
Mitigating 0-days through Heap Techniques - An Empirical Study

Lucas McDaniel
University of Alaska Fairbanks

lamcdaniel@alaska.edu

Kara Nance
University of Alaska Fairbanks

klnance@alaska.edu

Abstract

Securing public-facing services is a challenging

task for all types of users and even best practices might
not be sufficient at stopping attackers with an 0-day. It
is often the case that when a new vulnerability is
discovered, there is a race between attackers to exploit
the vulnerability, and system administrators to patch
the system in a manner that does not break existing
functionality nor induce an unnecessary amount of
downtime. For individuals hosting publicly accessible
services such as a website or data storage, this race
greatly favors the attacker as the average system
administrator may not be aware of the need to update
a system until days or even weeks after proof-of-
concept exploits are made publicly available.

In this paper we conduct exploratory research into
techniques that can hinder the successful exploitation
of a service with minimal impact on the system. While
these techniques do not prevent a 0-day from
exploiting the service in all cases, it can be used to
defend a system against some types of bugs and
against some types of techniques used by exploit
developers. The ultimate goal of this research is to
present methods that may prove to be successful at
buying an individual time before it is necessary to
patch the system by bypassing the initial round of
exploits. We conclude this paper by demonstrating the
potential of these methods on several modern systems
including some with publicly available exploits.

Keywords: Attack mitigation, attack prevention,
computer security.

1. Introduction

Securing computer systems from attackers is an
increasingly challenging task for not only large
corporations, but also individuals. In recent years, it
has become remarkably simple for users without any
technological background or understanding, to set up
systems that were previously inaccessible to them.
With only a few clicks on Amazon’s AWS

Marketplace [1], users can deploy their very own VMs
serving as blog, email stack, VPN server, or even a
cloud storage node without ever considering any
technical details or security issues that may arise. The
result is that many of the users are unaware of proper
techniques to secure their environments, methods to
detect a successful attack, and how to recover after
such an attack.

While reducing the burden required to setup
common types of services through the use of existing
software is convenient, it also comes with intrinsic
weaknesses: untold numbers of homogeneous
systems. A single vulnerability in a common service
can now affect a myriad of users, such as the recent
Drupal SQL injection vulnerability that affected
approximately 12 million sites [2]. This environment
is a dream for an attacker with one such exploit as the
exploit can be used with a high-degree of reliability
across all vulnerable sites. Even better still, the users
in charge of the maintenance of these sites will often
not patch their systems in a reasonable timeframe thus
giving the attacker ample opportunities for success.

Having a large number of homogeneous systems
isn’t inherently bad; it simply means that when
something goes wrong an attacker has the advantage,
especially over users that are not security-conscious.
However, it also means that there are known lists of
minor tasks that individuals need to do in order to
secure their environments such as setting good
passwords, keeping packages updated, using encrypted
channels when accessing administrative capabilities,
etc. Provided users follow the best practices for
securing their systems, they will be awarded with
“good-enough” security.

In this context, good-enough security is a loosely
defined concept that means the system is secure against
most common types of attacks. Unlike corporations
and governments that are actively concerned that they
are the targets of an Advanced Persistent Threat (APT),
individuals can get away with less-stringent security
requirements placed on their systems. Their primary
security concern is in ensuring (or, rather, hoping) that
their services will get passed over by an attacker who

2016 49th Hawaii International Conference on System Sciences

1530-1605/16 $31.00 © 2016 IEEE

DOI 10.1109/HICSS.2016.689

5568

2016 49th Hawaii International Conference on System Sciences

1530-1605/16 $31.00 © 2016 IEEE

DOI 10.1109/HICSS.2016.689

5569

has access to an 0-day as they don’t need or require
perfect security for their day-to-day operations.

In this paper, we present a simple technique that can
offer such a result against a class of vulnerabilities and
exploits. Just as changing user credentials and
updating packages in a timely manner are widely
accepted to be successful at preventing a variety of
attacks, we propose minor modifications to system
libraries that result in an altering the heap layout can
also offer significant preventative capabilities at little
cost. These changes aren’t designed to anticipate and
prevent an exploit from happening, but instead reduce
the effectiveness of an attack in hopes that the attacker
will simply pass over the service instead of pursuing it
further.

In the following sections of this paper, we will
provide an overview of heap memory, discuss the
history of heap overflows and modern techniques,
motivate how modifications to the heap layout can
prevent successful exploitation, and conclude with
empirical analysis of its effectiveness at hindering
recent exploits.

2. Heap Memory Overview

Before digging too deeply into these topics, it is
useful to review at a high-level what heap memory is,
how it’s different from other types of memory (e.g., the
stack), and its standard usage within C-style languages.
Loosely put, the heap contains all memory whose size
is not known at compile time. Any time a program
needs to handle strings that can be of arbitrary size or
lists with arbitrary numbers of elements, it is likely that
this data is stored in the heap. The heap also contains
data that needs to be stored and referenced at a later
time as once data is created in the heap it will exist
until the space is freed. This also means that the
software developer is responsible for requesting and
freeing memory, as well as ensuring appropriate
operations are done on this memory as this is not
automatically managed for them. If done improperly,
this can be the source of software vulnerabilities.

This differs from the stack where the space for the
data is only allocated until the function that created it
returns, which makes it ideally suited for storing local
or temporary values. Because the amount of stack
memory needed by each function is known at compile
time, the layout of the stack is predictable at any point
during the execution as shown in Figure 1. In this
figure, the buffers are local data and the function
header includes function parameters, saved stack
pointer, etc. The image shows the initial stack layout
in Function 1, the layout when Function 2 is called,
and finally the layout when Function 2 returns. This

figure demonstrates that offsets between values stored
on the stack can be determined in advance, or at least
exist within some guessable/predictable range. The
stack is also used to store register values, pass
parameters, store return addresses, and more,
depending on the calling convention being used.

Figure 1: Simplified stack layout.

While the layout of the stack can generally be

determined by simply looking at the current stack
trace, the layout of the heap cannot. As memory is
requested and freed, empty blocks of memory can be
reused if they are larger than the newly requested size.
Depending on the flow of execution and the size of the
data requested during execution, the heap can change
significantly as shown in Figure 2. The buffers are
heap allocated memory with the first step showing the
layout prior to a variable sized buffer allocation. The
second step shows the resulting layout if the new
buffer is 50 bytes, and the third step shows the layout if
instead the new buffer is 150 bytes. It is clear that the
heap structure is dependent on the buffer size, which is
not generally predictable.

Figure 2: Simplified heap layout.

3. History of Heap Memory Exploitation

Not all software vulnerabilities are made equally,
and even seemingly identical vulnerabilities may not
all be exploitable when the context of the rest of the
system is considered. Exploit development largely

55695570

focuses around finding commonalities within
vulnerabilities (i.e., to form classes of vulnerabilities)
with the ultimate goal of finding out how those with
these commonalities can be reliably exploited. By
identifying the minimum requirements that must be
met by the vulnerability, exploitation techniques can be
developed independently from the vulnerability and
research into developing new techniques can be
conducted without having any specific target or usage
in mind. Occasionally, new techniques are created that
allow for the successful exploitation of a class of
vulnerabilities that were previously not exploitable [3].

In the 1990s and earlier, stack smashing was one
such commonly used technique. The ingredients for
successful exploitation were simply a buffer overflow
on the stack of sufficient size and controllable data.
This allowed an attacker to overwrite the current return
address to call shell code that was also stored on the
stack. Shortly after the seminal publication of
Smashing The Stack For Fun and Profit – an article on
the cutting edge of research for such techniques at the
time – in 1996 [4], modifications were made to
compilers to prevent the effectiveness of these
exploitation techniques [5]. While the techniques
described in that paper are no longer useful in
exploiting most modern systems, it still serves as a
practical example of how analyzing the necessary
requirements for exploitability can be done
independent of the vulnerability being exploited. This
trend for research is still very prominent even today.

These new stack buffer overflow detection and
prevention techniques forced exploit developers to
identify new methods for exploiting a vulnerability.
One common venue for attack was the heap memory
allocator used by glibc called dlmalloc or Doug Lea
Malloc after its primary developer [6]. By storing
memory management information in-band (i.e., within
the heap next to the memory it is managing), dlmalloc
was ideally suited for portability purposes but also for
exploitation. This meant that any heap buffer overflow
of sufficient size and controllable data would be able to
overwrite part of the malloc chunk structure, which
would be exploitable through techniques described in
articles such as Vudo malloc tricks [7], Once upon a
free() [8], and Advanced Doug Lea's malloc exploits
[9].

As with before, once tricks and techniques became
available to ease exploitation, defensive
countermeasures were introduced to limit their effects.
Addressing existing limitations in dlmalloc’s ability to
verify the link chain in the malloc chunks was
sufficient to prevent successful execution of many of
the techniques described in the previous articles.
Another article was released some time after titled
Malloc Maleficarum [10], which sought to find

weaknesses in these prevention methods, but as the
name may imply these new techniques were largely
esoteric and didn’t gain the wide spread adoption that
previous efforts had received.

4. Current Techniques

This is not to say that modern techniques no longer
build on the work done by previous exploit developer
research, nor that esoteric techniques are not important
to modern applications. A recent publication titled
Malloc Des-Maleficarum [11] took the theoretical
nature of its predecessor and offered practical
examples for its use. Similarly, a recent article by
Google’s Project Zero demonstrated how a single null
byte overwrite could lead to privilege escalation on a
target system [12]. However, while there is certainly
still work being done to observe weaknesses in heap
memory structure protections – just as there is still
work done to find similar weaknesses in stack buffer
overflow detections – common areas of research focus
on abusing other aspects of an executable.

Recent work has demonstrated the effectiveness of
code-reuse style attacks against a program of sufficient
size. Given the attacker’ ability to alter the flow of
control through a single jump, call, or return
instruction, it is possible that he can execute a section
of existing code with different parameters that will
perform a malicious action. Given an overflow of
some kind, this operation is possible by overwriting a
function pointer stored somewhere in writeable
memory, so that when the program attempts to call the
intended function, it instead calls the attacker-
controlled address. The full exploit is normally not
done through a single call, but rather a single call to a
specific section of code – referred to as a stack pivot
for Return-Oriented Programming (ROP) or dispatcher
gadget for Jump-Oriented Programming (JOP) – that
enables sequences of other calls to be performed in an
attacker controlled method [13] [14]. When the
programming is utilizing libc, this style of technique
has even been shown to be Turing complete [15]!

5. Breaking the Exploit

The goal of this paper and the research project it is
covering is to demonstrate the effectiveness of a minor
modification to glibc at hardening a system against an
exploit. While the exploit techniques being targeted
with this effort are those based on heap overflows that
primarily lead towards ROP and JOP capabilities, the
same modification may also affect other styles of
attacks as well. It should be noted that this effort
would NOT remove a vulnerability from a system nor

55705571

make an exploit against it impossible. Instead the goal
is to identify common assumptions made by exploit
developers, and create modifications that invalidate
these assumptions.

When building an exploit, it is common to have a
specific target system in mind and build the attack
accordingly. In some cases this is done because the
vulnerability only exists on a very specific type of
system, or because the exploit may need to be altered
in significant ways given the characteristics of a
specific target. For instance, minor changes to the
source code can result in minor changes to the offsets
of functions in the resulting binary. Initially, an
attacker might identify an appropriate set of commands
for a stack pivot or a dispatcher gadget. He will then
determine what offset in the binary these commands
are located at given the version of the binary on the
target system. An incorrect guess here may result in no
discernable effect on the system, or may result in a
crash instead of the intended arbitrary code execution.
Offsets, relative locations, and base addresses of the
executable, shared libraries, heap, and the stack are all
values that may need to be known or computed
depending on the nature of the bug and the exploitation
technique being used against it.

Offsets for the location of functions in both the
executable and shared libraries are hard to alter
dynamically, but other offsets such as those in the heap
are easier. Given an overflow that allows for both
reads and writes of data, it is common to attempt to
read pointers to the heap, stack or functions that can be
found at predetermined offsets in order to bypass
address randomization. However, when slight changes
are made to these offsets, it is possible that the exploit
code will be written in such a way that it is unable to
find the values necessary to bypass address
randomization even if it is still theoretically possible
for them to do so. By making minor changes to the
heap layout, we can effectively invalidate many of the
assumptions made by exploit developers regarding the
locations of needed information and potentially
weaken the effectiveness of the exploit code.

For this exploratory research, we have chosen to
make the following single line modification to gibc:

 2908 void*
 2909 public_mALLOc(size_t bytes)
 2910 {
 2911 mstate ar_ptr;
 2912 void *victim;
 2913
 2914 __malloc_ptr_t (*hook) (size_t,

__const __malloc_ptr_t)
 2915 = force_reg (__malloc_hook);

Excerpt from unmodified malloc/malloc.c in version

2.15 of glibc (Ubuntu 12.04 default).

 2908 void*
 2909 public_mALLOc(size_t bytes)
 2910 {
 2911 mstate ar_ptr;
 2912 void *victim;
 2913 bytes += 16;
 2914 __malloc_ptr_t (*hook) (size_t,

__const __malloc_ptr_t)
 2915 = force_reg (__malloc_hook);

Excerpt from modified malloc/malloc.c in version

2.15 of glibc (Ubuntu 12.04 default).

This single line change means that all malloc
requests are increased by 16 bytes and then processed
as normal. By making this simple modification, the
relative layout and offsets of data in the heap are
altered in ways that may not be anticipated by exploit
developers and potentially reducing what would
normally be remote code execution attacks into denial
of service attacks through crashes in services.

This modification will change the layout of memory
in two ways: small spaces between consecutive
structures in memory, and changes in relative layout as
show in Figures 3 and 4. The first step in figure 3
shows the initial layout of heap memory, which
consists of 4 buffers each of 50 bytes. Step 2 involves
the middle buffers – Buffer 2 and Buffer 3 – being
freed under standard operation. Step 3 has the program
requesting a new buffer of 110 bytes. Because this
buffer is larger than the previous freed area, it must be
alloc’d somewhere else.

Figure 3: Simplified heap layout running the

unmodified version of libc.

55715572

Figure 4: Simplified heap layout running the

modified version of libc.

In figure 4, the first step shows the initial layout of

heap memory, which consists of 4 buffers each of 50
bytes. Since the modifications made to libc will
append 16 bytes onto each buffer, their resulting size is
66 bytes. Step 2 involves the middle buffers – Buffer 2
and Buffer 3 – being freed under standard operation,
which now creates 132 bytes of free space. Step 3 has
the program requesting a new buffer of 110 bytes.
This request will result in 126 bytes being alloc’d in
the previous free space with a very small section of
free space remaining after. In this example, Buffer 4
and Buffer 5 are no longer in the same relative order as
they were under execution of the unmodified version
of libc.

As shown above offsets between neighboring
structures will increase by 16 bytes making exploits
with predetermined hardcoded offsets ineffective.
Given standard operations of mallocing and freeing
data, it is possible that relative layouts are also changed
given free space is no longer large enough to fit newly
requested data within, as shown in the above figures.
This means that if a certain buffer in the heap could
only be overflowed in one direction (e.g, Buffer 4
expects Buffer 5 to be immediately after it, as it can
only overflow in that direction), it is possible that the
vulnerability is no longer exploitable at least in the
same general fashion. Note that in both of these
images, malloc header data is not shown in order to
simplify the image.

6. Empirical Results

In order to test the efficacy of this technique at

altering heap structures, we have performed various
comparisons between the execution of the program
with unmodified and modified libraries. The first set
of tests consisted of running several common
commands to determine changes within the heap

between executions. The second set of tests involved
setting up vulnerable versions of applications and
testing public exploits against these applications first
with the original version of glibc and then with the
modified version replaced system wide.

6.1 Evaluating Heap Changes

A script was written that runs a program with both

versions of glibc in order to log changes in the heap.
The different versions of glibc were loaded using
LD_PRELOAD and a second wrapper library was also
loaded at this time to log calls to malloc and free. This
wrapper library was used to determine the state of the
heap at each point during execution. While this is not
a comprehensive method of identifying the allocation
of memory within the heap, it serves as an appropriate
approach for the tests. Each program was executed
multiple times to ensure that ASLR was disabled and
execution was deterministic.

The heap state after the last malloc during program
execution was used to compare the differences between
the libraries. This analysis relied on the fact that the
programs being tested were deterministic in nature so
that the orders of malloc calls could be used to
uniquely identify identical buffers in memory (i.e., the
first call to malloc for both version of the library create
buffers for the same logical variable, the second also
creates the next logical variable and so forth). This
provides the means for analyzing differences in the
heap by tracking the order of calls.

Three statistics were recorded for each program
execution: average change in heap offset from the start
of the heap, standard deviation of these offsets, and
percentage of buffers no longer in relative order. The
changes in heap offset were determined by calculating
the difference between the given buffer and the first
buffer malloc’d. Since it is common for exploits to
identify the base of a memory region and calculate
offsets from that base, this is indicative of how far off
hardcoded values might be, on average. The third
statistic served as an estimate for the number of buffers
that were out of place. This was calculated by taking a
given buffer and counting the number of other buffers
that came before (or after) it in memory when running
the unmodified glibc, but now came after (or before) it
when running the modified glibc. These numbers were
averaged across all buffers after eliminating cases of
double counting. Table 1 shows these statistics for a
selection of common bash utilities.

Figures 5 – 12 show the heap layout of the same
program when ran with both versions of glibc. The top
level is the heap with the unmodified version of glibc,
and the bottom level is with the modified version.

55725573

Program Name Buffers in Heap Average Offset Standard Deviation Positional Changes
/usr/bin/stat 152 1270. 1531.11 0.64%
/bin/df 165 1406.0 2292.14 2.35%
/usr/bin/w 109 2464.0 17317.40 1.07%
/usr/bin/find 82 1046.0 1793.75 0.51%
/bin/ls 60 456.0 6030.25 0.12%
/sbin/fdisk 66 665.0 968.61 0.21%
/bin/uname 31 240.0 279.43 0.00%
/usr/bin/nm 14 442.0 1231.29 0.07%
Table 1: This table shows statistics regarding the differences between the heaps immediately after the last malloc.

Figure 5: Heap memory of /usr/bin/stat

Figure 6: Heap memory of /bin/df

Figure 7: Heap memory of /usr/bin/w

Figure 8: Heap memory of /usr/bin/find

Figure 9: Heap memory of /bin/ls

Figure 10: Heap memory of /sbin/fdisk

Figure 11: Heap memory of /bin/uname

Figure 12: Heap memory of /usr/bin/nm

Buffers are colored on a uniform spectrum starting
from red, which means that buffers in the red spectrum
are allocated first and the buffers in the purple-red
spectrum are allocated last. Buffers that are the same
color represent the same logical variable in memory,
and white spaces between buffers represent unused
space or malloc header data. The width of the buffers
and whitespace is the logarithm of the buffer size.

Observing Figure 13 – the memory layout for
/usr/bin/nm – we see that buffers are the same size with
slight increases in the spacing between buffers. This is
due to the fact that we are adding 16 bytes to each
buffer thereby increasing the size of unused regions in

the heap. However, under standard operations of
mallocs and frees, we see that differing amounts of
space was empty between executions thereby allowing
the buffers to be allocated at different addresses.

Figure 13: Zoomed heap memory of /usr/bin/nm

55735574

 This confirms the theoretical notion that reordering
of buffers is possible through this modification to
glibc.

6.2 Evaluating Exploits

Several exploits were tested against vulnerable

applications to determine if the modifications to glibc
prevented the exploit from succeeding. For each case,
the system was confirmed to be vulnerable by a
common public exploit prior to glibc being replaced
system-wide. While the number of exploits tested is
far from a comprehensive list, we include a brief
analysis of some high profile exploits to demonstrate
the efficacy against modern attacks.

CVE-2015-0240 is vulnerability against Samba that
allows for unauthenticated remote root. This
vulnerability was first reported February 23, 2015 with
public exploits available as early as February 28, 2015.
Given the pervasiveness of the service, the criticality of
the vulnerability, and the nature of the vulnerability –
freeing uninitialized and controllable heap memory – it
was ideally suited to test the exploit against the
modified glibc.

Several different proof of concept (POC) of the
exploit were tested against Samba running on Ubuntu
12.04, and none were still able to successfully gain
root access against the target after replacing glibc. (In
fact, none of the examples tested appear to have caused
any adverse affects to the system such as crashes or
instability although this aspect was not thoroughly
tested.) One of the better-documented POCs was
analyzed, and it appears to have failed due to a logic
error when the exploit is unable to find a specific
buffer in the heap in order to identify the heap’s base
address (line 392) [16]. This means that, had a
vulnerable Samba server been using the modified
glibc, while it may have still been exploitable, none of
the tested POCs would have succeeded.

CVE-2014-5119 is vulnerability against glibc
popularized by Google’s Project Zero. First reported
on July 14, 2014, it was not until August 25, 2014 that
a public exploit was released showcasing a local
privilege escalation through a poisoned NUL byte in
pkexec. Again, given the high-profile nature of this
bug, it was also ideally suited for testing.

The most recent version of Google’s POC was
tested against pkexec running on a Fedora 20 32-bit
desktop. Minor changes to the POC’s profiling of the
memory locations were necessary to get it working
against the unmodified version of glibc. Replacing
glibc system-wide resulted in the exploit being unable
to gain privilege escalation as the POC – which is
based heavily upon spraying the heap in order to get it

to collide with the stack – requested too much memory
and failed to execute (see: pty.c, line 152) [17]. Again,
this type of modification to glibc was able to prevent
the successful exploitation of the system.

6.3 Analysis

It appears that there is a correlation between
increases in buffer size in the heap, and increases in
changes to relative layout and relative offsets.
Visualizations of these results can be seen in Figures
5-12. These results make sense and are expected as
chaos theory states that small changes in one aspect of
a system can produce significant changes over time.
So, it is anticipated that minor changes to the heap
layout and offsets with each malloc will eventually
combine to form significantly larger changes.
Although the analysis done was limited to small
programs, these preliminary results indicate that larger
and more complex programs would have larger and
more drastic alterations to their heaps. This was
supported by our analysis of the efficacy of exploits
against vulnerable applications after changing the
version of glibc system-wide.

While the modifications were consistently effective
at preventing successful exploitation in the test cases, it
is worth mentioning that the vulnerabilities chosen
were handpicked to ensure a high chance of success.
There is no indication that these results can be
extended to all cases. For example, SQL injections
would likely be unaffected since they do not require
modifications to operations as the binary level.
Similarly, any denial-of-service vulnerability would
largely be unaffected as the intended best-case scenario
of this modification is to cause a crash instead of the
successful exploitation of a system. However, the
empirical results show that this style of modification is
promising for future research especially when
considered in the context of this type of vulnerabilities.

7. Limitations and Concerns

There are a variety of limitations and concerns with
the modification presented. Most notably is the fact
that this style of modification does little to nothing to
secure the system against exploits, but instead is
simply an attempt to invalidate an assumption that
might be made by an exploit developer thus preventing
the exploit (or at least the first round of POC exploits)
from working properly. This means the modification
will not offer the same levels of protection that widely
used techniques such as ASLR, DEP, stack canaries,
and others are able to provide users at least in its
current form.

55745575

Similarly, only a selection of bugs and exploitation
techniques are directly affected as a result of this
modification, and even a smaller selection of those that
are based upon heap memory. Double-frees, use after
free, heap sprays, ROP and JOP techniques, and many
other aspects of an exploit remain largely unaffected.
It is possible that a motivated attacker with knowledge
that a target was utilizing such modifications could
simply rebuild libc accordingly, and create a new
exploit with appropriate offsets given this new
reference libc. Even the static addition of 16 bytes to
each request could be better suited by the addition of a
random number of bytes, and this logic may need be
placed in other functions (e.g., realloc, mmap, etc).

Aside from preventing exploits from working
successfully, this modification runs the risk of
preventing legitimate applications from running
properly. While the authors have yet to identify a case
where a legitimate application would break from this
modification, it is possible that systems with specific
memory requirements and constraints might have
implicit assumptions about how libc handles their
requests for memory. Perhaps even a better way to
artificially modify the heap would be through adding
unused field to the malloc_chunk structure to make it
take more space. Regardless of the specific method
used, any such modification should undergo thorough
analysis and testing prior to being suggested for real-
world application.

It is worth noting that addressing many of the above
limitations and concerns is outside the scope of this
paper due to the exploratory nature of the paper.
Instead, the goal here is to present a simple
modification that might prove to be interesting for
future research, and offer valuable insight into how
simple modifications could be made to address some
inherent weaknesses in homogeneous systems (e.g., by
providing each system with its own unique copy of
libc). Even if the end result is that this style of
modification does not offer the same level of
protection as ASLR or DEP have done by preventing
the successful exploitation of a certain class of
vulnerabilities, it is still useful at increasing the effort
required by an attacker to rebuild an exploit.

8. Conclusions

It is worth noting that the authors do not believe that
such a simple modification to glibc will offer
significant security to an attacker that has knowledge
of this modification. A practical application of this
concept that offers any real amount of security would
almost certainly require adding a randomized value to
the bytes requested in each malloc call (although this

could quickly drain system entropy), and require more
analysis of unintended effects across a range of
systems. The current technique described may not
offer any increase in security when an attacker knows
of its use. As such, the techniques for dynamically
altering heap layout presented in this paper are not
intended to be implementation-ready.

The goal of this effort was to demonstrate that the
heap layout for an arbitrary binary could be easily
modified with little effort, and that this may prove
useful at reducing the effectiveness of some exploits.
Since exploit developers often use hardcoded offsets,
lookups, profiling techniques, etc., when creating an
exploit for a vulnerability – which they can do given a
known target – it is possible that by invalidating the
assumptions about the underlying system we can
prevent the first round of exploits from affecting a
given system. We expect significant additional effort
would be necessary to determine if this technique
produces a system that is resilient to some class of
vulnerabilities even when attackers are aware of such
modifications, such as how ASLR and DEP are able to
prevent successful exploitation of some classes of
vulnerabilities. However, even without this strong
guarantee, such a technique may still offer good-
enough levels of security to the average user, as this
style of modification would require an attacker expend
extra time and effort to modify an exploit.

9. References

[1] AWS Marketplace. Retrieved from

https://aws.amazon.com/marketplace/ on June
3, 2015.

[2] Bevan. Drupal Groups. Retrieved from
https://groups.drupal.org/node/448073 on June
3, 2015.

[3] Scut and Team Teso. (2001) Exploiting format
string vulnerabilities. Retrieved from
https://crypto.stanford.edu/cs155/papers/format
string-1.2.pdf on June 1, 2015.

[4] Aleph One, "Smashing the stack for fun and
profit," Phrack magazine, vol. 7, no. 49, 1996.

[5] Crispan Cowan et al., "StackGuard: Automatic
Adaptive Detection and Prevention of Buffer-
Overflow Attacks," Usenix Security, vol. 98,
pp. 63-78, 1998.

[6] Doug Lea and Wolfram Gloger. (1996) A
memory allocator. Retrieved from
http://g.oswego.edu/dl/html/malloc.html on Jne
3, 2015.

[7] Michel Kaempf, "Vudo malloc tricks," Phrack
Magazine, vol. 11, no. 57, 2001.

[8] "Once upon a free()," Phrack Magazine, vol.

55755576

11, no. 57, 2001.

[9] "Advanced Doug Lea's malloc exploits,"
Phrack Magazine, vol. 11, no. 62, 2003.

[10] Phantsmal Phantasmagoria. (2005) Bugtraq
mailinglist. Retrieved from
http://www.securityfocus.com/archive/1/41300
7/30/0/threaded

[11] "Malloc Des-Maleficarum," Phrack Magazine,
vol. 13, no. 66, 2005.

[12] Chris Evans. (2014) Project Zero. Retrieved
from
http://googleprojectzero.blogspot.com/2014/08/
the-poisoned-nul-byte-2014-edition.html on
May 15, 2015.

[13] Hovav Shacham, "The geometry of innocent
flesh on the bone: Return-into-libc without
function calls (on the x86).," Proceedings of the
14th ACM conference on Computer and
communications security, pp. 552-561, 2007.

[14] Tyler Bletsch, Xuxian Jiang, Vince W Freeh,
and Zhenkai Liang, "Jump-oriented
programming: a new class of code-reuse
attack.," In Proceedings of the 6th ACM
Symposium on Information, Computer and
Communications Security, pp. 30-40, 2010.

[15] Minh Tran et al., "On the expressiveness of
return-into-libc attacks.," Recent Advances in
Intrusion Detection, pp. 121-141, 2011.

[16] Worawit Wang. (2014) Exploit for Samba
vulnerabilty (CVE-2015-0240). Retrieved from
https://gist.github.com/worawit/051e881fc94fe
4a49295 on May 12, 2015.

[17] Chris Evans. (2014) Google Security Research.
Retrieved from
https://code.google.com/p/google-security-
research/issues/detail?id=96 on May 12, 2015.

55765577

