
ESCAPING THE LUA 5.2 SANDBOX WITH
UNTRUSTED BYTECODE
Morgan Jones
github.com/numinit

http://github.com/numinit

Who I am

Student at Rice University

Was getting bored out of my mind during the week between the end of
classes and the beginning of finals, and decided to break Lua

Turned out to be a bytecode-only Lua sandbox break (no libraries
involved!)

Said last HAHA I'd give a talk about Android reversing, maybe next time

A quick introduction to the Lua 5.2+ VM

Used in games and embedded
applications

Relatively small code footprint

Frequently used as a sandbox to
run untrusted code (e.g. mods,
client-side scripting, etc)

Lua source can be compiled to
high-level machine code and
stripped of debug data

print('hello, world')

U0: _ENV
K0: "print"
K1: "hello, world"

GETTABUP R0 U0 K0
LOADK R1 K1
CALL R0 2 1
RETURN R0 1

How programs typically load Lua code
From the C API: lua_load and friends

Default is to detect whether you're
loading bytecode or source
automatically (!!!)

Some forget to disable loading
bytecode, or think it's safe despite
warnings in Lua documentation

Some only load bytecode

From Lua: load (>= 5.2)
Same problems

local f = load(
 string.dump(
 function()
 print('hello, world!')
 end
),
 'test.lua'
)
f()
--> "hello, world!"

Why Lua bytecode can be unsafe

Formal grammar for Lua source
code, but not for Lua bytecode

The compiler is the primary
safeguard against executing
unsafe Lua bytecode

Lua used to have a bytecode
verifier that was eventually
removed, because it wasn't
completely functional

Typical Lua sandboxing methods
Don't load dangerous libraries when
you create the VM (like os and io)

Can't call system(), can't call
popen()... okay, ship it

I'm about to show you how to break
out of a Lua sandbox with a restricted
set of libraries loaded...

... and without a single library loaded,
including the Lua core. This will be
the bytecode-only escape!

Building tools to escape the sandbox

1. Defeat ASLR

2. Write arbitrary memory

3. Read arbitrary memory

These techniques are designed to work in extremely restrictive sandbox
environments, and only exploit the design of Lua. As such, they just need
a working Lua interpreter that loads bytecode to function.

Note that the remainder of this presentation focuses on 32-bit Lua 5.2
VMs, but these techniques can be adapted to 64-bit and other versions.

Defeating ASLR: Easy mode

Call tostring on a C function...

Wow, that was easy

If you have string manipulation
functions in the sandbox, you can
pick the address out

Defense: remove the %p from that
snprintf in the Lua source

Defeating ASLR: Hard mode

What if:

... there are no C functions available in the sandbox

... the function pointer has been removed from tostring output

... the sandbox is otherwise totally broken, and you can't even
access tostring

Writing arbitrary bytecode becomes very handy if you can figure out a
way to get it loaded

Digression: Lua tagged values (TValues)

Each value in Lua is 12 bytes*

First field: union between several
different datatypes (8 bytes/64 bits,
because numbers in Lua are doubles)

Second field: type tag to identify how
to read the union (4 bytes/32 bits)

Each function's local variable stack is
just an array of TValues, which grows
up

TString
"hello, world"

(TString *)0xdeadbeef

Heap

Lua stack 0x04

(double)1337 0x03

local a = "hello, world"
local b = 1337

Value Tag

* Typically, as we'll see soon

What you probably want to do

You probably want to call
os.execute or another
interesting function with some
payload of your choice

Would be nice if we could craft
arbitrary TValues, because we
can point one anywhere in the
binary if we can defeat ASLR,
and then call it

<os_execute
implementation>

(lua_CFunction *)
0xdeadbeef

Text

Lua stack 0x16

os.execute("/bin/sh")

Type confusion in the Lua VM: FORLOOP
Couple instructions that perform
unchecked typecasts, because they
assume that someone else has checked
the arguments and want to be fast

VM instruction of interest: FORLOOP
(normally compiled with a preceding
FORPREP, which has verified the
arguments)
FORLOOP allows us to interpret any Lua
value as a 64-bit double

for i=x,x,0 do return i end

Original work by @corsix: https://gist.github.com/corsix/6575486

This branch ends up
assigning the type-confused

idx back onto the stack

https://gist.github.com/corsix/6575486

Unexpected defense: LUA_NANTRICK
Each value in Lua 5.2 is 12 bytes, in
non-i386 VMs

Lua 5.2 uses a trick on i386 that
packs all values into 8 bytes (rather
than 12) using the signaling NaN bit
pattern

This breaks the FORLOOP trick, since
the loop is from NaN to NaN (which
never advances)

This isn't enabled for ARM and
x86_64 by default

There's a loophole, though: https://github.com/erezto/lua-sandbox-escape

https://github.com/erezto/lua-sandbox-escape

Defeating ASLR: Hard mode

The FORLOOP technique causes you to
end up with a very strange value in IEEE
754 double precision

Split it into two double-precision values,
each holding 32 bits, and find the integral
representation of each with some math –
doubles can hold any unique 32-bit value

Can also go in reverse, creating a double
with a given bit pattern

If we can find a reference to any C
function, we can now defeat ASLR

Original work by @corsix: https://gist.github.com/corsix/6575486

https://gist.github.com/corsix/6575486

Type confusion in the Lua VM: SETLIST

Another instruction of interest: SETLIST

Used in table initializers with a list of values
local arr = {1, 2, 3, 4}

Critically, assumes that its argument is
actually a pointer to a table

Scary "runtime check" macros in the source
that say otherwise, but they all go away if
you preprocess the source in release mode

gcc -E | clang-format is your friend
when looking at open-source software

Most people disable asserts

Writing to arbitrary memory
Create a fake table struct within a Lua
string and run a SETLIST

Need a way to convert a number to a
string in the target machine's endianness

If you don't have string manipulation
functions, you can just make an array of
256 separate strings and concatenate
each byte manually

This ends up writing the entire TValue
(including the type tag of 0x03 for
doubles) to anywhere in memory

TString
"\0\0\0\0..."

(double)0xdeadbeef

Heap

Lua stack

SETLIST R0 R1 1

0x03

Totally a table!

Reading from arbitrary memory
Can just build on bytecode tools we've
created previously, and write this in
compilable Lua

Create a new table, get its address, and
modify it to point to any TValue we want
by writing arbitrary bytes into it

Run GETTABLE (arr[1]) to retrieve the
first element of the array

Mind the GC when corrupting tables:
don't corrupt the GC list pointers, and set
the type to nil so it doesn't get collected

Table
(TValue *)0xcafebabe

(Table *)0xdeadbeef

Heap

Lua stack

GETTABLE R0 R1 1

0x05

corrupted

Crafting arbitrary TValues
We have all the tools to do this already!

Create a fake TValue with a pointer to os_execute inside a Lua string

Get a pointer to the string with the FORLOOP trick

Read its memory by corrupting a table with the SETLIST trick

Call the returned value

Got a shell from the sandbox!

The nuclear option: Breadth-first search
on raw heap memory from within Lua

You can't get a pointer to a single C
function for some reason, but you
can read and write arbitrary memory

Perform breadth-first search on the
GC list for an object you allocate

Goal: find a lua_State for the main
thread, which is the first GC object
allocated in a working VM

Handy next pointer pointing to the
object allocated prior to this one

Got a shell without a single C function!

The nuclear option: Breadth-first search
on raw heap memory from within Lua

Look at every allocated object and each of
their GC lists – you're bound to get there
eventually

Crown jewels: function pointer in the
global_State (thread-independent pointer
in lua_State) to Lua's memory allocator
function (l_alloc)

Note that garbage collection is happening as
we're traversing the GC list, so you can
bump into freshly freed objects

Heap spray and FORLOOP trick on sprayed
objects can create heap boundaries

Got a shell without a single C function!

Useful tools

LuaAssemblyTools (LAT)

Had to write a wrapper and
correct a couple bugs

Will need some updating for 5.3

Exercise for the reader

luadec

Disassembler and decompiler
for Lua bytecode

Future research

Can you generate malicious bytecode from the Lua compiler?

Are there better methods to avoid traversing invalid heap pointers?

Clustering algorithms to defeat heap layout randomization?

What if there's no os_execute or io_popen?

Look for other interesting pointers into libc

Potential ROP gadgets

Takeaways

Don't load untrusted bytecode

Verify you're not inadvertently letting people load untrusted bytecode

Look out for programs that load untrusted bytecode

Prior work

@corsix: Exploiting Lua 5.1 on 32-bit Windows

https://gist.github.com/corsix/6575486

LuaROP

http://boop.i0i0.me/blog.lua/luarop

lua-sandbox-escape

https://github.com/erezto/lua-sandbox-escape

https://gist.github.com/corsix/6575486
http://boop.i0i0.me/blog.lua/luarop
https://github.com/erezto/lua-sandbox-escape

THANK YOU!

