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Abstract 

 
Securing public-facing services is a challenging 

task for all types of users and even best practices might 
not be sufficient at stopping attackers with an 0-day.  It 
is often the case that when a new vulnerability is 
discovered, there is a race between attackers to exploit 
the vulnerability, and system administrators to patch 
the system in a manner that does not break existing 
functionality nor induce an unnecessary amount of 
downtime.  For individuals hosting publicly accessible 
services such as a website or data storage, this race 
greatly favors the attacker as the average system 
administrator may not be aware of the need to update 
a system until days or even weeks after proof-of-
concept exploits are made publicly available. 

In this paper we conduct exploratory research into 
techniques that can hinder the successful exploitation 
of a service with minimal impact on the system.  While 
these techniques do not prevent a 0-day from 
exploiting the service in all cases, it can be used to 
defend a system against some types of bugs and 
against some types of techniques used by exploit 
developers.  The ultimate goal of this research is to 
present methods that may prove to be successful at 
buying an individual time before it is necessary to 
patch the system by bypassing the initial round of 
exploits.  We conclude this paper by demonstrating the 
potential of these methods on several modern systems 
including some with publicly available exploits. 

 
Keywords:  Attack mitigation, attack prevention, 
computer security. 
 
1. Introduction 
 

Securing computer systems from attackers is an 
increasingly challenging task for not only large 
corporations, but also individuals.  In recent years, it 
has become remarkably simple for users without any 
technological background or understanding, to set up 
systems that were previously inaccessible to them.  
With only a few clicks on Amazon’s AWS 

Marketplace [1], users can deploy their very own VMs 
serving as blog, email stack, VPN server, or even a 
cloud storage node without ever considering any 
technical details or security issues that may arise.  The 
result is that many of the users are unaware of proper 
techniques to secure their environments, methods to 
detect a successful attack, and how to recover after 
such an attack. 

While reducing the burden required to setup 
common types of services through the use of existing 
software is convenient, it also comes with intrinsic 
weaknesses:  untold numbers of homogeneous 
systems.  A single vulnerability in a common service 
can now affect a myriad of users, such as the recent 
Drupal SQL injection vulnerability that affected 
approximately 12 million sites [2].  This environment 
is a dream for an attacker with one such exploit as the 
exploit can be used with a high-degree of reliability 
across all vulnerable sites.  Even better still, the users 
in charge of the maintenance of these sites will often 
not patch their systems in a reasonable timeframe thus 
giving the attacker ample opportunities for success. 

Having a large number of homogeneous systems 
isn’t inherently bad; it simply means that when 
something goes wrong an attacker has the advantage, 
especially over users that are not security-conscious.  
However, it also means that there are known lists of 
minor tasks that individuals need to do in order to 
secure their environments such as setting good 
passwords, keeping packages updated, using encrypted 
channels when accessing administrative capabilities, 
etc.  Provided users follow the best practices for 
securing their systems, they will be awarded with 
“good-enough” security. 

In this context, good-enough security is a loosely 
defined concept that means the system is secure against 
most common types of attacks.  Unlike corporations 
and governments that are actively concerned that they 
are the targets of an Advanced Persistent Threat (APT), 
individuals can get away with less-stringent security 
requirements placed on their systems.  Their primary 
security concern is in ensuring (or, rather, hoping) that 
their services will get passed over by an attacker who 

2016 49th Hawaii International Conference on System Sciences

1530-1605/16 $31.00 © 2016 IEEE

DOI 10.1109/HICSS.2016.689

5568

2016 49th Hawaii International Conference on System Sciences

1530-1605/16 $31.00 © 2016 IEEE

DOI 10.1109/HICSS.2016.689

5569



has access to an 0-day as they don’t need or require 
perfect security for their day-to-day operations. 

In this paper, we present a simple technique that can 
offer such a result against a class of vulnerabilities and 
exploits.  Just as changing user credentials and 
updating packages in a timely manner are widely 
accepted to be successful at preventing a variety of 
attacks, we propose minor modifications to system 
libraries that result in an altering the heap layout can 
also offer significant preventative capabilities at little 
cost.  These changes aren’t designed to anticipate and 
prevent an exploit from happening, but instead reduce 
the effectiveness of an attack in hopes that the attacker 
will simply pass over the service instead of pursuing it 
further. 

In the following sections of this paper, we will 
provide an overview of heap memory, discuss the 
history of heap overflows and modern techniques, 
motivate how modifications to the heap layout can 
prevent successful exploitation, and conclude with 
empirical analysis of its effectiveness at hindering 
recent exploits. 
 
2. Heap Memory Overview 
 

Before digging too deeply into these topics, it is 
useful to review at a high-level what heap memory is, 
how it’s different from other types of memory (e.g., the 
stack), and its standard usage within C-style languages.  
Loosely put, the heap contains all memory whose size 
is not known at compile time.  Any time a program 
needs to handle strings that can be of arbitrary size or 
lists with arbitrary numbers of elements, it is likely that 
this data is stored in the heap.  The heap also contains 
data that needs to be stored and referenced at a later 
time as once data is created in the heap it will exist 
until the space is freed.  This also means that the 
software developer is responsible for requesting and 
freeing memory, as well as ensuring appropriate 
operations are done on this memory as this is not 
automatically managed for them.  If done improperly, 
this can be the source of software vulnerabilities. 

This differs from the stack where the space for the 
data is only allocated until the function that created it 
returns, which makes it ideally suited for storing local 
or temporary values.  Because the amount of stack 
memory needed by each function is known at compile 
time, the layout of the stack is predictable at any point 
during the execution as shown in Figure 1.  In this 
figure, the buffers are local data and the function 
header includes function parameters, saved stack 
pointer, etc.  The image shows the initial stack layout 
in Function 1, the layout when Function 2 is called, 
and finally the layout when Function 2 returns.  This 

figure demonstrates that offsets between values stored 
on the stack can be determined in advance, or at least 
exist within some guessable/predictable range.  The 
stack is also used to store register values, pass 
parameters, store return addresses, and more, 
depending on the calling convention being used. 

 
Figure 1: Simplified stack layout.   
 
While the layout of the stack can generally be 

determined by simply looking at the current stack 
trace, the layout of the heap cannot.  As memory is 
requested and freed, empty blocks of memory can be 
reused if they are larger than the newly requested size.  
Depending on the flow of execution and the size of the 
data requested during execution, the heap can change 
significantly as shown in Figure 2.  The buffers are 
heap allocated memory with the first step showing the 
layout prior to a variable sized buffer allocation.  The 
second step shows the resulting layout if the new 
buffer is 50 bytes, and the third step shows the layout if 
instead the new buffer is 150 bytes.  It is clear that the 
heap structure is dependent on the buffer size, which is 
not generally predictable. 

 

 
Figure 2:  Simplified heap layout.   
 

3. History of Heap Memory Exploitation 
 

Not all software vulnerabilities are made equally, 
and even seemingly identical vulnerabilities may not 
all be exploitable when the context of the rest of the 
system is considered.  Exploit development largely 
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focuses around finding commonalities within 
vulnerabilities (i.e., to form classes of vulnerabilities) 
with the ultimate goal of finding out how those with 
these commonalities can be reliably exploited.  By 
identifying the minimum requirements that must be 
met by the vulnerability, exploitation techniques can be 
developed independently from the vulnerability and 
research into developing new techniques can be 
conducted without having any specific target or usage 
in mind.  Occasionally, new techniques are created that 
allow for the successful exploitation of a class of 
vulnerabilities that were previously not exploitable [3]. 

In the 1990s and earlier, stack smashing was one 
such commonly used technique.  The ingredients for 
successful exploitation were simply a buffer overflow 
on the stack of sufficient size and controllable data.  
This allowed an attacker to overwrite the current return 
address to call shell code that was also stored on the 
stack.  Shortly after the seminal publication of 
Smashing The Stack For Fun and Profit – an article on 
the cutting edge of research for such techniques at the 
time – in 1996 [4], modifications were made to 
compilers to prevent the effectiveness of these 
exploitation techniques [5].  While the techniques 
described in that paper are no longer useful in 
exploiting most modern systems, it still serves as a 
practical example of how analyzing the necessary 
requirements for exploitability can be done 
independent of the vulnerability being exploited.  This 
trend for research is still very prominent even today. 

These new stack buffer overflow detection and 
prevention techniques forced exploit developers to 
identify new methods for exploiting a vulnerability.  
One common venue for attack was the heap memory 
allocator used by glibc called dlmalloc or Doug Lea 
Malloc after its primary developer [6].  By storing 
memory management information in-band (i.e., within 
the heap next to the memory it is managing), dlmalloc 
was ideally suited for portability purposes but also for 
exploitation.  This meant that any heap buffer overflow 
of sufficient size and controllable data would be able to 
overwrite part of the malloc chunk structure, which 
would be exploitable through techniques described in 
articles such as Vudo malloc tricks [7], Once upon a 
free() [8], and Advanced Doug Lea's malloc exploits 
[9].  

As with before, once tricks and techniques became 
available to ease exploitation, defensive 
countermeasures were introduced to limit their effects.  
Addressing existing limitations in dlmalloc’s ability to 
verify the link chain in the malloc chunks was 
sufficient to prevent successful execution of many of 
the techniques described in the previous articles.  
Another article was released some time after titled 
Malloc Maleficarum [10], which sought to find 

weaknesses in these prevention methods, but as the 
name may imply these new techniques were largely 
esoteric and didn’t gain the wide spread adoption that 
previous efforts had received. 
 
4. Current Techniques 
 

This is not to say that modern techniques no longer 
build on the work done by previous exploit developer 
research, nor that esoteric techniques are not important 
to modern applications.  A recent publication titled 
Malloc Des-Maleficarum [11] took the theoretical 
nature of its predecessor and offered practical 
examples for its use.  Similarly, a recent article by 
Google’s Project Zero demonstrated how a single null 
byte overwrite could lead to privilege escalation on a 
target system [12].  However, while there is certainly 
still work being done to observe weaknesses in heap 
memory structure protections – just as there is still 
work done to find similar weaknesses in stack buffer 
overflow detections – common areas of research focus 
on abusing other aspects of an executable. 

Recent work has demonstrated the effectiveness of 
code-reuse style attacks against a program of sufficient 
size.  Given the attacker’ ability to alter the flow of 
control through a single jump, call, or return 
instruction, it is possible that he can execute a section 
of existing code with different parameters that will 
perform a malicious action.  Given an overflow of 
some kind, this operation is possible by overwriting a 
function pointer stored somewhere in writeable 
memory, so that when the program attempts to call the 
intended function, it instead calls the attacker-
controlled address.   The full exploit is normally not 
done through a single call, but rather a single call to a 
specific section of code – referred to as a stack pivot 
for Return-Oriented Programming (ROP) or dispatcher 
gadget for Jump-Oriented Programming (JOP) – that 
enables sequences of other calls to be performed in an 
attacker controlled method [13] [14].  When the 
programming is utilizing libc, this style of technique 
has even been shown to be Turing complete [15]! 
 
5. Breaking the Exploit 
 

The goal of this paper and the research project it is 
covering is to demonstrate the effectiveness of a minor 
modification to glibc at hardening a system against an 
exploit.  While the exploit techniques being targeted 
with this effort are those based on heap overflows that 
primarily lead towards ROP and JOP capabilities, the 
same modification may also affect other styles of 
attacks as well.  It should be noted that this effort 
would NOT remove a vulnerability from a system nor 
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make an exploit against it impossible.  Instead the goal 
is to identify common assumptions made by exploit 
developers, and create modifications that invalidate 
these assumptions. 

When building an exploit, it is common to have a 
specific target system in mind and build the attack 
accordingly.  In some cases this is done because the 
vulnerability only exists on a very specific type of 
system, or because the exploit may need to be altered 
in significant ways given the characteristics of a 
specific target.  For instance, minor changes to the 
source code can result in minor changes to the offsets 
of functions in the resulting binary.  Initially, an 
attacker might identify an appropriate set of commands 
for a stack pivot or a dispatcher gadget.  He will then 
determine what offset in the binary these commands 
are located at given the version of the binary on the 
target system.  An incorrect guess here may result in no 
discernable effect on the system, or may result in a 
crash instead of the intended arbitrary code execution.  
Offsets, relative locations, and base addresses of the 
executable, shared libraries, heap, and the stack are all 
values that may need to be known or computed 
depending on the nature of the bug and the exploitation 
technique being used against it.  

Offsets for the location of functions in both the 
executable and shared libraries are hard to alter 
dynamically, but other offsets such as those in the heap 
are easier.  Given an overflow that allows for both 
reads and writes of data, it is common to attempt to 
read pointers to the heap, stack or functions that can be 
found at predetermined offsets in order to bypass 
address randomization.  However, when slight changes 
are made to these offsets, it is possible that the exploit 
code will be written in such a way that it is unable to 
find the values necessary to bypass address 
randomization even if it is still theoretically possible 
for them to do so.  By making minor changes to the 
heap layout, we can effectively invalidate many of the 
assumptions made by exploit developers regarding the 
locations of needed information and potentially 
weaken the effectiveness of the exploit code. 

For this exploratory research, we have chosen to 
make the following single line modification to gibc: 

 
   2908 void* 
   2909 public_mALLOc(size_t bytes) 
   2910 { 
   2911   mstate ar_ptr; 
   2912   void *victim; 
   2913  
   2914   __malloc_ptr_t (*hook) (size_t, 

__const __malloc_ptr_t) 
   2915     = force_reg (__malloc_hook); 

 
Excerpt from unmodified malloc/malloc.c in version 

2.15 of glibc (Ubuntu 12.04 default). 

    
   2908 void* 
   2909 public_mALLOc(size_t bytes) 
   2910 { 
   2911   mstate ar_ptr; 
   2912   void *victim; 
   2913   bytes += 16; 
   2914   __malloc_ptr_t (*hook) (size_t, 

__const __malloc_ptr_t) 
   2915     = force_reg (__malloc_hook); 
 
Excerpt from modified malloc/malloc.c in version 

2.15 of glibc (Ubuntu 12.04 default). 
 

This single line change means that all malloc 
requests are increased by 16 bytes and then processed 
as normal.  By making this simple modification, the 
relative layout and offsets of data in the heap are 
altered in ways that may not be anticipated by exploit 
developers and potentially reducing what would 
normally be remote code execution attacks into denial 
of service attacks through crashes in services. 

This modification will change the layout of memory 
in two ways: small spaces between consecutive 
structures in memory, and changes in relative layout as 
show in Figures 3 and 4.  The first step in figure 3 
shows the initial layout of heap memory, which 
consists of 4 buffers each of 50 bytes.  Step 2 involves 
the middle buffers – Buffer 2 and Buffer 3 – being 
freed under standard operation.  Step 3 has the program 
requesting a new buffer of 110 bytes.  Because this 
buffer is larger than the previous freed area, it must be 
alloc’d somewhere else. 

 

 

 
Figure 3:  Simplified heap layout running the 

unmodified version of libc.   
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Figure 4: Simplified heap layout running the 

modified version of libc.   
 
In figure 4, the first step shows the initial layout of 

heap memory, which consists of 4 buffers each of 50 
bytes.  Since the modifications made to libc will 
append 16 bytes onto each buffer, their resulting size is 
66 bytes.  Step 2 involves the middle buffers – Buffer 2 
and Buffer 3 – being freed under standard operation, 
which now creates 132 bytes of free space.  Step 3 has 
the program requesting a new buffer of 110 bytes.  
This request will result in 126 bytes being alloc’d in 
the previous free space with a very small section of 
free space remaining after.  In this example, Buffer 4 
and Buffer 5 are no longer in the same relative order as 
they were under execution of the unmodified version 
of libc. 

As shown above offsets between neighboring 
structures will increase by 16 bytes making exploits 
with predetermined hardcoded offsets ineffective.  
Given standard operations of mallocing and freeing 
data, it is possible that relative layouts are also changed 
given free space is no longer large enough to fit newly 
requested data within, as shown in the above figures.  
This means that if a certain buffer in the heap could 
only be overflowed in one direction (e.g, Buffer 4 
expects Buffer 5 to be immediately after it, as it can 
only overflow in that direction), it is possible that the 
vulnerability is no longer exploitable at least in the 
same general fashion.  Note that in both of these 
images, malloc header data is not shown in order to 
simplify the image. 
 
6. Empirical Results

 
In order to test the efficacy of this technique at 

altering heap structures, we have performed various 
comparisons between the execution of the program 
with unmodified and modified libraries.  The first set 
of tests consisted of running several common 
commands to determine changes within the heap 

between executions.  The second set of tests involved 
setting up vulnerable versions of applications and 
testing public exploits against these applications first 
with the original version of glibc and then with the 
modified version replaced system wide. 
 
6.1 Evaluating Heap Changes 

 
A script was written that runs a program with both 

versions of glibc in order to log changes in the heap.  
The different versions of glibc were loaded using 
LD_PRELOAD and a second wrapper library was also 
loaded at this time to log calls to malloc and free.  This 
wrapper library was used to determine the state of the 
heap at each point during execution.  While this is not 
a comprehensive method of identifying the allocation 
of memory within the heap, it serves as an appropriate 
approach for the tests.  Each program was executed 
multiple times to ensure that ASLR was disabled and 
execution was deterministic. 

The heap state after the last malloc during program 
execution was used to compare the differences between 
the libraries.  This analysis relied on the fact that the 
programs being tested were deterministic in nature so 
that the orders of malloc calls could be used to 
uniquely identify identical buffers in memory (i.e., the 
first call to malloc for both version of the library create 
buffers for the same logical variable, the second also 
creates the next logical variable and so forth).  This 
provides the means for analyzing differences in the 
heap by tracking the order of calls. 

Three statistics were recorded for each program 
execution:  average change in heap offset from the start 
of the heap, standard deviation of these offsets, and 
percentage of buffers no longer in relative order.  The 
changes in heap offset were determined by calculating 
the difference between the given buffer and the first 
buffer malloc’d.  Since it is common for exploits to 
identify the base of a memory region and calculate 
offsets from that base, this is indicative of how far off 
hardcoded values might be, on average.  The third 
statistic served as an estimate for the number of buffers 
that were out of place.  This was calculated by taking a 
given buffer and counting the number of other buffers 
that came before (or after) it in memory when running 
the unmodified glibc, but now came after (or before) it 
when running the modified glibc.  These numbers were 
averaged across all buffers after eliminating cases of 
double counting.  Table 1 shows these statistics for a 
selection of common bash utilities.  

Figures 5 – 12 show the heap layout of the same 
program when ran with both versions of glibc.  The top 
level is the heap with the unmodified version of glibc, 
and the bottom level is with the modified version.
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Program Name Buffers in Heap Average Offset Standard Deviation Positional Changes 
/usr/bin/stat 152 1270. 1531.11 0.64% 
/bin/df 165 1406.0 2292.14 2.35% 
/usr/bin/w 109 2464.0 17317.40 1.07% 
/usr/bin/find 82 1046.0 1793.75 0.51% 
/bin/ls 60 456.0 6030.25 0.12% 
/sbin/fdisk 66 665.0 968.61 0.21% 
/bin/uname 31 240.0 279.43 0.00% 
/usr/bin/nm 14 442.0 1231.29 0.07% 
Table 1:  This table shows statistics regarding the differences between the heaps immediately after the last malloc. 
 
 

 
Figure 5: Heap memory of /usr/bin/stat 
 
 

 
Figure 6: Heap memory of /bin/df 
 
 

 
Figure 7: Heap memory of /usr/bin/w 
 
 

 
Figure 8: Heap memory of /usr/bin/find 
 

 
Figure 9: Heap memory of /bin/ls 
 
 

 
Figure 10: Heap memory of /sbin/fdisk 
 
 

 
Figure 11: Heap memory of /bin/uname 
 
 

 
Figure 12:  Heap memory of /usr/bin/nm 

 

Buffers are colored on a uniform spectrum starting 
from red, which means that buffers in the red spectrum 
are allocated first and the buffers in the purple-red 
spectrum are allocated last.  Buffers that are the same 
color represent the same logical variable in memory, 
and white spaces between buffers represent unused 
space or malloc header data.  The width of the buffers 
and whitespace is the logarithm of the buffer size. 

Observing Figure 13 – the memory layout for 
/usr/bin/nm – we see that buffers are the same size with 
slight increases in the spacing between buffers.  This is 
due to the fact that we are adding 16 bytes to each 
buffer thereby increasing the size of unused regions in 

the heap.  However, under standard operations of 
mallocs and frees, we see that differing amounts of 
space was empty between executions thereby allowing 
the buffers to be allocated at different addresses.  

 

 
Figure 13:  Zoomed heap memory of /usr/bin/nm 
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 This confirms the theoretical notion that reordering 
of buffers is possible through this modification to 
glibc. 

 
6.2 Evaluating Exploits 

 
Several exploits were tested against vulnerable 

applications to determine if the modifications to glibc 
prevented the exploit from succeeding.  For each case, 
the system was confirmed to be vulnerable by a 
common public exploit prior to glibc being replaced 
system-wide.  While the number of exploits tested is 
far from a comprehensive list, we include a brief 
analysis of some high profile exploits to demonstrate 
the efficacy against modern attacks. 

CVE-2015-0240 is vulnerability against Samba that 
allows for unauthenticated remote root.  This 
vulnerability was first reported February 23, 2015 with 
public exploits available as early as February 28, 2015.  
Given the pervasiveness of the service, the criticality of 
the vulnerability, and the nature of the vulnerability – 
freeing uninitialized and controllable heap memory – it 
was ideally suited to test the exploit against the 
modified glibc. 

Several different proof of concept (POC) of the 
exploit were tested against Samba running on Ubuntu 
12.04, and none were still able to successfully gain 
root access against the target after replacing glibc.  (In 
fact, none of the examples tested appear to have caused 
any adverse affects to the system such as crashes or 
instability although this aspect was not thoroughly 
tested.)  One of the better-documented POCs was 
analyzed, and it appears to have failed due to a logic 
error when the exploit is unable to find a specific 
buffer in the heap in order to identify the heap’s base 
address (line 392) [16].  This means that, had a 
vulnerable Samba server been using the modified 
glibc, while it may have still been exploitable, none of 
the tested POCs would have succeeded. 

CVE-2014-5119 is vulnerability against glibc 
popularized by Google’s Project Zero.  First reported 
on July 14, 2014, it was not until August 25, 2014 that 
a public exploit was released showcasing a local 
privilege escalation through a poisoned NUL byte in 
pkexec.  Again, given the high-profile nature of this 
bug, it was also ideally suited for testing. 

The most recent version of Google’s POC was 
tested against pkexec running on a Fedora 20 32-bit 
desktop.  Minor changes to the POC’s profiling of the 
memory locations were necessary to get it working 
against the unmodified version of glibc.  Replacing 
glibc system-wide resulted in the exploit being unable 
to gain privilege escalation as the POC – which is 
based heavily upon spraying the heap in order to get it 

to collide with the stack – requested too much memory 
and failed to execute (see: pty.c, line 152) [17].  Again, 
this type of modification to glibc was able to prevent 
the successful exploitation of the system. 
 
6.3 Analysis 
 

It appears that there is a correlation between 
increases in buffer size in the heap, and increases in 
changes to relative layout and relative offsets.  
Visualizations of these results can be seen in Figures 
5-12.  These results make sense and are expected as 
chaos theory states that small changes in one aspect of 
a system can produce significant changes over time.  
So, it is anticipated that minor changes to the heap 
layout and offsets with each malloc will eventually 
combine to form significantly larger changes.  
Although the analysis done was limited to small 
programs, these preliminary results indicate that larger 
and more complex programs would have larger and 
more drastic alterations to their heaps.  This was 
supported by our analysis of the efficacy of exploits 
against vulnerable applications after changing the 
version of glibc system-wide. 

While the modifications were consistently effective 
at preventing successful exploitation in the test cases, it 
is worth mentioning that the vulnerabilities chosen 
were handpicked to ensure a high chance of success.  
There is no indication that these results can be 
extended to all cases.  For example, SQL injections 
would likely be unaffected since they do not require 
modifications to operations as the binary level.  
Similarly, any denial-of-service vulnerability would 
largely be unaffected as the intended best-case scenario 
of this modification is to cause a crash instead of the 
successful exploitation of a system.  However, the 
empirical results show that this style of modification is 
promising for future research especially when 
considered in the context of this type of vulnerabilities. 
 
7. Limitations and Concerns 
 

There are a variety of limitations and concerns with 
the modification presented.  Most notably is the fact 
that this style of modification does little to nothing to 
secure the system against exploits, but instead is 
simply an attempt to invalidate an assumption that 
might be made by an exploit developer thus preventing 
the exploit (or at least the first round of POC exploits) 
from working properly.  This means the modification 
will not offer the same levels of protection that widely 
used techniques such as ASLR, DEP, stack canaries, 
and others are able to provide users at least in its 
current form. 
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Similarly, only a selection of bugs and exploitation 
techniques are directly affected as a result of this 
modification, and even a smaller selection of those that 
are based upon heap memory.  Double-frees, use after 
free, heap sprays, ROP and JOP techniques, and many 
other aspects of an exploit remain largely unaffected.  
It is possible that a motivated attacker with knowledge 
that a target was utilizing such modifications could 
simply rebuild libc accordingly, and create a new 
exploit with appropriate offsets given this new 
reference libc.  Even the static addition of 16 bytes to 
each request could be better suited by the addition of a 
random number of bytes, and this logic may need be 
placed in other functions (e.g., realloc, mmap, etc). 

Aside from preventing exploits from working 
successfully, this modification runs the risk of 
preventing legitimate applications from running 
properly.  While the authors have yet to identify a case 
where a legitimate application would break from this 
modification, it is possible that systems with specific 
memory requirements and constraints might have 
implicit assumptions about how libc handles their 
requests for memory.  Perhaps even a better way to 
artificially modify the heap would be through adding 
unused field to the malloc_chunk structure to make it 
take more space.  Regardless of the specific method 
used, any such modification should undergo thorough 
analysis and testing prior to being suggested for real-
world application. 

It is worth noting that addressing many of the above 
limitations and concerns is outside the scope of this 
paper due to the exploratory nature of the paper.  
Instead, the goal here is to present a simple 
modification that might prove to be interesting for 
future research, and offer valuable insight into how 
simple modifications could be made to address some 
inherent weaknesses in homogeneous systems (e.g., by 
providing each system with its own unique copy of 
libc).  Even if the end result is that this style of 
modification does not offer the same level of 
protection as ASLR or DEP have done by preventing 
the successful exploitation of a certain class of 
vulnerabilities, it is still useful at increasing the effort 
required by an attacker to rebuild an exploit. 
 
8. Conclusions 
 

It is worth noting that the authors do not believe that 
such a simple modification to glibc will offer 
significant security to an attacker that has knowledge 
of this modification.  A practical application of this 
concept that offers any real amount of security would 
almost certainly require adding a randomized value to 
the bytes requested in each malloc call (although this 

could quickly drain system entropy), and require more 
analysis of unintended effects across a range of 
systems.  The current technique described may not 
offer any increase in security when an attacker knows 
of its use.  As such, the techniques for dynamically 
altering heap layout presented in this paper are not 
intended to be implementation-ready. 

The goal of this effort was to demonstrate that the 
heap layout for an arbitrary binary could be easily 
modified with little effort, and that this may prove 
useful at reducing the effectiveness of some exploits.  
Since exploit developers often use hardcoded offsets, 
lookups, profiling techniques, etc., when creating an 
exploit for a vulnerability – which they can do given a 
known target – it is possible that by invalidating the 
assumptions about the underlying system we can 
prevent the first round of exploits from affecting a 
given system.  We expect significant additional effort 
would be necessary to determine if this technique 
produces a system that is resilient to some class of 
vulnerabilities even when attackers are aware of such 
modifications, such as how ASLR and DEP are able to 
prevent successful exploitation of some classes of 
vulnerabilities.  However, even without this strong 
guarantee, such a technique may still offer good-
enough levels of security to the average user, as this 
style of modification would require an attacker expend 
extra time and effort to modify an exploit. 
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