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ABSTRACT
Most existing leak detection techniques for C and C++ applications
only detect the existence of memory leaks. They do not provide
any help for fixing the underlying memory management errors. In
this paper, we present a new technique that not only detects leaks,
but also points developers to the locations where the underlying
errors may be fixed. Our technique tracks pointers to dynamically-
allocated areas of memory and, for each memory area, records sev-
eral pieces of relevant information. This information is used to
identify the locations in an execution where memory leaks occur.
To investigate our technique’s feasibility and usefulness, we devel-
oped a prototype tool called LEAKPOINT and used it to perform
an empirical evaluation. The results of this evaluation show that
LEAKPOINT detects at least as many leaks as existing tools, reports
zero false positives, and, most importantly, can be effective at help-
ing developers fix the underlying memory management errors.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Performance, Reliability

Keywords
Leak detection, Dynamic tainting

1. INTRODUCTION
Memory leaks are a type of unintended memory consumption

that can adversely impact the performance and correctness of an
application. In programs written in languages such as C and C++,
memory is allocated using allocation functions, such as malloc
and new. Allocation functions reserve a currently free area of
memory m and return a pointer p that points to m’s starting ad-
dress. Typically, the program stores and then uses p, or another
pointer derived from p, to interact with m. When m is no longer
needed, the program should pass p to a deallocation function (e.g.,
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free or delete) to deallocate m. A leak occurs if, due to a
memory management error, m is not deallocated at the appropri-
ate time. There are two types of memory leaks: lost memory and
forgotten memory. Lost memory refers to the situation where m be-
comes unreachable (i.e., the program overwrites or loses p and all
pointers derived from p) without first being deallocated. Forgotten
memory refers to the situation where m remains reachable but is
not deallocated or accessed in the rest of the execution.

Memory leaks are relevant for several reasons. First, they are
difficult to detect. Unlike many other types of failures, memory
leaks do not immediately produce an easily visible symptom (e.g., a
crash or the output of a wrong value); typically, leaks remain unob-
served until they consume a large portion of the memory available
to a system. Second, leaks have the potential to impact not only the
application that leaks memory, but also every other application run-
ning on the same system; because the overall amount of memory is
limited, as the memory usage of a leaking program increases, less
memory is available to other running applications. Consequently,
the performance and correctness of every running application can
be impacted by a program that leaks memory. Third, leaks are
common, even in mature applications. For example, in the first
half of 2009, over 100 leaks in the Firefox web-browser were re-
ported [18].

Because of the serious consequences and common occurrence of
memory leaks, researchers have created many static and dynamic
techniques for detecting them (e.g., [1, 2, 4, 7–14, 16, 17, 20–23, 25,
27,28]). The adoption of static techniques has been limited by sev-
eral factors, including the lack of scalable, precise heap modeling.
Dynamic techniques are therefore more widely used in practice. In
general, dynamic techniques provide one main piece of informa-
tion: the location in an execution where a leaked area of memory is
allocated. This location is supposed to serve as a starting point for
investigating the leak. However, in many situations, this informa-
tion does not provide any insight on where or how to fix the mem-
ory management error that causes the leak: the allocation location
and the location of the memory management error are typically in
completely different parts of the application’s code.

To address this limitation of existing approaches, we propose
a new memory leak detection technique. Our technique provides
the same information as existing techniques but also identifies the
locations in an execution where leaks occur. In the case of lost
memory, the location is defined as the point in an execution where
the last pointer to an unallocated memory area is lost or overwritten.
In the case of forgotten memory, the location is defined as the last
point in an execution where a pointer to a leaked area of memory
was used (e.g., when it is dereferenced to read or write memory,
passed as a function argument, returned from a function, or used as
an operand in an arithmetic expression). As our evaluation shows,
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    delHtab() {
15.   int i;
16.   HASHPTR hptr , zapptr;

17.   for(i = 0; i < 3001; i++) {
18.     hptr = hashtab[i];
19.     if(hptr != (HASHPTR) NULL) {
20.       zapptr = hptr ;
21.       while(hptr->hnext != (HASHPTR) NULL) {
22. hptr = hptr->hnext;
23. free(zapptr);
24. zapptr = hptr ;
25.   }
26.   free(hptr);
27.     }
28.   }

29.   free(hashtab);
30.   return;
    }

     addhash(char hname[]) {
35.    int i;
36.    HASHPTR hptr;
37.    unsigned int hsum = 0;

38.    for(i = 0 ; i < strlen(hname) ; i++) {
39.      sum += (unsigned int) hname[i];
40.    }
41.    hsum %= 3001;
42.    if((hptr = hashtab[hsum]) == (HASHPTR) NULL) {
43.      hptr = hashtab[hsum] = (HASHPTR) malloc(sizeof(HASHBOX));
44.      hptr->hnext = (HASHPTR) NULL;
45.      hptr->hnum = ++netctr;
46.      hptr->hname = (char *) malloc((strlen(hname) + 1) * 

   sizeof(char));
47.      sprintf(hptr->hname , "%s" , hname);
48.      return(1);
49.    } else {
         ...    
67.    }
    }

Figure 1: Call graph and relevant code for a memory leak found in 300.twolf.

identifying the locations where leaks occur can accurately guide
developers to the points in the code where the memory management
errors that cause the leaks may be fixed.

To evaluate the effectiveness of our technique, we implemented
it in a prototype tool called LEAKPOINT and performed an empir-
ical evaluation on a number of subjects. As subjects, we used ap-
plications that contain real memory management errors that cause
leaks. The results of this evaluation show that, for the subjects that
we considered, our technique finds at least as many leaks as ex-
isting techniques, reports zero false positives, and can be effective
at guiding developers directly to the locations where the memory
management errors may be fixed.

The contributions of this paper are:

• A novel technique that identifies the locations in a program’s
execution where memory leaks occur.

• A prototype tool, LEAKPOINT, that implements our technique.
• An empirical evaluation that shows the effectiveness and useful-

ness of our technique.

The rest of this paper is organized as follows: Section 2 presents
a motivating example for our technique. Section 3 describes our
technique in detail. Section 4 presents our empirical evaluation.
Sections 5 and 6 discuss related work and present our conclusions.

2. MOTIVATING EXAMPLE
As a motivating example for our technique, we use one of the

real leaks that we found in 300.twolf during our evaluation.
300.twolf is a computer-aided-design program that calculates
the routing and placement of transistors for microchip design [26].
The leak that we are considering occurs when the application is
executed using its test-input set, which is provided with the appli-
cation. Figure 1 shows the dynamic call graph for this execution
(top) and relevant portions of the application’s code, displayed as
call-outs from their respective locations in the call graph (bottom).

The plus icon ( ) in the right call-out indicates the information
that most existing leak detection tools provide for this leak: the

location where the leaked memory was allocated. For this example,
they would inform a developer that the memory area allocated at
line 45 in function addhash is leaked during the execution. As
we mentioned previously, in most cases, including our example,
this information does not provide a developer with any guidance or
insight on how to fix the error that causes the leak.

The faucet icon ( ) in the left call-out indicates the additional
information that our technique provides: the location where the
leak occurs. For this example, our technique would inform a de-
veloper that the area of memory allocated at line 46 in function
addhash is leaked at line 26 in function delHtab. With this ad-
ditional information, it becomes much simpler to identify (1) the
memory management error—for this example, the error is that the
memory area pointed to by hptr at line 26 in function delHtab
is deallocated without first deallocating the memory pointed by
hptr->hname; and (2) the modifications that are necessary for
fixing the error—in this case, the necessary modifications consist
of inserting an appropriate call to free, “free(hptr->hname)”
immediately before line 26 in function delHtab. In fact, us-
ing information provided by our tool (i.e., both the location where
the leaked memory area is allocated and the location where it is
leaked), we were able to quickly diagnose and fix this error, even
though we had never seen 300.twolf’s code before (see Sec-
tion 4.4 for details).

This example is a good representative of the type of leak we ex-
pect to encounter in practice in real programs. First, it is a real leak
that occurs in a released, commonly used application. Second, it
is caused by a common programming error: forgetting to deallo-
cate a component of an object before deallocating the object itself.
Third, its occurrence does not noticeably impact the application;
even though it leaks memory, 300.twolf runs to completion and
produces the correct output. And fourth, the allocation site and the
location where the error may be fixed are far apart in the code; they
are in two separate functions and, as the call graph shown in Fig-
ure 1 illustrates, these two functions do not occur near one another
in the call graph.
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3. LEAKPOINT TECHNIQUE
In this section, we present our technique for identifying the lo-

cations in an execution where leaks occur. We first provide an in-
tuitive description of the technique, and then discuss its main char-
acteristics in detail.

3.1 General Approach
Our technique for leak detection is based on dynamic tainting

(or dynamic information flow) [5, 6, 15]. Simply stated, dynamic
tainting is an analysis technique that is concerned with tracking in-
formation in an application as the application executes. Intuitively,
it consists of three parts: (1) tainting interesting program data (e.g.,
variables or memory locations) with a taint mark, (2) propagat-
ing taint marks, along with their associated data, as the program
executes, and (3) checking which taint marks are associated with
program data at specific points in the execution.

Specifically, our technique uses dynamic tainting to track point-
ers to dynamically-allocated areas of memory as a program exe-
cutes. During an execution, when an area of memory m is al-
located, the technique creates a new taint mark tm and uses tm

to taint the returned pointer. The technique stores five additional
pieces of information with each taint mark. (Collectively, we refer
to these pieces of information as taint mark metadata.)

• Allocation location: the location in the execution where memory
area m is allocated.1

• Allocation size: the size in bytes of memory area m.

• Deallocated indicator: a boolean flag that indicates whether mem-
ory area m has been deallocated.

• Pointer count: the number of pointers that are tainted with tm

(i.e., the number of pointers that currently point to m).

• Last use location: the location in the code where a pointer tainted
with tm was last used (i.e., the location where it was last deref-
erenced to access m, passed as a function argument or return
value, manipulated using an arithmetic or bitwise operator, or
copied using an assignment operator).1

Note that the allocation location and allocation size are immutable,
whereas the deallocation indicator, pointer count, and last use loca-
tion are mutable; they are updated by the technique as it propagates
taint marks (see Section 3.3).

While propagating taint marks and updating taint mark meta-
data during an execution, the technique performs two checks. Each
check is designed to detect one type of leak. To detect lost memory,
each time a pointer tainted with a taint mark tm is lost or overwrit-
ten, the technique checks whether that pointer was the last pointer
to m. If it was, the technique reports the current location in the
execution as the location where m is leaked. To detect forgotten
memory, at the end of an execution, the technique checks which
memory areas have not been deallocated. For each area of memory
m that was not deallocated, the technique reports the corresponding
taint mark tm’s last use location as the location where m is leaked.
In rest of this section, we describe in detail the three parts of our
technique: tainting, propagating, and checking.

1The current implementation of our technique uses stack traces
with line number information to represent location information.

3.2 Tainting
This part of our technique is responsible for assigning taint marks

to pointers to dynamically-allocated memory areas. To taint such
pointers, our technique intercepts all calls to allocation functions.
By default, the technique intercepts calls to system provided al-
location functions (i.e., malloc, calloc, realloc, new, and
new[]). However, for some applications, only considering these
functions limits the technique’s ability to detect leaks. For example,
this is the case for applications that use memory pools—a common
approach for avoiding the overhead of dynamic memory alloca-
tion. At a high level, a memory pool is a single, large dynamically-
allocated memory area that is divided into smaller memory chunks
that are managed using custom allocation and deallocation func-
tions. Without considering these custom functions, our technique
can only check whether the entire memory pool is leaked; it cannot
check whether any of the chunks of manually-managed memory
are leaked during an execution.

To support leak detection inside memory pools and handle other
similar situations, our technique allows developers to indicate which
functions in a program should also be considered allocation and
deallocation functions. Additional allocation functions must fulfill
the same requirements as the system provided allocation functions;
they must (1) take as input the size of the memory area to allocate
and (2) return either a pointer to the allocated area of memory or
NULL if the allocation is unsuccessful.

Regardless of whether an allocation function is in the default set
or added by a programmer, the technique operates in the same way.
When an allocation function successfully allocates an area of mem-
ory m (i.e., the return value is not NULL), the technique creates a
new taint mark tm and initializes tm’s taint mark metadata: the al-
location location and last use location are initialized to the current
location in the execution; the allocation size is initialized to the
size passed as a parameter to the allocation function; the dealloca-
tion indicator is set to false; and the pointer count is initialized to
one to indicate that there is currently a single pointer to m. Then,
the technique taints the pointer that is returned by the allocation
function with tm.

3.3 Propagating
This part of our technique performs two main tasks: tracking

pointers throughout an execution and updating taint mark metadata.
We describe each of these tasks in the following subsections.

3.3.1 Tracking Pointers
The first task of the propagation part is to track the flow of point-

ers through an execution by propagating taint marks. In order to
correctly propagate taint marks, our technique must use a propa-
gation policy that correctly models all operations that can be per-
formed on pointers. In many situations, creating such a model is
challenging because of the ambiguity between pointers and inte-
gers; depending on the context in which an operator is used, the
result of an operation may be either a pointer or an integer. The
propagation policy that our technique uses is the result of combin-
ing information about the semantics of C and C++ and knowledge
of (and intuition about) the common usage of operators. We present
our technique’s propagation policy by discussing how it models
each operator.

Arithmetic operators.

Assignment (c = a): In the case of an assignment, the left-hand
side is simply tainted with the same taint mark that is associated
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with the right-hand side. If a is tainted, c is tainted with the same
taint mark, whereas if a is not tainted, c is not tainted.

Addition (c = a + b): In the case of addition, we consider four
different cases depending on the taint marks associated with the
operands that are being added.

c a b
tm tm −
tm − tm

− tm tn

− − −

Each of the four cases is shown in the above table. The first and
second rows illustrate how the propagation policy models situa-
tions where a numeric offset (not tainted) is added to a pointer to
an area of memory m (tainted with tm). In this situation, the most
likely result of the addition is a pointer that points inside memory
area m (e.g., when an offset is added to pointer to index into a
dynamically-allocated array). Therefore, the result is tainted with
tm. The third and fourth rows illustrate how the propagation pol-
icy models situations where two pointers (tainted with tm and tn,
respectively) or two non-pointers (not tainted) are added. In both
of these situations, it is unlikely that the result of the addition is a
pointer and the result is therefore not tainted.

Subtraction (c = a−b): Subtraction is handled in a manner similar
to addition and also involves four cases.

c a b
tm tm −
− − tn

− tm tn

− − −

The first row in the above table illustrates how the propagation pol-
icy models situations where a numeric offset (not tainted) is sub-
tracted from a pointer to an area of memory m (tainted with tm).
Like for addition, in this situation the most likely result of the sub-
traction is a pointer that points inside memory area m. Therefore,
the result is tainted with tm. Unlike addition, however, subtraction
is not commutative; a pointer subtracted from a numeric offset is
most likely not a pointer. This situation is illustrated in the second
row in the table; the result of subtracting a tainted operand from a
non-tainted operand is not tainted. The remaining two cases, shown
in the third and fourth rows, are again similar to addition. The re-
sult of subtracting two pointers or two non-pointers is most likely
not a pointer and therefore is not tainted.

Multiplication, division, modulus: We could not identify any sit-
uation where the result of these operators should be considered a
pointer. Therefore, regardless of the taint marks associated with
the operands, the result of these operations is never tainted.

Bitwise operators.

And (c = a & b): Bitwise and is also handled similarly to addition
and involves the same four cases.

c a b
tm tm −
tm − tm

− tm tn

− − −

The first and second rows in the above table illustrate how the
propagation policy handles situations where a numeric offset (not
tainted) is anded with a pointer (tainted with tm). Although this
situation is not common, it does occur in certain cases, such as
when byte-aligning dynamically-allocated memory (i.e., ensuring

that the starting address of a memory area is a multiple of a given
size). This case is conceptually similar to indexing into an array by
adding an offset to a pointer; the result is a pointer to the same area
of memory that the pointer operand points to. Therefore, in this
situation, the result is tainted with tm. The third and fourth rows
illustrate how the propagation policy models situations where two
pointers or two non-pointers are anded together; again, the result is
most likely not a pointer and therefore is not tainted.

Or, xor, shift, not: Similar to multiplication, division, and modulus,
we could not identify any situation where the result of these oper-
ators should be considered a pointer. Therefore, regardless of the
taint marks associated with operands, the result of these operations
is never tainted.

Comparison operators

Less than, greater than, less than or equal to, greater than or equal
to, equal to, not equal to, and, or, not: The result of these operators
is never a pointer and therefore is never tainted.

As we mentioned previously, accurately modeling operators that
operate on pointers is challenging, as it is possible for developers
to use any operator in creative and inventive ways. Therefore, it is
unlikely that a propagation policy can be proven to be sound and
complete. As far as our policy is concerned, as stated previously,
we defined it based on domain knowledge and on experience, and
we verified that it works correctly for all of the software that we
studied so far, as discussed in Section 4. If additional experimenta-
tion would reveal shortcomings of our propagation policy, we will
refine it accordingly.

3.3.2 Updating information
The second task of the propagation part of our technique is to

update the mutable pieces of taint mark metadata: pointer counts,
deallocation indicators, and last use locations. We describe how
our technique updates each piece of information separately.

To correctly update pointer counts, the technique must handle
assignments, function returns, and deallocations of dynamically-
allocated memory areas.

Assignment operator: To handle the assignment operator, the tech-
nique performs two actions in addition to propagating taint marks.
For an assignment statement, c = a, the technique first checks
whether c is currently tainted. If c is tainted with a taint mark
tm, the technique decrements tm’s pointer count because a pointer
to memory area m is being overwritten. Then, as previously de-
scribed, the technique assigns the taint mark associated with a (if
any) to c. Finally, it checks whether c is tainted after the propa-
gation. If c is tainted with taint mark tn, the technique increments
tn’s pointer count because a new pointer to memory area n was
created as a result of the assignment.

Function return: Our technique intercepts all function return events.
For each of the returning function’s local variables, the technique
checks whether the variable is a pointer (i.e., whether it is tainted).
If it is, the technique decrements the pointer count stored in the
taint mark associated with the local variable. The pointer count is
decremented because, after the function returns, the local variable
is no longer in scope and cannot be accessed by the program.

Deallocation of dynamically-allocated memory: Dynamically-all-
ocated memory is deallocated using an explicit call to a dealloca-
tion function (i.e., free, delete, delete[]), which takes as a
parameter a pointer to the area of memory that should be deallo-
cated. (Programmer-defined deallocation functions are supported
in the same manner as programmer-defined allocation functions—

518



see Section 3.2.) The technique intercepts deallocation functions
and identifies the taint mark tm that is associated with the pointer
passed to the deallocation function. It then searches memory area
m, checking whether m contains any pointers. For each pointer p
that it finds, the technique decrements the pointer count of the taint
mark associated with p. This handles situations where memory is
indirectly leaked (i.e., the only pointer to memory area n is stored
inside memory area m and, when m is deallocated, n is leaked).

Updating deallocation indicators and last use locations is simpler
than updating the pointer counts. To update deallocation indicators,
the technique again intercepts deallocation functions, identifies the
taint mark associated with the pointer that is passed to the function,
and sets the taint mark’s deallocation indicator to true. To update
last use locations, the technique sets the last use location of a taint
mark tm to the current location in the execution each time a pointer
tainted with tm is (1) propagated, as described in Section 3.3.1, (2)
passed as a function argument, (3) returned from a function, or (4)
used to access memory area m.

3.4 Checking
This third and last part of our technique, checking, is also re-

sponsible for two tasks: identifying when leaks occur and generat-
ing the leak reports presented to developers. Leak reports comprise
three pieces of information: the location where the leaked area of
memory was allocated, the location where the leak occurred, and
the size of the leaked memory area. Presenting the sizes of leaked
memory areas does not necessary help developers identify the lo-
cations where the memory management errors may be fixed, but
it does provide a mechanism for judging the relative severity of a
particular memory leak. Typically, leaks of larger areas of memory
should be investigated before leaks of smaller areas.

To identify when memory leaks occur, our technique performs
two checks; one to detect lost memory and the other to detect for-
gotten memory. To detect lost memory, the technique uses pointer
counts. Each time the pointer count of a taint mark tm is decre-
mented, the technique checks whether the count’s value after the
decrement is zero. If the count is zero, and tm’s deallocation indi-
cator is false, the technique classifies m as lost memory and gen-
erates a lost memory leak report. The report’s allocation location
and size information are initialized to the allocation location and
the allocation size stored in taint mark tm, respectively. The leak
location is initialized to the current location in the execution. Af-
ter generating the report the technique deallocates memory area m.
This causes the technique’s deallocation of dynamically-allocated
memory handler, described in Section 3.3.2, to update the pointer
count of any taint marks associated with pointers stored inside m.
The recursive interaction of these two parts of the technique allows
it to detect indirect leaks that are caused by the leaking of m.

The check used to detect forgotten memory is performed at the
end of an execution. The technique first identifies all taint marks
whose deallocation indicator is set to false; because the dealloca-
tion indicator gets set when memory areas are deallocated, each
taint mark with a false deallocation indicator corresponds to an area
of memory that has not been deallocated. The technique classifies
each such area of memory m as forgotten memory and generates a
forgotten memory leak report. Like for lost memory leak reports,
the allocation location and size for forgotten memory leak reports
are initialized to the corresponding taint mark tm’s allocation lo-
cation and allocation size. However, unlike for lost memory leak
reports, the leak location is set to tm’s last use location.

Because programs often repeat sequences of calculations, it is
possible for multiple leak reports to have both the same alloca-
tion location and the same leak location. Therefore, to avoid over-

whelming developers with identical leak reports, reports that have
the same allocation location and the same leak location are merged.
The allocation location and leak location of the merged report are
the same as its component reports, while the merged report’s size
is the sum of the sizes in the component reports. Furthermore, our
technique sorts leak reports by two criteria: type (lost memory leak
reports are presented before forgotten memory leak reports) and
size (leak reports for larger areas of memory are presented before
leak reports for smaller areas of memory).

It is worth noting that, although our technique is currently de-
fined to generate leak reports when memory leaks are detected, it
can be easily modified to support other actions. For example, when
detecting a leak, the technique could attach a debugger to the run-
ning program or it could terminate the execution. It is also possible
to support more complex actions, such as only generating leak re-
ports after a specified amount of memory is leaked. The specific
action chosen may depend on the context or on the goals of the
developers who are using the technique.

4. EMPIRICAL EVALUATION
To assess the effectiveness, and usefulness of our technique we

implemented it in a prototype tool, called LEAKPOINT, and inves-
tigated the following research questions:

RQ1: How does LEAKPOINT’s ability to detect memory leaks com-
pare to existing leak detection tools?

RQ2: How effective is LEAKPOINT at guiding developers to the
locations where the memory management errors that cause mem-
ory leaks may be fixed?

Note that, although by definition our technique should be able to
detect all leaks, RQ1 is a relevant research question: the difficulties
of tracking pointers that we describe in Section 3.3.1 may cause
LEAKPOINT to miss some leaks or report spurious ones. Compar-
ing LEAKPOINT against existing tools can provide a better under-
standing of how our technique will perform in practice and provides
evidence that the technique’s propagation policy is accurate.

In the following subsections we discuss LEAKPOINT, our sub-
jects, and our experimental protocol and results for each research
question. We also present a small case study in which we investi-
gated the performance of LEAKPOINT in terms of the runtime over-
head that it imposes on running applications.

4.1 Prototype tool
LEAKPOINT is a prototype implementation of our technique for

Linux/x86 binaries that is built as a Valgrind tool. Valgrind is
a generic binary instrumenter that is optimized to support heavy-
weight dynamic analyses [19]. We chose to use Valgrind because
it operates at the binary level, which allows our technique to eas-
ily handle shared libraries. Source-level techniques would require
recompilation of every library an application may use, a task that
may be difficult or even impossible (i.e., if source code is unavail-
able). Moreover, Valgrind abstracts away much of the complexity
of the underlying operating system and architecture. This means
that LEAKPOINT can easily support multiple operating system and
architecture combinations (i.e., Linux on x86, amd64, ppc32, and
ppc64 and Darwin (Mac OS X) on x86) with limited additional im-
plementation effort.

We leverage Valgrind’s built-in functionality to implement the
three parts of our technique. To taint pointers to dynamically-
allocated areas of memory, we use Valgrind’s function-interception
capabilities, which allow us to intercept all calls to allocation and
deallocation functions. To implement taint mark propagation and
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Subject Description LoC # Detected memory leaks (# false positives)
mtrace omega MemCheck LEAKPOINT

lost forgotten total lost forgotten total
164.gzip Compression 5, 606 4 1 1 3 4 1 3 4
175.vpr FPGA circuit placement 11, 316 47 0 0 47 47 0 47 47
176.gcc Compiler 129, 907 1121 406 (1415) 255 869 1121 255 869 1121
181.mcf Vehicle scheduling 1, 482 0 0 0 0 0 0 0 0

186.crafty Chess 12, 907 37 0 0 37 37 0 37 37
197.parser Word processing 7, 763 2 0 0 2 2 0 2 2

252.eon Computer visualization 22, 265 380 380 380 0 380 380 0 380
253.perlbmk Programming language 69, 460 536 0 (2) 0 3481 3481 0 3481 3481

254.gap Group theory 35, 698 2 0 0 2 2 0 2 2
255.vortex Database 49, 226 15 1 1 14 15 1 14 15
256.bzip2 Compression 3, 236 10 1 1 9 10 1 9 10
300.twolf Computer aided design 17, 849 1403 68 (3) 68 1335 1403 68 1335 1403

Table 1: Applications in the first set of subjects and results for RQ1.

Subject Description LoC # Errors
gcc 3.0 Compiler 353, 620 1

lighttpd 1.4.19 Web server 51, 163 2
transmission 1.20 Bittorrent client 82, 351 1

Table 2: Applications in the second set of subjects.

checking, we created a set of functions, one for each instruction in
Valgrind’s intermediate representation. These functions model the
semantics of the instructions and implement the appropriate prop-
agation and checking functionality. We use Valgrind’s instrumen-
tation capabilities to insert a call to the appropriate function before
each instruction. Finally, we developed a client API for supporting
custom memory management functions, described in Section 3.2.
To use this API, developers insert calls in their code that inform
LEAKPOINT when memory areas are allocated and deallocated by
their custom routines. However, to remove a potential source of
bias, we did not use any of these functions in our evaluation.

4.2 Subjects
In our empirical evaluation, we used two sets of subjects. The

first set consists of the twelve applications from the integer portion
of the SPEC CPU2000 benchmark suite version 1.0 [26]. Table 1
lists these applications and shows, for each application, a brief de-
scription of the application’s functionality (Description) and size
in lines of code (LoC). We chose these applications for several rea-
sons. First, they cover a wide range of problem domains and range
in size from ≈1.5k LoC (181.mcf) to ≈129k LoC (176.gcc).
Second, they contain numerous memory management errors, which
means that they are good subjects for investigating RQ1. And third,
the SPEC benchmarks were designed to evaluate performance, so
the applications are also appropriate subjects for investigating the
runtime overhead imposed by LEAKPOINT. The SPEC benchmarks
are also distributed with several sets of inputs, which we used when
running the applications.

The second set consists of applications that contain documented
memory management errors that were fixed by the application’s
original developers. Because we need documentation of how the
leaks were fixed, we were unable to reuse subjects from related
work. The subjects that they used were either proprietary (e.g., [9])
or did not have a record of how the leaks were fixed (e.g., [14]).
To select subjects that meet this requirement, we surveyed on-line
bug databases and issue trackers for large, commonly-used appli-
cations. Although leaks are common, they are often difficult and
time consuming to reproduce based solely on information provided
in bug reports. In fact, none of the bug reports we encountered
in our survey provided correct, detailed steps on how to reproduce

the leak; at best, they provided a general description of the nec-
essary conditions for the leak to occur. As subjects, we chose the
applications which contain the first four leaks that we were able
to reproduce successfully: gcc version 3.0, which contains one
memory management error (note that this version is different from
the one that is included in the SPEC benchmarks),2 lighttpd
version 1.4.19, which contains two memory management errors,3,4

and transmission version 1.20, which contains one memory
management error.5 Information about these applications is shown
in Table 2. This second set of applications is ideal for investigat-
ing RQ2. The fact that the memory management errors were fixed
by the original developers means that we can assess, in an unbi-
ased way, how effective LEAKPOINT is at identifying the locations
where the memory management errors may be fixed.

4.3 RQ1
To gather the necessary data for investigating RQ1, we used the

twelve applications from our first set of subjects. We ran each
application using its test-input set and checked them for leaks us-
ing LEAKPOINT and three other leak detection tools: mtrace [1],
MemCheck [25], and omega [16]. We chose these tools because
they are freely available and are widely used. MemCheck and
mtrace only detect memory leaks, while omega provides infor-
mation that is similar to what is provided by our technique. (Addi-
tional information about the techniques these tools use for detecting
leaks is presented in Section 5.) For each leak report generated by
each tool, we manually verified whether it corresponds to an actual
leak or is a false positive.

Table 1 shows, for each subject, the number of leak reports gen-
erated by each tool which correspond to actual leaks and, in paren-
theses, the number of leak reports that are false positives. To elimi-
nate clutter in the table, false positive counts of zero are not shown.
For LEAKPOINT and MemCheck, the table also shows how many
of the leak reports are for lost memory and how many are for for-
gotten memory. We are unable to provide this information for
mtrace or omega because mtrace does not distinguish between
the two types of leaks and omega only detects lost memory. We
are also unable to determine if there are any false negatives because
the total number of leaks in a program is generally unknown.

As the table shows, LEAKPOINT, MemCheck, and mtrace re-
port zero false positives and detect an identical number of leaks

2
http://gcc.gnu.org/ml/gcc-cvs/2004-06/msg01124.html

3
http://redmine.lighttpd.net/issues/show/1774

4
http://redmine.lighttpd.net/issues/show/1775

5
http://trac.transmissionbt.com/ticket/961
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for all subjects except 253.perlbmk, for which mtrace reports
fewer leaks. This difference is due to the fact that mtrace fails
to record a large number of calls to malloc that allocate mem-
ory that is subsequently leaked. These calls are not intercepted
because mtrace uses malloc hooks, which are known to be un-
reliable. (In fact, malloc hooks, and presumably mtrace, will be
removed from future versions of the GNU C library.)6

The result that LEAKPOINT and MemCheck have the same per-
formance is not unexpected; MemCheck is a widely used (and thus
extensively tested) tool, and it would be surprising if LEAKPOINT
were able to detect more leaks than MemCheck can detect. This is
an important result nevertheless, as it provides strong evidence that
our technique is as effective as existing tools in identifying memory
leaks, while potentially providing more beneficial information for
developers. In addition, the result is a sanity check on the correct
implementation of LEAKPOINT. The table also shows that LEAK-
POINT outperforms omega in several ways. First, as we mentioned
previously, omega is unable to detect forgotten memory. As the ta-
ble shows, forgotten memory is common, and not handling it may
cause a large number of leaks to go undetected. Second, unlike
LEAKPOINT, omega generates false positives for three of the sub-
jects. These drawbacks reduce omega’s effectiveness and limit its
usefulness in practice.

Like any empirical evaluation, our investigation of RQ1 is lim-
ited in scope, and its results may not generalize. However, our
subjects are real programs that span a wide range of application
types and contain actual leaks. Therefore, although further eval-
uation is needed, we believe that our results are promising. They
show that LEAKPOINT is likely to be (1) as effective at detecting
leaks as tools that focus only on leak detection and (2) more effec-
tive than existing tools that provide the same type of information as
our technique.

4.4 RQ2
To gather the data necessary for investigating RQ2, we ran each

application from our second set of subjects while checking them
for leaks using LEAKPOINT. As an initial metric for judging the ef-
fectiveness of the technique when helping developers fix memory
management errors, we compared the location of the leak reported
by LEAKPOINT against the location where the memory manage-
ment error was fixed. In future work, we plan on performing user-
studies to better assess the performance of our technique in a fully
realistic setting. The remainder of this section presents a detailed
discussion of the technique’s performance when using our initial
metric for each of the considered errors.

Figure 2a shows the relevant portion of code for the error in
gcc. Memory allocated at line 4540 in function push_string is
leaked when gcc’s type verifier switches from an inner-context to
an outer-context. The leak occurs at line 5187, where spelling_-
base is overwritten but the memory area it points to is not deallo-
cated. The commented code in the figure shows the code that was
added by the developers to fix this error: a call to free was added
at line 5179 to deallocate the memory area before spelling_-
base is overwritten. LEAKPOINT identifies line 5187 as the loca-
tion where the leak occurs. This location is close to the location
where the memory management error was fixed by the developers;
it is in the same function and less than 10 lines away. Moreover,
the error could indeed be fixed by adding the call to free directly
before line 5187. The reason why the developers chose to place
the call at line 5179 instead is most likely because lines 5180–5187

6
http://sources.redhat.com/ml/libc-alpha/2006-07/

msg00108.html

are conceptually an atomic region of code—together, they restore
values stored inside the structure pointed to by p.

The first error in lighttpd causes a memory leak if the option
url.rewrite-repeat is set in the web server’s configuration
file. Figure 2b shows the relevant portion of lighttpd’s code.
Memory allocated at line 429 in mod_rewrite_uri_handler
is leaked if this section of code is executed twice. In the first execu-
tion, the only pointer to the allocated memory area is stored in the
plugin context array at line 430. During the second execution, this
pointer is overwritten and, because the area of memory it points to
is not deallocated, a leak occurs. As in Figure 2a, the commented
lines in Figure 2b show the code that was added by the developers
to fix this memory management error; the code now checks whether
memory was already allocated. LEAKPOINT identifies line 430 as
the location where the leak occurs. This location is even closer to
the location where the memory management error was fixed than
in the previous case; the two locations actually overlap.

The second error in lighttpd causes a leak when the web
server parses a request with duplicated http headers. Figure 2c
shows the relevant portion of lighttpd’s code for discussing this
error. Memory allocated at line 775 in http_request_parse
is leaked because the function returns without deallocating it. To fix
this error, the developers inserted the commented code at line 826.
Because lighttpd is concerned with performance, it maintains a
list of allocated request headers that it reuses to save the overhead
of memory allocation. The inserted call fixes the error by adding
the allocated memory area to the pool of request headers. LEAK-
POINT identifies line 825 as the location where the leak occurs.
Like for the first leak in lighttpd, LEAKPOINT precisely iden-
tifies the location where the memory management error was fixed;
the location of the fix is immediately before the location identified
by LEAKPOINT.

Figure 2d shows the relevant portion of code for the error in
transmission. This error causes memory allocated at line 718
in invokeRequest to be leaked when the download of the cor-
responding torrent file is stopped. The developers fixed this error
by inserting a call to a deallocation function at line 295 in on-
StoppedResponse, which is called at line 77 in process-
CompletedTasks. LEAKPOINT identifies line 82 in process-
CompleteTasks as the location where the leak occurs. Also in
this case, the location identified by LEAKPOINT is near the location
where the memory management error was fixed. Although the lo-
cations are in separate functions, they are executed in close proxim-
ity to each other—only 6 statements apart. Moreover, we verified
that the memory management error can also be fixed by moving
the call to the deallocation function immediately before line 82 in
processCompletedTasks.

To gather further evidence of the technique’s effectiveness, we
also examined the leak reports generated by LEAKPOINT for RQ1.
Because we do not have a developer-provided fix for these leaks,
we cannot perform the same evaluation that we performed for the
four leaks described above. Instead, for each detected leak, we in-
vestigated whether the reported location was a suitable point for
fixing the leak by (1) inserting a memory deallocation statement at
the location indicated by LEAKPOINT and (2) rerunning the appli-
cation to verify that the leak no longer occurs. The results for these
additional leaks, although anecdotal in nature, were encouraging;
all of the locations reported by LEAKPOINT proved to be appropri-
ate locations for introducing fixes to the memory errors (i.e., adding
a deallocation statement at the reported location prevented the leak
from occurring).

Based on these results, we can make some initial observations
about the effectiveness of our technique in helping developers un-
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      void finish_init() {
        ...
5179.   // free(spelling_base);
5180.   constructor_decl = p->decl;
        ...
5187.   spelling_base = p->spelling_base;
        ...
      }

      static struct spelling *spelling_base;

      static void push_string(char *string) {
        ...
4540.   spelling_base =
          xmalloc(spelling_size *
                  sizeof(struct spelling));
        ...
      }

(a) Relevant code for the error in gcc.

     URIHANDLER_FUNC(mod_rewrite_uri_handler) {
     ...
428.   // if (con->plugin_ctx[p->id] == NULL) {
429.        hctx = handler_ctx_init();

430.        con->plugin_ctx[p->id] = hctx;
431.   // } else {
432.   //   hctx = con->plugin_ctx[p->id];
433.   // }
       ...
     }

(b) Relevant code for the first error in lighttpd.

     int http_request_parse(server *srv,
                            connection *con) {
       ...
774.   if (NULL == (ds = 
           (data_string *)array_get_unused_element(
                con->request.headers, TYPE_STRING))) {

775.     ds = data_string_init();
       }
       ...
812.   else if (cmp > 0 && 0 == (cmp =    
           buffer_caseless_compare(CONST_BUF_LEN(ds->key),
           CONST_STR_LEN("Content-Length")))) {
         
814.     char *err
815.     unsigned long int r;
816.     size_t j
817.     if (con_length_set) {
818.       con->http_status = 400;
819.       con->keep_alive = 0;
820.       if (srv->srvconf.log_request_header_on_error) {
821.         log_error_write(srv, __FILE__, __LINE__, "s",
                             "duplicate ...");
822.         log_error_write(srv, __FILE__, __LINE__,
                           "Sb", "request-header:\n",
                           con->request.request);
823.       }
824.       // array_insert_unique(con->request.headers,
                                  (data_unset *)ds);

825.       return 0;
       }
       ...
     }

(c) Relevant code for the second error in lighttpd.

     void tr_webRun(tr_session *session,
                    ...

        void *done_func_user_data) {
169.   struct tr_web_task * task;
       ...
174.   task->done_func_user_data = done_func_user_data;
       ...
177.   tr_runInEventThread(session, addTask, task);
       ...
     }

     static void onStoppedResponse(tr_session *session,
                                   ...

       void *torrent_hash) {
294.   dbgmsg(NULL, "got a response ... message");
295.   // tr_free(torrent_hash);
296.   onReqDone(session);
     }

     static void processCompletedTasks(tr_web *web) {
       ...
 77.   task->done_func(web->session,
                       ...
                       task->done_func_user_data);
       ...
 80.   evbuffer_free(task->response);
 81.   tr_free(task->url);
 82.   tr_free(task);
       ...
     }

     static void invokeRequest(void * vreq) {
       ...
718.   hash = tr_new0(uint8_t, 
                      SHA_DIGEST_LENGTH);
719.   memcpy(hash, req->torrent_hash,
              SHA_DIGEST_LENGTH);
720.   tr_webRun(req->session, req->url,
                 req->done_func, hash);

721.   freeRequest(req);
     }

(d) Relevant code for the error in transmission.

Figure 2: Excerpts of code that illustrate our technique’s ability to guide developers to the locations where memory leaks may be fixed.
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derstand and eliminate leaks. For the four leaks with developer pro-
vided solutions, the location of each leak identified by LEAKPOINT
was close to, if not coinciding with, the location where the mem-
ory management error was fixed. And for the leak reports without
developer provided solutions, adding deallocation statements at the
identified locations fixed the considered leaks. These results, albeit
preliminary in nature, strongly suggest that our technique can be
effective in guiding developers to the locations where the memory
management errors that cause leaks may be fixed.

4.5 Runtime overhead
To investigate the runtime overhead that LEAKPOINT imposes,

we used the twelve applications from our first set of subjects. We
ran each application using its reference-input set twice, once nor-
mally and once while checking for leaks using LEAKPOINT, and
compared the execution times of these runs. Based on these mea-
surements, we found that LEAKPOINT imposes a runtime overhead
of 100–300 times. Although this is a considerable overhead, it is
comparable to the 100–200 times reported by tools that provide the
same type of information as our approach [14, 16]. Identifying the
locations of leaks is inherently expensive because it requires adding
instrumentation for nearly every instruction. However, we believe
that the detailed information provided by our technique justifies its
cost. In our experience, developers will accept high overheads for
tools that produce accurate results. This is especially true when, as
is the case for LEAKPOINT, the tools do not require any developer
interaction and can be run overnight, possibly as part of an auto-
mated build system whose results are inspected by developers the
next day. In addition, there are several possibilities for reducing
LEAKPOINT’s overhead that we plan on investigating.

First, LEAKPOINT is an unoptimized prototype. It may be pos-
sible to reduce its overhead by applying some recently described
optimizations for tainting-based approaches [3, 24]. Second, it is
also possible to reduce LEAKPOINT’s overhead by using a two-
phase approach. In the first phase, the technique could perform
a lightweight leak detection that simply identifies the location of
memory allocations that are leaked (like most existing approaches
do). In the second phase, it could use the fully-fledged approach
to monitor only such allocations, rather than every allocation in the
program. Such an approach could potentially decrease the overhead
imposed by the technique dramatically, while still providing devel-
opers with information that guides them to the locations where the
memory management errors may be fixed.

5. RELATED WORK
As we mentioned in the introduction, the common occurrence

and serious consequences of memory leaks have resulted in a large
body of research describing techniques for detecting them. In this
section, due to space considerations, we limit our discussion to the
most closely related dynamic techniques for C / C++ applications.

Valgrind’s Memcheck tool [25], Mac OS X’s leaks tool [13],
and purify [8] operate at the binary level and use an approach in-
spired by mark-and-sweep garbage collection. During a program’s
execution, these tools track memory allocation and deallocation
and record the starting address and size of every allocated block
of memory. To detect leaks, they scan the application’s heap look-
ing for pointers to allocated memory blocks. The scan classifies
blocks into three categories: non-leaked (pointers to the start of the
block exist), possibly leaked (only pointers to the interior of the
block exist), and leaked (no pointers to the block exist). Unlike
our technique, these tools do not provide any assistance in identify-
ing the location where the underlying memory management errors
could be fixed.

The GNU C library provides a facility for debugging memory al-
locations that is commonly known as mtrace [1]. This approach
intercepts calls to malloc, realloc, and free and logs allo-
cation and deallocation events. The logged events are then post-
processed to match allocations with deallocations and reveal any al-
locations without a corresponding deallocation. Because mtrace
only observes allocations and deallocations, it is also incapable of
providing any information beyond the location where the leaked
memory is allocated.

Parasoft’s Insure++ tool uses a source-level technique that
identifies the locations in an application where pointers are lost or
overwritten due to an assignment statement or function return [22].
At runtime, each time one of these locations is executed, the tool
uses the same mark-and-sweep approach that memcheck, leaks,
and purify use to identify leaks. This approach allows In-
sure++ to provide information that is similar to what our tech-
nique provides. However, like omega it cannot detect forgotten
memory. Also, because Insure++ does not handle shared li-
braries, it is unable to identify memory leaks that originate or oc-
cur inside them (i.e., when memory is allocated or leaked within a
shared library). We were unable to directly compare LEAKPOINT
against Insure++ because Parasoft did not respond to our request
for an evaluation copy of Insure++.

The technique proposed by Maebe and colleagues [14] and inde-
pendently implemented by Meredith in the omega tool [16] (which
we compared against LEAKPOINT in Section 4.3) is most similar to
our approach. Their technique also maintains a pointer count for
each area of allocated memory, but instead of tracking the flow of
pointers, it intercepts all writes to memory. Each time a value v
is written to memory area m, v and the content of m are checked
to see whether they are pointers. A value is considered to be a
pointer if it is equal to the starting address of one of the currently
allocated areas of memory. If the contents of m are considered
to be a pointer, the pointer’s count is decremented and a leak re-
port is generated if the count is zero. If v is considered to be a
pointer, then its count is incremented. Unlike LEAKPOINT, which
accurately tracks pointers using its propagation policy, Maebe and
colleagues’ technique uses a heuristic approach to identify pointers.
Consequently, their technique can generate both false positives, as
demonstrated in Section 4.3, and false negatives [14]. Moreover,
the combination of using a heuristic and only considering mem-
ory writes can also lead to inaccuracies in identifying the locations
where leaks occur. For example, when run on the memory man-
agement error in gcc presented in Section 4.4, omega identifies
line 6998 in function cse_insn as the location where the error
should be fixed. This location is very far from the location where
the actual fix was made; they are in separate functions and differ-
ent files. Most importantly, we were unable to prevent this leak by
adding a deallocation statement at the identified location. Finally,
as we mentioned in Section 4.3, Maebe and colleagues’ technique
does not detect forgotten memory.

Hauswirth and Chilimbi developed a statistical leak detection
technique called SWAT [9]. SWAT is similar to Maebe and col-
leagues’ technique in that it examines memory accesses and uses
a heuristic to identify pointers. However, unlike their technique,
SWAT samples accesses and uses a user-provided timeout value to
detect leaks; if an area of memory is currently allocated and has not
been touched by an observed memory access within the length of
the timeout, a leak is reported. Sampling greatly reduces the over-
head of the technique and allows it to be used on live applications,
which is a significant benefit. However, sampling also increases the
number of false positives generated by the approach. When run on
the applications in our first set of studies, Hauswirth and Chilimbi
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report that the false positive rate, depending on the sampling rate,
ranges from 3 to 35%. In comparison, LEAKPOINT reports zero
false positives for these subjects. Sampling can also exacerbate the
inaccuracies caused by using a heuristic and by only considering
memory accesses when identifying the locations where leaks occur
(i.e., memory accesses that are not observed will not update the ac-
cessed memory’s last use location). We could not directly compare
LEAKPOINT against SWAT because SWAT is not publicly available.

6. CONCLUSIONS
In this paper we presented a novel leak detection technique that

not only detects leaks, but also identifies the locations in an execu-
tion where leaks occur. Our approach uses taint marks to identify
and maintain information about pointers to dynamically-allocated
areas of memory. Taint marks are propagated as an application ex-
ecutes and are checked to identify the locations where leaks occur.
The identified locations are then presented to developers as loca-
tions where the memory management errors that cause the detected
leaks may be fixed.

We also presented LEAKPOINT, a prototype tool that implements
our technique. In the evaluation of our technique, we used LEAK-
POINT to detect memory leaks in programs from the SPEC bench-
marks as well as several real-world applications. The results of the
evaluation show that, for the subjects that we considered, LEAK-
POINT detects at least as many memory leaks as existing tools, re-
ports zero false positives, and can be effective at helping developers
understand and fix memory errors.
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