
Many buzzwords are associated with Mac OS
X: Mach kernel, microkernel, FreeBSD kernel,
C++, 64 bit, UNIX... and while all of these ap-
ply in some way, “XNU”, the Mac OS X ker-
nel is neither Mach, nor FreeBSD-based, it's
not a microkernel, it's not written in C++ and
it's not 64 bit - but it is Open Source (with res-
ervations) and it's UNIX... but just since re-
cently.

This paper intends to clear up the confusion
by presenting details of the Mac OS X kernel
architecture, its components Mach, BSD and I/
O-Kit, what's so different and special about this
design, and what the special strengths of it are.

History
Unlike many other operating systems, the de-

sign of Mac OS X has never been strictly
planned and implemented from scratch, in-
stead, it is the result of code from very differ-
ent sources put together over the last decades.
Mac OS

Mac OS started its life in 1984 on the original
128KB Macintosh as a mouse-operated graphi-
cal operating system that, due to memory con-
straints, did not support multitasking. It wasn't
until 1988 that Mac OS supported a very sim-
ple form of cooperative multitasking (“Multi-
Finder”). In the mid-90s, Apple ended up hav-
ing a ten year old code base designed for a
single-tasking system on a Motorola 68000 that
now ran on PowerPC CPUs. Parts of the kernel
code ran in a 68K emulator, and it still did not
support memory protection. There was no way
to compete even with Windows 95, which is
why Apple started the Copland project in 1994
in order to design and implement a new and
modern operating system that would have the
Mac OS API and user interface - much like
Microsoft did with Windows NT. But although
Copland had been heavily advertised with de-
velopers, programming books had been pub-
lished and Betas had been given out, the pieces
of Copland never fit together, and the unbeara-
bly unstable operating system was scrapped in
1996.

Mac OS Successor
As Apple was in bitter need of a successor for

Mac OS, they decided to buy an operating sys-
tem and build Mac OS compatibility into it.
Despite negotiations with the company behind
BeOS, Apple finally decided to buy NEXT, the
company Steve Jobs had founded just after
having left Apple in 1985, and to convert
NEXTSTEP/OpenStep into the next Mac OS:
Mac OS X.
Mach

The NEXTSTEP operating system was heav-
ily based on Mach. Mach was an operating sys-
tem project at the Carnegie Mellon University
that was started in 1985 in response to the ever-
increasing complexity of the UNIX and BSD
kernels. As one of the first microkernels, it only
included code for memory management (ad-
dress spaces, tasks), scheduling (threads; a
concept unknown to UNIX at that time) and
inter-process communication (IPC) - all other
functionality typically found in an operating
system kernel, like filesystems, networking,
security and device drivers, had to be imple-
mented in so-called “servers” in user space.
This could be a very big plus for reliability,
since a crash in a driver didn't necessarily bring
the system down, as well as maintainability,
since it imposed strict rules on the interface
between the core kernel functionality and the
userland servers. Unlike in UNIX, operating
system components couldn't just call each
other arbitrarily (“The big mess” - Tanen-
baum). Another advantage of a microkernel
like Mach is the possibility to have several per-
sonalities, each of which is a set of userspace
servers. This way, a Mach-based system could,
for example, run UNIX and Windows applica-
tions at the same time. Having a minimal piece
of code running in privileged mode that ab-
stracts the hardware and allows different oper-
ating systems to run on top of it is basically the
same approach implemented by virtualization
today. But the typical configuration of a Mach
operating system was to have a single BSD
server in user mode, i.e. the majority of the

Lucy <whoislucy(at)gmail.com>

Inside the Mac OS X Kernel
Debunking Mac OS Myths
24th Chaos Communication Congress 24C3, Berlin 2007

BSD kernel with memory management and
scheduling stripped out, and process manage-
ment built on top of Mach tasks.

The problem with the Mach design was that
the kernel was slower than a traditional mono-
lithic kernel because of the extra kernel/user
context switches when a server communicated
with the kernel or servers communicated with
each other. On a monolithic kernel, these were
just simple function calls. The simplest solu-
tion for this problem is “co-location”: The per-
sonality servers run in kernel mode, and com-
munication is fast again. While it somewhat
defeats the original idea of a microkernel, it
still has the advantage of well-partitioned ker-
nel components and a more modern core ker-
nel: The Mach memory management code was
later integrated into BSD.
NEXTSTEP

NEXTSTEP, which was released in a 1.0 ver-
sion in 1989, chose to go with this design.
NEXT had removed the core kernel parts from
the 4.3BSD kernel and layered it on top of
Mach, in kernel mode. This way, NEXT was
many years ahead of the competition with
NEXTSTEP being the first desktop/GUI oper-
ating system that supported preemptive multi-
tasking, memory protection and UNIX com-
patibility. At first NEXTSTEP only ran on their
own Motorola 68K-based machines, but was
later ported to SPARC, PA-RISC and i386,
when NEXT started licensing it under the name
“OpenStep” to other hardware manufacturers,
so it was highly portable. When Apple acquired
NEXT in 1997, they added PowerPC support
and removed support for all architectures other
than i386; the latter would serve as the fallback
solution when Apple switched from PowerPC
to i386 in 2005/2006.
Rhapsody and OS X

With Apple’s acquisition of OpenStep, many
more changes were made to the operating sys-
tem which now had the interim name “Rhap-
sody”: They replaced the “DriverKit” driver
model with the new “I/O-Kit” system, updated
Mach 2.5 with the Mach 3.0 codebase, updated
the BSD part with 4.4BSD and FreeBSD code
and added support for the HFS filesystem and
Apple networking protocols to the kernel. In
userland, Mac OS X is pretty much
NEXTSTEP/OpenStep, with the native “NS”

API renamed to Cocoa, the Mac OS 9 API
“Toolbox” ported as a compatibility API (now
named “Carbon”), “carbonized” versions of the
OS 9 Finder and QuickTime technologies, plus
a VMware-like Virtual Machine called Blue-
Box (“Classic”) that runs OS 9 and its applica-
tions unmodified.

Architecture
The Mac OS X kernel, named “XNU” (“X is

not UNIX”) consists of three main compo-
nents: Mach, BSD and I/O-Kit.
Mach

Being the only operating system that still uses
Mach code (not counting GNU/HURD), Mac
OS X has evolved from the original code base
quite a bit, but the architecture is basically un-
changed. Mach (“osfmk” in the kernel source
tree, which stands for “OSF microkernel”)
calls address spaces “tasks”, and one task can
contain zero or more threads. Being policy-
free, there is little information associated with
a task, so, for example, there is no UNIX-style
current working directory or environment as-
sociated with it. While there are few surprises
in the memory management code compared to
other modern operating systems, the key dis-
tinctive feature of Mach is Mach Messaging. A
task can have any number of “ports”, which are
interprocess communication (IPC) endpoints.
One task can subsequently send a message
from its originating port to its peer port, and
Mach will take care of security, enqueueing,
dequeueing, network opacity (ports can be on
different machines) and, if necessary, byte
swapping. For programming convenience, the
Mach Interface Generator (“MIG”) can gener-
ate stub code from interface definitions, so that
two processes can talk to each other using sim-
ple function calls, but internally, this will be
translated into Mach messages.
BSD

The BSD part of the kernel implements
UNIX processes on top of Mach tasks, and
UNIX signals on top of Mach exceptions and
Mach IPC. UNIX filesystem semantics are im-
plemented here just like TCP/IP networking.
And while the VFS (virtual filesystem) compo-
nent allows plugging in BSD-style filesystems,
the /dev infrastructure plugs right into I/O-Kit.
BSD exports all the semantics that an applica-

tion expects from a UNIX/BSD/POSIX com-
patible operating system, like “open()” and
“fork()”, through the syscall interface.

Since there are basically two kernels in XNU
- Mach with its message passing API and BSD
with the POSIX API - there are two kinds of
syscalls. While both use a single int 0x80/
sysenter/sc entry point, negative syscall num-
bers will be routed to Mach, while positive
ones go to BSD. Note that, just like on Win-
dows NT, applications may not use int 0x80/
sysenter/sc directly, as this is a private inter-
face. Instead, applications must call through
libSystem, which is the equivalent of libc on
OS X.
I/O-Kit

When NEXTSTEP was ported to different
architectures and was renamed to OpenStep, it
got a new driver model, called “DriverKit”,
which was based on the Objective C program-
ming language and therefore was object ori-
ented, and allowed an inheriting hierarchy of
device drivers: For example, there could be a
generic IDE/ATA device driver that handled
reads and writes of blocks on an IDE bus, a
hard disk driver and a CD-ROM driver that
subclassed the generic IDE driver, and another
CD-ROM driver that subclassed the generic
CD-ROM driver to work around some quirks
for one specific CD-ROM drive model. This
architecture helps a lot to combat duplicate
code: In contrast to other operating systems
like Linux, a new device driver is not written
by copying the closest match and modifying it,
but by subclassing an existing driver binary
and overwriting some methods with new code.
“I/O-Kit” is a higher performance reimplemen-
tation of DriverKit in a subset of C++ (no ex-
ceptions, multiple inheritance, templates, run-
time type information). I/O-Kit supports some
classes of drivers in user mode.
KEXTs

I/O-Kit drivers are dynamically linked at run-
time, as so-called “KEXTs” (“Kernel Exten-
sions”). KEXT can not only link against the I/
O-Kit component, but also against other parts
of the kernel. This way, filesystem and net-
working KEXTs (NKEs) are possible. Every
KEXT, which typically resides in /System/
Library/Extensions, is a bundle, i.e. a subdirec-
tory which contains the actual binary and an

XML description of dependencies and the parts
of the kernel it links against.

Other interesting details
The following sections describe some other

interesting details of or around the Mac OS X
kernel.
Booting

While PowerPC-based Macs use OpenFirm-
ware, Intel-based machines use EFI (“Extensi-
ble Firmware Interface”). Both kinds of firm-
ware are a lot more powerful than the 16 bit
BIOS still shipping on PCs. While EFI can
boot off USB and supports GPT partitioning
and FAT32 file systems, the rest of the feature
sets of OpenFirmware and EFI are pretty simi-
lar: Both can boot off FireWire, and both sup-
port APM (“Apple Partition Map”) partitioning
and the HFS file system, as well as firmware-
level drivers. BootX is the bootloader for
OpenFirmware, and boot.efi the bootloader for
EFI. Both can decode HFS and can therefore
read the kernel from the root partition. If there
is a “KEXT cache”, i.e. a file with all prelinked
KEXTs suited for this configuration, that is
newer than the newest file in /System/Library/
Extensions and newer than the running kernel,
the boot loader will load this cache; otherwise,
it will go through all KEXTs and load the ap-
propriate ones by comparing them to the en-
tries of the “device tree” which has been
passed from the firmware to the bootloader.
Later, a KEXT cache will be written to disk to
speed up the next boot. This is somewhat simi-
lar but more flexible than the Linux “initrd”
approach.
Mach-O

Mac OS X does not use the ELF file format
for binaries (executables, libraries, KEXTs)
like practically all other UNIX systems. In-
stead, it uses Mach-O, which has roughly the
same feature set, but one interesting addition:
A single, so-called “fat” or “universal” binary
can contain code for more than one architec-
ture. So on OS X 10.5 Leopard, for example
/usr/lib/libSystem.dylib contains code for Pow-
erPC, PowerPC 64, i386 (32 bit Intel) and
x86_64 (64 bit Intel). This way, a single Mac
OS X 10.5 Leopard installation DVD can boot
on four different architectures, and there is no
need for “lib/lib64” (64 bit Linux) or

“SYSTEM/SYSTEM32/SYSTEM64” (64 bit
Windows) style duplicate directories for differ-
ent architecture/bitness versions of the same
code. The function grade_binary() in the ker-
nel’s Mach-O loader decides which part of the
binary to run. If the system is an i386 and the
Mach-O file contains only PowerPC code, exe-
cution will be handed to Rosetta.
Rosetta

Rosetta is a compatibility solution based on
Transitive's QuickTransit technology that al-
lows running (32 bit) PowerPC code on i386
CPUs. This is done by dynamically recompil-
ing the PowerPC code into native i386 code
and managing the interfaces between emulated
and native code - in practice, this means byte-
swapping all data passed between i386 and
PPC code, because i386 is Little Endian and
PPC is Big Endian. From a performance stand-
point, the optimal design would have been to
only emulate the application and to use the na-
tive versions of all libraries it links against, but
this would have been very impractical, since
the interface between native and emulated code
would have been very broad. A much easier
way to achieve high compatibility is to run the
complete application including all of its librar-
ies in emulation, and only byte swap when the
application makes syscalls to the native kernel.
A side effect of this approach is that you poten-
tially need all PPC versions of the system li-
braries installed on an Intel system, as soon as
you only use a single PowerPC application in
emulation.

A user can easily make experiments with this
amazing technology by invoking /usr/libexec/
oah/translate manually to force emulation of
PowerPC code, even if an executable is avail-
able in native code.
Intel specifics

While i386 support in XNU has existed since
the mid-90s, and has been a shipping feature of
OpenStep, the i386 part had not been used in
Mac OS X until the advent of Intel machines in
2005/2006. And with the introduction of the 64
bit Mac Pro in 2006, x86_64 (AMD64, Intel64,
EM64T, x64, ...) support has been added to
XNU - but XNU is not a 64 bit kernel, though.
XNU supports 64 bit user mode applications,
but it is 32 bit itself. Since porting a 32 bit ker-
nel to 64 bit is a big task, it could not be done

in just half a year between the introduction of
the first Intel machines in January of 2006 (un-
til then, Apple developers had worked on final-
izing the 32 bit i386 version) and the introduc-
tion of the Mac Pro in August.

There is just a single kernel image for 32 and
64 bit Intel: It is loaded as a 32 bit process in
32 bit protected mode on both kinds of ma-
chines, and if 64 bit support is detected, the
kernel switches into long mode compatibility
mode - a mode that supports running 32 bit
code, but also allows easy switching to 64 bit
code. So the whole kernel code is still unmodi-
fied 32 bit code, but tiny stubs that deal with
copying between user address spaces (which
can be 64 bit), and the syscall and trap handlers
are 64 bit code. Next to being an easy port, this
has the extra advantages that the 64 bit capable
kernel can still easily support 32 bit KEXTs,
and conserves memory by being able to use 32
bit pointers throughout a large part of kernel
code. On the flip side, the kernel cannot use the
extended x86_64 register set and is restricted
to a 32 bit address space.

But while all other common 32 bit operating
systems like Linux, Windows and the BSDs
split the address space into 2 GB for user and 2
GB for kernel (2/2) or 3 GB for user and 1 GB
for kernel (3/1), the i386/x86_64 version of
XNU uses a 4/4 split: While the kernel is run-
ning, the user's data is not mapped into its ad-
dress space, and while user code is running, the
kernel is not mapped. So user and kernel can
each have 4 GB of address space with the dis-
advantage of being less efficient in copying of
data between user and kernel. But this way,
kernel mode can map more devices into its ad-
dress space (like video cards with a lot of
memory), and manage more RAM, thus push-
ing out the limit when a true 64 bit kernel is
required.
iPhone

Mac OS X runs on 32 and 64 bit PowerPC
and i386/x86_64 (“Intel”) Macintosh ma-
chines, on the Apple TV set-top-box, which is
also i386 based, and on the iPhone and the
iPod touch - these devices have ARM CPUs.
Specifically for these devices, XNU and parts
of the Mac OS X userland have been ported to
ARM. The ARM kernel does not support load-
ing arbitrary KEXTs and is digitally signed, but

otherwise mostly equivalent to the PowerPC
and i386/x86_64 versions.

What makes XNU great
While XNU might not be as scalable or as

tidy as other operating systems (but catching
up), it is a very modern UNIX with novel ideas
and unique features:
• The kernel extension ABI is stable over sev-

eral major releases of the OS.
• Fat/universal binaries allow for a single in-

stall CD or hard disk installation that runs on
different CPU architectures, without the clut-
ter of duplicating files or directories. Fur-
thermore, 3rd party application vendors can
ship a single binary that runs on multiple ar-
chitectures.

• I/O-Kit allows code reuse for drivers without
code duplication.

• The KEXT cache is a clean way to speed up
boot times.

• The clear separation between Mach, BSD
and I/O-Kit helps keeping the cost of code
maintenance low.

• The powerful Mach Message API is useful
for user mode applications.

• Since Mac OS X 10.5 Leopard, the i386 port
of OS X is the only operating system with
full POSIX-conformance that doesn't contain
AT&T UNIX code.

Open Source & Hacking
With every minor operating system release

(i.e. 10.5.0, 10.5.1...), Apple usually releases
the whole set of source code for all compo-
nents of the system that are under an open
source license. which is basically everything
but the GUI. About half of these packages are
patched versions of common open source pro-
jects (like “bash” and “perl”), the rest is Apple
code, and is released under the “Apple Public
Source License” APSL, which is a BSD-style
license. This makes it compatible with the
standard BSD license, as well as with the
OpenSolaris CDDL. But there is no live source
code repository for developers visible outside
Apple, so there is no real open source commu-
nity that does any development on the APSL
components. But there are other uses for Open
Source: It helps KEXT developers debugging,
it allows governmental or educational institu-
tions to build their own versions, with added

security for example, and it allows commercial
companies or universities to add functionality
to the kernel, either to sell it, or for research
(SEDarwin, L4/Darwin).

But the source code is not necessarily com-
plete. The XNU source code lacks most of the
ARM bits, and Apple also states that other
parts have been left out because of trade secrets
with Intel. But a kernel compiled from the
open source can still be used as a drop-in re-
placement for the shipping binary.

Revisiting the Buzzwords
• The OS X kernel is not Mach. The OS X

kernel is called “XNU”, which consists of
Mach, BSD and I/O-Kit.

• The OS X kernel is not a microkernel. Al-
though Mach has been used as a microkernel
in other projects, XNU is a very traditional
monolithic kernel with BSD and (most) driv-
ers in kernel mode.

• The OS X kernel is not based on FreeBSD.
The BSD part is based on 4.4BSD with some
code from FreeBSD, NetBSD and others.
The OS X userland UNIX tools are mostly
based on FreeBSD code, though.

• The OS X kernel is not written in C++. The I/
O-Kit part is written in a subset of C++, but
Mach and BSD are written in C.

• The OS X kernel is not 64 bit. It supports 64
bit user mode applications on a 64 bit Pow-
erPC or Intel CPU, but the kernel itself runs
in 32 bit mode and is bound to the 4 GB ad-
dress space limit.

• The OS X kernel is Open Source, but there is
no live source code repository visible outside
of Apple, and the released source does not
necessarily contain all code, but can be com-
piled into a working system.

• The OS X kernel is UNIX, but only since OS
X 10.5 Leopard, and only for 32 bit i386,
since this is the configuration that passed the
POSIX conformance test and may therefore
use the OpenGroup's “UNIX” trademark.

References
• Singh, Amit: Mac OS X Internals. A Systems

Approach; Addison-Wesley, 2006.
• http://kernel.macosforge.org/
• http://www.opensource.apple.com/darwinsou

rce/

http://kernel.macosforge.org
http://kernel.macosforge.org
http://www.opensource.apple.com/darwinsource/
http://www.opensource.apple.com/darwinsource/
http://www.opensource.apple.com/darwinsource/
http://www.opensource.apple.com/darwinsource/

