
Methods of binary analysis and valgrind tool

Raghunandan Palakodety

s6rapala@uni-bonn.de

January 4, 2015

Abstract

Writing complex programs in low-level languages, e.g C/C++, can
be an arduous task when safeguards are minimal and hence code qual-
ity can take a toll. Tools and frameworks can be conducive in detecting
subtle errors which often go unnoticed by the programmer. Some exist-
ing frameworks provided are used, to build tools to perform interesting
program and malware analysis. In particular, Dynamic Binary Instru-
mentation framework, provides libraries to developers to build tools to
analyze the program executables at run-time. Such tools are known as
dynamic binary analysis tools. These dynamic binary analysis tools,
rely on using shadow memory to shadow, in software, every byte of
memory used by a program with another value that says something
about it. Critical errors such as bad memory accesses, data races,
and uses of uninitialised data are detected as the program runs on a
synthetic cpu. Often such tools built generates analysis code, which
essentially is a RISC like instructions inserted at various places in the
intermediate representation of machine code. It it then stored in a
translation cache and later executed via dispatcher. One such tool,
Memcheck, built using valgrind framework operates on definedness of
values down to the level of bits. Tools which track definedness at byte
or word granularities give out false positives, that is, falsely flag errors
resulting from correct uses of partially defined bytes. Whereas Mem-
check’s definedness checking at the level of individual bits accounts for
low false positive and false negative rates.

1

1 Introduction

This paper elucidates various techniques for instrumenting a program at
run-time, at machine-code level complementing to the very definition of dy-
namic binary analysis. Binary analysis can be conducive in environments
where library code is often not made available. In the case of source analy-
sis, programs are analyzed at source code level. Section 2 in this document
starts off with a motivating example for the need of dynamic binary analysis
tools. The definition and comparison of analysis approaches are presented in
section 3. Section 4 explains two ways in which machine code (x86 instruc-
tions) is translated into intermediate representations which are subsequently
instrumented by the tool. Later, section 5, gives details on shadow values
and shadow memory which helps a tool to remember the history of mem-
ory location and/or the value residing. Section 5.1 describes the most basic
form of Memcheck’s shadow memory implementation to illustrate the data
structures used.

2 Memory management Issues

Huge code bases involve numerous memory allocations and freeings. Ad-
versely, scope does exists for intrinsic bugs such as memory leaks which go
undetected until all the memory is run out and subsequent calls to malloc
or new (i.e in C/C++ respectively) fail. Since garbage collection is not
provided in C/C++, substantial development time might be spent handling
freeing the memory. Pointer usage, in a case where the pointer tries to access
a location past the end of the array, compiles just fine. But during runtime,
segmentation fault occurs for the code snippet below.

class someClass{

public:

int someArray[10];

int m_value1, m_value2;

someClass(); //default constructor

someClass(int, int, int*);

void printValues();

~someClass(){}

};

2

someClass::someClass(int value1, int value2, int *array){

m_value1 = value1;

m_value2 = value2;

for(int i = 0; i < 10; i++)

someArray[i] = array[i];

}

int main(){

int a[10] = {0,1,2,3,4,5,6,7,8,9};

someClass *someClassObj = new someClass(1,2,a);

cout<<"Accessing array beyond the declared:

"<<someClassObj->someArray[200000]<<endl;

}

In systems programming using C/C++, uninitialized variables in stack frame
can take values of previous variables which occupied those addresses. Unini-
tialized variables are even more likely to appear in classes, where member
declarations are generally separated from the constructor implementation.
Ultimately, member variables do not hold a predictable value when they are
just declared as shown in the code snippet below,

int main(){

someClass someClassObj;

cout<<"Accessing uninitialised member

variables: "<<someClassObj.m_value1<<"\t"<<someClassObj.m_value2;

}

Additionally, programs with such uninitialized variables may even pass
software tests. Un-initialized variables make the program non-determinsitic
and cause bugs often difficult to reproduce by testers.

Improper usage of memory deteriorate performance of huge projects.
One such categories of bugs include, freeing memory more than once as
shown in the code snippet below. Freeing twice, often happens while writ-
ing library code, where a programmer might free twice and may manifest
as a vulnerability (e.g denial-of-service attack) in programs that are linked
with such libraries [1].

3

int main(){

int a[10] ={ 0,1,2,3,4,5,6,7,8,9};

someClass *someClassObj = new someClass(1,2,a);

variables:

"<<someClassObj->m_value1<<"\t"<<someClassObj->m_value2;

delete someClassObj;

delete someClassObj;

}

Also the appropriate operators must be taken into consideration, for in-
stance, free corresponds to malloc and delete complements to new operator.

The above mentioned issues are handled by a tool, Memcheck which
checks for memory related errors during run-time. This tool is grouped
under the category dynamic binary analysis tools, where the executable is
profiled to give more details on errors.

2.1 Brief description of the different possible memory leaks

The valgrind documentation [8] includes following list of nine memory leak
types. Any possible kind of memory leak should fall into one of these cate-
gories.

Pointer chain AAA Category BBB Category

------------- ------------ ------------

(1) RRR ------------> BBB DR

(2) RRR ---> AAA ---> BBB DR IR

(3) RRR BBB DL

(4) RRR AAA ---> BBB DL IL

(5) RRR ------?-----> BBB (y)DR, (n)DL

(6) RRR ---> AAA -?-> BBB DR (y)IR, (n)DL

(7) RRR -?-> AAA ---> BBB (y)DR, (n)DL (y)IR, (n)IL

(8) RRR -?-> AAA -?-> BBB (y)DR, (n)DL (y,y)IR, (n,y)IL, (_,n)DL

(9) RRR AAA -?-> BBB DL (y)IL, (n)DL

Pointer chain legend:

- RRR: a root set node or DR block

4

- AAA, BBB: heap blocks

- --->: a start-pointer

- -?->: an interior-pointer

Category legend:

- DR: Directly reachable

- IR: Indirectly reachable

- DL: Directly lost

- IL: Indirectly lost

- (y)XY: it’s XY if the interior-pointer is a real pointer

- (n)XY: it’s XY if the interior-pointer is not a real pointer

- (_)XY: it’s XY in either case

Although internally, Valgrind distinguishes nine different types of mem-
ory leaks, the generated output report will only include 4 main categories:

Still Reachable: Covers cases 1 and 2 (for the BBB blocks)

Directly Lost: Covers case 3 (for the BBB blocks)

Indirectly Lost: Covers cases 4 and 9 (for the BBB blocks)

Possibly Lost: Covers cases 5, 6, 7 and 8 (for the BBB blocks)

Directly and Indirectly Lost leaks are also referred as Definitely Lost leaks.
The output from memcheck tool shows the Definitely Lost category, for
the code snippet which will be shown during the presentation.

==25156==

==25156== LEAK SUMMARY:

==25156== definitely lost: 48 bytes in 1 blocks

==25156== indirectly lost: 0 bytes in 0 blocks

==25156== possibly lost: 0 bytes in 0 blocks

==25156== still reachable: 0 bytes in 0 blocks

==25156== suppressed: 0 bytes in 0 blocks

==25156==

==25156== For counts of detected and suppressed errors, rerun with:

-v

==25156== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0

from 0)

From the above categories, the suggested order to fix leaks [9] is the fol-
lowing one:

5

1. Directly Lost leaks (reported as definitely lost in the output report).

2. Indirectly Lost leaks.

3. Possibly Lost leaks (as they may really be ’definitely lost’).

4. Still Reachable leaks (if really needed to fix them)

However, there are limitations with Memcheck in the case of reporting bounds
errors while using static arrays or stack allocated data, and thus vulnerable
to stack smashing error in the case, where more than ten characters are
given as input.

void func()

{

char array[10];

gets(array);

}

int main(int argc, char **argv)

{

func();

}

Memcheck cannot handle such errors as shown in figure 1. However, an
experimental tool exp-sgcheck finds stack and global overruns.

In order to develop new heavyweight tools such as Memcheck, the tool
writer or developer is required to understand a technique known as shadow-
ing. This technique is explained in section 5.1 and it is one of the quintessen-
tial requirements for building dynamic-analysis tools.

3 Introduction to analysis approaches

To have a better understanding of analyzing approaches, types of analysis
are discussed. Source analysis is performed on programming language con-
structs and hence this type of analysis is programming language dependent.
Whereas, binary analysis works at the level of machine code, when stored
as object code (pre-linking) or executable code (post-linking) and hence it
is language-independent but architecture-dependent. Many software defects
that cause memory and threading errors can be detected both dynamically
and statically. Depending on when analysis occurs, program analyses can
be categorized into static analysis and dynamic analysis.

6

Figure 1: Memcheck misses stack related errors

Static analysis involves analyzing program’s source code or machine code
without running it. Examples of static analysis include checking for correct-
ness such as type checking, and few static analysis tools can find ways for
optimization and identifying bugs. Tools performing static analysis only
need to read a program in order to analyze it.

Dynamic analysis is evaluation of an application during run-time. Profil-
ers and execution visualizers are examples of dynamic analysis tools. Tools
performing dynamic analysis, instrument the client program with analysis
code. The analysis code may be inserted entirely inline and may also in-
clude external routines called from the inline analysis code. The analysis
code runs as part of program’s normal execution, but does extra work such
as measuring performance and identifying bugs.

Dynamic and Static analyses discussed are complementary because no
single approach can find every error. But, the primary advantage of dynamic
analysis is, it reveals subtle vulnerabilities and defects which are difficult to
discover using static analysis. This topic deals with dynamic binary analy-
sis, i.e analysis of machine code produced at run-time, and dynamic binary

7

instrumentation i.e the technique of instrumenting machine code with anal-
ysis code at run-time.

Lastly, Dynamic Binary Instrumentation (DBI) frameworks support two
ways to represent code and allow instrumentation. These are discussed in
section 4.

3.1 Distinction between Dynamic binary analysis and Dy-
namic Binary Instrumentation

Dynamic binary analysis or DBA is a particular kind of program analysis.
DBA is defined as analyzing the behaviour of client program or executable at
run-time through the injection of instrumentation code [10]. This instru-
mentation code executes as part of normal instruction stream after being
injected. This procedure allows to gain insight into the behaviour and state
of an application at various points in execution.

Dynamic Binary Instrumentation or DBI is a particular instrumen-
tation technique adopted for DBA. Dynamic binary analysis requires client
program or executable to be instrumented with analysis code. The analysis
code can be injected by a program grafted onto the client process, or by
an external process. If the client uses dynamically-linked code the analysis
code must be added after the dynamic linker has done its job. This entire
process also known as Dynamic Binary Instrumentation occurs at run-time.

4 Instrumentation techniques

Considering IA-32 instruction set architecture, instruction set’s length and
compatibility of representing instructions for x86 architecture in other forms
should be known prior to instrumentation. Firstly, x86 instructions with
varying lengths (1 and 15 bytes in length) and branches (using JLE, JGE) are
transformed into an Intermediate Representation(IR), and then neccessary
code is added to this IR to guide instrumentation. There are two ways of
instrumentation

• Disassemble and resynthesise

• Copy and Annotate1

1In depth details are not discussed in this paper.

8

DBI frameworks such as DynamoRIO and PIN use Copy and Annotate to
represent code and instrumentation. In this technique, machine code in-
structions are copied except for necessary control flow changes shown in the
figure 2. Preserving original application instructions is important for du-

Figure 2: Verbatim copy program, generate annotations for analysis

plicating native behaviour, especially for tools that would like to study the
instruction makeup of application. Such instructions are annotated via data
structures (e.g. in DynamoRIO) or an instruction querying API (e.g. Intel’s
Dynamic Binary Instrumentation framework, PIN).

These annotations and APIs are conducive to guide instrumentation.
The added analysis code to the original code is monitored by the tools to
avoid distortion of code. Whereas, Valgrind resorts to low-level instruc-
tion representation. Its code caching systems translate IA-32 to RISC-like
internal representations [5].

4.1 Disassemble and Resynthesize

In this approach, machine code is disassembled and converted into an In-
termediate Representation (IR), in which each instruction becomes one or
more IR operations. This IR is then instrumented (by adding more IR in
some cases) and then converted back to machine code. So, original client
code instructions are discarded and final code is generated purely from IR.
This particular technique is used by Valgrind.

9

The above mentioned details are shown in the figure 3, in which object
code is tranformed or translated into IR in Disassembly. Optimization
procedures are performed on IR in Optimization I for easier instrumenta-
tion. Instrumentation adds analysis code by the tool resulting in Instru-
mented IR. Instrumented IR is optimized in Optimization II resulting in
Optimized Instrumented IR. Conversion of the previous IR into machine
instructions takes place in Assembly, stored in cache and later executed.

Figure 3: Object code → Code cache

4.1.1 Translating single code block

Valgrind uses disassemble and resynthesise as described in previous section.
Valgrind’s IR blocks are superblocks, which are also attributed as single-
entry-multiple-exits code blocks, in which, each IR block contains a list
of statements, which are operations with side-effects such as register writes,
memory stores, and assignment to temporaries (t0 to t84) shown in figure 4.

Valgrind itself runs on the machine’s real or host CPU, and runs a client
program or executable under analysis on a simulated or guest CPU. In gen-
eral, executable requires access to CPU’s registers. We refer to the registers
in the host CPU as host registers and those of simulated CPU as guest regis-
ters. Due to dynamic binary recompilation process, a guest register’s value
may reside in one of the host’s registers, or it may be spilled to memory for
a variety of reasons. Shadow registers are shadows of guest registers.

Valgrind provides a block of memory per client thread called as Thread-
State. Each one contains space for all thread’s guest and shadow registers.
Each ThreadState contains space for all thread’s guest and shadow registers
and is used to hold them at various times, in particular between each code

10

block (which will be defined shortly). These statements also contain ex-
pressions without any side effects such as constants, register reads, memory
loads, and arithmetic operations.

As an example, a store statement contains one expression for the store
address and another for the store value. The IR has constructs similar to
that of RISC, such as load/store, where each operation does perform only
on temporaries, as shown in figure 4 The IR is architecture-independent. To

Figure 4: Disassembly: machine code to treeIR

create a translation of a single code block, Valgrind follows until one of the
following conditions is met.

1. An instruction limit is reached. approximtely 50.

2. A conditional branch is hit.

3. A branch to an unknown target is hit.

4. More than three unconditional branches to known targets have been
hit.

11

Valgrind’s core is split into two: coregrind and VEX. There are eight
translation phases which are performed by the Valgrind’s VEX which is
responsible for dynamic code translation and for calling tools’ hooks for IR
instrumentation. While instrumentation is performed by the tool. Coregrind
is responsible for dispatching, scheduling, block cache management, symbol
name demangling. These phases are explained not in great detail but it is
rather tried to expound some of them as follows,

1. Disassembly: machine code → tree IR. The disassembler converts
machine-dependent code into (unoptimised) tree IR [13]. Each instruc-
tion is disassembled into one or more statements. These statements
update the guest registers residing in valgrind memory: guest registers
are pulled out from the ThreadState into temporaries, operated on
and then written back.

From the figure 4, statements starting with IMark indicate no-ops just
to indicate where an instruction started, holding arguments where an
instruction started, its address and length in bytes. These are used
by the profiling tools to check the instruction boundaries. GET:I32

fetches a 32-bit integer guest register from the ThreadState which
takes offsets as arguments (for eg: GET:I32(360) or GET:I32(28))
360, 28 for guest registers, %edx and %ebp.

To sum up details in this phase, machine-independent code is trans-
lated into VEX’s machine independent IR. The IR is based on single-
static-assignment (SSA) form, and has some RISC-like features. Most
instructions get disassembled into several IR opcodes.

2. Optimisation 1: treeIR → flatIR. This optimisation phase flattens the
IR i.e, redundant get and put operations are eliminated. Since, the
figure 4 shows post instrumentation code, this intermediate optimisa-
tion phase involves complex expression tree flattened into one or more
assignments to temporaries.

3. Instrumentation: flatIR → flatIR. The code block is then passed
to the tool, which can transform it arbitrarly [11], which is con-
ducive for instrumentation by a shadow value tool. Shadow opera-
tions are larger than their original counterpart operations as shown in
figure 4, where DIRTY t44 RdFX-gst(24,4) RdFX-gst(68,4),t46 =
CmpNEZ32(0x0 : I32) in which DIRTY and RdFX annotations indi-

12

cate that some registers are read from the ThreadState by the func-
tion and the address of the called function being 0x38026830.

To sum up details in this phase, VEX calls the Valgrind tool’s hooks
to instrument the code.

4. Optimisation 2: flatIR → flatIR. Constant folding, deadcode removal,
copy propagation, common sub-expression elimination performed in
this phase [11].

5. Tree building: flatIR→ treeIR. A tree builder converts flatIR to treeIR
in preparation for instruction selection in the next phase. The resulting
code may perform loads in a different order to the original code.

6. Instruction selection: treeIR → instruction list. The instruction se-
lector converts the tree IR into a list of instructions which use virtual
registers. The instruction selector uses a simple top-down tree match-
ing algorithm.

7. Register allocation: instruction list → instruction list. The linear scan
register allocator, replaces virtual registers with host registers. The
register allocator can remove many register-to-register moves. This
can be observed while debugging the core using the option –trace-
flags=<8-bit wide bitmask> along with –trace-notbelow=10 where
bitmask value takes 00000010.

In short, register allocation allocates real host registers to virtual regis-
ters, using a linear scan algorithm. This can create additional instruc-
tions for register spills and reloads (especially in register-constrained
architectures like x86.)

8. Assembly: instruction list → machine code. The final assembly phase
encodes the selected instructions and writes them to a block of mem-
ory.

At the end of each block, VEX saves all guest registers to memory, so that
the translation of each block is independent of the others.

13

4.1.2 Block Management

Blocks are produced by VEX, but are cached and executed by coregrind.
Each block of code is actually a superblock or IRSB shown in figure 4 (single-
entry and multiple-exit) [6]. Translated blocks are stored by coregrind in a
big translation table (that has a little less than 420,000 useful entries), so it
gets rarely full. The table is partitioned in eight sectors. When it gets 80%
full, all the blocks in sector are flushed. The sectors are managed in FIFO
order. A comprehensive study of block cache management can be found in
[7].

4.1.3 Block execution

Blocks are executed through coregrind’s dispatcher, a small hand-written
assembly loop (12 instructions on Ubuntu linux platform). Each block re-
turns to the dispatcher loop at the end of its execution and there is no block
chaining. The dispatcher lookups for blocks in a cache with 215 entries. The
cache has hit-rate approximately 98% as stated by the author in the paper
[12]. When the cache lookup fails, the dispatcher fallsback to a slower rou-
tine written in C to lookup the translated block in the translation table, or
to translate the block if it is not in the table.

From the concepts of pre-emptive multitasking, where processor time is
divided among the threads that need it, the valgrind’s dispatcher is also
responsible for checking if the thread’s timeslice ended. When the timeslice
ends, the dispatcher relinquishes the control back to the scheduler.

4.1.4 Understanding Valgrind’s Core

Valgrind is compiled into a linux shared object, valgrind.so. The valgrind
shell script adds valgrind.so to the LD PRELOAD list of extra libraries to be
loaded with any dynamically linked library.

valgrind.so is linked with the -z initfirst flag, which requests that
its initialization code is run before that of any other object in the executable
image. Upon achieving this, valgrind gains control and the real CPU be-
comes trapped in valgrind.so. The synthetic CPU provided by valgrind
does, however return from this initialization function. So the normal startup
actions, orchestrated by ld.so (dynamic-linker), continues as usual, except
on the synthetic CPU and not on the real CPU. Eventually, main is run and

14

returns, and then the finalization code of the shared objects is run, in inverse
order to which they were initialized. Later, valgrind.so’s own finalization
code is called. It spots this event, shuts down the simulated CPU, prints
any error summaries and/or does the leak detection, and returns the initial-
ization code on the real CPU. At this point, valgrind has lost the control
over the program and the program finally exit()s back to the kernel.

The normal activity, once the valgrind has started up, is as follows.
Valgrind never runs any part of the program (also referred to as client) di-
rectly. Instead it uses function VG (translate) to translate basic blocks
(BBs, straight-line sequences of code) into instrumented translations and
those are run instead. The translations are stored in a Translation cache
(TC), vg tc. The translation table (TT), vg tt supplies the original-to-
translation code address mapping. Auxillary array VG (tt fast) is used as
a direct-map cache (shown in figure 5) for fast lookups in TT. This auxillary
array achieves a hit rate of around 98% [12].

Figure 5: Auxillary mapped cache updated for every access of translation block.
Also updated with the address of new translation when created.

15

Function VG (disp run translations) in dispatch-x86-linux.S (for
x86/Linux) is the heart of JIT dispatcher. Once a translated code ad-
dress has been found, it is executed simply by an x86 call to the trans-
lation. At the end of the translation, the next original code address is
loaded into %eax, and the translation then does a ret, taking it back to
the dispatch loop. The address requested in %eax is looked up first in
VG (tt fast) by the dispatcher, and if not found, a helper function writ-
ten in C, VG (search transtab) is called. In case, if the translation is not
available (i.e if VG (search transtab) returns false), control goes back to
the top-level C dispatcher VG (toploop) (not shown in the figure), which
arranges for VG (translate) to make a new translation.

So far, overview about the VG (translate) and VG (disp run translations)

is discussed in this paper. Some details are further illustrated in the manual[8],
which is not updated. coregrind/m scheduler/scheduler.c contains more
accurate details of valgrind’s dispatcher and scheduler.

4.1.5 Conceptual view of client

As mentioned earlier in ealier sections, Valgrind uses dynamic binary com-
pilation and caching. Valgrind grafts itself into the client process at start-up
and then recompiles client’s code, one basic block (a basic block ends upon
any control transfer instruction) at a time, in a just in time, execution-driven
fashion. The compilation process involves disassembling the machine code
into an intermediate representation (IR) which is instrumented with a skin
or tool plug-in and then converted back into x86 code [10]. The result is
called translation and stored in a code cache to be rerun as necessary. The
core of valgrind spends most of its execution time making, finding, and run-
ning translations.

Figure 6 gives a conceptual view of normal program or client execution.
The client can directly interact and access the user-level parts of the machine
(e.g general purpose registers). The client can access the system-level parts
of the machine through operating system calls or system calls.

Whereas figure 7 shows how this changes when a program is run under
the control of a valgrind tool. The client and tool are part of the same
process, but the tool mediates everything the client does, having complete
control over the client.

Since valgrind is execution driven, executable code, dynamically linked
libraries, dynamically generated code are handled well. System calls such

16

Figure 6: Conceptual view of client under normal execution

Figure 7: Conceptual view of client when run on VM

as ioctl, write, recv are not under valgrind’s control and are performed
on real CPU, but indirectly observed. The core of valgrind takes following
steps in the case of a system call emanating from the client.

1. Save valgrind’s stack pointer.

2. Copy the simulated registers, except the program counter, into the
real registers.

3. Do the system call.

4. Copy the simulated registers back out to memory, except the program
counter.

5. Restore valgrind’s stack pointer.

From practical observations and to conclude this section, the D&R ap-
proach may require more implementation effort as it is very complex. Also,
generating a good code at the end requires more development effort. Val-
grind’s Just In Time (JIT) compiler uses a lot of conventional compiler [11]
technology and Valgrind’s Disassemble and resynthesize JIT compiler con-
sumes considerable time to compile the code slowly due to the reason of
dynamic recompilation.

17

4.2 Copy and Anotate

Copy and Annotate can be understood by taking an example into consid-
eration. One such frameworks that adhere to this category is DynamoRIO.
DynamoRIO copies application code into its code cache in units of basic
blocks(as shown in figure 8), which are sequences of instructions ending
with a single control transfer instruction (conditional JLE, JGE, JE etc.
or unconditional JMP). Similarly, DynamoRIO considers each entry point
to begin a new basic block and follows until it reaches a control transfer
instruction. DynamoRIO executes the application code by transferring the
control to corresponding basic block in code cache [3] as shown in figure 9.
A block that directly targets another block already resident in the cache is
linked to that block to avoid the cost of returning to the DynamoRIO dis-
patcher. After the execution of each block, the application’s machine state
is saved and control is returned to DynamoRIO’s context-switch to copy the
next basic block.

Figure 8: An example basic block consisting of three IA-32 instructions: an add,
a compare, and a conditional direct branch

Frequently executed sequences of basic blocks are combined into traces
[2], which are placed in a separate code cache. DynamoRIO makes these
traces available via its interface for convenient access to hot application code
streams.

Figure 10 shows a basic block inside DynamoRIO’s code cache. Each
exit from a basic block has its own stub. When the basic block is not linked
to another block, control goes to the stub, which records a pointer to a stub
specific data structure which helps DynamoRIO to determine which exit was
taken.

18

Figure 9: DynamoRIO system infrastructure: Dark shading indicates
application code. Note that the context switch is simply between the
code cache and DynamoRIO

Figure 10: An example basic block containing multiple exits

5 Requirements of dynamic binary analysis tools

Before explaining the requirements, we consider the previously introduced
tool, Memcheck, built using Valgrind. Memcheck is memory error detec-
tor which was primarily designed for use with C/C++ programs. When
an executable is run under Memcheck, this tool instruments almost every
operation and issues messages about detected memory errors. Memcheck
maintains three kinds [11] of data about the running executable.

1. A Bits. Every memory byte is shadowed with a single A bit or address-
ability bit, which indicates if the executable or client can legitimately
access it. A value 0 indicates unaddressable byte, a 1 represents an
addressable byte. These bits are updated as memory is allocated and

19

freed. Additionally, checked upon every memory access. With these
addressability bits [11], Memcheck can detect use of unaddressable
memory such as heap buffer overflows and wild reads/writes.

2. V Bits. Every register and memory byte is shadowed with eight validity
bits or V bits, which indicate if the value bits are defined. Every value
writing operation is shadowed with another operation that updates the
respective shadow values. Memcheck uses the V bits to detect uses of
undefined values with bit level granularity.

3. Heap blocks. Repeated frees of heap blocks are handled by record-
ing the location of every live heap block in a hash table. With this
information, Memcheck handles such errors.

5.1 Requirements: Shadow value tools and shadow compu-
tation

Dynamic binary analysis tools use shadow memory, that is, those tools that
track or shadow every byte of memory used by the executable, with a shadow
memory value, that describes a value within the memory location. In other
words it is also known as metadata. This metadata describes whether ac-
cesses are from trusted source or it may describe the number of accesses to
the memory location itself. Such tools are called shadow memory tools [11].

The analysis code while instrumentation, added by the tool such as Mem-
check, updates the shadow memory in response to memory accesses. This
shadow memory is useful and lets a tool to track or store the history of
every memory location along with the value present in it. For instance,
Memcheck, remembers or tracks the allocation and de-allocation operations
that have affected memory location and detect accesses of un-addressable
memory locations. Using Undefined or uninitialized values are also detected.

From the above description, it is intuitive that large amounts of extra
state must be maintained, that is, one shadow byte per byte of original
memory. All operations that affect large regions of memory, such as alloca-
tions and de-allocations either on heap, stack or through system calls such
as mmap are instrumented in order to keep the shadow memory up-to-date.
Such requirements increases the total amount of code that is run, increase
a program’s memory footprint and slow down memory accesses. Shadow
memory tools thus slow down the programs by a factor of 10-100.

20

6 Conclusion

Valgrind’s use of D&R can make simple tools more difficult to write than
in C&A frameworks. A tool that traces or tracks memory accesses would
be about 30 lines of code [11] using Pin framework and 100 in valgrind.
Dr.Memory, a memory checker built using DynamoRIO is twice as fast
as Memcheck on average and upto four times faster on individual bench-
marks [4].

The ongoing task of porting these tools for other architectures x86/Mac
OS X and x86/FreeBSD are available as experimental tools. The challenge
of porting these tools to a new architecture requires writing new code for
JIT compiler, such as an instruction encoder and decoder. Whereas another
challenge of porting these tools to a new OS requires new code for handling
details such as signals, address space manager and new system call wrappers
to be written.

References

[1] Wan-Teh Chang Adam Langley. Openssl vulnerabilities, common vul-
nerabilities and exposures.

[2] Derek Bruening. Efficient, transparent, and comprehensive runtime
code manipulation, 2004. PhD thesis, MIT, The address of the pub-
lisher, 9 2004. An optional note.

[3] Derek Bruening and Saman Amarasinghe. Maintaining consistency and
bounding capacity of software code caches. In Proceedings of the Inter-
national Symposium on Code Generation and Optimization, CGO ’05,
pages 74–85, Washington, DC, USA, 2005. IEEE Computer Society.

[4] Derek Bruening and Qin Zhao. Practical memory checking with dr.
memory. In The International Symposium on Code Generation and
Optimization, Chamonix, France, Apr 2011.

[5] Derek Lane Bruening. Efficient, transparent, and comprehensive run-
time code manipulation. PhD thesis, Massachusetts Institute of Tech-
nology, 2004.

[6] Filipe Cabecinhas, Nuno Lopes, R Crisotomo, and Luıs Veiga. Opti-
mizing binary code produced by valgrind. Technical report, Citeseer,
2008.

21

[7] Kim Hazelwood Cettei. Code cache management in dynamic opti-
mization systems. PhD thesis, Harvard University Cambridge, Mas-
sachusetts, 2004.

[8] Nicholas Nethercote Julian Seward. Valgrind Documentation. Valgrind
Developers.

[9] Aleksander Morgado. Understanding valgrind memory leak reports.

[10] Nicholas Nethercote. Dynamic Binary Analysis and Instrumentation.
PhD thesis, Computer Laboratory, University of Cambridge, United
Kingdom, November 2004.

[11] Nicholas Nethercote and Julian Seward. How to shadow every byte of
memory used by a program. In Proceedings of the 3rd International
Conference on Virtual Execution Environments, VEE ’07, pages 65–74,
New York, NY, USA, 2007. ACM.

[12] Nicholas Nethercote and Julian Seward. Valgrind: a framework for
heavyweight dynamic binary instrumentation. In ACM Sigplan Notices,
volume 42, pages 89–100. ACM, 2007.

[13] Aaron Pohle. Aufgabenstellung für die diplomarbeit: L4/valgrind: Dy-
namic binary analysis on l4. Diplomarbeit, Technische Universität Dres-
den.

22

