device only needs one desktop for multiple mobile device.
Using many desktops make problems that are merging and
processing log, electric power and lots of heat. Mobile device,
however, uses lower CPU usage, power and heat than desktop
environment. It just needs multiple USB port to perform to fuzz.

To create abnormal HTML, we use standard HTML of W3C
(http://www.w3.org). At first, we get HTML tag list from W3C
site and real case of HTML tag from portal site. If we use original
tag of W3C, it will have problem, which cannot use all property
and miss related tag or script. To get the best result in fuzzing, we
use various HTML tag extracted from portal site instead of basic
tag in the W3C.

To create abnormal PDF, we use “PDF/XML Architecture -
Working Samples” file that provides from Adobe company. This
file uses most PDF grammars and functions. PDF Standard
supports to various scripts and functions to express table, picture
and graph, etc. So we think that sample of Adobe company is the
best for PDF fuzzing.

We cannot know what data use for crash and effect to PDF
libraries, so we use all bytes from 0x00 to Oxff. First, we read all
byte in PDF and HTML files, and change each byte 0x00 to Oxff.
If the file length is n, minimum case is (n x 255) and maximum
case is (255m).

3.4 Fuzzing HTML and PDF in iOS

Most fuzzing programs in desktop use system function to
execute target program. In case of desktop, fuzzing program can
use “system”, “createprocess” and other functions. In case of
android, fuzzing program can use Intent message [4] to execute
app. However, 10S does not support function to be executed app
by other app or other method except user behavior. In i0S, it can
send specific data or file to other app as "share to other app", but
this also needs user behavior. Therefore, this is not proper method
for our research.

To solve this problem, we use MobileSafari to fuzz both HTML
and PDF. In case of HTML fuzzing, MobileSafari supports to
express HTML because it is made for expressing HTML
document. However, MobileSafari loads to abnormal data created
by fuzzing program and reloads automatically. For this operation,
we use “Meta” tag of HTML for recursive call in MobileSafari.
“Meta” tag, however, should be defined in front of abnormal data.
If “Meta” tag is defined after abnormal data, abnormal data may
break “Meta” tag.

In case of PDF fuzzing, we use similar method used at HTML.
MobileSafari can express PDF by itself, so we analyze
MobileSafari in expressing PDF. If there is no option in PDF file,
it is just text data in MobileSafari. MobileSafari cannot express
PDF directly, which is just to print grammar of PDF file. To
express PDF in MobileSafari, fuzzing program sends specific
HTTP header to MobileSafari. Standard HTTP header [7] defines
“Content-Type” to express other data except HTML. So we
define “Content-Type” as “application/pdf” in HTTP header when
MobileSafari loads PDF and abnormal data created by fuzzing
program. However, this method still has problem. If fuzzing
program sends “application/pdf” as “Content-type”, the
MobileSafari will not process “Meta” tag for recursive call.
Because MobileSafari already processes all HTML to PDF. To
solve this problem, we create parent page, which uses “Meta” tag
for recursive call and “Iframe” to load abnormal PDF. “Iframe”
tag calls child page, which can load abnormal PDF through
specific HTTP header.

HTML

WEB SERVER

C=E

Index.php

PDF

WEB SERVER
————
o

Index.php

pdffuz.php

Figure 1 Flow of fuzzing HTML and PDF

3.5 Checking Fuzzing state

In case of HTML fuzzing, we fuzz MobileSafari with HTML,
memory leak and CPU usage are not a problem. However, PDF is
not default function of browser. When we create abnormal PDF
data, MobileSafari notifies several times, which PDF data has
problem. So we need monitoring system that fuzzing program
works well or not. If fuzzing program does not work well, fuzzing
log will not insert to database. So, we need to calculate time
difference of last fuzzing log time and current time. If the time
difference is more than ten seconds, we will decide that fuzzing
program does not work well. At last, fuzzing monitoring system

finds term of fuzzing log, it notifies to user by sending e-mail.
When administrator of fuzzing program gets error message,
administrator can refresh MobileSafari or restart MobileSafari to
solve problem.

eeeco SKT = 6:43 PM 100¢

192.168.0.15

A problem occurred with this webpage
s0 it was reloaded.

A problem repeatedly
occurred
on “http://192.168.0.15/chk.

php”.

Figure 2 Error message when system problem occur

On the other hand, jailbreak device can solve this problem
without user action. It can use language like python or C language.
So fuzzing monitoring system checks term of log and opens
MobileSafari by using command. If MobileSafari gets state of
crash or lack of memory, MobileSafari will not refresh the page
and create log to database itself. So fuzzing monitoring system
needs not to check MobileSafari state, just it checks fuzzing log.
If it gets a problem with log, it will execute MobileSafari with
URL through “sbutils”. “sbutils” is package of CYDIA [8], which
is possible to execute MobileSafari with specific URL. “sbutils”
has a program called “sbopenurl”, which is suitable program we
want. Therefore, jailbreak device can solve this problem
automatically. On releasing iOS update version, jailbreak program,
however, cannot publish so we do not recommend this method.

4. IMPLEMENTATION

Our research uses libimobiledevice [5], PHP and MySQL, etc.
for fuzzing program development. iTunes that control iOS device
does not support any of function we want. So, we use
libimobiledevice’s “idevicecrashreport” to get crash information
from 10S devices. The code of “idevicecrashreport” is opened to
public, so we can modify and add function to
“idevicecrashreport”. Our program reads crash file through
“idevicecrashreport” and extracts “crash time”, “Exception Type”,
“Exception Subtype” and CPU Register’s “PC”, etc. If our
program succeed to extract crash information, it will save this
information to database with crash time.

If our program find the same time of fuzzing log, it will save
crash log to specific fuzzing log. If our program, however, cannot
find same time, it will compare crash time less than 1 second or
not. In case of PHP, we use file I/O function to express abnormal
HTML and PDF. MySQL uses to save fuzzing log and sync with
crash information.

'8 ~ 'S ™
Checking Crash Gatcrash
Time with & - libimobiledevice
Fusing L Information
uzzing Log | y
r 3
v
') r 3 a
s : :
yne with Fuzzing CRASH R_EPDRT {05 devices
Log Service
\ l A . /S t A
r B g X 3
Send Ab |
Fuzzing Define offset, it il
Server changing byte datato

MobileSafari

L . N » >,
r
v
' N N
Reacnormal Create abnormal

PHP + MYSOL HTML ar HTML or PDF

. standard PDF y il

Figure 3 Flow of our research

HTML Fuzzing uses recursive call with 2 seconds period, on the
other hand, PDF fuzzing uses 3 seconds period. The reason why
PDF fuzzing has more 1 second than HTML fuzzing because
MobileSafari needs time load PDF libraries. So it takes (length x
0xff) x 2 seconds time to fuzz HTML and (length x 0xff) x
3seconds time to fuzz PDF. However, goal of our research is to
fuzz all byte, so we use (255'"¢) x 2 seconds time at least.

If we perform to change from 0x00 byte to Oxff byte, our
research will spend more time. Therefore, we need to use more
devices to fuzz. We identify the multiple devices by using device
id and IP address. PHP cannot check device id remotely, so we
must use [P address of each device, which is assigned by router.
To use multiple devices, we must separate offset of abnormal data
or change byte. If we use number of N devices, we will fuzz N
case at one time.

Figure 4 shows our fuzzing program, which prove our method

(fuzzing of HTML and PDF in MobileSafari).
swe0o SKT F o352
192.168.0.15 (v

100% B+ sesec SKT 5 2% 12:25

192.168.0.15]

95% D ¢

0] # HO|X|of 27} WS} Al RESIGiELIC

[‘: Sdebos POFML Archisecturs -

7 &7 =2

pa

Figure 4 Fuzzing HTML and PDF in MobileSafari

5. CONCLUSION

We progress this research for i0S’s security and we want to
report that iOS still need to check security. i0S is well known for
safety and secure. However, it has a lot of vulnerability. So, we
propose automation security checking method in iOS. In the
proposed method, we can find a lot of vulnerability that incurs

crash. After we analyze crash of fuzzing result, we find

vulnerability in iOS 8.3, which is vulnerability of PDF decrypting.

However, apple has patched without notice. Therefore, our

method prove and is effective to find new or patched vulnerability.

We hope that our work can help to iOS security research and
automatic security checking in iOS.

After this work, we will try to expand MP4 fuzzing with HTML
and PDF and we will test our method to Internet of Things (IoT)
devices except i0S because our goal is to analyze security of all
devices that is not opened source code or tools to public.

6. ACKNOWLEDGMENTS

This research was supported by Next-Generation Information
Computing Development Program through the National Research
Foundation of Korea(NRF) funded by the Ministry of Science,
ICT & Future Planning (No. NRF-2014M3C4A7030648)

7.
(1]

(2]

(3]

(3]

(6]
(7]

(8]

REFERENCES
Collin Mulliner, Charlie Miller. 2009. Fuzzing the Phone in
your Phone, Black Hat USA 2009

Chen Xiaobo, Xu Hao, 2012. Find Your Own iOS Kernel
Bug, Power of Community 2012

Nam Daehyeon, 2014, Making iOS MobileSafari Fuzzer and
Fuzzing, CodeEngn Conference 11

Je-gyeong Jo, Jae-cheol Ryou, 2015, Method of Fuzzing
Document Application Based on Android Devices, Vol 25,
Feb. 2015, 31-37, Journal of The Korea Institute of
Information Security & Cryptology

maintained by Martin Szulecki, Libimobiledevice,
http://www .libimobiledevice.org/

Fuzz Testing, https://en.wikipedia.org/wiki/Fuzz_testing

Header Field Definitions,
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

Isa56, OpenJailbreak, fuzzyDuck & iOS fuzzing, Nov. 2013,
http://www.isa56k.com/2013/11/openjailbreak-fuzzyduck-
ios-fuzzing. html

