
No Hypervisor Is an Island:
System-wide Isolation Guarantees for Low Level Code

OLIVER SCHWARZ

Doctoral Thesis
Stockholm, Sweden 2016

TRITA-CSC-A 2016:22
ISSN 1653-5723
ISRN-KTH/CSC/A--16/22-SE
ISBN 978-91-7729-104-6

KTH
School of Computer Science

and Communication
SE-100 44 Stockholm

SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framläg-
ges till offentlig granskning för avläggande av teknologie doktorsexamen i datalogi
måndagen den 10 oktober 2016 klockan 14.00 i F3, Kungl Tekniska högskolan,
Lindstedtsvägen 26, Stockholm.

SICS Swedish ICT
SICS Dissertation Series 75
ISSN 1101-1335

Cover picture: The photograph that serves as background of the cover picture
is courtesy of Lukáš Poláček.

© Oliver Schwarz, September 8, 2016

Tryck: Universitetsservice US AB

iii

Abstract

The times when malware was mostly written by curious teenagers are
long gone. Nowadays, threats come from criminals, competitors, and gov-
ernment agencies. Some of them are very skilled and very targeted in their
attacks. At the same time, our devices – for instance mobile phones and
TVs – have become more complex, connected, and open for the execution of
third-party software. Operating systems should separate untrusted software
from confidential data and critical services. But their vulnerabilities often
allow malware to break the separation and isolation they are designed to pro-
vide. To strengthen protection of select assets, security research has started
to create complementary machinery such as security hypervisors and separa-
tion kernels, whose sole task is separation and isolation. The reduced size of
these solutions allows for thorough inspection, both manual and automated.
In some cases, formal methods are applied to create mathematical proofs on
the security of these systems.

The actual isolation solutions themselves are carefully analyzed and in-
cluded software is often even verified on binary level. The role of other soft-
ware and hardware for the overall system security has received less attention
so far. The subject of this thesis is to shed light on these aspects, mainly
on (i) unprivileged third-party code and its ability to influence security, (ii)
peripheral devices with direct access to memory, and (iii) boot code and how
we can selectively enable and disable isolation services without compromising
security.

The six papers included in this thesis are both design and verification
oriented, however, with an emphasis on the analysis of instruction set archi-
tectures. With the help of a theorem prover, we implemented various types of
machinery for the automated information flow analysis of several processor ar-
chitectures. We used these tools to make explicit which registers arbitrary and
unprivileged software on ARM or MIPS platforms can access. The analysis is
guaranteed to be both sound and accurate. To the best of our knowledge, we
were the first to publish an automated analysis and verification of information
flow properties for commodity instruction set architectures.

iv

Sammanfattning

Förr skrevs skadlig mjukvara mest av nyfikna tonåringar. Idag är våra
datorer under ständig hot från statliga organisationer, kriminella grupper,
och kanske till och med våra affärskonkurrenter. Vissa besitter stor kompetens
och kan utföra fokuserade attacker. Samtidigt har tekniken runtomkring oss
(såsom mobiltelefoner och tv-apparater) blivit mer komplex, uppkopplad och
öppen för att exekvera mjukvara från tredje part.

Operativsystem borde egentligen isolera känslig data och kritiska tjänster
från mjukvara som inte är trovärdig. Men deras sårbarheter gör det oftast
möjligt för skadlig mjukvara att ta sig förbi operativsystemens säkerhetsme-
kanismer. Detta har lett till utveckling av kompletterande verktyg vars enda
funktion är att förbättra isolering av utvalda känsliga resurser. Speciella vir-
tualiseringsmjukvaror och separationskärnor är exempel på sådana verktyg.
Eftersom sådana lösningar kan utvecklas med relativt liten källkod, är det
möjligt att analysera dem noggrant, både manuellt och automatiskt. I någ-
ra fall används formella metoder för att generera matematiska bevis på att
systemet är säkert.

Själva isoleringsmjukvaran är oftast utförligt verifierad, ibland till och med
på assemblernivå. Dock så har andra komponenters påverkan på systemets sä-
kerhet hittills fått mindre uppmärksamhet, både när det gäller hårdvara och
annan mjukvara. Den här avhandlingen försöker belysa dessa aspekter, hu-
vudsakligen (i) oprivilegierad kod från tredje part och hur den kan påverka
säkerheten, (ii) periferienheter med direkt tillgång till minnet och (iii) start-
koden, samt hur man kan aktivera och deaktivera isolationstjänster på ett
säkert sätt utan att starta om systemet.

Avhandlingen är baserad på sex tidigare publikationer som handlar om
både design- och verifikationsaspekter, men mest om säkerhetsanalys av in-
struktionsuppsättningar. Baserat på en teorembevisare har vi utvecklat olika
verktyg för den automatiska informationsflödesanalysen av processorer. Vi har
använt dessa verktyg för att tydliggöra vilka register oprivilegierad mjukvara
har tillgång till på ARM- och MIPS-maskiner. Denna analys är garanterad att
vara både korrekt och precis. Så vitt vi vet är vi de första som har publicerat
en lösning för automatisk analys och bevis av informationsflödesegenskaper i
standardinstruktionsuppsättningar.

v

Acknowledgements

No person is an island. Especially no PhD student. In my case, they even
gave me two lands that took care of me: the SICS-land and the KTH-land. Both
came with one advisor each and – maybe without being aware of it – the two
complemented each other pretty well.

My industrial advisor Christian Gehrmann understood to accompany my devel-
opment with a supervision ever-aligned with the needs of my respective state. In
the beginning he provided much initial guiding, followed by an increasing amount of
trust, freedom, and responsibility – always on the right level, always lagom mycket
to empower me. It is not granted for industrial PhD students to find that degree
of freedom and time for research and studies that I received from Christian. He
always cared about my progress and expressed his confidence in me. Thank you
very much, Christian!

My gratitude also goes to my academic advisor Mads Dam. He always found
time and patience to discuss technical details or writing matters. And this is still
an understatement. As for technical details, it is more precise to say that Mads
taught me to never stop discussing them until I really understand their gist. And
as for writing, he went through uncountable iterations of proofreading with me. As
much as I was striving towards his level of writing, I did not even come close and
he still remains a role model in that respect. I also want to thank Mads for the
freedom he granted me in my research questions and his confidence in the paths I
have chosen towards their solutions.

Also, I want to thank Mads for creating a truly inspirational research environ-
ment. The PROSPER group at KTH was always a place to discuss, receive help,
and get inspired. Working together with that group really was a pleasure. I want
to thank their members, both my co-authors and the rest, namely Mads, Narges
Khakpour, Hamed Nemati, Christoph Baumann, Andreas Lindner, Dilian Gurov,
Musard Balliu, Andreas Lundblad, and Roberto Guanciale. Roberto, I am sorry
that I do not know how to put this in a less stereotypical way, but you are a true
role model, both as a scientist and a person.

Thanks go also to my co-authors and project partners at SICS, namely Chris-
tian, Viktor Do, Arash Vahidi, Heradon Douglas, and Jonas Haglund. Especially in
the early days, you were my tour guides through the – back then for me inscrutable
– jungle of low-level hardware and system software matters. Whenever I had a
hardware or implementation question, you were the right address to look for the
answer. I also want to thank the other members of the SEC lab, Rolf Blom, Rikard
Höglund, Marco Tiloca, Nicolae Paladi, Antonis Michalas, Mudassar Aslam, Lud-
wig Seitz, our master students, and all our lab members in Lund, that I hopefully
will get to know better in the future. Nicolae, thank you for proofreading so many
of my papers – even though I use parentheses more often than your beloved dashes.
Thank you also for all the interesting scientific discussions in your office. The rub-
ber duck, the whiteboard pictures, and that strange little spinning tops created
a pleasant and stimulating atmosphere for brainstorming. Marco, thank you for

vi

sharing your insights about the world, both in scientific and other respects. Mu-
dassar, the same holds for you. It was great to share the office with you, share our
views on being PhD students, and share our thoughts concerning the big questions
of life.

Back in KTH-land, they also put me into an office, specifically, into the best
office of the entire KTH. Thank you Benjamin Greschbach, Emma Enström, and
Guillermo Rodríguez Cano for having kept it such a welcoming place that always
encouraged people to drop by. Another place at the TCS-department that I never
will forget is its kitchen. It was the home for countless interesting lunch discus-
sions. Many people deserve thanks for this, but in particular Gunnar Kreitz, Lukáš
Poláček, and Lukáš’ mother. There are many more nice people at TCS. I like to
thank them all for a nice working environment. I know these acknowledgements
will be the most read part of the thesis and I know you are waiting for your names
to be listed here. But I have been around for quite many years, so many people
came and went, just too many to list all of you. But be sure that you are in my
memories, nonetheless. The same goes for all the nice people at SICS. I cannot list
you all, but I really enjoyed your company and help. Thanks to the old NETS lab,
to the IT support, the receptionists, the administration, the Swedish teachers, the
badminton partners, and all others. The heterogeneity of the people at SICS, of
gender, age, profession, and origin creates the feeling of a big family that I really
enjoyed.

Special thanks go to Mudassar, Benjamin, Nicolae, and Hamed. They have
been there in the hard times that such an enterprise sometimes has. Thanks for
comfort and encouragement and just being there as friends.

Thanks to all other people that I met on the way, all project partners, all inter-
esting people I got to know at conferences and summer schools, and all anonymous
reviewers that helped to improve my papers.

Thank you, Gerwin Klein, Mads, Karl Meinke, Nicolae, Christoph, Deborah
Fauser, Rikard, Arash, and Jonas, for reviewing and commenting this thesis, be it
a few lines or many many pages. I really appreciate your help.

I also want to thank all residents of Villa Leipzig, especially Barbro and Robert,
but also the other students and further tenants, for providing me not only with
accommodation, but also with a true home during my time as PhD student.

Many thanks go to my friends in Sweden, Germany, and all over the world. You
have grounded me throughout these years. Thank you, Deborah for your patience
and support. You allowed me to recharge on long working days. Vielen lieben
Dank an meine Familie, insbesondere meine Eltern! Hättet ihr damals nicht die
Besonnenheit gehabt, die offizielle Bildungsempfehlung zu ignorieren, wäre diese
Doktorarbeit vermutlich nie zustande gekommen. Ihr fahrt durch halb Europa, um
mir zu helfen, und seid auch sonst stets für mich da. Vielen Dank!

Contents

Contents vii

I Thesis 1

Acronyms 3

1 Introduction 5

2 Background 9
2.1 Platform Security . 9
2.2 Formal Verification . 16
2.3 Verification of Platform Security . 25

3 Contributions 35
3.1 Summary of Included Papers . 36
3.2 Further Publications . 40

4 Conclusions 41

II Included Papers 43

A Formal Verification of Information Flow Security for a Simple
ARM-Based Separation Kernel 45
A.1 Introduction . 45
A.2 ARMv7 . 49
A.3 The PROSPER Kernel . 51
A.4 The ideal system . 53
A.5 Proof Strategy . 54
A.6 Isolation Properties . 59
A.7 Proof Implementation . 61
A.8 Evaluation . 64

vii

viii CONTENTS

A.9 Related Works . 65
A.10 Discussion . 66

B Machine Assisted Proof of ARMv7 Instruction Level Isolation
Properties 69
B.1 Introduction . 69
B.2 The Formal Specification of ARM . 71
B.3 Memory Management . 73
B.4 Security Properties . 75
B.5 The Logic Framework . 78
B.6 Implementation and Evaluation . 81
B.7 Related Work . 82
B.8 Conclusion . 83

C Automatic Derivation of Platform Noninterference Properties 85
C.1 Introduction . 85
C.2 Processor Models . 87
C.3 ISA Information Flow Analysis . 89
C.4 Approach . 91
C.5 Evaluation . 96
C.6 Related Work . 98
C.7 Discussion on Unpredictable Behaviour 100
C.8 Conclusions and Future Work . 101

D Formal Verification of Secure User Mode Device Execution with
DMA 103
D.1 Introduction . 104
D.2 Related Work . 105
D.3 The HOL4 ARM Model . 107
D.4 Memory Management . 108
D.5 Device Model Framework . 109
D.6 Security Properties . 113
D.7 Implementation . 118
D.8 Conclusions . 118

E Securing DMA through Virtualization 123
E.1 Introduction . 123
E.2 Related Work . 125
E.3 Prerequisites . 125
E.4 Architecture and Hypervisor . 127
E.5 DMA Virtualization . 128
E.6 Evaluation . 130
E.7 Formal Verification of a Simplified DMA Model 134
E.8 Conclusions . 135

CONTENTS ix

F Affordable Separation on Embedded Platforms:
Soft Reboot Enabled Virtualization on a Dual Mode System 137
F.1 Introduction . 137
F.2 Hardware and Protocol . 139
F.3 Hypervisor . 146
F.4 Software Adaptions . 146
F.5 Evaluation . 148
F.6 Related Work . 152
F.7 Conclusion . 154

Reference Lists 159

SICS Dissertation Series 159

Bibliography 163

Part I

Thesis

1

Acronyms

This list contains the acronyms used in the first part of the thesis. The page num-
bers indicate primary occurrences.

ARM ARM ARM Architecture Reference Manual. 32

BAP the Binary Analysis Platform. 17

BIOS basic input/output system. 15

CC Common Criteria. 28

DMA direct memory access. 14

DMAC direct memory access controller. 39

EAL evaluation assurance level. 28

GPU graphics processing unit. 29

HDD hard disk drive. 15

IOMMU input/output memory management unit. 7, 15

IPC inter-process communication. 26

ISA instruction set architecture. 13

MMU memory management unit. 10

MPU memory protection unit. 10

NIC network interface controller. 15

3

4 ACRONYMS

OHCI Open Host Controller Interface. 15

OS operating system. 9

REE rich execution environment. 10

RISC reduced instruction set computing. 29

SGX Software Guard Extensions. 11

SML Standard ML. 18

SMM System Management Mode. 15

SMMU system memory management unit. 15

SMT satisfiability modulo theories. 17

SoC System-on-a-Chip. 29

TCB trusted computing base. 5

TEE trusted execution environment. 10

TLB translation lookaside buffer. 30

TLS topl-level specification. 27

TPM Trusted Platform Module. 10

Chapter 1

Introduction

Encryption works. Properly im-
plemented strong crypto systems
are one of the few things that
you can rely on. Unfortunately,
endpoint security is so terrif-
ically weak that NSA can fre-
quently find ways around it.

Edward Snowden

In the 1990s I possessed an electronic organizer for teenagers. One of its features
was the ability to send messages to other such organizers via infra-red transmission.
According to the manufacturer, messages would be secret and only visible to me
and the person I had a crush on. Back then I was not interested in security yet.
Besides, none of the persons I had a crush on was an owner of such an organizer.
Twenty years later I wonder how the manufacturer actually implemented its security
promise. In good faith in the manufacturer, I assume they used the strongest
encryption available. But as pointed out by Snowden in the quote above or by
Kocher in [107], cryptography is less of a concern than the security of the computing
devices on which this cryptography is processed. My electronic organizer at least
ran some user interface, the encryption service, and the infra-red network driver,
as shown in Figure 1.1. One might think that the encryption service is the only
process relevant for security. However, the user interface had access to my love
letter in clear text and possibly could have circumvented the encryption by sending
the message to the infra-red module directly. Also, the network driver – maybe
third party code – might have contained bugs or backdoors that somehow would
read the love letter from the memory of the other modules. In the end, it is possible
that confidentiality depended on all three processes. In technical terms, the trusted
computing base (TCB) of my organizer might have included all of them.

If we are more optimistic, the electronic organizer might have contained some
isolation mechanism (see Figure 1.2), that made sure that the modules were sepa-

5

6 CHAPTER 1. INTRODUCTION

Figure 1.1: The electronic organizer
with some of the software modules ex-
ecuting alongside each other.

Figure 1.2: The electronic organizer
with an isolation mechanism, separating
the modules.

rated from each other and could not access each other’s memory, except for some
dedicated and controlled inter-process communication. With working isolation and
the right policies in place, the TCB would then only have contained the encryption
service and the isolation mechanism itself. Even if both user interface and network
module were corrupted, my messages would always be encrypted before leaving the
organizer.

For teenagers nowadays, life is even harder than it was for me back then. Leav-
ing aside the many possible non-technical reasons, this is because their electronic
organizers – commonly called smartphones – do not only run code from the man-
ufacturer. Smartphones are connected to the Internet and allow the execution of
third party programs. It is no longer only erroneous code that can threaten secu-
rity, entire programs might be developed with malicious intents. This applies not
solely to smartphones, but to many other connected devices, as well. Isolation is
needed to protect assets from such malware. If attacks still succeed, isolation can
help to limit the damage. And as we have seen above, isolation allows to reduce
the TCB.

But in turn, a reduced TCB makes it also easier to increase confidence in the iso-
lation. The smaller the isolation mechanism in my electronic organizer, the more
feasible it was for the manufacturer to inspect the mechanism and clear it from
bugs. To develop that line of thought a little further, it is worthwhile noticing that
isolation has been a key feature of most computing systems for a long time. In
fact, one of the tasks of an operating system is to allow the parallel or interleaved
execution of several processes and to provide isolation by making sure that the
processes do not interfere with each other outside regulated inter-process commu-
nication. However, many operating systems are vulnerable to attacks that threaten
this isolation. A recent example that was covered broadly in media comprises three
iOS vulnerabilities that together allow an attacker to silently install sophisticated
surveillance software on the victim’s phone when the victim clicks on a specific link
[28]. Many more vulnerabilities – also for other systems – were reported in the past.

7

For performance and other reasons the design of most commodity operating systems
is monolithic, leading to a large TCB. Assuming a constant error density, a larger
code base leads to a higher number of errors. Furthermore, it increases the costs
for inspection. In contrast, the analysis of isolation mechanisms with smaller and
less complex implementations is easier. This is true for both manual inspection and
computer-aided formal verification, that is, the generation of mathematical proofs
on the security of a system.

Often such analysis focuses only on the isolating software. However, isolation
depends on hardware, as well. Some of a system’s hardware was built to enable iso-
lation, such as memory protection units or virtualization extensions. Other hard-
ware can threaten isolation, such as peripherals with direct memory access. It
is important to consider these influences when designing and verifying isolation
solutions, even more since the role of hardware for isolation is increasing. Simi-
larly, it is crucial to keep in mind that the software responsible for isolation is not
the only software on the system. Other software such as arbitrary user programs
might compromise isolation if the underlying hardware platform is misconfigured or
misdesigned. Furthermore, there might be software executing before the isolation
software, potentially preventing isolation from ever being established.

The purpose of this thesis is to improve assurance in respect to such aspects –
system aspects which constitute the environment that isolation software executes
in. We are particularly interested in the context of virtualization as enabler for
isolation, but many results are applicable to other system software, as well. While
the thesis cannot address all open challenges, it attempts to contribute towards the
ideal of pervasive platform security for general purpose systems. To that end, the
following challenges are addressed:

• How can we analyze instruction set architectures to learn about possible in-
formation flows that can occur during unprivileged execution? Verifying iso-
lation properties of the processor is more than just obtaining assurance of
its security. It is also about learning what system components need to be
banked, cleared, or restored on context switches. And finally, such analysis
yields information on how to configure the system, such that user processes
are sufficiently restricted.

• How can we maintain isolation when peripherals execute in parallel with the
CPU and have direct access to the memory? A complete exclusion of such
peripherals is not a practical option in most cases. Virtualization software
needs to provide its guests with access to those devices, however, in a con-
trolled manner. If no dedicated hardware support (such as an IOMMU, see
Section 2.1.3) is available, the virtualization software needs to function as a
proxy, check policies, and possibly multiplex accesses to peripherals. System
models need to be adopted to enable reasoning on the partitioning imple-
mented by the composed computing system.

8 CHAPTER 1. INTRODUCTION

• How do we guarantee the launch of uncompromised isolation software in pre-
viously unprotected software stacks without completely rebooting the system?

The thesis is comprised of both publications that focus on formal verification
and publications that focus on the design of platform security solutions. While the
work presented in this thesis was performed in projects with emphasis on embedded
systems, many results are general and can be applied to strengthen the security of
other platforms.

Thesis Outline Following this introduction, a background section establishes the
main concepts within platform security and formal verification that are relevant for
this thesis. Furthermore, the main challenges and related work are discussed. In
Chapter 3 the contributions of the thesis are first described on a high level and then
on a per-paper basis, together with declarations of the individual contributions of
the author. For completeness, the author’s publications outside this thesis are listed
at the end of the chapter. Chapter 4 concludes the first part of the thesis with a
summary and a discussion of possible future work. Thereafter, six of the author’s
paper are included. Some of them contain minor extensions to the original publi-
cations. Otherwise the papers are included as originally published, but adopted to
the style format of this thesis. A common reference list for all included papers and
introductory part of the thesis can be found at the end.

Chapter 2

Background

2.1 Platform Security

IT security can be divided into a number of subfields, including for instance cryptog-
raphy or network security. This thesis focuses on the subfield of platform security.
The goal of platform security is to secure computing platforms, ranging from small
sensor nodes over smartphones and personal computers to industrial servers. The
main ambition is to protect the integrity and confidentiality of software, credentials,
and other data, while they reside on the computing platform. Threats to those se-
curity properties can be of both physical and logical nature. While physical attacks
on the platforms have high impact potential, they are less likely in most scenarios.
Instead, this thesis discusses protection from threats that allow malicious software
(called malware) to infiltrate the victim’s system via storage media or remotely via
a network.

Two concepts are vital for protection from malware: isolation between poten-
tially malicious software and assets to protect, and the establishment of trust in
integrity and authenticity. Processes should not be allowed to influence other pro-
cesses or access their data, except for explicit communication. Besides protecting
processes from each other, the isolation enabler also needs to protect itself from
undesired modification. Once a software stack with such isolation properties is de-
veloped, the second challenge is to provide the users or third parties with assurance
that the system they interact with actually is the system they assume, that is, that
they trust. This trust establishment is sometimes also called attestation. Remote
attestation is the attestation of a system’s state to a remote party, for instance over
the network.

Isolation can be achieved in many ways. Software aiming to isolate processes
(e.g., an operating system (OS) isolating applications) could potentially interpret
the processes line by line and dynamically check each instruction against policies
before executing it. Alternatively, it could statically check that code follows the
desired policy before handing over execution to the corresponding processes. How-

9

10 CHAPTER 2. BACKGROUND

ever, while the first option is prohibitive in terms of processing time, the second is
hard to achieve, due to obstacles such as self-modifying code. In practice, system
software therefore relies on hardware support to establish isolation. Such sup-
port allows direct execution of untrusted code on the CPU while still maintaining
isolation. Most prominently, memory protection units (MPUs) and memory man-
agement units (MMUs) allow privileged code to set selected regions of the main
memory inaccessible throughout the execution of a process. Memory protection
policies can restrict readability, writability, executability, or combinations thereof.
Processors usually support the execution on different privilege levels to make sure
that applications cannot change memory protection or other privileged settings,
while operating system kernels can. Transitions between privilege levels (or opera-
tion modes) follow well-defined schemes, that – for instance – enforce the execution
of specific code (called handlers) on entrance into a privileged mode. The hardware
can be configured to invoke the kernel on certain events (exceptions) such as inter-
rupts from a peripheral or when unprivileged software attempts to access restricted
memory.

2.1.1 Trusted Execution Environments
Due to the size and complexity of operating systems, OS developers often fail in
keeping code free from vulnerabilities that threaten the isolation of user processes.
Therefore, several initiatives attempt to enhance platforms with additional isolation
that is stronger than the one provided by most operating systems. This isolation
can then be used to protect select code and data, even if the OS is compromised.
Environments providing such integrity- and confidentiality-protected execution are
often referred to as trusted execution environments (TEEs). 1 They operate along-
side the rich execution environment (REE) – including the commodity OS and its
applications – but subject to some (hardware) separation [121] and usually offering
services to the REE [136].

Some TEEs are provided by the processor designers, such as by ARM’s Trust-
Zone extension [11]. TrustZone’s TEE is called Secure World and manages its own
virtual MMU and own vector table [59]. An additional address bit allows to assign
both memory regions and peripherals exclusively to the Secure World. However,
the Secure World always has access to the REE (or Normal World).

Trusted computing [174] is another enabler for TEEs. In trusted computing,
software that is loading new software uses special CPU instructions to calculate
integrity measurements of the loaded binaries. Those measurements are computed
with the help of hash functions and reported to a special cryptographic hardware
component – the Trusted Platform Module (TPM) – before execution is handed
over to the loaded software. Measurements can be computed incrementally while

1Note that the term TEE is overloaded in the security community. The definitions which
we follow in this thesis only require isolated processing and memory. However, there are other
definitions of TEEs that have stricter requirements and include, for example, boot integrity, secure
storage, and device identification/authentication [63].

2.1. PLATFORM SECURITY 11

building up the software stack or only for a single binary block to load, sometimes
called late launch [100, 82, 1, 116]. In the incremental case, the reported measure-
ments help to attest the integrity of the entire software stack as long as all reporting
modules are trusted. In late launch, hardware guarantees that the TPM-reported
binary actually has received control at some point. Note that this attestation of
integrity is not the same as integrity enforcement – it is still possible that manip-
ulated binaries are loaded and executed. However, in that case attestation will
fail. Since it is possible to make access to credentials subject to attested integrity,
attacks on the software’s integrity would be rendered useless in some scenarios. In
practice, credentials are either provided from a remote machine after integrity has
been attested or – with sealed storage – revealed by special hardware.

When those methods are used correctly, they can guarantee the integrity of
launched software and indirectly the integrity and confidentiality of data. How-
ever, by itself this guarantee only holds as long as the launched software is the only
one executing on the machine. When handing over control or when executing on
multicore systems the software needs to take additional measures to maintain isola-
tion, for instance through memory protection or clearing state on context switches.

To minimize such overhead - and in consequence the code to rely on - Intel
introduced its Software Guard Extensions (SGX) [8, 119, 94, 118, 183]. TEEs
based on SGX are called enclaves and it is the processor that ensures integrity and
confidentiality once code and data are loaded into such an enclave. Throughout
the execution of an enclave, software executing alongside cannot interfere with or
learn about the enclave’s execution, apart from explicit communication and side
channels such as page faults (cf. [184]). Since enclave code is not protected before
the enclave is loaded or after it is destroyed, remote attestation and sealed storage
are employed to maintain protection of integrity and confidentiality at those times.
For low-end embedded systems such as sensor nodes, Sancus [131] provides similar
protection to that of SGX.

To fully understand the benefit of TEEs, the concept of a trusted computing
base (TCB) is essential. The TCB of a system is "a small amount of software and
hardware that security depends on and that we distinguish from a much larger
amount that can misbehave without affecting security" [109, page 270]. While
other definitions (e.g., [110, page 112, glossary]) understand the TCB as a set of
dedicated protection mechanisms, in this thesis TCB is to be understood as the
totality of any software or hardware that actually has the capability and privileges
(but not necessarily the intended functionality) to compromise security. The user
thus needs to trust the TCB. Trust in that sense does not distinguish between
malicious intentions and exploitable errors. For the user of a platform it does not
really matter if the platform’s operating system was written to leak/manipulate
the user’s data or if the operating system is "only" vulnerable enough to allow an
attacker in the form of a malicious application or remote party to cause damage.
Both cases are clearly undesirable. Since complex (sub-)systems are hard to secure,
one of the main paradigms of security research has therefore become to minimize
this trusted computing base. And that is in the end what TEEs are developed

12 CHAPTER 2. BACKGROUND

for. It is not the case that operating systems in principle could not isolate critical
from untrusted applications. But isolation is not their sole task and – especially
monolithic – operating systems often have a larger TCB than TEEs. This is clearly
a disadvantage when it comes to exhaustive examination.

We next turn to virtualization, the enabler for TEEs that we focus on in this
thesis.

2.1.2 Virtualization
Virtualization provides to software a system view of interfaces and resources that
differs from the actual (physical) interfaces and resources of the system [164]. Virtu-
alization can be used for compatibility reasons, for resource sharing, or for isolation.
One of the most common forms of virtualization - process virtualization - is per-
formed by operating systems to provide processes with a standard interface where
context switches and variations in physical memory layout are transparent. In con-
trast, in system virtualization [164] it is the operating system itself that executes
upon a virtualized interface. For example, an operating system could be hosted by
another one. Alternatively, operating systems can execute side-by-side on a single
physical device without another operating system hosting them. This latter form is
called type-1 [79, section 2.1] or bare metal virtualization. We refer to the software
that provides this virtualization as a virtual machine monitor or hypervisor and to
the software systems executing upon their virtualized interface as virtual machines
or guests.

A type-1 hypervisor might attempt to provide its guests with a view that is iden-
tical to the physical system, modulo the extent of available resources like memory,
cores, or time. This form is known as full virtualization and makes it transparent to
the guest that it is executing in a virtualized environment. In contrast, paravirtu-
alization refers to the modification of guests in order to function in the virtualized
environment. Typically, such paravirtualized guests would issue system calls invok-
ing the hypervisor for privileged functionality, so-called hypercalls. Alternatively,
a hypervisor can be invoked on exceptions, such as interrupts, data or prefetch
aborts, or a guest’s attempt of executing a privileged instruction. Such trapping
is used in both paravirtualization and full virtualization. In the latter case, the
hypervisor consequently emulates the functionality that the guest failed to execute.

While paravirtualization can be done with the same hardware enablers that
operating systems usually use, full virtualization can be hard or even impossible
without additional hardware support. The minimum requirement for full virtual-
ization is that all privileged operations trap into the hypervisor when attempted by
guests. However, since guests usually maintain their own isolation hierarchy (be-
tween OS kernel and applications), a hypervisor would need to emulate hardware
functionality such as system calls and memory management, if it is intended to
provide the guest with this internal separation. Since that can be a tedious task,
modern hardware platforms provide virtualization support such as multiple privi-
lege rings or a 2-stage-MMU. A 2-stage-MMU allows the guest OS kernel to directly

2.1. PLATFORM SECURITY 13

define an address translation from virtual addresses to intermediate addresses and
the hypervisor to define the translation between those intermediate addresses and
physical memory.

Isolation in the context of virtualization is fulfilled when guests are not able
to learn about fellow-guests or influence them. Sometimes, one wants to relax this
interpretation and support functionality like inter-guest communication. It can still
be meaningful to speak about isolation then, given that guests cannot influence each
other in any other way than via a controlled well-defined communication channel.

Separation kernels are similar to hypervisors and the two terms are often used
without sharp distinction. Rushby introduced separation kernels as software that
mimics a distributed environment, with guest processes executing separately from
each other except for explicit communication [144]. The (security) term "separa-
tion kernel" is more common for kernels that focus on isolation and whose guest
processes do not necessarily have operating systems. In contrast, the term "hyper-
visor" often refers to virtualization software with more virtualization functionality
and complex guest systems. For instance, a hypervisor would typically apply mem-
ory translation instead of pure memory protection with a 1-to-1 mapping. Because
of the overlapping terminology, this thesis often employs the term "hypervisor" for
both types of system software.

2.1.3 System Aspects of Isolation
The security of a virtualized platform does not solely depend on the linear execution
of hypervisor code. Actors coexisting with hypervisor threads (Figure 2.1) influence
the system, among them:

• code that executes before the hypervisor, that is, boot code.

• code that executes in between two hypervisor handlers on the same core, that
is, runtime firmware (e.g., for power management) or guest code. Firmware
code is often unknown. Guest code can be any arbitrary code, only limited
by the privilege management of the instruction set architecture (ISA).

• code on other cores. This code executes in parallel and can be another hy-
pervisor thread, a guest, or firmware. Some of the resources accessed by a
core are exclusive to that core, while other resources are shared between the
cores, creating race conditions and data leakage, for instance.

• peripherals operating in parallel.

• system components that are executing on behalf of the hypervisor or the
other actors above, but do so in parallel and with delays, that is, without
predictable execution sequences. That is the case for co-processors, but also
for the entire memory subsystem, including store buffers, caches, and memory
management.

14 CHAPTER 2. BACKGROUND

Figure 2.1: System security is influenced by many actors.

It is essential to understand how the above actors can change the system, what
information they can access, and under which circumstances this happens. This
knowledge allows for the correct system configuration and implementation of con-
text switches and other hypervisor operations. However, this matter is not trivial
and the past has shown that many of the coexisting actors in the system can set
security at risk. This subsection surveys some of the known issues.

Much complexity is introduced through peripheral devices. On some architec-
tures, the programmer has access to specific commands to communicate with pe-
ripherals. On other architectures like ARM, peripheral devices are mostly memory
mapped, i.e., their ports are accessible via standard load and store instructions.
From the programmer’s perspective, memory mapped devices do not differ from
actual memory. The only attribute that distinguishes them from memory is their
physical address. Therefore, the MMU can be used to constrain which device ports
the CPU has access to. However, some devices have direct memory access (DMA)
and can read from or write to both physical memory and other devices on the
bus. If untrusted code has access to DMA controllers, the controllers can be pro-
grammed to circumvent memory isolation. Wojtczuk demonstrates on x86 how

2.1. PLATFORM SECURITY 15

a manipulated driver for a network interface controller (NIC) or hard disk drive
(HDD) can use DMA to modify code and data of a Xen 3.x hypervisor from the
(relatively privileged) dom0 guest domain [181]. DMA attacks have also been used
to develop stealthy keyloggers, undetectable by the host [169]. Input/output mem-
ory management units (IOMMUs), also called system memory management units
(SMMUs) in ARM terminology, are one way to counteract DMA attacks. They can
be programmed by system software to constrain the address space accessible by ad-
jacent peripherals. However, many embedded devices do not include an IOMMU.
Alternative ways of protection against DMA attacks are discussed in Chapter E.
A special form of DMA attacks is based on the FireWire technology implemented
via the Open Host Controller Interface (OHCI). As shown in [32], the interface
provides DMA to external peripherals without the involvement of system software.
Therefore, malicious external peripherals can compromise the system even with-
out previously installed malware. There are countermeasures to those attacks, for
instance OHCI filters, but FireWire attacks still demonstrate that threats do not
only come from software.

Before the hypervisor has even a chance of setting up the machine to protect
itself, firmware – such as the basic input/output system (BIOS) – and boot code are
executing. We need to trust this code to load the hypervisor as expected. Secure
boot schemes (e.g., as in [127]) use read-only memory and cryptographic means to
guarantee the integrity of the hypervisor and guests. Trusted boot schemes also
attest this integrity to the user or remote parties. These schemes can help to
protect, for instance, against manipulations on the storage device that contains the
hypervisor code before boot. However, we still need to rely on the correctness of
the boot code sequence itself. Unfortunately, BIOS software is not standardized
and rarely updated, and many BIOS systems are known to have vulnerabilities
[108]. Even worse, firmware is not only a concern at boot time, but remains active
afterwards. A well-known example of this is the System Management Mode (SMM)
on Intel’s x86 machines. The SMM is invoked for power management, for instance,
and executes without restrictions on memory or I/O. Furthermore, it has access
to the context stored by the CPU when entering SMM. It is thus quite attractive
for an attacker to operate in SMM. The memory that contains the SMM handler
code is supposed to be protected, but some attacks have managed to overwrite it
[62]. These attacks already require at least administrator privileges, but allow the
attacker to become even more powerful [62] or to install a stealthy rootkit [64, 154]
that the operating system (or hypervisor) cannot detect. While SMM is specific to
x86, similar issues might exist on other platforms. Also on ARM, firmware code
executes during and after boot and in a powerful setting (e.g., in the Secure World
of TrustZone). As pointed out in Section 2.1.1, TEEs are supposed to reduce the
amount of code we need to trust. At the same time, these examples show that
TEEs can reduce the ability for users to gain trust when the TEEs hide third-party
code from inspection.

Side-channels are a more subtle attack vector than the ones discussed above.
However, it has been repeatedly shown that they allow the extraction of crypto-

16 CHAPTER 2. BACKGROUND

graphic keys, for example. Furthermore, they are hard to avoid and exist in various
forms. Among the most important representatives are cache channels, which can be
both timing-based or purely logical [135, 143, 99, 185, 83]. Physical side-channels
include the analysis of power, electromagnetic patterns, or acoustic emanations.
For instance, Genkin et al. demonstrated that inexpensive equipment can extract
keys over the electromagnetic channel in a few seconds from a distance of a half
meter [76].

The purpose of this subsection is to give an intuition of the complexity of modern
systems. There are more components that would deserve attention, for instance
debug registers, but a complete survey is out of scope of this thesis. The ambition
of this thesis is to improve assurance for a few pieces of the complex puzzle just
described. In particular, the included results focus on the security during boot,
during user mode execution, and in the context of DMA-devices.

2.2 Formal Verification

Assurance of the correctness of soft- or hardware has traditionally been derived
from testing and manual inspection. However, those methods are far from com-
plete. To increase assurance, a range of machinery has been developed to actually
prove correctness. While the assurance obtained from such proofs can still vary,
all approaches share the idea of creating mathematical models of the systems to
analyze and subsequently derive or confirm - also mathematically - formal proper-
ties. By formal we mean that those properties are expressed as statements in some
logic. Consequently, those methods are referred to as formal methods or formal
verification.

2.2.1 Representatives of Formal Methods
Next, we survey the most prominent representatives. Note that although we at-
tempt to categorize the different approaches, a sharp separation is not always mean-
ingful.

Model Checking In model checking, the system to verify is modeled as state
transition system and automated graph search algorithms check if the given specifi-
cation holds of the system’s state graph [65]. The specification is usually formulated
as a temporal property, thus expressing behaviors such as "it is always (i.e., in ev-
ery state) true that X" or "whenever Y occurs, eventually Z will become true".
On violations of the specification, the model checking tool exhibits a counterexam-
ple. The advantages of model checking are the automation and user-friendliness.
On the downside, the exhaustive exploration of the state graph is expensive (state
space explosion). This practically prohibits detailed system models (e.g., where a
machine’s memory is modeled completely as a huge array of words). The model
designer thus has to abstract the state, with the risk of missing relevant behavior.

2.2. FORMAL VERIFICATION 17

SAT Solving Propositional logic formulas can be transformed into an equivalent
formula in conjunctive normal form (CNF), that is, a conjunction of clauses that
are in turn disjunctions of possibly negated variables [97, chapter 1.5]. Determining
whether or not such a formula is satisfiable is known as the Boolean satisfiability
problem (SAT), which is decidable, but in general NP-complete [48]. However, in
practice SAT solvers can decide the satisfiability of many formulas in acceptable
time. Generalizing the concept of SAT solving, solvers for satisfiability modulo the-
ories (SMT) (e.g., [56]) allow to include domain-specific theorems (e.g., on integer
arithmetic) into the reasoning. SAT solvers can be directly applied for reasoning
on state transition systems [159] or for automatically discharging sub-obligations
in other proof tools.

Static Automated Program Verification Static verification of functional and
safety properties for software can be automated to a large extent. The "model"
is the program code itself, as source code, in an intermediate format (e.g., Java
bytecode), or as binary. The specification is usually given as a contract of pre-
and postconditions on code blocks. In addition to those assertions, the user can
typically provide intermediate assertions such as loop invariants to facilitate the
reasoning. The most prominent notation is based on Hoare-triples [93] of the form
{P}C{Q} expressing that if precondition P holds then program code C will progress
the program to a state where Q is true. Total correctness additionally requires
termination of C, while partial correctness only assures Q under the condition that
C terminates. Axioms and proof rules allow to derive and combine such triples
based on the operational semantics of the code language. They describe how pre-
and postconditions relate in the context of for example assignments, sequential
composition, or branches. Starting from the desired postcondition, those rules allow
to automatically infer the weakest precondition. Alternatively, one can start from a
known precondition and infer the strongest postcondition. Along the process, proof
obligations are accumulated. Their conjunction - the verification condition - is a
first order formula that can be verified by an SMT solver in many cases. Loops and
less simple relations on arithmetics and data structures might require additional
user interaction. Examples of static code verification tools are the Binary Analysis
Platform (BAP) [43] for binary code and VCC for concurrent C [47].

Protocol Verification Outside of platform security, formal verification is for
example used to verify the security of network protocols that make use of cryp-
tographic principles. Given a model for the protocol and the attacker’s behavior,
they check what an attacker can achieve in the protocol. Examples of protocol
verification tools are ProVerif [37, 38] and AVISPA [177].

Interactive Theorem Proving Despite the name, an interactive theorem prover
is more of a proof checker than a proof generator, even though more and more
automation finds its way into modern theorem provers. The core principle of an

18 CHAPTER 2. BACKGROUND

interactive theorem prover is that propositions can be stated in some specific logic
and that inference rules allow to transform assured propositions (such as axioms)
into new assured propositions. The inference rules can be both of a basic kind
or derived complex rules. Among the most prominent theorem provers are HOL4
[95, 81], Isabelle [101], and Coq [33]. They all have some form of meta language
that allows to operate on terms, i.e., expressions in the logic. For HOL4 that
meta language is Standard ML (SML), a widely-used general-purpose functional
language. Logical propositions in HOL4 are simply terms of Boolean type. It is
important to point out that there is a difference between SML types and HOL4
types. When we say "a term of Boolean type", then we actually mean that the
HOL4 type of the term is Boolean, while the SML type is term with bool as a type
parameter. Proven propositions along with their premises are represented in an
abstract SML-type for theorems. This type does not have primitive constructors.
Therefore, users can only construct objects of the theorem type with sound primitive
inference operations 2 [132]. SML allows to combine those inference operations to
arbitrarily complex operations on theorems. Below we discuss the most common
ones. Rules transform theorems to new theorems. For instance, the rule SYM would
turn 1 + 2 = 3 into 3 = 1 + 2. Conversions take as input a term and turn it into a
theorem that states the equivalence of that term to some other term computed by
the conversion. For example, a conversion could generate the theorem 1+2 = 2+1
from the input 1+2. Instead of reasoning from known theorems forwards to desired
theorems, the opposite is possible as well and is called backward reasoning. A proof
goal is reduced to one or several subgoals including premises, which is then repeated
recursively, generating a proof tree (or proof stack). This procedure is usually
performed in a depth-first manner, moving upwards whenever a leaf node can be
finished off completely. The proof stack is managed by a proof manager, that
also comes with some sort of user interface when used interactively. Reductions
are based on so-called tactics, functions from a goal3 to a list of subgoals and a
justification function. The justification function allows the deduction of the desired
theorem from the theorems that would result from the subgoals. Functions that
transform tactics are called tacticals.

Even though the most common use of HOL4 is to do backward reasoning with
standard tactics, HOL4 really allows to "program" proofs more freely. Therefore,
rather than understanding HOL4 reasoning as the instantiation of a fixed proof
structure, it should be seen more generally as theorem processing. This allows
for proof tools as demonstrated in Chapters B and C. Their development involves
algorithm design and programming, just as in the development of arithmetic or
graph tools. Instead of numbers and graphs, however, the basic operations are

2Strictly speaking, HOL4 allows to construct arbitrary theorems even without proof.
However these theorems will be tagged. Tags are propagated and cannot be removed.
One way of constructing such theorems is by the application of the mk_oracle com-
mand, see https://hol-theorem-prover.org/kananaskis-10-helpdocs/help/Docfiles/HTML/
Thm.mk_oracle_thm.html

3A goal consists of a term as the proposition to prove and a list of premise terms.

https://hol-theorem-prover.org/kananaskis-10-helpdocs/help/Docfiles/HTML/Thm.mk_oracle_thm.html
https://hol-theorem-prover.org/kananaskis-10-helpdocs/help/Docfiles/HTML/Thm.mk_oracle_thm.html

2.2. FORMAL VERIFICATION 19

inference rules operating on terms and theorems. Since the inference rules are
composed from a small set of basic and sound rules, obtained theorems are sound.

2.2.2 State Transition Systems

In the following, we use the term machine as general concept of a computing system
– be it a single processor core, a peripheral, or an entire device. A machine has
components such as registers, memory, control flags, or a coprocessor, and those
components can in turn have subcomponents. The state of a primitive component
is the value it currently holds, while the state of a complex component or the entire
machine is a structure comprised of the states of all subcomponents. Whether
this structure is represented as tuple, record, or some other type, depends on the
mathematical model of the system. In deterministic settings, machine progress can
be represented by transition functions that take a pre-state, possibly along with
some parameters, and return a post-state. If non-determinism needs to be modeled,
relations between pre- and post-states are a suitable generalization. The models
used in this thesis are on instruction set level and most of them do not include
non-determinism, since they do not consider timing, concurrency or other behavior
whose outcome is hard to predict. Chapter D is an exception and includes a model
in which a CPU core executes concurrently with peripheral devices. However,
we decided to reflect the unknown effect order from concurrent execution with
the help of an uninterpreted oracle function. Our proofs then quantify over all
possible orders. This decision allowed us to stay closer to the original CPU model
than by switching to transition relations. In the following, we focus on transitions
represented by functions. Transitions can be of any granularity, representing one
processor instruction, only parts thereof, or entire programs. Sometimes, it is
meaningful to fix the granularity. Then we use the term step for a transition of the
chosen granularity. A step sequence is the chained application of steps, so that the
post-state of one step is the pre-state of the next step. A chain of involved states
in such step sequence is called trace.

The state transition systems most relevant for this thesis are the ISA models
by Fox et al. [68, 69, 70]. They are available for ARM, MIPS, x86, and other
architectures. The instruction sets are modelled based on official manuals and on
the abstraction level of the programmer’s view, thus being agnostic to internals like
pipelines. The newest models are produced in the domain-specific language L3 [68]
and can be exported to SML and HOL4.

2.2.3 Noninterference

In the following we introduce the property of noninterference as formulated by
Goguen and Meseguer [77, 78] and by Rushby [145, chapter 2]. We first present the
general formulation and later instantiate it to be close to the scenarios and models
discussed in this thesis.

20 CHAPTER 2. BACKGROUND

We assume a state transition system with a set S of states, some actions A (e.g.,
inputs or commands), and a set O of outputs. Given a pre-state and an action, the
system takes a step deterministically, step : S × A → S. However, the free choice
of the action might introduce a certain nondeterminism if no further restrictions
apply. Extending the step function, step∗ : S × A∗ → S denotes the execution of
multiple steps, inductively defined over a list of actions. We assume the existence
of an output function out : S×A→ O that takes a state and an action and returns
an element of O as the output associated with that action on that state. Let D
denote a set of security domains, for instance, {public, secret} or a set with one
domain per process. The function dom : A → D associates a domain with each
action. Furthermore, a security policy defines which domains may influence which
other domains. We define a function purge : A∗ × D → A∗ that takes an action
sequence and a domain d and removes all actions from the sequence that belong to
a domain that is not allowed to influence (i.e., that is not readable by) d.

Rushby provides an intuition for information flow as follows: "information can
be said to flow from a domain u to a domain v exactly when actions submitted by
domain u cause the behaviour of the system perceived by domain v to be different
from that perceived when those actions are not present" [145, chapter 2, page 7]. In
that understanding, noninterference is the absence of undesired information flow.

Definition 2.2.1. Let s0 be a starting state, possibly subject to some precondi-
tions. Then, we say that noninterference holds, if for all action sequences α and all
actions a it is true that

out(step∗(s0, α), a) = out(step∗(s0, purge(α, dom(a))), a).

The domain of action a should not be affected by domains removed through
purging.

When showing noninterference for a concrete system, reasoning on sequences of
state transitions can be challenging. However, noninterference can be reduced to a
set of unwinding conditions on single (pairs of) state transitions, see [145, chapter 2]
and [78]. A core ingredient for this reduction are state equivalence classes defined
for each domain. If two states are in an equivalence relation ∼d, it should be
impossible for domain d to distinguish them. It is the task of the verifier to identify
a suitable relation, guided by the unwinding conditions of the following theorem
[145, theorem 1]:

Theorem 1. Noninterference holds if for every domain d there is an equivalence
relation ∼d, such that these three conditions hold:

1. output consistency: (d = dom(a)) ∧ s ∼d t ⇒ out(s, a) = out(t, a) (for all
states s and t and all actions a)

2. local policy compliance: s ∼d step(s, a) for all actions a whose domain dom(a)
is not allowed to influence d (for all states s)

2.2. FORMAL VERIFICATION 21

3. step consistency: s ∼d t⇒ step(s, a) ∼d step(t, a) (for all states s and t and
actions a).

Proof sketch: Consider any domain d, an original trace, its purged version,
and any pair of states (one state from each trace), such that the two states are
related by ∼d. We induct over the original trace. For every step we distinguish two
cases. Either the action of that step belongs to a domain that is allowed to influence
d. Then this step is also represented in the purged version and step consistency
maintains ∼d. Or else the action of the step does not belong to a domain that is
allowed to influence d. In that case, the step has been purged from the other trace,
but local policy compliance guarantees that the relation is still maintained, when
we advance only in the original trace. Finally, after any walk on a trace pair we
will still be in states related by ∼d. From there, output consistency allows us to
conclude noninterference [145, chapter 2].

To understand what noninterference means for the scenarios and models in
this thesis, we instantiate the above formalism with a system close to the systems
analyzed in later chapters. We consider a virtualized single-core machine where two
or more guests take turns in execution. A hypervisor handles the context switches,
by storing the context of a paused guest to memory and restoring the context when
reactivating the guest. For simplicity, we also assume that the hypervisor manages
some flag flagg for each guest g indicating whether the guest’s context is in the
context buffer or in the registers of the processor. 4 Context switches are initiated
by timer interrupts. For now, we assume that interrupts are the only way to trap to
the hypervisor and that guests do not communicate. Guests do not have access to
the system time. Intuitively, the established separation implies that a guest cannot
learn anything about any other guest. It should not even be able to learn about
other guests’ existence.

We choose the set D of security domains to contain one domain for the hy-
pervisor and one for each guest (but no further domains). Guest domains are not
allowed to be influenced by any other domain. The system models in this thesis
mostly represent instruction set architectures, with program code residing in mem-
ory, a program counter pointing to the next instruction, the privilege level encoded
in some control register, etc. – all included in the modeled state. In such a state
transition system, the concept of actions becomes almost superfluous. The state
already encodes which actor (i.e., domain – guest or hypervisor) is currently active,
and every pre-state only has one possible post-state. The only exceptions to this
determinism are interrupt signals. We thus use actions to accommodate interrupts
and to make the active domain encoded in the state more explicit for the above for-
malism. To that end, we choose the set A of actions to equal the set D of domains,
instantiate dom with the identity mapping, and instantiate step : S ×D → S with
a partial function that takes a state s and a domain d and returns

4This information can also be concluded from the remaining machine state, for instance from
the program counter and the handler code.

22 CHAPTER 2. BACKGROUND

• the progressed machine state after one ISA step, if domain d matches the
active actor in s;

• the post-state to s after an interrupt signal, if d is the hypervisor domain, but
a guest is active in s.

For simplicity, this instantiation excludes interrupts fired during hypervisor phases,
but accommodating them requires minor changes. Note that interrupt steps belong
to the hypervisor domain. This modeling decision is motivated by purging reasons.
If interrupt actions belonged to guest domains, then execution sequences purged
for that guest would end up in privileged mode without any hypervisor or other
handler to get the system back into user mode. This would prevent step consistency.
The step function is partial, since a step on a machine can only be an interrupt
or performed by the active actor/domain. There is no meaningful interpretation
of a guest-action when the hypervisor or another guest is executing. A total step
function that just idles for such cases would generate some traces that cannot
be matched with their purged versions when attempting to show the unwinding
conditions. Disallowing some action sequences by choosing a partial step function
introduces the additional proof obligation of showing that purging of valid action
sequences will always result in valid action sequences again. We omit detailed proofs
here. The intuition is that purged sequences will only contain actions associated
with one guest, and when starting from user mode with that guest active the system
cannot reach a scenario in which this guest is not active any more. 5 As output
function we chose a mapping that takes a state s and a domain d and returns a
masked version of s, such that:

• if d matches the active actor in s, all components considered readable for d
remain as in s, while all unreadable components are overwritten with standard
values;

• if d does not match the active actor in s, a state with standard values only
will be returned.

Since we assume that the hypervisor can access the entire system, a suitable
equivalence relation for its domain is the identity relation. Conditions 1 and 3
follow trivially and so does local policy compliance, since there are no domains that
are not allowed to influence (i.e., to be readable by) the hypervisor. The equivalence
relations for the guests are less straightforward. Clearly, they should reflect that a
guest depends on its own memory, but not on foreign memory. Thus, two states
related by∼g would be required to agree on guest g’s memory, but would not restrict
the states on other guests’ memory. Naïvely, we would extend this pattern to other
state components, such as registers, requiring two states in ∼g to agree on all guest-
visible registers and being liberal on all registers invisible to g. This would fulfill

5Remember that we have assumed that interrupts are the only way to enter privileged execu-
tion mode.

2.2. FORMAL VERIFICATION 23

output consistency, but leaves local policy compliance unsatisfied, since the guest-
accessible registers will be used by the hypervisor and other guests when g is not
active. We could relax the relation by removing the restrictions for states in which
g is inactive. That is fine for output consistency because of our definition of out.
Also, the local policy would be trivially respected in almost all cases. The downside,
however, is that we would loose guarantees that we need to re-establish equivalence
when the execution returns to g. To maintain these guarantees, we make use of
the actual hypervisor design, which involves storing and restoring guest contexts
whenever those guests turn inactive or are reactivated. We include the context
buffer into the reasoning by letting it take the role of the guest-visible registers
when g is inactive. Since it takes the hypervisor several instructions to store or
restore the context, we make use of flagg to define exactly when the register data
of g is considered to be found in the actual registers, (partly) in banked registers,
or the context buffer of g. If context storing/restoring is correctly implemented
and neither hypervisor nor other guests manipulate the context of g, then phases
in which g is inactive will be transparent to g and the unwinding conditions will
hold.

From the perspective of g, we can break conditions 2 and 3 further down to five
different phases and their proof obligations:

• Execution of g: During the execution of g, the local policy is trivially re-
spected. For step consistency, we need to show s ∼g t ⇒ step(s, g) ∼g

step(t, g). This property is often referred to as non-infiltration [90] in this
thesis. When g is active, the relation ∼g relates states that agree on the
observable components. Therefore, non-infiltration expresses that a variation
of secret state components will not cause variations of observable compo-
nents. Definition 2.2.1 of noninterference considers a composed system and
an interleaving of several actors/domains. In contrast, non-infiltration can
be understood as the local perspective (here of g) on noninterference. That
is why in the literature – especially in the information flow analysis of pro-
grams – non-infiltration is often directly referred to as noninterference [147]
or similar terms such as batch-job noninterference [19]. Chapters B, C, and
D follow this convention.
In order to show non-infiltration over the course of several instructions, we
need an invariant on possible preconditions to non-infiltration. For instance, it
usually has to be shown that g is not able to affect the page tables. Otherwise,
it would be able to learn information in the next step and thus break non-
infiltration. The integrity property that g cannot manipulate certain machine
components is called non-exfiltration [90].

• Change of processor mode: In order to reason about privileged execution,
several guarantees have to be established when switching the processor’s priv-
ileged mode. Most importantly, the program counter must be pointing to a
well-defined position in an exception handler. That is, guests should not be

24 CHAPTER 2. BACKGROUND

able to switch to a privileged execution mode and execute arbitrary code
there. Similarly, endianness and instruction set flavour need to be set as ex-
pected instead of guest-defined. Interrupts need to be masked. The return
address should in fact belong to g. We refer to those properties as switching
properties.

• Storing/restoring context: With the help of the switching properties we
can now reason about the hypervisor code. The central part here is to show
that storing and restoring context complies with the local policy (condition
2). Step consistency follows trivially.

• Independent hypervisor execution: For the rest of the hypervisor exe-
cution, we essentially have to show that the remaining hypervisor code does
not modify the context buffer or memory of guest g.

• Execution of other guests: Also the other guests should not modify the
context or memory of g in order to guarantee local policy compliance. Further-
more, they must not perform any state modifications that would invalidate
the preconditions of the properties above. To that end, non-exfiltration pro-
vides all necessary guarantees on the integrity of page tables, hypervisor data
and code, and g.

In practice, the exact definition of noninterference has to be adapted to the
considered system. For example, one might want to accommodate instructions
that trap into a privileged handler, such as software interrupts. They differ from
hardware interrupts in that they cannot be handled entirely transparent to the
guest. For example, the program counter before suspension is different from the
program counter after suspension. To avoid that purged executions get stuck,
hypervisor steps would need to be substituted by some basic functionality of an
imaginary machine that does deviate from an actual machine. The deviations
would need to be considered as "secure by design".

In chapter A we extend this concept of comparing the actual execution to an
imaginary machine and functionality that is secure by design. In particular, the
imaginary – ideal – machine of chapter A is secure by design as a whole, not only in
parts. This allows us to create a notion of security for settings where interference
between guests actually exists, but only in the form of controlled communication.

More general notions of noninterference allow for intransitivity and/or accom-
modate nondeterminism [178, 125]. Intransitivity can be meaningful when a medi-
ating actor such as a kernel is both influenced by and influencing various domains
while there must not be any flow between these domains.

2.2.4 Information Flow Analysis
As discussed above, in the information flow analysis of code, noninterference is usu-
ally understood as what we also called noninfiltration. Given a set of components

2.3. VERIFICATION OF PLATFORM SECURITY 25

(or variables), we want to know possible flows of information between variables. If
there are no "illegal" flows, noninterference holds. In the simplest case we divide
the set of variables into high (secret) and low (public) and want to show that no in-
formation flows from high to low. In more general formulations, our domains might
come from a lattice, for instance [57]. The assignment of domains to variables is
called labelling.

Uncovering information flow requires careful analysis. In addition to explicit
flows through direct assignments, flows can be implicit, that is, caused by control
flow that depends on (possibly secret) values. For example, the assignment l :=
(if x then 1 else 0) always assigns a public value to l, however, in dependency on
x, thus allowing an observer of l to infer the value of x. A collection of machinery
has been developed by the community to both identify information flow and verify
or enforce its absence. While dynamic approaches track flows during the execution
and attempt to prevent undesired flows, static approaches analyse possible flows
before the execution. In the latter case a labelling is either given in advance (as
desired partition policy) and checked [7] or computed throughout the analysis [96].

Type Systems The most prominent class of approaches for information flow
analysis is formed by type systems, as surveyed in [147]. They extend existing
concepts for tracking the data type of values (e.g., integer or boolean) to tracking
secrecy labels (in the simplest case high and low). To that end, the single steps
of (a program’s or an instruction’s) semantics are matched to inference rules that
gradually restrict the set of possible labels for a given value. For example, such a
rule could express that any variable that is assigned a value in some conditional
branch needs to be regarded at least as secret as the value of the conditional guard.
This addresses implicit flows as the one discussed above, but can be too restrictive in
some cases, as demonstrated by the example if (h == 0) then l := h else l := 0.
Here, the resulting value of l does not depend on h.

Most type systems concern imperative languages. Functional languages can
arguably be considered easier to analyse, since they usually have no or at least
fewer side-effects compared to imperative languages. Furthermore, at least for
dynamic analysis, Austin et al. [20] argue that sound tracking of value updates in
dependency of branches is inherently less challenging in functional languages. 6

2.3 Verification of Platform Security

Verification of system software (such as operating systems or hypervisors) and other
aspects of platform security has been studied intensively by the community in the
recent years. First, it is a field with many challenges. Kernel software involves as-
sembly, needs to handle interrupts, and interacts directly with low-level hardware.
It might even (potentially) change the premises it is running under, such as its own

6Consequently, [20] proposes the translation of imperative code into functional one before
performing information flow analysis.

26 CHAPTER 2. BACKGROUND

code, its address translation, operation mode etc. Second, verification of platform
security solutions has a high impact. While the verification of commodity appli-
cation software might still seem overly expensive in respect to the benefits, kernel
software is influencing the security of the entire system.

The verification of system software is more than 35 years old [66, 130]. Surveys
of Gerwin Klein [103] and Yongwang Zhao [187] give an overview of what has been
achieved since then in the verification of operating systems and separation kernels.
In the following, we describe a selection of projects that are most relevant to us.

Already in 1989, William Bevier verified isolation properties of a simple op-
erating system, essentially a separation kernel for an artificial instruction set [35].
Like the separation kernel in Chapter A, Bevier’s kernel schedules several processes,
allows for inter-process communication (IPC), and enforces process isolation other-
wise. The verification in the Boyer-Moore theorem prover [41] is performed in two
steps: First, it is shown that the machine code implementation refines an abstract
specification of the kernel. Second, Bevier verifies that the execution of processes
upon the abstract kernel actually corresponds to the distributed non-privileged
execution of the processes with dedicated communication channels, thus, that pro-
cesses can only communicate as specified. The verification also covers address space
isolation during user mode execution [34, section 5.3].

The most prominent system software verification project targeted the seL4 mi-
crokernel [104, 105]. The first of several steps was the verification of functional
correctness through an Isabelle refinement proof that related an abstract specifi-
cation with an intermediate specification and that one in turn with the C level
source code. In addition, code safety properties like the absence of null pointer
dereferences were shown. This first step took several person years to complete,
but the established refinement allowed to verify further properties on a high level
and transfer them to the implementation level with lower effort. Consequently,
in later publications the seL4 verification team showed security properties such as
integrity [157] or noninterference [124, 125] and extended the verification down to
ARM binary level [156].

The Verisoft XT project deals with the pervasive formal verification of computer
systems and is comprised of several sub-projects. One of them investigates the
application of Microsoft’s verification tool VCC in the verification of Microsoft’s
hypervisor Hyper-V. VCC allows the automated verification of contracts for C
handler code. In order to include the underlying hardware and guest execution into
the reasoning, an emulator for the hardware (in [5] a simplified MIPS machine)
was written in C [5, 134]. The targeted main property constitutes that every
state which a guest can reach can also be reached when the guest executes on an
isolated machine. The property was shown for a simplified hypervisor. Another sub-
projects of the Verisoft XT project verified the PowerPC version of the microkernel-
based partitioning hypervisor PikeOS [27]. They employed VCC again to show the
functional correctness of system calls, including (inline) assembly blocks. To that
end, they captured hardware components in the ghost state.

Heitmeyer et al. and their verification of a separation kernel [90, 91] influenced

2.3. VERIFICATION OF PLATFORM SECURITY 27

terminology and understanding of separation properties in this thesis. For their
topl-level specification (TLS) of separation kernel and guests (partitions) they verify
the following properties:

• No-exfiltration: A partition cannot directly manipulate other partitions.

• No-infiltration: A partition is not influenced by data outside the partition.

• Temporal separation: When a partition is not processing data, its memory is
clear.

• Separation of control: The data memory of inactive partitions does not
change.

• Kernel integrity: A partition cannot directly manipulate kernel memory.

In this thesis, we merge kernel integrity and no-exfiltration to non-exfiltration.
Heitmeyer et al. use the PVS theorem prover to show that the listed properties
hold for the TLS. Furthermore, they prove contracts (in terms of pre and post
conditions) on the 3000 C/assembly lines of kernel code and show that the code
satisfies the TLS. Heitmeyer et al. include I/O buffers into their model, but since
their buffers are rather abstract, they do not cover all particularities of peripheral
devices (cf. Chapter D). Furthermore, these buffers only model external communi-
cation. Channels for inter-guest communication as discussed in Chapter A lead to
the additional requirement of dealing with mutual influences between guests.

Costanzo et al. [49] report on the Coq verification of noninterference for the
mCertiKOS kernel, which is implemented in a combination of C and assembly.
With abstraction/simulation techniques and the help of a verified compiler they
guarantee security on binary level. Inter-process communication is disabled in the
verified kernel version.

Also model checking can give meaningful results in hypervisor verification, as,
for instance, demonstrated for SecVisor [155, 71]. To that end, the system was
modeled both with and without attacker. It was then checked whether there is a
reachable state of the compound model where the two sub-models deviate in central
data structures. The approach allowed to identify two vulnerabilities on design
level. In [175] the model checker CBMC was used to verify memory integrity and
other properties about the hypervisor framework XMHF for x86 with virtualization
support and DMA devices. The verification of XMHF was recently revisited as
case-study in [176]. The paper describes überSpark, an architecture for automated
compositional verification of security properties of hypervisors. Employing static
analysis, the architecture can deal with hypervisor extensions written in C and
assembly, without the need to reverify the entire hypervisor with every extension.

The Muen separation kernel [44] was written in SPARK, which comes with
built-in support for static analysis. SPARK tools allowed to verify the absence of
runtime errors and exceptions, such as overflows and divisions by zero.

28 CHAPTER 2. BACKGROUND

In most kernel verification projects the proofs influence the kernel design or
specifications are chosen to suit a particular kernel. In contrast, the feasibility study
presented in [150] reports on the verification of a third-party kernel implementation
against an independent general reference specification. In particular, the authors
discuss an Isabelle/HOL refinement proof for the open-source XtratuM kernel with
more than 10k lines of C code. They employ the C-parser tool developed by NICTA
to translate C code into an Isabelle/HOL representation. The paper described work
in progress. In fact, the work is still ongoing as of today, but the authors extended
their focus to multicore settings, involving non-trivial additional challenges.

In some projects, formal verification supported Common Criteria (CC) evalu-
ation on high assurance levels, for instance on evaluation assurance level (EAL)
6+ for the INTEGRITY-178B real time operating system [142]. INTEGRITY-
178B serves as separation kernel and provides fault containment, timing guaran-
tees, and isolation. The central security property of [142] generalizes the "GWV"
non-infiltration theorem in [180] to account for dynamic scheduling. Also the work
of Heitmeyer et al. [90] was carried out to support CC evaluation, in that case even
for EAL 7.

2.3.1 The Projects PROSPER and HASPOC
The PROSPER project [139] is a collaboration between KTH Royal Institute of
Technology and SICS Swedish ICT. Started in 2011, it is a 5-year project founded
by the Swedish Foundation for Strategic Research (Stiftelsen för Strategisk Forskn-
ing - SSF). The goal is to apply type-1 virtualization to develop isolation solu-
tions for widely used embedded platforms (Section 2.3.2) and to formally verify
those. To that end, the project developed a single-core hypervisor for ARMv5 and
ARMv7 processors. Among the supported platforms are Beaglebone, Beagleboard,
Beagleboard-xM, NovaThor, the Integrator development board, and emulated plat-
forms within the OVP framework or upon Qemu. We apply paravirtualization and
have so far adapted FreeRTOS, Linux 2.6, and Linux 3.10. Besides its focus on
security and a thin code base, one of the hypervisor’s main features is the provi-
sion of secured communication channels between guests. In a first step towards
the hypervisor verification, we verified isolation properties for a simplified version,
described in Chapter A. Instead of vanilla noninterference this work actually takes
inter-guest communication into account. The verification was performed on bi-
nary level [54]. In order to support Linux guests, virtual guest modes (kernel,
user) for intra-guest-separation were introduced and guests were enabled to man-
age their memory mappings dynamically. Newer features include network support
with DMA protection and monitor functionality to prevent guests from executing
untrusted code. The hypervisor is available as open source [162].

HASPOC (High Assurance Security Products On COTS platforms) [87, 127, 39]
is a 2-year spin-off project of PROSPER and funded by Vinnova’s Challenge Driven
Innovation program. Its original intention was to mature the PROSPER hypervisor
for commercial use together with industrial partners. However, early in the project

2.3. VERIFICATION OF PLATFORM SECURITY 29

we recognized the need to shift to the new ARMv8 architecture, which now allows us
to provide fully virtualized execution (modulo inter-guest communication). Further
new features include multicore support, a secure boot, and the preparation for a
future CC evaluation.

2.3.2 Embedded Systems and ARM

Both PROSPER and HASPOC focus on embedded systems. While this term is
overloaded to some extent, our prototypes target various ARM-systems. In a strict
interpretation, an embedded system is a computing system that is part of – embedded
in – a larger system and provides some dedicated functionality there, thus differing
from a general purpose computer especially in its minimal end-user programmabil-
ity [88, chapter 1]. Typical examples are control units in vehicles, washing machines,
or medical equipment. However, in everyday use of the term "embedded systems",
the criteria tend to be less sharp. For example, an entire wireless sensor node is
usually regarded as embedded device, even though it is more of a complete system
in its own right - with the sensor and the radio unit as I/O peripherals - rather
than part of a larger system. Even smartphones or tablets are sometimes consid-
ered embedded systems, despite being programmable general purpose computing
devices. Several circumstances support this view: first, historically mobile phones
were indeed special purpose devices. Second, even today mobiles and tablets still
are to some extent limited in resources and functionality when compared to per-
sonal computers. And finally, their architecture is in some respects closer to (other)
embedded systems than to PCs.

One important architectural property that smartphones and tablets have inher-
ited from embedded systems is the principle of deploying the majority of the system
components on one single chip, the so-called System-on-a-Chip (SoC). While the
processor, the main memory, the graphics processing unit (GPU), etc. in a PC
are separate building blocks plugged into the motherboard, they are all manufac-
tured together in SoC designs. This practice also influences the division of the
market. The designer of the most dominant processors for embedded devices in-
cluding smartphones and tables, the ARM Holdings PLC, does not manufacture
processors themselves. Instead, they license their design, so that other companies
can manufacture ARM processors on manufacturer-specific SoCs. ARM proces-
sors implement reduced instruction set computing (RISC). RISC instruction sets
are small and contain only the most essential instructions. On the one hand, this
implies that implementing a certain task often requires more instructions on RISC
machines compared to machines with a more complex instruction set. On the other
hand, RISC instructions require less cycles on average, which benefits performance.

ARM instructions are encoded rather uniformly, following a common pattern
throughout all instructions of an instruction set. However, ARM processors imple-
ment several instruction sets. Besides the standard 32-bit-ISA, Thumb, ThumbEE,
and Jazelle also include 8-bit and 16-bit instructions. The newest ARM processors

30 CHAPTER 2. BACKGROUND

are based on a 64-bit architecture and find their way even into traditional server
systems [52].

Several virtualization solutions exist for embedded systems, in particular for
mobile devices (see [160] for a comprehensive survey).

2.3.3 Verifying System Aspects of Isolation
Many system software verification projects focus on the verification of handler code.
The hardware environment that the system software executes in – memory man-
agement, peripherals, etc. – and the abilities of unprivileged code are often ignored
or only included axiomatically. However, as we have seen in Section 2.1.3, the
environment in which an operating system kernel or hypervisor executes in, is crit-
ical for the overall system security. Moreover, with more virtualization support,
hardware is doing more of the actual isolation work, while software remains mostly
responsible for the correct configuration of that hardware. Formal properties of the
system software’s environment are thus becoming the properties that we are actu-
ally interested in for formal verification. This subsection provides a short overview
of relevant work and open challenges.

Hardware Security Kernels Security kernels are not always implemented in
software. The partitioning system of the AAMP7G microprocessor can be seen as
a separation kernel in hardware. Wilding et al. describe in [180] how exfiltration,
infiltration and mediation theorems for AAMP7G were shown with the help of
refinement proofs.

Azevedo de Amorim et al. describe a processor that operates on data tagged
with security labels [22]. Using refinement techniques, they show noninterference
in Coq.

Memory Management While the hardware security kernels of [180] and [22] are
interesting contributions towards new and secure processor architectures, it is still
likely that the commodity architectures widely used today will maintain their dom-
inance for quite some time. When verifying isolation for such commodity systems,
a central aspect is how software and hardware collaborate to establish isolation.
Memory management is one of the main elements in that context. Daum et al. [55]
incorporate memory management into seL4’s formalization. This extension allows
them to distinguish individual user processes and to restrict the processes’ mem-
ory accesses to their respective virtual memory. Barthe et al. [25] show isolation
properties for an abstract Xen-like hypervisor modelled in Coq, with focus on mem-
ory management. Bolignano et al. [40] reason about the management of shadow
page tables by a paravirualization-based hypervisor. Through abstraction/refine-
ment methods they are able to verify memory isolation on implementation level.
Nemati et al. [129] verify isolation for a hypervisor that employs direct paging.
Several efforts were undertaken to include caches into the reasoning [26], including
translation lookaside buffers (TLBs) [3].

2.3. VERIFICATION OF PLATFORM SECURITY 31

Peripherals Peripherals were formalized in, for instance, [92, 4], who present
models for a memory mapped HDD. The main goal is to be able to reason about
the actual programming and behaviour of the storage device, in order to verify
page fault handling [6]. Security concerns as they arise from DMA are not covered.
However, the authors deal with another important issue, namely the concurrency
of CPU and peripherals. In order to sequentialize the execution, they introduce an
oracle over the effect order and quantify over all possible instantiations of that ora-
cle. Finally, they prove reordering lemmas to minimize the otherwise high number
of possible execution orders to consider.

Duan et al. developed general device model frameworks [61, 60] and integrated
them into several versions of the ARM ISA models from Cambridge. Using their
frameworks, they verified functionality, safety, and timing properties for a UART
device and its driver. Again, DMA is not considered.

An interruptible OS kernel dealing with peripheral device drivers is the subject
of [46]. The Coq verification focuses on interrupts and on functional correctness
of device drivers. Still, the authors report that parts of their proofs concern the
isolation between DMA devices and non-device related kernel components. Because
of this isolation they can group a peripheral device, its driver, and their shared
memory into an abstract object. However, we could not find details on how the
direct memory access is modelled and how exactly the DMA related isolation and
abstraction proofs are achieved.

Monniaux modelled a USB controller and employed the Astrée static analyzer
[50] to show that controller and driver transfer data correctly [122]. The reasoning
covers asynchronous DMA. Isolation from untrusted software is not discussed.

The proofs for seL4 assume that DMA is disabled [104], but the project is
currently working on a verified version of the kernel with SMMU. 7 Hypervisor
verification relying on IOMMUs is described in, for example, [175] and [176].

What is missing is the mediation of DMA for untrusted virtualization guests
and the verification of isolation in such a setting when no IOMMU is available.
These challenges are addressed in Chapters D and E.

Unprivileged Software Not only hardware, also user mode processes can break
isolation, either due to a vulnerability in the ISA or because of insufficient mediation
by privileged system software handlers. Kernel verification usually includes the pos-
sible kernel-user interactions through system calls, interrupts, and exceptions (e.g.,
in [142]). However, this is just a part of the influence that user processes have.
It is also essential to understand which system components unprivileged code can
access while the kernel is not active. Sometimes, such influence of user processes
is axiomatized. But it is seldom verified based on actual ISA models. As acknowl-
edged by [49], there is a need for comprehensive models and the thorough analysis
of arbitrary user-mode assembly execution. Such a task is not trivial. Since user
processes are not constrained to specific known code, we need to analyze all possible

7https://wiki.sel4.systems/FrequentlyAskedQuestions#What_about_DMA.3F

https://wiki.sel4.systems/FrequentlyAskedQuestions#What_about_DMA.3F

32 CHAPTER 2. BACKGROUND

instructions users can execute, to understand how information flows through the
machine. This can be tedious, given that specifications such as the ARM Archi-
tecture Reference Manual (ARM ARM) [13] comprise thousands of pages of text
and pseudo-code. Furthermore, processor designers regularly release extensions and
corrections to their architectures [140], requiring continuous re-evaluations. A high
degree of automation is needed to handle both ISA size and evaluation frequency.
For a long time, information flow analysis of the ISA has not received much atten-
tion by the scientific community. But recent work indicates that this is about to
change. Sinha et al. [163] formalize a simple version of the x86 instruction set with
SGX extensions. Among other purposes, they use the model to show that non-
SGX code cannot influence the TEE by any instruction other than a write to input
memory. Very recently, ARM published information on their shift to automatically
generated, machine-readable, and executable ISA specifications [140]. As an ex-
ercise, they used their model to test noninterference properties of the ARMv8-M
security extensions. To that end, tests on critical procedures iterated over all pos-
sible configurations/modes and scanned automatically generated dynamic dataflow
graphs for information leaks. This testing identified potential security attacks.
While both examples demonstrate the relevance of ISA information flow analysis,
we are not aware of any such analysis on entire commodity ISAs other than our
own work presented in Chapters B, C, and D. Parallel to our work, Andreescu et al.
worked on machinery that does not address ISA analysis explicitly, but that could
be applied to support that goal. In [9] they present an approach to automatically
infer, from functional state transformation code, which state components remain
unchanged throughout the transformation. Such machinery could be applied to
infer non-exfiltration properties of, e.g., functional ISA specifications. Also, knowl-
edge on which parts of the state remain unchanged can accelerate preprocessing for
tracking state changes.

2.3.4 Thoughts on Validity
With processor specifications comprising thousands of pages, it is not self-evident
that processor models reflect the physical hardware in a sufficiently trustworthy
manner. To address this issue, Fox and Myreen validate execution results of ran-
dom test instructions on a physical ARM machine against their ARM models [70].
Other validation methods include – for instance – the execution and comparison
of entire programs on both the model and real hardware. ARM admits the need
for trustworthy specifications and declares this need as one of the motivations be-
hind the shift to their own machine-readable and executable specifications [140].
This step allows ARM to unify all their different specification forms, or as Alas-
tair Reid expresses it: "Although ARM publishes an official specification, the full
requirements are really distributed around many different places in the company:
the AVS suite, the reference simulator ARM uses for processor verification, and the
processor implementations. The act of testing all these different instantiations of
the specification against each other has the effect of centralizing this specification

2.3. VERIFICATION OF PLATFORM SECURITY 33

in a single location" [140, Section IV.E]. One of their validation efforts manifests
itself in the verification of their lower-level processor models (including pipelines,
for instance) against ISA specifications by bounded model checking [140, 141].

As Ken Thompson discusses in his Turing Award lecture [172], trust in software
can resemble a chicken and egg game. Even if we can inspect and verify the source
code of a program, we do not know if the compiler would add a back door to the
program. We might have the ability of inspecting the source code of the compiler
in turn, but if the compiler that compiled the compiler has backdoors, there is no
guarantee for a secure end-result either. One might think that this chain comes
to an end at some point. However, there are compilers that are used to compile
their own source code and Thompson demonstrates that it is possible to "teach"
them malicious behavior that they and their descendants in the chain will main-
tain even if the "DNA" in the form of source code will be cleaned again. Diverse
Double Compiling [179] allows to test one compiler with another in respect to such
hidden behavior, even if the compilers differ in attributes such as target platforms
or performance. If we get hold of a number of compilers for the same language and
assume that at least one of them is trustworthy, then Diverse Double Compiling will
allow to uncover any contradiction, even if we do not know which of the compilers
is trustworthy. Still, establishing trust in compilers is not easy and the problem
does not end there. Assemblers and other infrastructure are also affected [179]. A
possible conclusion to draw is that verification on lower levels might help to reduce
dependencies and the TCB. At the same time, hardware can contain backdoors,
as well. Furthermore, compared to software products, hardware specifications are
usually harder to obtain, to inspect, and to compare with the end product. But
even if all sources are available in a hardware description language, if the machinery
that synthesizes these sources is malicious, stealthy backdoors can be introduced
again.

New developments in platform security enable backdoors that are not even de-
tectable by inspecting the final hardware product. If Intel’s private SGX keys are
leaked, SGX enclaves can be compromised without leaving a trace. 8

8Joanna Rutkowska, Invisible Things Lab, in the post "Thoughts on Intel’s upcoming Software
Guard Extensions (Part 2)" in the blog of the Invisible Things Lab, September 23, 2013, http:
//theinvisiblethings.blogspot.se/2013/09/thoughts-on-intels-upcoming-software.html

http://theinvisiblethings.blogspot.se/2013/09/thoughts-on-intels-upcoming-software.html
http://theinvisiblethings.blogspot.se/2013/09/thoughts-on-intels-upcoming-software.html

Chapter 3

Contributions

The goal of this thesis is to strengthen the assurance in the architectural environ-
ment in which system software such as a hypervisor runs. This is achieved by both
the design of new solutions and the analysis/verification of platform and system as-
pects. While not all open challenges (see Sections 2.1.3 and 2.3.3) can be addressed
here, we contribute to some pieces of the puzzle:

• User-mode execution (papers A, B, C): Which guarantees can we give
while user processes are executing? Which registers can they manipulate?
Which CPU components can they learn from? What can we assume once we
are back in privileged mode? How do we extract this information from ISA
models in the best way?

• DMA-peripherals (papers D, E): How can we maintain those guarantees
when DMA peripherals are present? How do they need to be programmed?
Can DMA controller sharing be done in a secure way?

• Boot (paper F): How can we maintain security if we do not wish to use the
isolation services of a hypervisor all the time?

Table 3.1 gives an overview on how the different papers relate to those and other
areas (hypervisor design, ISA verification, peripherals, boot, performance & usabil-
ity aspects, overall hypervisor isolation), as well as on which papers focus more on
verification and which more on the development/design of security solutions.

Readers Guide Readers that want to approach the included papers selectively
are encouraged to start with Chapter A. This paper provides an overview of our
approach to the verification of hypervisors or separation kernels. It sets the scene
for papers B, C, and D. All three discuss how to obtain guarantees on user mode
execution, a property that is included as a lemma in paper A. Since these three
papers build upon each other, C is suggested to readers with limited time, because it
describes the most general and matured work. For people that are more interested

35

36 CHAPTER 3. CONTRIBUTIONS

paper content area contribution type
hypervisor ISA peripherals boot perf. overall verification design

A X X X X
B X X
C X X
D X X X
E (X) X (X) X
F (X) X X X

Table 3.1: Relation between papers and contributions

in the actual design of hypervisor and SoC functionality, Chapters E and F are
recommended. Furthermore, Chapter E provides some background on the principles
applied in early versions of the PROSPER hypervisor, including memory access
control with ARM domains.

3.1 Summary of Included Papers

This thesis is comprised of six papers, originally published in peer-reviewed con-
ference and workshop proceedings. In this section we first summarize the content
of the papers and relate them to the overall thesis. Then we give account of the
contributions the author of this thesis has made to them. Formatting and style
are unified. Furthermore, the bibliography is shared between all papers and the
first part of the thesis. Minor details in Chapter A concerning formulations have
been changed from the original paper. Chapters C and F contain additional fig-
ures compared to the original publications. Also, the discussion on unpredictable
behaviour in Chapter C has been slightly extended. Chapter D extends the origi-
nal paper with a discussion on weak memory models. When not stated otherwise,
paper contents are included as originally published.

Paper A: Formal Verification of Information Flow Security for a
Simple ARM-based Separation Kernel

originally published as Mads Dam, Roberto Guanciale, Narges Khakpour, Hamed
Nemati, and Oliver Schwarz, "Formal Verification of Information Flow Security for
a Simple ARM-based Separation Kernel", in ACM SIGSAC Conference on Com-
puter & Communications Security (CCS), November 2013, pp. 223-234.

Content The PROSPER project (see Section 2.3.1) started with the verification
of a simple separation kernel. Even though this separation kernel only supported
two guests with a static 1-to-1 address mapping, the work established some impor-
tant results: instead of vanilla noninterference we showed isolation modulo explicit
communication. To that end, we exhibited a bisimulation between a detailed model
of the virtualized system and its top-level specification in the form of a distributed
system. This bisimulation was broken down into several phases, including handler

3.1. SUMMARY OF INCLUDED PAPERS 37

code execution, guest execution, and mode switching. We discussed how to verify
the single parts and how to combine them to the overall security property. Handler
code is verified on binary level, employing BAP. The other parts of the proof are
performed in HOL4.

Individual Contributions This paper was a group effort from all the authors.
Together with Narges Khakpour I was responsible for the verification of security
properties for user-mode execution, more detailed in paper B. Moreover, I actively
participated in the discussions of the overall approach, contributed to the text, and
reviewed other authors’ sections.

For this Thesis Minor details in Section A.1 concerning formulations have been
changed from the original paper. Otherwise the content remains as originally pub-
lished.

Paper B: Machine Assisted Proof of ARMv7 Instruction Level
Isolation Properties

originally published as Narges Khakpour, Oliver Schwarz, and Mads Dam: "Ma-
chine Assisted Proof of ARMv7 Instruction Level Isolation Properties", in Springer
International Conference on Certified Programs and Proofs (CPP), December 2013,
pp. 276-291.

Content An essential part of the bisimulation proof described in paper A is the
guest execution phase. In particular, we proved non-infiltration, non-exfiltration,
and mode switching properties (see Section 2.2.3) for user mode execution of the
ARMv7 ISA. Paper B describes the details of this work, including extensions of the
ISA model to accommodate memory protection, exact specifications, and our proof
machinery. As for the latter, we applied proof rules for compositional reasoning.
This allowed for automation to a large extent, driven by an SML tool that we
developed.

Individual Contributions I am the author of the early versions of property
specifications and proof rules, including the verification of the latter. Later versions
were jointly driven by Narges Khakpour and myself. Narges is the author of the
SML-tool that applied the proof rules to automate the analysis. I applied her
tool to most of the ARMv7-instructions, which required me to handle some special
cases manually (or semi-automatically). While I focused on instructions that do
not switch privilege mode, Narges analyzed the instructions that switch from user
mode to some privileged mode. The text of the paper was mainly written by Narges
and me in equal shares, with some contributions by Mads Dam, who also helped
with discussions during the verification phase.

38 CHAPTER 3. CONTRIBUTIONS

Paper C: Automatic Derivation of Platform Noninterference
Properties

originally published as Oliver Schwarz and Mads Dam: "Automatic Derivation of
Platform Noninterference Properties", in Springer Software Engineering and For-
mal Methods (SEFM), July 2016, pp. 27-44.

Content Paper B was the first analysis of ISA isolation properties, namely for
ARMv7. With the initiation of the HASPOC project (see Section 2.3.1) and the
shift to ARMv8, we realized that it should be possible to automate the analysis
process much more than in paper B and to produce a largely automated tool,
easily adaptable to other platforms. The result is described in paper C. First,
the new approach does not require the user to input a candidate partitioning of
system components into user-accessible and user-inaccessible components. Instead,
it finds this partitioning automatically, while staying both sound and accurate.
Second, the need for manual proofs was reduced. The compositional approach of
paper B analyzed subprocedures isolated from the context they occur in and thus
occasionally missed important constraints to guarantee security. The new approach
avoids this issue by analyzing entire instructions as a whole. This decision requires
more sophisticated preprocessing and proof tactics, especially to handle complexity.

Individual Contributions I performed the entire work by myself, but with
continuous comments by Mads Dam, both throughout the actual work and during
the writing process.

For this Thesis Figure C.1 has been added. Also, the discussion on unpre-
dictable behaviour (Section C.7) has been slightly extended. Otherwise the content
remains as originally published.

Paper D: Formal Verification of Secure User Mode Device
Execution with DMA

originally published as Oliver Schwarz and Mads Dam: "Formal Verification of
Secure User Mode Device Execution with DMA", in Springer Haifa Verification
Conference (HVC), November 2014, pp. 236-251.

Content Paper D extends paper B with a framework for peripheral devices with
DMA. The framework is general and agnostic to concrete device behavior. The
proven security properties of the overall composed system can then be reduced to
contracts for concrete devices, as demonstrated in [84]. One of the challenges is
to accommodate the concurrent execution of peripherals and CPU. Even during a
single instruction of the core, a device can access the memory of the system several
times. It is essential to cover a fine granularity of interactions between the model
components.

3.1. SUMMARY OF INCLUDED PAPERS 39

Individual Contributions I extended the proof scripts of paper B with a general
device framework and repeated the proofs for the new interleaved setup. Mads Dam
contributed some text and comments to the paper, but the majority of the text was
produced by me.

For this Thesis Chapter D extends the original paper with a discussion on weak
memory models (Section D.8). This discussion substitutes the original justifica-
tion of an assumption we made on the atomicity of memory read requests sent by
peripheral devices.

Paper E: Securing DMA through Virtualization
originally published as Oliver Schwarz and Christian Gehrmann, "Securing DMA
through Virtualization", in IEEE Complexity in Engineering (COMPENG), June
2012, pp. 1-6.

Content As discussed in Section 2.1.3, DMA can be a threat to memory isolation.
While modern desktop and server processors feature IOMMUs to counteract, many
embedded systems – especially low-end systems – do not include such protection.
In paper E we described how a hypervisor can maintain isolation despite DMA
by filtering access to the direct memory access controller (DMAC). To that end,
the hypervisor traps all access attempts to the DMAC and programs the DMAC
only after checking the address range of the DMA request. We showed that this
programming should be done in an atomic manner and thus argued for the ex-
ploitation of shadow data structures. The paper includes benchmarks and a very
simple formal Coq proof on the design of the approach.

Individual Contributions I did the major work presented in the paper, in-
cluding the detailed design of the solution, its implementation, benchmarking, and
verification. Most of the paper’s text was written by me, but the publication also
includes contributions from Christian Gehrmann, who furthermore had the idea to
work on the topic. Mads Dam helped with the verification section and language
review.

Paper F: Affordable Separation on Embedded Platforms
originally published as Oliver Schwarz, Christian Gehrmann, and Viktor Do: "Af-
fordable Separation on Embedded Platforms: Soft Reboot Enabled Virtualization on
a Dual Mode System", in Springer Trust and Trustworthy Computing (TRUST),
June 2014, pp. 37-54.

Content While type-1 virtualization serves as an enabler for TEEs, one of its
disadvantages is its performance overhead, especially on platforms without virtu-
alization support. This overhead might be justified when the achieved isolation
is frequently needed, but not necessarily when a hypervisor controls the system

40 CHAPTER 3. CONTRIBUTIONS

in long periods without the need for isolation services. Paper F describes a boot
procedure that allows to securely turn virtualization on and off during runtime,
without the need to perform a complete reboot. The approach only requires a few
minor additions to the SoC.

Individual Contributions The paper is based on a patent held by Christian
Gehrmann. I implemented the suggested platform extension in the OVP emula-
tor and the actual boot code. Moreover, I performed the literature review, took
benchmarks together with Viktor Do, and lead the writing of the paper, which was
almost entirely written by me. Viktor contributed with the required modifications
in hypervisor and guests. He also commented on the text and produced some of the
figures in the paper. Christian contributed with comments throughout the overall
process and with some writing. In particular, he provided valuable input to the
performance discussion.

For this Thesis The flowchart in Figure F.3 has been added. Otherwise the
content remains as originally published.

3.2 Further Publications

Besides the included papers listed above, the PhD candidate is also co-author of
the following work, not part of this thesis:

• Rolf Blom and Oliver Schwarz: "High Assurance Security Products on COTS
Platforms", in ERCIM News (102), ISSN 0926-4981, pp. 39-40.

• Mats Näslund, Christian Gehrmann, Christoph Baumann, Hans Thorsen,
and Oliver Schwarz: "A High Assurance Virtualization Platform for ARMv8",
in Proceedings of the European Conference on Networks and Communications
(EuCNC) 2016.

Chapter 4

Conclusions

In the background part of the thesis we have discussed the importance of isolation
for platform security, that it is essential to keep the TCB of such isolation small, and
that hypervisors are one option for implementing theses goals. A small TCB allows
for high assurance, in particular through formal verification. We have discussed
several projects that contributed to the verification of hypervisors and other system
software. But we have also seen that the overall security does not depend on
the hypervisor alone, but also on system aspects, that is, the environment of the
hypervisor. The papers included in this thesis target some of those system aspects:
(i) the instruction set architecture and the system components it makes available
to guests, (ii) peripherals, in particular those with DMA, and (iii) boot procedures,
combining security with performance.

As for ISA analysis, we were the first to publish the verification of isolation
properties of a commodity ISA. At this point, we provide machinery to perform this
analysis in an automated manner. In the future, we plan to improve robustness and
performance. Furthermore, the tool of paper C should be extended to cover more
properties such as non-exfiltration or mode switch properties. One of the future
challenges will be to support models of different sources (e.g., of [140]), preferably
also on lower levels (e.g., featuring pipelines).

The protection of memory isolation from peripherals with DMA capabilities is
covered in papers D and E. While paper E discusses how to guarantee that DMA
controllers used by several guests are configured in a secure way, paper D allows to
conclude overall platform isolation properties based on such secure configuration.
Both publications focus on systems without IOMMU. However, since IOMMUs
become more common, future work should include them into the verification work.

This thesis addresses just small puzzle pieces of the overall goal to improve
assurance regarding the system aspects that low level code such as hypervisors
depend on. Other aspects are left for future work. Among them are the several
processor extensions that hardware designers release and that conflict with the
simplified system view frequently applied in the verification community. One of

41

42 CHAPTER 4. CONCLUSIONS

the future challenges is the inclusion of trusted computing into the verification of
isolation solutions.

Part II

Included Papers

43

A

Paper A

Formal Verification of Information
Flow Security for a Simple
ARM-Based Separation Kernel

Mads Dam, Roberto Guanciale, Narges Khakpour,
Hamed Nemati, and Oliver Schwarz

Abstract

A separation kernel simulates a distributed environment using a single
physical machine by executing partitions in isolation and appropriately con-
trolling communication among them. We present a formal verification of
information flow security for a simple separation kernel for ARMv7. Pre-
vious work on information flow kernel security leaves communication to be
handled by model-external means, and cannot be used to draw conclusions
when there is explicit interaction between partitions. We propose a different
approach where communication between partitions is made explicit and the
information flow is analyzed in the presence of such a channel. Limiting the
kernel functionality as much as meaningfully possible, we accomplish a de-
tailed analysis and verification of the system, proving its correctness at the
level of the ARMv7 assembly. As a sanity check we show how the security
condition is reduced to noninterference in the special case where no commu-
nication takes place. The verification is done in HOL4 taking the Cambridge
model of ARM as basis, transferring verification tasks on the actual assembly
code to an adaptation of the BAP binary analysis tool developed at CMU.

A.1 Introduction

The design of secure systems needs to ensure that software components belonging
to different security domains are adequately isolated from each other, such that only
authorized communication can take place between them. One way of achieving this

45

46
PAPER A. FORMAL VERIFICATION OF INFORMATION FLOW

SECURITY FOR A SIMPLE ARM-BASED SEPARATION KERNEL

is by dedicated hardware, e.g. TPM’s or SIM’s. This, however, carries significant
overhead, in terms of the hardware itself, and the associated infrastructure. An
alternative is to execute the components in isolated partitions on shared hardware,
using low-level software execution platforms such as separation kernels [144, 90]
or secure hypervisors [75, 149, 117]. A key requirement of this solution is the
verification of the tamper resistant trusted computing base, preferably by use of
formal methods. Significant progress has been made recently in this direction, cf.
the seL4 project [105], Microsoft’s Hyper-V project [111], and Green Hills’ CC
certified INTEGRITY-178B separation kernel [142].

Our focusing scenario consists of an “untrusted” component (e.g. a smartphone
software stack) that interacts with a set of trusted services, such as a virtual SIM
card, or a virtual TPM. A shared execution platform for this scenario needs to
provide the following minimal functionality:

1. Isolation of component resources

2. A communication mechanism that plays the role of external communication
lines in a physically distributed system

3. A scheduling mechanism to commit shared resources (e.g. processors) among
the components.

In this paper we present a proof-of-concept design and machine level verification
of the PROSPER separation kernel for ARMv7 [13], which supports the above
functionality. The kernel allows the execution of two component systems, such as
a smartphone OS with a virtualized SIM application, on top of a single physical
machine. The interesting feature of this set-up is that explicit, kernel-supported
communication between partitions is essential, and a critical aspect of the security
analysis is to ensure that this communication does not introduce (deliberate or
accidental) side channels that can be exploited by an attacker.

This security analysis is far from trivial. The objective of a separation kernel1,
following Rushby [144], is first to make it appear that each component system is
executed on a separate, isolated, machine, and second to ensure that communica-
tion can only flow as authorized along known external channels. However, there are
several problems in delegating communication to an external agent. First, it entails
an extension of the trusted computing base to include the external channel itself.
Second, virtualizing the component systems without also virtualizing the channel
connecting them is hardly a reasonable design. Third, potential side channels are
ignored. In a case such as this, where a partition must be able to access the virtual-
ized SIM application at will, communication can convey critical timing information
that an attacker can exploit to extract key material, as is well known [106].

1We use the label “separation kernel” in this paper mainly since no support for user/kernel
space virtualization is provided to the component systems, but the borderline between separation
kernels and secure hypervisors, and our use of the associated terminology, is admittedly fuzzy.

A.1. INTRODUCTION 47

We propose instead an approach where communication between partitions is
made explicit in the top level specification (TLS), and information flow is analyzed
in the presence of such an intended communication channel. We formulate the TLS
such that it directly formalizes, in sufficient detail, the set of computation paths
both allowed and required at the implementation level, and then we check that the
implementation indeed satisfies this specification. The question is how to do this, if
it can be done while maintaining a satisfactory account of isolation, and if it can be
done at a satisfactory level of abstraction (such that the TLS does not conflate to
become identical to the implementation itself). In this paper we present a proof-of-
concept solution in the sense that functionality is limited as much as meaningfully
possible, but such that the specification, implementation and correctness proof is
carried through in complete detail from TLS to realization for ARMv7, and proved
correct at the instruction reference semantics level using the HOL4 model of ARM
developed at Cambridge [70].

In our case, the goal of verification is to show that there is no way for the
partitions to affect each other, directly or indirectly, except through the intended
channel. In particular, there should be no way for a partition to access the mem-
ory or register contents, by reading or writing, of the other partition, other than
when the communication is realized by explicit usage of the intended channel, by
both partitions in collaboration. This is not an easy property to reconcile with
the standard information flow tools such as noninterference (NI) or intransitive
noninterference:

• NI is problematic since the very purpose of the kernel is to allow rather than
prevent information flow (through the intended channel). For the sake of illus-
tration consider the recent NI-based verification of the seL4 kernel [125, 124]:
A critical step in that work boils down to a proof of the absence of informa-
tion flow from the previously scheduled partition to the scheduler itself, in
order to prevent the scheduler being used as a communication channel. This
type of approach is not applicable in our setting since communication must
be allowed to affect the partitions in ways that are outside our control, as the
content and behaviour of the partitions are not statically known. Moreover,
for the same reason we have no control over what, where, or how the channel
is intended to be used, and thus the various NI-based declassification schemes
(cf. [148]) do not help.

• Intransitive noninterference [145] relaxes NI with the possibility to add un-
known, but trusted, intermediary agents through which information flows can
be required to pass. In our case that agent is the kernel, which is known, and
not a priori trusted. This makes intransitive noninterference difficult to make
use of in the present context.

We thus take a different approach. We formulate the TLS as an “ideal model”
which satisfies the required separation properties by construction, and then reduce
correctness to trace equivalence w.r.t. a “real model”, reflecting actual systems

48
PAPER A. FORMAL VERIFICATION OF INFORMATION FLOW

SECURITY FOR A SIMPLE ARM-BASED SEPARATION KERNEL

Figure A.1: Ideal model

behaviour. The key idea is to execute the partitions on physically separate, ideal
processors, connected by an explicit, ideal communication channel, and equipped
with a little extra paraphernalia, as shown in Fig. A.1. The ideal processors need
to accurately mimick the execution of user space partitions on a real processor.
This is done by augmenting the TLS processors by idealized functionality, the
“ideal handlers” of Fig. A.1, which is invoked whenever the actual processors would
transition to privileged mode by an exception (e.g. a hardware interrupt, or an
exception). This construction allows userland code to execute as desired (with the
exception of fine grained timing differences we currently do not take into account),
but the idealized processors are physically prevented from directly affecting their
sibling machine, with the exception of explicit communication using the message
delivery service.

The task is thus to show that, properly set up, the user observable traces of
the ideal model are the same as those of a “real model”, obtained by executing
the software in different partitions on top of our separation kernel, on top of a real
ARMv7-A processor, including a Memory Management Unit (MMU) for physical
protection of memory regions belonging to different partitions. We prove this using
the bisimulation proof method [152], by exhibiting a concrete bisimulation relation,
a candidate relation, relating the state spaces of ideal and real models. The proof
that the candidate relation is actually a bisimulation relation of the appropriate
type is in turn reduced to subsidiary properties, several of which have natural
correspondences in previous kernel verification literature, cf. [90, 142], namely
that:

i The initial states of the ideal and the real models are in the candidate relation.
This is ensured by the correctness of the bootstrap code.

ii A partition does not perform any isolation-violating operation while it is exe-
cuting. Due to our use of memory protection, this is really a noninterference-
like property of the ARMv7-A architecture rather than a property of the
separation kernel. This property is similar to the partition management re-
sult reported in [180].

A.2. ARMV7 49

iii The processor state switches correctly upon transition to privileged mode.
Again this is a processor architecture rather than a kernel dependent result.

iv Execution of ideal exception handlers vs the real separation kernel exception
handlers preserve the candidate relation.

v Several invariants are preserved while partitions and /or kernel handlers are
running.

For the actual verification we have used a combination of theorem proving and
binary code analysis. The real and ideal models are built on top of the Cambridge
ARM HOL4 model, extended with a simple MMU unit. The isolation lemmas
of ARM, items (ii) and (iii), are proved using a tool, ARM-prover, developed for
the purpose in HOL4. The proofs are costly and involve traversing the full ARM
instruction sets. The ARM-prover allows the proofs to be automated to a large
extent. This frees us from the onerous task of verifying the two theorems on each
element of the large ARM instruction set. The ARM-prover tool is developed on top
of the monadic ARM semantics reported in [70]. Handlers (item (iv)) are verified
using pre/post conditions. Manual generation of these handlers is an error-prone
process, and for this reason we generate the pre/post conditions automatically
based on the specification of the ideal model, the candidate relation, and the ARM
isolation Lemmas. We transfer the pre/post conditions to the binary code analysis
tool BAP [43], and use BAP to verify the bootstrap code and the kernel handlers
at the assembly code level. Several tools have been developed for lifting the ARM
code to the input format of BAP and manipulating the code. Space prevents us
from more than outlining the ARM isolation lemmas and the BAP extensions here;
these will be reported in separate publications.

The paper is organized as follows: In section 2 we present the ARMv7 processor,
MMU, and timing model. In section 3, the PROSPER kernel is presented, and the
the ideal model is described in section 4. We then proceed to give an overview of
the proof strategy, including the decomposition of the TLS into the ARM lemmas,
and the handler verification tasks. In section 6 we partially validate our verification
approach by proving a “monotonicity of release” property as suggested by Sabelfeld
and Sands [148], that a corollary of our proof is an NI property in the special case
where partitions do not actually communicate. In section 7 we present the proof
implementation, and in section 8 information is given on the status of the kernel
and some performance figures regarding the proof itself. In section 9 related work
is discussed, and finally in section 10, we conclude and discuss some unresolved
issues.

A.2 ARMv7

An ARMv7 CPU has execution mode m ∈M where

M = {usr , svc, abort, undef , irq,fiq, sys}.

50
PAPER A. FORMAL VERIFICATION OF INFORMATION FLOW

SECURITY FOR A SIMPLE ARM-BASED SEPARATION KERNEL

The non-privileged usr mode is used by the user partitions, while the privileged
modesMp =M\{usr} are used to execute kernel activities. A machine state is a
record σ = 〈regs, psrs,mem, coregs〉 where regs, psrs, mem and coregs, respectively
represent the registers, program status registers (psrs), memory and coprocessors
of the machine. The register set regs consists of the sixteen user registers that are
accessible in all modes as well as the banked-registers of each privileged mode that
are available only in that mode. The program status registers is a record

〈cpsr , psrsvc, psrabort , psrundef , psr irq, psrfiq, psrsys〉

where cpsr is the current psr and each psrm is the banked psr in mode m ∈Mp. A
psr encodes the arithmetical flags, the executing mode, the interrupt mask, and the
instruction decoding. The functions I(σ) and M(σ) return the hardware interrupt
mask and the current mode in state σ, respectively. Moreover, the memory is the
function mem ∈ word32 → word8 .

The tuple coregs = 〈c1, c2, c3〉 contains the three 32-bit registers of coprocessor
CP15, used mainly to control the Memory Management Unit (MMU). The register
c1 represents whether the MMU is enabled or not, and c2 gives the base address of
the page table. In ARMv7, there are sixteen domains, each representing a security
role. The coprocessor register c3 holds the current status of the domains. An entry
of the page table determines the owner domain of the corresponding page and its
access permission.

In our setting, a “real’ system” is an ARM machine connected to a timer device.
A real system is modeled by the record s = 〈σ, t〉 ∈ S, where σ is an ARM machine
state and t represents the clock cycles elapsed since system start. The behavior of
a system is defined by the state transition relation →⊆ S ×S where a transition is
performed due to either the execution of an ARM instruction or a timer signal. We
assume a simple time model that constrains all transitions to consume one clock
cycle, i.e. if 〈σ, t〉 → 〈σ′, t′〉 then t′ = t+ 1.

If the real system switches from the mode usr to a privileged mode, then an
exception has occurred. The privileged mode svc is activated by a software interrupt
(SWI). If the current instruction is undefined, then the system switches to the mode
undef . The mode irq is activated by a hardware interrupt. In our setting, the timer
triggers a hardware interrupt every fixed amount of clock (actually, instruction)
cycles. If the MMU prevents an access to the memory, then the mode abort is
enabled. In our setting, no exception can activate the modes sys and fiq. In fact,
sys mode can only be explicitly entered from a privileged mode. Moreover, in
our model there is only one device (the timer) which delivers standard hardware
interrupts. For this reason the fast interrupt mode fiq is never activated. Whenever
an exception occurs, the CPU backs up the program counter and the cpsr into
the banked registers and into the psr of the activated mode, disables hardware
interrupts and jumps to a predefined address in the vector table to transfer the
control to the corresponding exception handler.

Figure A.2 (A) depicts an example computation of a real system. White and
grey circles represent states in user mode and black circles represent states in priv-

A.3. THE PROSPER KERNEL 51

Figure A.2: (A) The real world and (B) the Top Level Specification

ileged modes. The circle labels represent the system clocks and the solid arrows
represent the transition relation. Transitions between two states in user mode (e.g.
1 → 2) do not cause any exceptions. The timer tick of this example is six clock
cycles, then an interrupt is delivered in the states 6 and 12, switching the system
to mode irq. The transition between the states 2 and 3 is caused by a different
exception, for example the execution of a software interrupt. Finally, transitions
from privileged modes to user mode (e.g. 4 → 5) are caused by instructions that
explicitly change cpsr .

A.3 The PROSPER Kernel

The PROSPER kernel has four minimal functionalities: execution of two user par-
titions on one physical machine, protection of the partition resources, partition
scheduling, and inter-partition communication. All low-level tasks of the kernel
that depend on the architecture (e.g. accessing special registers and coprocessors,
context saving and restoring) are implemented in assembly (∼ 150 lines of codes),
while all high-level tasks (e.g., hypercall, scheduling, page table setup) are imple-
mented in C (∼ 600 lines of code). The current implementation can host OSs
(e.g. µClinux [123], FreeRTOS[72]) that do not require intra-partition memory
protection.

The machine memory is partitioned into three separate regions: the region
in the range of [ming,maxg] for the partition g ∈ {1, 2}, and a kernel memory
region. The accesses to the partitions are controlled by the MMU where three
ARMv7 domains 0,1, and 2 are used to represent the kernel, the first partition and
the second partition, respectively. When the kernel resumes a partition, it updates

52
PAPER A. FORMAL VERIFICATION OF INFORMATION FLOW

SECURITY FOR A SIMPLE ARM-BASED SEPARATION KERNEL

the coprocessor c3 to set the partition domain to the value client and to disable
the domain of the other partition. The MMU is configured to enforce the following
properties: (i) if a partition is running, then only its memory can be accessed, (ii)
whenever the kernel is activated (e.g. a partition performs a software interrupt), it
is able to read and write its memory and the memory of the “interrupted” partition.
We have no concurrency inside the kernel, i.e. an exception can not interrupt while
another exception is being handled.

The partitions communicate through asynchronous message passing. Each par-
tition has two executing status variables: message status is intended to process
the incoming messages while the task status is used for other activities. To each
status is associated a context that contains a set of user registers and the cpsr. For
the active partition, the context corresponding to the active status is the current
user registers and the cpsr and the context of the non-active status is stored in
the kernel memory. For the inactive partition, both contexts are stored in kernel
memory. The hypercalls are used by the partitions to invoke the kernel by execut-
ing the software interrupt instruction. The kernel provides two types of hypercalls:
message sending hypercall and status switching hypercall. To send a message, the
partition executes the instruction “SWI 1”. The software interrupt handler stores
the message into the message-box of the receiver and restores the sender. The sta-
tus switching hypercall changes the executing status of the partition by executing
“SWI 0”. The kernel backs up the CPU state into its own memory and reactivates
the interrupted partition.

The irq-handler implements a static round-robin scheduler, that suspends the
active partition and resumes the other one. It is also in charge of delivering the
pending messages to the resuming (receiver) partition; if the message-box of the
resuming partition is full, (i) its status is changed to “message”, (ii) the context of
its message status is updated with the content of the pending message, and (iii)
the program counter of the resumed partition is updated to point to its message
handler code. The reception of a message causes the resumed partition to enter into
a local critical section, i.e. no other message can be received while the partition
is running in the message status. To exist from the critical section, the receiver
partition performs a status switch hypercall.

To start the system, a memory image of the system must be prepared by the
linker. Let mem1 : [min1,max1] → word8 and mem2 : [min2,max2] → word8
be two initial partition memories in our setting. Then, the linker loads the initial
partition memories and the kernel memory into the system memory, and activates
the kernel bootstrap code. The initial state of the real system is the first reachable
state in user mode obtained after the execution of the bootstrap code of the kernel.
Clearly, this initial state of the system depends on the partitions memories. We
denote the behavior of a real system starting from an initial state s0 with initial
partition memories mem1 and mem2 by the transition system Tr(mem1,mem2) =
〈S, s0,→〉.

A.4. THE IDEAL SYSTEM 53

A.4 The ideal system

The ideal system formalizes the top level specification which satisfies the required
separation properties by construction. The ideal system is composed of two sepa-
rate special ARMv7 machines communicating via asynchronous message passing,
a logical component and a shared timer (see Fig. A.1). Each machine of the ideal
system is used to execute one of the two partitions in a physically isolated environ-
ment. Intuitively, the logical component can be considered as an external device.
Our special ARMv7 machine allows a partition to execute without the runtime sup-
port of the kernel. This machine executes the user-mode computations as a regular
ARMv7 processor, but if the processor switches to a privileged mode, an abstract
kernel functionality is atomically executed and the user mode is restored.

An ideal state is a record q = 〈σ1, σ2, c1, c2, t, id〉 ∈ Q where t represents the
clock cycles elapsed from the system start. At each instant, only one of the machines
can perform computations, and id ∈ {1, 2} identifies the active machine. The
logical component consists of the records ci = 〈rdy, ctx,msg〉, i ∈ {1, 2}. The flag
rdy represents if the machine is ready to handle the incoming messages and the
banked context ctx (set of registers and cpsr) is used to back up the machine state
whenever a message is received. A message box msg ∈ word32 ∪ {⊥} can either
contain a pending message or be empty (⊥). Henceforth, we say that an ideal
system is in mode m if the active machine is in mode m and the inactive one is in
the mode usr .

The initial state of the ideal system, similar to the real system, depends on the
initial partition memories. We denote the behavior of a ideal system starting from
an initial state q0 with initial partition memories mem1 and mem2 by the transition
system Ti(mem1,mem2) = 〈Q, q0,→〉. In the initial state, all the components are
initialized such that the partitions memories and the page tables are loaded into
their corresponding machine memory, the program counter of each machine points
to the entry point of the corresponding partition, and both machines are in the
mode usr .

Figure A.3 shows the semantics of the ideal system when machine 1 is active.
Due to lack of space, we only present the semantics of hypercalls and scheduling.
In all cases, the ideal transitions yield the two machines in user mode. The rules
for machine 2 active are similar. Each kernel functionality f comes with a fixed
time budget tf for its execution.

The rule UserR states that if the processor is in user mode, execution of an
instruction does not affect the state of the logical component and the inactive ma-
chine, and it behaves as if it is executed on a regular ARMv7 machine. Instructions
consume the same amount of cycles in the real and ideal systems.

A machine is rescheduled whenever a hardware interrupt is triggered by the
timer. The function RestoreUser restores user mode and the corresponding banked
registers. The rule SchR describes that if there is no message for the resumed
machine or the resumed machine is not ready to handle a message, the active
partition is changed to the current suspended one. The rule RcvR expresses the

54
PAPER A. FORMAL VERIFICATION OF INFORMATION FLOW

SECURITY FOR A SIMPLE ARM-BASED SEPARATION KERNEL

M(σ1) = usr ∧ 〈σ1, t〉 → 〈σ′1, t′〉
UserR

〈σ1, σ2, c1, c2, t, 1〉 → 〈σ′1, σ2, c1, c2, t
′, 1〉

M(σ1) = irq ∧ (c2.msg =⊥ ∨¬c2.rdy)
SchR

〈σ1, σ2, c1, c2, t, 1〉 → 〈RestoreUser(σ1), σ2, c1, c2, t+ tsh , 2〉

M(σ1) = svc ∧ curr(σ1) = SWI 0
(σ′1, c′1) = Switch(RestoreUsr(σ1), c1)

SwitchR
〈σ1, σ2, c1, c2, t, 1〉 → 〈σ′1, σ2, c

′
1, c2, t+ tswitch , 1〉

M(σ1) = irq ∧ c2.rdy ∧ c2.msg 6=⊥
(σ′2, c′2) = Receive(σ2, c2)

RcvR
〈σ1, σ2, c1, c2, t, 1〉 → 〈RestoreUsr(σ1), σ′2, c1, c

′
2, t+ trcv, 2〉

M(σ1) = svc ∧ curr(σ1) = SWI 1
c′2 = 〈c2.rdy, c2.ctx, Out(σ1)〉

SendR
〈σ1, σ2, c1, c2, t, 1〉 → 〈IncPC (RestoreUsr(σ1)), σ2, c1, c

′
2, t+ tsnd , 1〉

Figure A.3: Semantics of the Ideal System

reception of a pending message by the resumed machine in which the function
receive(σ2, c2) disables the rdy flag for entering into a critical section, moves the
pending message into the input buffer of the receiver, and sets the program counter
to point to the message handler of the receiver.

The rule SendR describes the semantics of message sending (activated due to
the execution of “SWI 1” in the previous state) that copies the message into the
message box of the inactive machine. If the status switch hypercall is invoked, the
rule SwitchR toggles the rdy flag and restores the banked context.

Figure A.2 (B) depicts an example computation of an ideal system. In the
states 2, 6 and 12 the system traps an exception raised on the active machine and
atomically applies an ideal kernel functionality.

A.5 Proof Strategy

To prove that the real model does not introduce information channels not already
present in the ideal model it suffices to show that the observable traces for each
partition are the same in both cases. In order to pin down this concept we need to
define when each partition system is in control of the system, and what its obser-
vations are.

A.5. PROOF STRATEGY 55

Top Level Proof Goal Intuitively, for the real system, partition g is in control
when its program counter points to a location in memg. However, this is not
entirely accurate. Instead we say that partition g is active in state s, actg(s), if
the processor is in user mode and the status of the domain g, held by coprocessor
register c3 is client. For the ideal system, partition g is active, actg(q), if the id
field of the ideal state is g and the corresponding machine is in the user mode.

The observations of partition g in real state s, assuming that g is active, are
the CPU and memory resources observable by g in state s. This is the structure
Og(s) = 〈uregs, cpsr ,memg〉 of user registers, cpsr and partition memory in state
s. If g is inactive in s, g’s observations are the user registers and cpsr of the saved
context of g along with its partition memory. For the ideal system, Og(q) is the
user registers, cpsr and the memory allocated to g of the corresponding machine in
q.

Consider now an infinite execution πr = s0 −→ s1 −→ · · · of the real system. The
g-trace of πr is the sequence ω(πr, g) of observations obtained by first projecting out
those states for which g is not active, and secondly extracting g’s observations, or in
other words, ω(πr, g) = map(Og, prj(πr, actg)) where prj and map are the obvious
projection/filtering functions. Similarly, if πi is an ideal execution, the g-trace of
πi is ω(πi, g) = map(Og, prj(πi, actg)).

Let now trg,r(mem1,mem2) and trg,i(mem1,mem2) be the set of g-traces of the
real system and the ideal system with the initial partition memories of mem1 and
mem2, respectively, and for arbitrary states s, q, let trg(s) and trg(q) be the sets of
g-traces of executions starting in s, q, respectively. The top level proof goal is thus
to prove that the sets of g-traces of the real and the ideal systems are identical, for
g ∈ {1, 2} and any arbitrary mem1 and mem2, or, more precisely, that

trg,r(mem1,mem2) = trg,i(mem1,mem2) (A.1)

for all initial partition memories mem1, mem2. If (A.1) holds we say that the
PROSPER kernel guarantees isolation.

In order to prove (A.1), we first present three general lemmas concerning the
safe executions of an ARM machine in user mode and its safe mode switching
from user mode to privileged mode. Given the general ARM Lemmas, we prove
lemmas for the real and the ideal systems to ensure correct initialization, correct
userland execution, and isolation-guaranteed execution of the kernel handlers. We
then proceed to present the proof of (A.1).

ARM Lemmas Our proof strategy identifies three lemmas concerning the ARM
instruction set architecture that may have significance beyond the verification ex-
ercise reported here. The first is a general noninterference lemma stating that if
an ARM machine executes in user mode in a memory protected configuration as

56
PAPER A. FORMAL VERIFICATION OF INFORMATION FLOW

SECURITY FOR A SIMPLE ARM-BASED SEPARATION KERNEL

studied here, the behavior of the active partition is influenced only by those re-
sources allowed to do so. The predicate simg(s1, s2) indicates that the status of
the domain g held by coprocessor register c3 is client in the user mode states s1
and s2, and they have the same user registers, cpsr, MMU configurations and the
memory allocated to the domain g.

Lemma 1. If simg(s1, s2) and s1 → s′1, there exists s′2 s.t. s2 → s′2 and simg(s′1, s′2),
and vice versa.

The second lemma establishes unmodifiedg(s, s′) stating that the non-accessible
resources for a state s in user mode, including the privileged psrs/registers, copro-
cessor registers, interrupt flags and the memory regions not allocated to the active
partition g, are not modified in a transition from s to another user mode state s′.
If s′ is in privileged mode m, the privileged registers, psrm and the interrupt flags,
are excluded from the non-modifiable resources. We obtain:

Lemma 2. If s→ s′ and actg(s) then unmodifiedg(s, s′).

The predicate priv_constg(s, s′) asserts that if an ARM machine switches from
s in user mode to s′ in privileged mode m then the conditions for the execution of
the handler are prepared properly, e.g., the program counter points to the correct
entry of the vector table, the link register of m contains the correct return address
of the partition, and the flags of cpsr and psrm are set correctly.

Lemma 3. Suppose s→ s′, actg(s) and M(s′) 6= usr. Then priv_constg(s, s′).

(g,m)-Compatible States We then turn to the conditions needed to ensure that
the partition observations are the same in the real and the ideal systems. These
conditions depend on many aspects of the machine states and we are only able to
outline the conditions here.

These conditions are complex because several elements can directly or indirectly
influence the behavior of a partition. We briefly define the conditions for the user
mode states (i.e. when all machines are in the user mode) and the switched mode
states (i.e. the inactive machine of ideal machine is in the user mode but the
real system and the active machine of ideal system have recently switched to the
privileged mode).

Say that two states s and q are (g,m)-compatible if (i) s and q are in the mode
m, (ii) g is the last active partition in s and q, i.e. the status of the domain g,
held by coprocessor register c3 is client in s, and the id field of the ideal state is
g, (iii) the partitions have the same observations in s and q, Og′(s) = Og′(q) for
g′ ∈ {1, 2}, (iv) the values of data-structures in the logical component of state q
agree with the values of corresponding data structures in the kernel of state s, e.g.
the message box of a partition in the kernel and the logical component contain the
same values, (v) the MMU and coprocessors are configured correctly in all three
machines, (vi) a set of invariants are held by the kernel data-structure in s, (vii)

A.5. PROOF STRATEGY 57

the interrupt flags are set correctly, e.g. the fast interrupt flag F of all machines
are disabled, (viii) if m is a privileged mode then psrm and the link register of the
mode m must be identical in the active machine of q and s, to make sure that g is
restored properly, (ix) s and q have the same system clock.

User/Handler Lemmas The relation of (g,m)-compatibility is our candidate
unwinding relation, i.e. it is in some suitable sense which we go on to make pre-
cise preserved under computation. This involves showing the following two key
properties:

• User Lemma: Each user mode transition in the real system is matched (in
the sense of (g,m)-compatibility) by a corresponding user mode transition in
the ideal system without interfering with the resources that are not intended
to be accessible by the partition, and vice versa.

• Handler Lemma: Each complete handler execution in the real system is
matched (as (g,m)-compatibility) by a corresponding execution of a kernel
functionality in the ideal model, and vice versa.

Similar to the unmodifiedg predicate for the real system above, unmodifiedg(q, q′)
holds if the logical component, the inactive machine, and the non-accessible re-
sources of the active machine are unmodified by an ideal transition from q to q′
when g is active in q. The User Lemma then follows from the first and second ARM
Lemmas as follows:

Lemma 4 (User). For all (g, usr)-compatible states s and q, if q → q′ then there
exist s′ and m such that

(i) s→ s′,

(ii) the states s′ and q′ are (g,m)-compatible,

(iii) unmodifiedg(s, s′), and (iv) unmodifiedg(q, q′).

Vice versa, if s→ s′ then q′ and m exists such that q → q′ and the above properties
(ii) and (iii) hold.

For the Handler Lemma we need to ensure that execution of the kernel handlers
terminates, and that the compatibility conditions are satisfied when the control
returns back to the partitions. Let s0 sn if there is a finite execution s0 −→ · · · −→
sn such that M(sn) = usr and M(sj) 6= usr for 0 < j < n. Similarly, we define
 for the ideal system. These state relations are represented in Fig. A.2 by the
dashed arrows. The additional black states in the real world are internal kernel
steps that can not be observed by the partitions.

58
PAPER A. FORMAL VERIFICATION OF INFORMATION FLOW

SECURITY FOR A SIMPLE ARM-BASED SEPARATION KERNEL

Lemma 5 (Handler). Suppose that s and q are two (g,m)-compatible states, m 6=
usr. Assume s and q are respectively reached by a transition from the states s′ and
q′, and priv_constg(q, q′) and priv_constg(s, s′) hold. If q′ q′′ then there exist s′′
and g′ ∈ {1, 2} such that s′ s′′, and the states s′′ and q′′ are (g′, usr)-compatible,
and vice versa.

Furthermore, it is to be guaranteed that the initial states of the real and the ideal
systems are compatible. That is, we must verify that the MMU is set up according
to our model requirements, the kernel invariants are satisfied, the partitions memory
and the interrupt flags are configured correctly. In addition, we must make sure
that the kernel code is loaded in the right part of the memory.

Proposition 1. For all initial partition memories mem1, mem2, the kernel boot
terminates in the state s0 and there exists g ∈ {1, 2}, such that s0 and q0 are
(g, usr)-compatible.

Proof of Main Theorem We can now proceed to prove (A.1). This is almost
done once we show that the initial states are related by a bisimulation relation of a
suitable form. To this end say that a relation R on pairs (s, q) of user mode states
is a candidate relation, if whenever sRq then for some g ∈ {1, 2}, (i) actg(s), (ii)
actg(q), (iii) Og(s) = Og(q), and (iv) if q q′, then there exists s′ such that s s′

and s′Rq′, and (v) vice versa, if s s′, then there exists q′ such that q q′ and
s′Rq′.

Note that for the user mode states s and s′, if s→ s′ then s s′. In Fig. A.2,
dotted lines exemplify a bisimulation relation. It is easy to check that the existence
of a candidate relation is sufficient to ensure (A.1). In particular:

Proposition 2. Suppose that sRq for some candidate relation R. Then trg(s) =
trg(q).

Theorem 2. The PROSPER separation kernel guarantees isolation.

The proof of 2 obviously relies on the proofs of the above lemmas, which in turn,
for Handler Lemma and the Lemma 1, relies on verification of the handler and the
bootstrap code, as outlined in Section A.7. But, it may be illustrative to explain
how these lemma come together to allow the main Theorem 2 to be proved.

By Theorem 2 it suffices to find a candidate relation relating the initial states
s0 and q0. Define the candidate relation as follows:

R = {(s, q)|(g, usr)-compatible(s, q) ∧ g ∈ {1, 2}}

We get s0Rq0 by prop. 1.
To prove that R is a candidate relation, assume that sRq. Then s and q are

(g, usr)-compatible. Thus, actg(s), actg(q) and Og(s) = Og(q) hold.
Suppose now that q q′. There are two cases:

A.6. ISOLATION PROPERTIES 59

Case 1: If the ideal transition does not involve mode switching it follows from the
User Lemma that s′ exists such that s s′ and q′ and s′ are (g, usr)-compatible,
whence s′Rq′ as desired.

Case 2: If the ideal transition involves a switch to privileged modem, it follows from
the User Lemma that the real and ideal system evolve to the (g,m)-compatible
states s′′ and q′′. According to the Third ARM Lemma, these transitions are
performed safely, i.e. priv_constg(s, s′′) and priv_constg(q, q′′) hold. From the
Handler Lemma, we can conclude that there exist (g′, usr)-compatible states s′ and
q′ where s′′ s′, q′′ q′ and g′ ∈ {1, 2}. But then s′Rq′, as desired.

The converse direction, that s s′ implies q q′ and s′Rq′ for some q follows
by a symmetric argument (or, in this simple case, by determinacy of the relation).
This concludes the proof of Theorem 2.

A.6 Isolation Properties

The main theorem shows that the real system does not leak more information than
the ideal system, under the caveats we have imposed. However, it may not be clear
what information is leaked by the ideal system itself. Neither may it be clear how
leakage properties of the ideal system can be transferred to the real system. In this
section we throw light on these two issues.

Data Separation Concerning the ideal system itself we use the approach of [90]
to analyze kernel data separation properties. Let Qc = {q|∃s. sRq} be the image
of the candidate relation.

The No-Exfiltration property guarantees that a transition with the partition g
active in its target, does not modify the resources of the other partition, except its
communication channel, i.e. the message box:

Lemma 6. Let g, g′ ∈ {1, 2}, g′ 6= g and q ∈ Qc. If q q′ and q′.id = g, then
Og′(q) = Og′(q′), q.cg′ .rdy = q′.cg′ .rdy and q.cg′ .ctx = q′.cg′ .ctx.

The No-Infiltration property is a noninterference property guaranteeing that a
transition for which g is active in its target state, depends only on the partition
observations, its logical component and the MMU configuration. In particular, a
transition ending in a state with the partition g active, is not influenced by data
owned by the other partition.

Lemma 7. Let q1, q2 ∈ Qc such that q1.cg = q2.cg, q1.t = q2.t, q1.id = q2.id and
Og(q1) = Og(q2). If q1 q′1, q2 q′2, actg(q′1) and actg(q′2) then q′1.cg = q′2.cg,
q′1.t = q′2.t and Og(q′1) = Og(q′2)

Similar properties can be proven for the real system using the candidate relation
and the properties of the ideal system. Let Sc = {s|∃q. sRq} be the preimage of
the candidate relation, and the function lcg(s) extracts from the kernel memory the

60
PAPER A. FORMAL VERIFICATION OF INFORMATION FLOW

SECURITY FOR A SIMPLE ARM-BASED SEPARATION KERNEL

content of the data-structure that corresponds to cg in the logical component. The
following corollary states the no-infiltration and no-exfiltration for the real system.

Corollary 1. Let s1, s2 ∈ Sc, s1.t = s2.t, actg(s1)⇔ actg(s2).

• Suppose if g′ 6= g, s1 s′1 and actg(s′1) then Og′(s1) = Og′(s′1), lcg′(s1).rdy =
lcg′(s′1).rdy and lcg′(s1).ctx = lcg′(s′1).ctx.

• Suppose if lcg(s1) = lcg(s2) , Og(s1) = Og(s2), s1 s′1 and s2 s′2, actg(s′1)
and actg(s′2) then lcg(s′1) = lcg(s′2) and Og(s′1) = Og(s′2)

We sketch the proof of the second statement. Since s1 and s2 are in Sc, then
there exist q1 and q2 s.t. s1Rq1 and s2Rq2. We follow from the assumptions and the
definition of R that q1.cg = q2.cg, q1.t = q2.t, Og(q1) = Og(q2) and q1.idx = q2.idx.
Since the candidate relation is a bisimulation, then for j = 1, 2, there exists q′j
s.t. qj q′j and s′jRq′j . Thus, actg(q′j), lcg(s′j) = q′j .cg and Og(s′j) = Og(q′j). We
conclude the proof by showing that Og(q′1) = Og(q′2) and q′1.cg = q′2.cg according
to the Lemma 7.

Noninterference The no-exfiltration/no-infiltration properties give limited data
separation properties at the level of single transitions. They do not, however, lift to
executions, because messages may be passed between partitions which can introduce
explicit data dependencies. As a sanity check, we therefore show how the security
condition is reduced to noninterference in the special case where no exception except
timer signal takes place. This property formalizes the intuition that if the partition
g does not communicate, then the execution of the other partition is completely
independent of activities of g.

A partition with the initial memory mem is called non-communicating, if for
all arbitrary mem′ and all states q that are reachable from the initial state of
Ti(mem,mem′), M(q.σ1) = {usr, irq} holds.

Theorem 3. For any two non-communicating partitions with the initial memories
mem1 and mem′1, and an arbitrary partition with the initial memory mem2,

tr1,i(mem1,mem2) = tr1,i(mem′1,mem2)

The symmetric theorem is proved when the non- communicating partition is
deployed on the second machine. The state of a machine can be externally changed
only by the reception of a message. Since the non-communicating partition never
raises an exception, it can not execute the software interrupt and it can not send a
message. Moreover, the system clock, shared between the two machines, must be
independent of the activity performed by the non-communicating machine. This
is possible because we assume that all transitions, with the exception of the ideal
functionalities, require one clock cycle. Note that the candidate relation allows
Theorem 3 to be directly transferred to the real system. The details are left out.

A.7. PROOF IMPLEMENTATION 61

A.7 Proof Implementation

The overall proof is carried out in the HOL4 theorem prover, following the proof
strategy presented in Section A.5. For those parts (the Handler Lemma and Propo-
sition 1) that depend on kernel code we generate contracts and transfer the verifi-
cation to BAP. To realize this we have produced a number of helper tools of which
the main ones are: (i) an ARMv7 prover tool implemented in SML/HOL4, (ii)
various tools and tool components interfacing HOL4 with BAP, (iii) a lifter tool
to convert ARM assembly to BAP’s input language. Space prevents us from more
than outlining the BAP extensions and the proof of the ARM Lemmas here; these
will be reported in separate publications.

A.7.1 Verification in HOL4
Overview of the ARM Model We use Fox et al’s monadic HOL4 model of
the ARMv7 instruction set architecture. The model has been validated against a
development board, giving some credence to its accuracy [70].

A computation in the monadic HOL4 ARM model is a term of type

α M = arm_state 7→ (α× arm_state)error_option.

Computations act on a state arm_state and return either ValueState a s, a new
state s of type arm_state along with a return value a of type α, or an error Error e.
Errors represent all unpredictable computations, i.e., those that are underspecified
by the ARM specification. The monad unit injects a value into a computation,
while binding is a sequential composition operation which passes the return value
of the first computation to the input parameters of the second one as follows:

f �= g = (λs. case f s of Error e 7→ Error e
|| ValueState y t 7→ g y t)

The execution of an ARM instruction is defined by the computation arm_next
modeling the entire processing of an instruction, from fetching the instruction
pointed to by the program counter to the actual instruction execution.

The MMU Extension We extend the ARM model to support the MMU func-
tionality in our setting. Given the complexity of memory management, the model
is restricted to support only those parts of the MMU functionality used by the
PROSPER kernel.2 We also proved that the MMU configurations of all reachable
states are supported by the extended model and not underspecified. The original
ARM model tracks the history of memory accesses, allowing to compute the set of
memory pages accessed by an instruction. To be accurate, it is necessary to check

2Only section-based one-level page tables without address translation are supported so far.

62
PAPER A. FORMAL VERIFICATION OF INFORMATION FLOW

SECURITY FOR A SIMPLE ARM-BASED SEPARATION KERNEL

the access list after each primitive computation. To this end, the monadic struc-
ture is modified so that access history checks are introduced at every sequential
composition of two computations. In case of an access violation within the first
computation, the second one is simply disregarded, returning the unspecified value
ARB along with the first state where an access violation has been recorded.

f �= g = (λs. case f s of Error e 7→ Error e
|| ValueState y t 7→
(if (access_violation t)
then (ValueState ARB t)
else (g y t)))

Proof of the ARM Lemmas We use a relational Hoare logic framework to prove
the ARM Lemmas. For technical reasons we formulate the three ARM Lemmas
as a single statement. For any computation f and predicates p1, p2, we define
a relational predicate preserving(f, p1, p2) stating that, when starting from two
states in the relation simg and satisfying p1, then the states returned by f (i) are in
the relation simg, (ii) satisfy the non-modification and mode-switching constraints,
as presented in Section A.5, and (iii) satisfy p2. The state predicates p1 and p2 allow
processor mode specific reasoning. The final goal is to show that the MMU-enabled
variant of arm_next satisfies preserving when starting from user mode.

A set of sound inference rules have been implemented in a semi-automatic HOL4
helper tool. An example is the rule for sequential composition:

preserving(f1, p1, p1) preserving(f2, p1, p2)
preserving(f1 �= (λx.f2), p1, (p1 ∨ p2))

The tool recognizes the structure of a computation, decomposes the verification
goal in a set of sub-goals, proves the sub-goals recursively and applies the suitable
inference rule to infer the initial goal. Moreover, it searches in the HOL4 database
and the user-provided theorems to find a suitable theorem that can prove the goal.
We prove preserving for the write primitive computations manually, but the tool
can handle some read computations automatically, allowing to prove a large share
of the workload automatically.

Generation of Pre- and Postconditions HOL4 is also used to generate pre-
and postconditions for the kernel handlers, for subsequent verification with BAP.
Consider a handler with the starting state s1 in mode m such that s1 s2. Sup-
pose that s1 and q1 are (g,m)-compatible such that q1 is the starting state of the
corresponding ideal handler functionality. Let q2 be a state such that q1 q2.
These conditions allow to automatically generate the precondition of the handler
under which the final state s2 will be (g, usr)-compatible with q2. The precondi-
tions are generated by the hypotheses of the Handler Lemma: the starting state of
the kernel handler s1 is (g,m)-compatible with q1, and there are s0 and q0, such

A.7. PROOF IMPLEMENTATION 63

that priv_constg(q0, q1), priv_constg(s0, s1), and s0 and q0 are in the candidate
relation.

A.7.2 Binary Code Verification
The kernel code verification relies on Hoare logic. To prove the Handler Lemma
and Proposition 1, we are required to verify several Hoare triples {P}C{Q} for the
exception handlers and the bootstrap code, that is we check that if the precondition
P holds in the starting state of C, then the postcondition Q is guaranteed by
C. When possible, we adopt a standard semi-automatic strategy, i.e. firstly, we
compute the weakest liberal precondition wlp(C,Q) on the starting state, then
prove that the precondition P implies the weakest precondition. This task can be
fully automated if the predicate P =⇒ wlp(C,Q) is equivalent to a predicate of the
form ∀x.A where A is quantifier free. The validity of A can then be checked using
a Satisfiability Modulo Theory (SMT) solver that supports bitvectors to handle
operations on words. In this work, we used STP [74].

Weakest preconditions can be computed directly in HOL4 using the ARMv7
model. However, this task requires a significant engineering effort. We adopted a
more practical approach, by using (BAP) [43]. The BAP toolset provides platform-
independent utilities to extract control flow graphs and program dependence graphs,
to perform symbolic execution and to perform wp calculations. These utilities
reason on the BAP Intermediate Language (BIL), a small and formally specified
language that models instruction evaluation as compositions of variable reads and
writes in a functional style.

We found the existing BAP front-end to translate ARM programs to BIL inad-
equate for our purpose: It supports only ARMv4, it does not manage the processor
status registers, and it does not handle banked registers for the privileged modes and
coprocessor management. To this end, we developed a new front-end for ARMv7
programs using the ARM model available in HOL4. This tool allows us to translate
the code of the kernel handlers and the bootstrap into BIL.

The HOL4 ARM model provides the function arm_steps to compute the set of
pairs 〈c1, t1〉, . . . 〈cn, tn〉 for an instruction where the function ti transforms a state
provided that the condition ci holds on that state. In other words, ∀s:arm_state
arm_next s = ValueState () ti(s) if ci(s). In order to use arm_steps, the ex-
ecution mode and the instruction set type (e.g. Thumb, ARM) must be known.
Our handlers preconditions set the value of these parameters. The translation from
ARM to BIL is performed by translating the HOL4 conditions ci and functions ti
to BIL fragments.

Verifying the Hoare triples using weakest preconditions requires us to handle
some common issues. Algorithms to compute weakest preconditions rely on the ab-
sence of indirect jumps, i.e. the jumps whose target address is a variable. We used
the SMT solver to automatically compute jump targets, depending on the instruc-
tion precondition. Weakest preconditions can grow exponentially in the number
of instructions. We extended BAP to simplify the weakest precondition during

64
PAPER A. FORMAL VERIFICATION OF INFORMATION FLOW

SECURITY FOR A SIMPLE ARM-BASED SEPARATION KERNEL

its backward propagation using ARM specific simplification patterns. Finally, our
verification task has been simplified by the structure of the kernel code. All loops
of the kernel have a single control flow node that represents both the entry point
and the exit point of the loop. In the general case, we defined a loop invariant and
a loop variant and applied the standard Hoare logic rules to prove the contract.
Verification has been simplified by the absence of loops in the kernel handlers and
the fact that the boot code contains only for-loops that iterate over integer sets.

A.8 Evaluation

We tested the kernel implementation using OVP [133] as main execution environ-
ment, which provides a simulation infrastructure convenient to evaluate our ker-
nel. Slightly different versions of the kernel have been deployed on Beagleboard,
Beagleboard-XM, Beaglebone, NovaThor and the Integrator development board.
The size of kernel code, internal data-structures and page table are respectively
less than 4 kB, 2 kB and 16 kB. The main functionality of the kernel is provided
by the software and hardware interrupt handlers. In the worst case, the hardware
interrupt handler executes 112 instructions, including 48 reading and 22 writing
accesses to the memory. Similarly, the software interrupt handler executes at most
46 instructions, including 20 reading and 8 writing accesses to the memory. All
the memory locations accessed by the kernel handlers belong to the internal kernel
data-structures. To minimize the system overhead and avoid accesses to system
memory during kernel tasks, we can use scratchpad memory or cache locking due
to the size of the run-time footprint.

We identified and fixed several bugs in the kernel implementation during the
verification process: (i) the registers were not sanitized after the bootstrap, (ii)
some of the execution flags were not correctly restored during the context switch,
(iii) the procedure to decode the hypercall identifier did not consider the case that
the partition is running in thumb execution mode.

The model of the ideal system, the formalization of the verification procedure
and the proofs of the theorems consist of 21k lines of HOL4 code. The tools
developed to support the verification of the kernel contracts required 2k lines of
HOL4 and python code. The kernel binary code is verified with respect to sixteen
contracts, each of them consisting of ∼ 400 lines of assertions that are automatically
generated from HOL4. In the worst case, the verification of one contract required ∼
30 minutes using one Intel(R) Xeon(R) X3470 core; the contract is generated in ∼ 5
minutes, the indirect jumps are solved in ∼ 2 minutes, the weakest precondition is
computed in ∼ 10 minutes and the SMT solver verifies the validity of the resulting
condition in ∼ 15 minutes.

A.9. RELATED WORKS 65

A.9 Related Works

Past work on formal verification of kernel information flow properties [90, 124, 142,
25] are based on variants of noninterference [77]. Typically, the goal is to allow
a number of component systems, partitions, or guest systems, depending on ter-
minology, to share a computing platform without any interaction, leaving possible
communication between the partitions to be managed by mechanisms outside the
model. In Heitmeyer et al [90], for instance, partitions have explicit input and
output buffers, but communication is delegated to external agents, in this way al-
lowing properties like absence of infiltration (roughly: direct flows) and exfiltration
(indirect flows) to be proved. Similar results are reported in [142, 25] and in [180]
at the firmware level. Murray et al [125] considers noninterference in presence of
a dynamic scheduler and uses a version of intransitive noninterference [145] (ac-
tually, NI) to allow a scheduler to influence which partition is scheduled, without
permitting the scheduler to be used as a covert channel, as discussed briefly in the
introduction.

Several recent works address hypervisor/microkernel verification, although with-
out taking information flow into account. In [105] a simulation property of an entire
microkernel down to a C implementation was verified using the Isabelle theorem
prover. This work was recently extended to ARM assembly using decompilation
techniques [156]. Alkassar et al [5] proposed an automatic approach to verify a
hypervisor for a (simplified) MIPS machine by annotating the C code with con-
tracts and checking them using VCC. They establish a reachability property: at
any time the state of a partition can be reached by executing the same partition on
a completely isolated machine. This is sufficient to establish simulation when the
specification is deterministic (but not otherwise). To allow VCC to reason about
statically unknown partitions/guests, a C emulator of the MIPS machine has been
implemented and annotated. The C emulator has been adopted also to verify parts
of the hypervisor that mix C and assembly code [134].

Most kernel security analyses address the kernel routines one at a time, using
suitable relational specifications. Without verifying the correct interaction between
the kernel routines and the processor (e.g. mode switching and memory protection),
these specifications are not sufficient to guarantee security at system level, i.e. at
the level of “full” executions that interleave kernel routines with userland execu-
tion of the partitions. Performing such a systems-level, integrated analysis (ker-
nel and processor) has not been done before for realistic processor architectures.
For instance [180, 124] address kernel routines but not the processor interaction.
Analysing each kernel routine in isolation can be done using existing versions of
conditional non-interference (as discussed in [124]). However, this does not guaran-
tee information flow security at system level. Our approach to formulating the TLS
using idealized userland processors solves this problem, simply by showing that the
full executions for the ideal and the real model are the same.

Barthe et al. [25] formalized a hypervisor model using the Coq proof assistant.
They focus on establishing that the hypervisor ensures isolation properties between

66
PAPER A. FORMAL VERIFICATION OF INFORMATION FLOW

SECURITY FOR A SIMPLE ARM-BASED SEPARATION KERNEL

the guests, abstracting away from actual hypervisor implementation.

A.10 Discussion

We have presented a separation kernel, the PROSPER kernel, for ARMv7-A and a
machine-assisted proof of information flow correctness using a combination of tools
(HOL4 [95] and BAP [43]). Our analysis has a number of distinguishing features:

• Our top-level specification (TLS) and verification approach is deliberately de-
signed to take inter-component communication into account, an ever present
challenge in the verification of information flow properties for real systems.

• We introduce a new technique for building a TLS for this type of application,
based on communicating idealized userland processors.

• The security analysis is performed at systems level, modeling both the MMU-
constrained user space execution of arbitrary partitions, the kernel handlers,
and the interaction of the two.

• We validate the “monotonicity or release” property, as suggested by Sabelfeld
and Sands [148], by showing that the security proof reduces to standard non-
interference for the special case of non-communicating partitions.

• The entire analysis is performed at machine code level for a commodity pro-
cessor architecture.

A number of subsidiary contributions include several tools for managing and ex-
ecuting the proofs, including the ARM prover tool for verifying critical partition
correctness properties of the ARMv7 machine architecture based on an extension
of Fox and Myreen’s monadic ARM semantics [70], and several extensions to the
BAP toolset.

By verifying the entire kernel at machine code level we avoid reliance on a C
compiler, and we can transparently verify code that mix C and assembly. Generally
speaking, verification at machine code level is time consuming, however we were
supported by the fact that the code was mostly compiler produced and loops were
used in only a few places.

Since our TLS specifies the exact set of traces allowed by an implementation,
a worry might be that the TLS becomes overly detailed and unwieldy. We did
not find this to be the case. Rather, the development of the ideal model, as we
progressed to understand the various issues involved, was a great help in organizing
the thinking. It is true that our approach (as in other work, cf. [90]) precludes an
abstract treatment of scheduling, but this is to be expected when information flow
is to be taken into account.

A.10. DISCUSSION 67

On two counts our model is not yet satisfactory. The first concerns timing. Our
model counts instruction cycles 3, instead of real clock cycles. In our implementa-
tion the former is used. It is non-trivial to extend our analysis to a more realistic
time representation, as in this case well-known phenomena such as cache delays
and instruction pipelining come into play. Cache leakage has been considered in
the context of virtualization by Barthe et al [26]. Zhang et al [185] demonstrated
an access-driven side-channel attack targeting the Xen hypervisor. The authors (i)
use interprocess interrupts to affect the Xen scheduler and to reduce the time slot
available to the victim and (ii) indirectly monitor the usage of the instruction cache,
which is shared among partitions. Extending our approach to handle access-driven
attacks requires a more refined analysis of timing behaviour, which is part of our
ongoing research efforts.

The second count is unpredictable states. According to the ARM Architecture
Reference Manual [13], unpredictable behaviour is not allowed to “perform any
function that cannot be performed at the current or lower level of privilege using
instructions that are not unpredictable”. This definition is difficult to accommodate
in our framework. An interpretation of allowed behaviour which is adequate for
our purpose is “compliant with the ARM Lemmas”. This enables our proofs to go
through, and in fact we posit that this may be a more helpful and less prescriptive
definition than that of [13]. Practically, the ARM Lemmas can be used to certify if
a specific ARMv7-A implementation can be used to host our kernel. In the proof
implementation we have used the error states introduced in the monadic ARM
HOL4 model. This is not really satisfactory, though, as this allows partitions to
exit the scope of our model at will, by entering an unpredictable state. We leave a
better treatment of unpredictable behaviour, in addition to more realistic hardware
models and kernel functionality, to future work.

Finally we emphasize that virtualization and/or separation kernels are not the
only tools available for secure partitioning. The ARM-proprietary TrustZone so-
lution [11] adds to the standard ARMv7 architecture a secure partition that can
be used to split the CPU resources between an untrusted and a trusted OS. Our
results show that the kernel can be protected using standard, less expensive hard-
ware, and a smaller TCB. Moreover, extending the proposed verification strategy
can be straightforwardly extended to manage a different number (>2) of partitions.

3This is the element of our “real system” that is not really real.

B

Paper B

Machine Assisted Proof of ARMv7
Instruction Level Isolation
Properties

Narges Khakpour, Oliver Schwarz, and Mads Dam

Abstract

In this paper, we formally verify security properties of the ARMv7 Instruc-
tion Set Architecture (ISA) for user mode executions. To obtain guarantees
that arbitrary (and unknown) user processes are able to run isolated from
privileged software and other user processes, instruction level noninterference
and integrity properties are provided, along with proofs that transitions to
privileged modes can only occur in a controlled manner. This work estab-
lishes a main requirement for operating system and hypervisor verification,
as demonstrated for the PROSPER separation kernel. The proof is performed
in the HOL4 theorem prover, taking the Cambridge model of ARM as basis.
To this end, a proof tool has been developed, which assists the verification of
relational state predicates semi-automatically.

B.1 Introduction

The ability to execute application software in a manner which is isolated from
other application software running on a shared processing platform is an essential
prerequisite for security. This allows user applications or virtual machines to coexist
without violating confidentiality or integrity of critical data, it allows critical system
resources to be protected from user manipulation, it can help to prevent fault
propagation, and it can be used to save costly hardware that might otherwise be
needed to provide physical separation.

Isolation is typically provided by a mix of hardware and software. A memory
management unit (MMU) may be used to provide basic memory protection, and

69

70
PAPER B. MACHINE ASSISTED PROOF OF ARMV7 INSTRUCTION

LEVEL ISOLATION PROPERTIES

the processor may be equipped with multiple privilege levels, running application
programs as userland processes and kernel routines at privileged levels, with ad-
ditional abilities to access and configure critical parts of the processor, the MMU,
and various storage/display/peripheral devices attached to the processor.

In such a setting, isolation is a result of the correct interplay between hardware
and kernel. It is the responsibility of the kernel to correctly manipulate the proces-
sor state to achieve the desired effects, whatever they may be (context switching,
logging, fault management, device management, etc). It is the responsibility of the
processing hardware to correctly implement the partitioning safeguards and mode
transition conventions assumed by the kernel. For security, the kernel and the pro-
cessor must both be correct and agree on their mode of interaction. Most formal
kernel analyses in the literature [25, 90, 105, 125, 142] address the kernel software
itself, in source or binary form, and leave the properties of the instruction set ar-
chitecture (ISA) to be handled by fiat. Our contribution is to suggest a possible
approach, including tool support, for performing the ISA specific security analysis,
specifically for user mode execution.

We have identified two main concerns.
First, an implicit contract must exist which stipulates the “region of influ-

ence/dependency” of userland processes. That is, in a given user mode proces-
sor/MMU configuration it must be determined which memory locations and (con-
trol) registers can be read or written, or, in a more fine grained analysis, how
information is able to flow to or from specific parts of the processor and the mem-
ory. User processes must be constrained in accessing or otherwise being influenced
by critical resources of the kernel or of other user processes. This is not trivial.
For instance, as shown by Duflot et al. [62], on some x86 processors it is possible
for low-privilege code to overwrite higher privilege code by writing to an address
that usually refers to the video card. To enable this attack, it suffices to first flip a
configuration bit usually accessible from the low privilege level.

Second, kernel code relies on a set of mode switching conventions, for instance
on ARM that program status registers and relevant user registers (including the
program counter) are properly banked, the program counter is updated to point
at the correct location in the vector table, and so on. If these conventions are not
established by the processor and adhered to by the kernel, it may be possible for
userland processes to induce various sorts of malicious behavior, for instance by
letting a handler’s link register point to a foreign address.

Performing this analysis is not trivial, particularly not if information flow is to be
taken into account, as is done in this paper. All instructions, error conditions, and
user to privileged mode transitions must be considered. The number of instructions
is high and in modern processors a single instruction can involve a large number
(order of 20-30) of atomic register or memory accesses.

In this paper, we identify and prove several partitioning-related properties of
the ARMv7 ISA specification [12, 13] addressing user mode execution and mode
switching. The first is an instruction level noninterference property related to the
non-infiltration property in [90] stating that the behavior of an ARMv7 processor

B.2. THE FORMAL SPECIFICATION OF ARM 71

in user mode only depends on its accessible resources, mostly user registers, MMU
configurations and the memory allocated to that process. The second, correspond-
ing to the non-exfiltration property of [90], is an integrity property stating that,
again while in user mode, the processor is unable to modify protected resources. A
third set of properties concerns mode switching conventions. These properties have
been applied in the PROSPER project [139] to verify isolation for the PROSPER
separation kernel [53]. The PROSPER project aims at producing and verifying a
fully functional secure hypervisor for embedded systems, providing services such as
guest isolation, so that only explicitly allowed communication occurs.

Our proof uses the HOL4 [95] model of ARM, developed at Cambridge by Fox
et al. [70]. We extend this model by simple memory protection. The ARMv7 ISA
properties outlined above are formalized and proved. To make the quite sizable
proof task feasible, we have developed a helper tool based on relational Hoare logic,
that is able to automate significant parts of the proof.

To the best of our knowledge our work represents the first formalized analysis of
the ARMv7 ISA. Others, specifically the Cambridge HOL4 group, have developed
various helper tools for assembling, disassembling, executing, and managing ARM
machine code and the HOL4 ARM ISA model [70, 126]. Also, the HOL4 ARM
model has been used in several verification exercises in the literature, on software
fault isolation (SFI) [186] and on the extension of the seL4 verification work [105]
from C to binary level [156]. However, we have not yet seen general correctness
properties formalized and verified for ARM at the ISA level. In fact, we believe
the type of analysis presented here can be useful beyond kernel verification. For
instance, formalized security properties can be useful to both improve the useful-
ness and precision of ISA specifications, and to enable developers obtain a concise
description of secure configurations, without manual consideration of extensive ar-
chitecture specifications.

B.2 The Formal Specification of ARM

We use Fox et al’s monadic HOL4 model [70] of the ARMv7 ISA. This model covers
the ARM, Thumb and ThumbEE instruction sets, comprising 81 instructions for
branching, memory access, data processing, co-processor access, status access, and
miscellaneous functionality. Figure B.1 shows a simplified definition of an ARM
state in this model. The function psrs returns the value of a processor state register
(of type ARMpsr). The processor state registers include the current program status
register, CPSR, in addition to the banked psrs SPSR_m for each privileged mode
m, except for system mode. Program status registers encode arithmetic flags, the
processor mode M, interrupt masks (I for ordinary and F for fast interrupts) and
instruction encoding. The ARMv7 core provides seven processor modes: one non-
privileged user mode usr, and six privileged modes (abt,fiq,irq,svc,und,sys),
activated when an exception (such as an interrupt) is invoked. Variants with the
TrustZone extension [11] also have a monitor mode. However, this has to be invoked

72
PAPER B. MACHINE ASSISTED PROOF OF ARMV7 INSTRUCTION

LEVEL ISOLATION PROPERTIES
arm-state = <| psrs : PSRName -> ARMpsr;

regs : RName -> word32;
memory : word32 -> word8;
coproc : coprocessors;
accesses : memory_access list;
misc : Monitors # ARMinfo # bool # bool |>;

Figure B.1: The ARM state in HOL4

from a privileged mode and we consider its usage out of scope of this paper.
The function regs takes a register name and returns its value. The ARM

registers include sixteen general purpose registers (r0-r15) that are available from
all modes in addition to the banked registers of each privileged mode (except of
sys) that are available only in that mode. Among the user registers, register r13
functions as stack pointer SP, register r14 as link register LR and register r15 as
program counter PC.

The function memory reads a byte (word8) from an address (word32). The
field coproc represents those coprocessor registers in CP14 and CP15 that implicitly
influence execution. The coprocessor registers central for this work are registers
SCTLR , TTBR0 and DACR of coprocessor 15. They, together with the page table,
are used to configure the MMU. The field misc represents the exclusive monitors
used for synchronization purposes, general information about the state, e.g. the
architecture version, if the system is waiting for an interrupt etc, and accesses
records the accesses to the memory.

A computation in the monadic HOL4 ARM model is a term of the following
(slightly beautified) type

α M = arm_state 7→ (α, arm_state) error_option.

where error_option is a datatype defined as follows:

(α,β) error_option = ValueState of α => β
| Error of string

Computations act on a state arm_state and return either ValueState a s, a new
state s of type arm_state along with a return value a of type α, or an error e.
The unpredictable computations, i.e., those that are underspecified by the ARM
specification return an error. The monad unit constT injects a value into a compu-
tation, i.e. constT a s = ValueState a s, while binding is a sequential composition
operation

f1 �=e f2 = λs.case f1s of Error c → Error c

|| ValueState a s′ →
if e s′ then f2 a s

′ else f1 s.

B.3. MEMORY MANAGEMENT 73

errorT a = Error a
condT e f = if e then f else constT ()
if e then f1 elsef2 = λs.if e s then f1 s else f2 s
f1 |||e f2 = f1 �=e (λx.f2 �=e (λy.constT (x, y)))
forTe l h f = if l > h then constT []

else ((f l)�=e (λr.forTe (l + 1) h f �=e (λl.constT r :: l)))

Figure B.2: Auxiliary monad operations

That is, if e holds in the final state of f1, the return value of f1 is passed to f2 as
the input parameter, otherwise f2 is not executed.

In addition to unit and binding, the ARM monadic specification uses stan-
dard constructs for lambda, let, and cases, as well as the monad operations par-
allel composition (f1 |||e f2), positive conditional (condT e f), full conditional
(if e then f1 else f2), error (errorT a), and an iterator (forTe l h f), (induc-
tively) defined in Figure B.2.

B.3 Memory Management

The Memory Management Unit (MMU) enforces memory access policies and is
therefore important for isolation. MMU configurations consist of page tables in
memory and dedicated registers of CP15. Specific to ARM is the possibility of
partitioning pages into collections of memory regions, so-called domains. The theo-
rems in this paper are based on the concrete MMU configurations (memory ranges,
the page table setup etc.) used in the PROSPER kernel. The coprocessor regis-
ters involved are SCTLR, TTBR0 and DACR. The SCTLR register determines whether
the MMU is enabled, TTBR0 contains the base address of the page table, and DACR
manages the ARM domains.

MMU Extension The evaluation function permitted takes as parameters a
byte address, a flag indicating whether reading or writing access is to be evaluated,
the values of SCTLR, TTBR0 and DACR, a flag indicating whether permissions are to
be checked against a privileged mode, and the memory containing the page tables.
The pair of booleans returned by permitted states whether the access permission
on the specified byte is defined in the given configuration and the outcome of that
decision (true if access is granted). The PROSPER kernel uses a basic version
of permitted, supporting one-level page tables without address translation, but
including the interpretation of ARM domains. It is shown that permitted is defined
for all addresses in all reachable states.

The history of memory accesses is tracked in the accesses field of the machine
state, allowing to compute the set of memory pages accessed by an instruction.

74
PAPER B. MACHINE ASSISTED PROOF OF ARMV7 INSTRUCTION

LEVEL ISOLATION PROPERTIES
next irpt s =
(clear_alist �=nav

(λu. if irpt = NoInterrupt then
waiting_for_interrupt �=nav

(λwfi. condT (¬wfi)
(fetch_instruction �=T

(λ(opc, ins). is_viol �=T (λav. clear_alist �=nav

(λu. if av then prefetch_abort
else

(execute ins �=T (λu. is_viol �=T

(λav. condT av
(clear_alist �=nav

(λu. data_abort))))))))))
else take_exception irpt �=nav (λu. clear_wait_for_irpt))) s

Figure B.3: The next computation.

To stop computation after the first access violation, �=nav has been chosen as
standard binding operator, where nav s (“no access violation”) is true if and only
if there is no entry in the access list of machine state s that causes permitted to
return a negative answer int the current configuration of s. The recording of an
access always happens before the access itself.

The instruction execution function next (see Figure B.3) takes an exception/in-
terrupt flag irpt and a state s and produces the consequent state, by either ini-
tiating the demanded exception or by fetching and executing the next instruction
pointed to by the PC in s. If an access violation is recorded after instruction fetch-
ing or execution, a prefetch or data abort exception (respectively) is initiated. The
access list is cleared between the single steps, preventing the execution from halting
and instead proceeding with exception handling. Occasionally, the unconditional
binding �=T is used.

MMU Configuration Let accessible i a express that address a is readable
and writable by user process i. The predicate mmu_setup i s holds if and only if
(i) state s implements the desired access policy for process i, (ii) no MMU config-
uration for any address is underspecified, and (iii) none of the active page tables in
s (represented by the address set page_table_adds s) is accessible according to
the policy.

mmu_setup i s = ∀add, is_write, u, p.
(u,p) = permitted add is_write (mmu_registers s) F s.memory

⇒ u ∧ ((accessible a i) ⇔ p)
∧ (a ∈ (page_table_adds s) ⇒ ¬(accessible a i))

B.4. SECURITY PROPERTIES 75

B.4 Security Properties

We next turn to formalizing the instruction level partitioning properties. For user
mode execution we formulate the requirements in terms of non-infiltration and
non-exfiltration properties (cf. [90]), adapted to our setting.

Our model does not include caches, timing or hardware extensions such as Trust-
Zone or virtualization support. Devices are not part of the model either; however,
interrupts and other exceptions are taken into account, apart from fast interrupts
and resets. Accordingly, the fiq and mon modes are outside of our analysis. As
discussed, the chosen memory configuration is specific to the PROSPER project.
Consequences of a limited coprocessor model and underspecified instructions are
discussed in Section B.8.

B.4.1 Non-infiltration
Confidentiality of the kernel and neighboring user processes is guaranteed by non-
infiltration, a noninterference-like property at the user mode single instruction level.
Consider two machine states in user mode that are low equivalent in the sense that
the two states agree on the resources (registers and memory locations) that are
permitted to influence user mode execution, but do not necessarily agree on other
resources. Non-infiltration holds if the poststates, after execution of one instruction,
remain low equivalent (or produce the same error).

Theorem 4. Non-infiltration

∀s1, s2, i, irpt. mode s1 = mode s2 = usr ∧ bisim i s1 s2
⇒ (∃t1, t2. next irpt s1 = ValueState () t1

∧ next irpt s2 = ValueState () t2 ∧ bisim i t1 t2)
∨ (∃e. next irpt s1 = Error e ∧ next irpt s2 = Error e)

The relation bisim is the low equivalence relation. User mode processes are
allowed to be influenced by the user mode registers, the memory assigned to them,
the CPSR, the coprocessors, pending access violations and the misc state component.
Exclusive monitors (as field of misc) can inherently influence and be influenced by
user mode software and need thus to be cleared by kernels on context switches.

bisim i s1 s2 =
mmu_setup i s1 ∧ mmu_setup i s2 ∧ (equal_user_regs s1 s2)

∧ (∀a. (accessible i a) ⇒ (s1.memory a = s2.memory a))
∧ (s1.psrs(CPSR)= s2.psrs(CPSR)) ∧ (s1.coproc.state = s2.coproc.state)
∧ (nav s1 = nav s2) ∧ (s1.misc = s2.misc)
∧ s1.psrs(spsr_(mode s1)) = s2.psrs(spsr_(mode s2))
∧ s1.regs(lr_(mode s1)) = s2.regs(lr_(mode s2))

The two last items have been included to assure that SPSR and link register (of
a possibly privileged poststate) only depend on resources allowed to influence user
mode execution as well, so that they can actually be restored later on.

76
PAPER B. MACHINE ASSISTED PROOF OF ARMV7 INSTRUCTION

LEVEL ISOLATION PROPERTIES

B.4.2 Non-exfiltration
Non-exfiltration guarantees the integrity of resources foreign to the active user
process. It expresses that, given an MMU setup for user process i active, the
execution of a single instruction in user mode will not modify any other resources
but those considered to be modifiable by i.

Theorem 5. Non-exfiltration

∀s, t, i, irpt. mode s = usr ∧ mmu_setup i s
∧ next irpt s = ValueState () t ⇒ unmodified i s t

Here, unmodified expresses the desired relation between the prestate s and the
poststate t of an active process i. We require that coprocessors, the fast interrupt
flag and any memory not belonging to i remain unchanged. The only registers
allowed to change are the CPSR, the user mode registers, and the PSR and the link
register of the mode in t. The interrupt flag of the CPSR is not modified when
staying in user mode.

unmodified i s t =
(s.coproc = t.coproc) ∧ (s.psrs(CPSR).F = t.psrs(CPSR).F)

∧ (∀a. ¬(accessible i a) ⇒ (s.memory a = t.memory a))
∧ ((mode s ∈ {usr, mode t} ∧ mode t ∈ {usr, fiq, irq, svc, abt, und})
⇒((∀reg. reg /∈ accessible_regs(mode t) ⇒ s.regs(reg) = t.regs(reg))
∧ (∀psr. psr /∈ {CPSR, spsr_(mode t)} ⇒ s.psrs(psr) = t.psrs(psr))
∧ (mode t = usr ⇒((s.psrs(CPSR)).I = (t.psrs(CPSR)).I))))

B.4.3 Switching to Privileged Modes
Secure user mode execution is not by itself sufficient. It is also necessary to consider
transitions to privileged modes to prevent user processes from privileged execution
rights. No user process should be able to effect a mode change with the PC set to a
memory location of his choice. Instead, all entry points into privileged modes should
be in the exception vector table. Similarly, even though user processes are allowed
to choose a different endianness for their own execution, that should not influence
the interpretation of the system handlers when switching back to privileged mode.
Theorem 6 covers those additional constraints.

Theorem 6. Privileged Constraints

∀s, t, i, irpt. mode s = usr ∧ mmu_setup i s
∧ next irpt s = ValueState () t ⇒ priv_const s t

Besides the above properties, the relation priv_const lists the reachable pro-
cessor modes1 and assures that interrupts are masked when entering a privileged

1Monitor and system mode can only be reached from another privileged mode.

B.4. SECURITY PROPERTIES 77

mode. Also, status register flags regarded as unwritable will be copied from the
CPSR in prestate s to the SPSR in poststate t. This guarantees that a kernel can re-
store the saved program status register without further modifications when jumping
back to the user process. Otherwise, user processes would be able to make the ker-
nel enable/disable interrupts or change their execution mode. All access violations,
if there were any, will have been handled (nav t).

priv_const s t =
mode t ∈ {usr, fiq, irq, svc, abt, und}
∧ (mode t 6= usr ⇒

(t.regs(PC) ∈ vt_adds(vt_base s, mode t) ∧ nav t
∧ (t.psrs(CPSR)).(I, J, IT, E) = (T, F, 0w, endianess s)
∧ (t.psrs(spsr_(mode t))).(M, I, F)

= (usr, (s.psrs(CPSR)).I, (s.psrs(CPSR)).F)))

B.4.4 Link Register Contents in Supervisor Mode
Upon reception of a software interrupt, exception handlers in the invoked supervisor
mode (svc) often need to analyze the calling instruction, in order to determine
the software interrupt number for example. Therefore, verification might require
assertions that the memory location pointed to by the link register actually does
belong to the user process which caused the switch to supervisor mode. Formally,
when going from state s in user mode to state t in supervisor mode, it is required
that the svc-link register of t (i) is equal to the PC of s plus an instruction set
dependent offset and (ii) corrected by the offset, points to an aligned word that is
readable in t (independent of the mode). Note that offset and width of the word
depend on the instruction set used by the user process, not on the one used by the
handler.

Theorem 7. Link Register Constraints

∀s, t, i, irpt, lr. mode s = usr ∧ mmu_setup i s
∧ next irpt s = ValueState () t ∧ mode t = svc ∧ lr = t.regs(LR_svc)

⇒ lr = s.regs(PC) + offset s
∧ ((t.psrs(SPSR_svc)).T ⇒ aligned_word_readable t T (lr - 2w))
∧ (¬(t.psrs(SPSR_svc)).T ∧ ¬(t.psrs(SPSR_svc)).J

⇒ aligned_word_readable t F (lr - 4w))

Here, aligned_word_readable s b add states that the aligned word referred
to by add is readable in s. Dependent on whether b is true or false, word width
and alignment are 16 or 32 bit.

B.4.5 Safe User Mode Execution
The final aim is to guarantee that as long as the machine is executing in user mode, it
causes no noninterference or integrity violations. Let s1 sn denote a sequence of

78
PAPER B. MACHINE ASSISTED PROOF OF ARMV7 INSTRUCTION

LEVEL ISOLATION PROPERTIES

next computations s1 → s2 →→ sn in user mode, i.e. mode si = usr, 1 ≤ i < n
and mode sn 6= usr. The following theorem assures the safe execution and safe mode
switching of a user process.

Theorem 8. Let s1 sn and mmu_setup i s1, (i) if s′1 s′n and bisim i s1 s′1 then
bisim i sn s′n, (ii) unmodified i s1 sn, and (iii) priv_const sn−1 sn.

The proof of (i) and (ii) is an easy induction on n using theorems 4 and 5. Item
(iii) follows from Theorem 6.

B.5 The Logic Framework

Considering the size and complexity of the ARM model and the instruction set, to
prove the properties of the previous section tool support is essential. In this section
we present proof rules for relational and invariant reasoning that help to automate
the proof.

Non-infiltration The proof uses a relational Hoare logic based on assertions
{f:R →R’} defined as follows:
{f:R → R’} = ∀s1,s2. R s1 s2 ⇒

(∃a,t1,t2. f s1 = ValueState a t1 ∧
f s2 = ValueState a t2 ∧ R’ t1 t2)

∨(∃e.f s1 = Error e ∧ f s2 = Error e)

The judgment asserts that, if started in prestates s1, s2 related by prerelation R,
either the executions of the monadic computation f return identical values a with
poststates t1, t2 related by postrelation R’, or else they both return the same error
e.

For the analysis it suffices to consider a fixed set of relations
R_m = λs1.λs2.bisim i s1 s2 ∧ mode s1 = m ∧ mode s2 = m

or R_(n,m) = R_n ∪ R_m.
Figure B.4 shows the relational logic inference rules. The inference system is

incomplete, but sufficient for our purpose. A relation R_m is preserved by errorT
and constT (rules constTR and errorTR), and if a computation preserves one of
the R_m relations then that computation can be used in a conditional or a for loop
as well (condTR, conR and forTR). The rule widenR and absR are used to weaken
the postrelation and reason about lambda computations, respectively. The rule
seqTR states that the postrelation of f �=nav f

′ is the union of the postrelations
of f and f ′, provided that either f preserves R_n or f ′ preserves R_k. If there is
an access violation after f , the computation stops and R_n must hold. Otherwise,
f ′ will execute and R_k must hold. Thus, the postrelation is the union of R_n and
R_k.

Theorem 9. All assertions {f : R→ R′} derivable according to the inference rules
in Figure B.4 are valid.

B.5. THE LOGIC FRAMEWORK 79

errorTR
{errorT a : R_m→ R_m}

constTR
{constT a : R_m→ R_m}

condTR
{f : R_m→ R_m}

{condT ψ f : R_m→ R_m}
forTR

{f : R_m→ R_m}
{forTnav l h f : R_m→ R_m}

conR
{f : R_m→ R_n} {f ′ : R_m→ R_n}
{if ψ then f else f ′ : R_m→ R_n}

widenR
{f : R_m→ R_n}

{f : R_m→ R_(n,k)}
absR

∀y.{f y : R_m→ R_n}
{λy.f : R_m→ R_n}

seqTR
{f : R_m→ R_n} {f ′ : R_n→ R_k} (m = n) ∨ (n = k)

{f �=nav f
′ : R_m→ R_(n,k)}

parTR
{f : R_m→ R_n} {f ′ : R_n→ R_k} (m = n) ∨ (n = k)

{f |||navf
′ : R_m→ R_(n,k)}

Figure B.4: Relational inference rules

errorTI
INV〈errorT a, Q, P〉

constTI refl P
INV〈constT c, Q, P〉

condTI
refl P INV〈f, Q, P〉
INV〈condT e f, Q, P〉

forTI
refl P trans P INV〈f, Q, P〉

INV〈forTe l h f, Q, P〉

conRI
INV〈f, Q, P〉 INV〈f ′, Q, P〉

INV〈if ψ then f else f ′, Q, P〉

absI
∀y.INV〈f y, Q, P〉
INV〈λy.f, Q, P〉

seqTI
INV〈f, Q, P〉 INV〈f ′, Q, P〉 trans P

INV〈f �=e f
′, Q, P〉

parTI
INV〈f, Q, P〉 INV〈f ′, Q, P〉 trans P

INV〈f |||ef ′, Q, P〉

Figure B.5: Invariant inference rules

Non-exfiltration Similar to the non-infiltration proof, the proof of non-exfiltration
uses a sound but incomplete inference system, this time concerning computation
invariants of the following shape:

INV〈f, Q, P〉 = ∀s, t. Q s ∧ f s = ValueState a t =⇒ P s t ∧ Q t .

That is, if Q holds of the prestate then P holds of the prestate-poststate pair, and
Q of the poststate. We use a simple collection of inference rules to prove Q and P ,
shown in Figure B.5. In this figure, refl P and trans P respectively state that P is
reflexive and transitive. For non-exfiltration we need to prove that unmodified i
is satisfied during the execution of each instruction both when it ends in user mode

80
PAPER B. MACHINE ASSISTED PROOF OF ARMV7 INSTRUCTION

LEVEL ISOLATION PROPERTIES
take_svc_exception = IT_advance �=nav

(λ u.(read_reg 15w |||nav exc_vector_base |||nav read_cpsr |||nav

read_scr |||nav read_sctlr)�=nav

(λ(pc,ExcVectorBase,cr,scr,sctlr).
(condT (cr.M = 0b10110w) (write_scr (scr with NS := F)) |||nav

write_cpsr (cr with M := 0b10011w)) �=nav

(λ (u1,u2). (write_spsr cr |||nav

write_reg 14w (if cr.T then pc - 2w else pc - 4w) |||nav

(read_cpsr �=nav

(λ cr’.write_cpsr (cr’ with
<| I := T; IT := 0b00000000w;J := F;

T := sctlr.TE; E := sctlr.EE |>))) |||nav

branch_to (ExcVectorBase + 8w)) �=nav unit4)))

Figure B.6: The HOL4 code for switching to svc mode [95]

and when switching to privileged mode. A prerequisite for this is that the MMU
is configured correctly during computation. To prove the non-exfiltration property,
we check INV〈next, mmu_setup i, unmodified i 〉.

Theorem 10. All assertions INV〈f,Q,P〉 derivable according to the inference rules
in Figure B.5 are valid.

Privileged Constraints The final goal is to prove that next establishes the re-
lation priv_const, a conjunction of primitive constraints P. Since the primitive
constraints do not always hold during computations in privileged mode, the infer-
ence rules of Figure B.5 are generally not able to prove this property. To make
verification tractable, we prove primitive constraints locally at the point in the
monadic computation where it is established and then use a set of inference rules
to infer its correctness for the entire computation. We illustrate the proof using an
example. In the ARM model, all computations which lead to a privileged mode m
end by a computation called take_m_exception. Figure B.6 shows the function
take_svc_exception for switching to supervisor mode. Let this computation start
in state s1 and end in state sn. Consider the primitive constraint Ppsr stating that
SPSR_svc of the final state sn must be equal to CPSR of the initial state s1. Let
t and t′, respectively be the initial state and final state of write_spsr cr and m be
the mode of t′. The computation write_spsr cr writes the value of free vari-
able cr into SPSR_m and establishes the property P′psr

def= t′.psrs(SPSR_m) = cr.
We call write_spsr cr a P′psr-establisher. A computation g is P-establisher, if
independently of its input state, P holds in its output state, i.e.

P−establ(g) = ∀s, a, t. g s = ValueState a t ∧ nav t =⇒ P t

We can prove that the block starting from write_spsr cr establishes P′psr as well,
because the rest of the computations of this block does not modify this property.
Then we can prove that the free variable cr takes the value s1.psrs(CPSR), and m

B.6. IMPLEMENTATION AND EVALUATION 81

seqTS1
P−establ(f) INV〈f ′, P,>〉

P−establ(f �=nav f
′)

seqTS2
P−establ(f)

P−establ(f ′ �=nav f)

parTS1
P−establ(f) INV〈f ′, P,>〉

P−establ(f |||nav f
′)

parTS2
P−establ(f)

P−establ(f ′ |||nav f)

absS
∀y.P−establ(f y)
P−establ(λy.f)

Figure B.7: Privileged constraints inference rules

is bound to svc. Thus, sn.psrs(SPSR_svc) = s1.psrs(CPSR) holds for the compu-
tation block from write_spsr cr. As this block is a Ppsr-establisher, we conclude
that the computations before write_spsr do not influence the established property
and Ppsr is satisfied by take_svc_exception.

Figure B.7 shows the P-establisher inference rules. These rules along with the
inference rules of Figure B.5 are used to prove the privileged constraints. The rule
seqTS1 states that if the monadic computation f is a P-establisher and P is an
invariant of f ′, then the sequential composition f �=nav f

′ is P-establisher. The
rule seqTS2 describes that if the monadic computation f is a P-establisher, then
f ′ �=nav f is also P-establisher. Similar rules are defined for the |||nav operator.

Theorem 11. All assertions P-establ(f) derivable according to the inference
rules in Figure B.7 are valid.

B.6 Implementation and Evaluation

Implementation We use the HOL4 theorem prover to verify our properties. The
central assets of our work are available from [139]. We have developed a tool, ARM-
prover, to automate the verification process based on the proof systems in Fig. B.4
and B.5. To avoid having to explore the instruction set more than once the prover
actually combines the theorems 4, 5 and 6 into one.

The proof systems do not provide rules for case and let statements. These
are easily handled using standard HOL4 simplification. Other monadic expressions
are refined using the inference rules in Fig. B.4 and B.5 in a top down fashion.
The proofs for “write” primitives as well as register and memory accesses in user
mode are done manually, but the tool can handle some of the “read” computations
directly, allowing to prove a large share of the workload automatically.

A particular difficulty concerns binding. When a binding expression f1 �=nav
f2 is decomposed the return value of f1 becomes unbound in f2. To handle this we
simplify computations by embedding more information before calling the prover,
using some auxiliary lemmas. For example, the following formula states that cpsr

82
PAPER B. MACHINE ASSISTED PROOF OF ARMV7 INSTRUCTION

LEVEL ISOLATION PROPERTIES

in computation H following read_cpsr can be substituted by the CPSR in prestate
s with mode m.

(mode s = m) ⇒ (read_cpsr �=nav (λcpsr. H(cpsr))) s =
(read_cpsr �=nav (λcpsr. H(s.psrs(CPSR) with M:=m))) s

For the case that an instruction leads to a privileged mode, the last execution
phase of the instruction, called switching phase, is in privileged mode. However,
the privileged constraints first have to be established over the course of several steps
and do not hold from the beginning. Since we can not use the ARM-prover tool
to prove them automatically, we prove the privileged constraints for the switching
phase manually.

Evaluation The Cambridge model of ARM is 9 kLOC. In addition to the ARM
model, we rely mainly on the relatively small inference kernel of the HOL4 theorem
prover, our MMU extension (about 180 lines of definitions) and the formulation of
the discussed properties (about 290 lines). The entire proof script has a length of
about 13 kLOC and needs roughly an hour to run on an Intel(R) Xeon(R) X3470
core. We invested about one person year of effort into this work.

B.7 Related Work

Several recent works address kernel verification. Some target information flow prop-
erties [25, 90, 125, 142], based on variants of noninterference [77]. Other work es-
tablishes a refinement relation between kernel code, in some representation, and an
abstract specification. For the seL4 microkernel this was first performed for its C
implementation [105] and is now extended to binary level [156]. As is the case with
most refinement/simulation-based approaches, this work does not address informa-
tion flow. In recent work on seL4 verification, Murray et al. [124, 125] present an
unwinding-style characterization of intransitive noninterference. They introduce a
proof calculus on nondeterministic state monads that is similar to that of this work.
Their assertions are more general, however our proof rules cover several monadic
operators and statements. In addition, we introduce rules to prove properties about
executions that relate the final state of a computation to its initial state.

Alkassar et al. [5] describe the emulation of a simplified MIPS machine in C.
The emulator allows the use of VCC to automatically check that every reachable
state of a guest on a hypervisor is also reachable when the guest is running on a
completely isolated machine. The C emulator has been adopted to verify parts of
the hypervisor that mix C and assembly [134], and allows unknown user processes
to be considered. Information flow properties are not considered, however.

Wilding et al. [180] formally proved exfiltration, infiltration and mediation the-
orems for the partitioning system of the AAMP7G microprocessor in ACL2. The
hardware architecture differs from the one of ARM in several points, such as that

B.8. CONCLUSION 83

there are no user-visible registers or that AAMP7G itself functions as a separa-
tion kernel. Proofs were performed using abstraction/refinement techniques and
address kernel microcode. The verification led to a MILS certificate on Evaluation
Assurance Level 7.

The ARMor system [186] sandboxes applications on ARM and provides formal
verification of memory safety and control flow integrity, using the Cambridge HOL4
ARM model. Its software fault isolation does not use hardware features such as
an MMU, but uses instead rewriting and subsequent verification of the compiled
programs. This implies performance overhead, limitations on supported programs
and verification processes in the extend of hours for each program. Furthermore,
ARMor only establishes memory write protection; neither confidentiality nor pro-
tection of privileged registers is addressed.

Most works on kernel verification address handler code only and do not consider
user mode execution. In a few cases [5, 146] user mode execution is considered, but
without justification in terms of concrete processor access modalities. The main
contribution of our work, over and beyond the above works, is that we attempt to
justify the critical assumptions on processor level information flow in user mode
execution through analysis at the level of a formalized ISA model.

Heitmeyer et al. [90] introduce non-exfiltration, non-infiltration, kernel integrity
and data/control separation properties to verify a separation kernel. Since we
focus on user-mode execution, those properties apply only partially here. Our non-
infiltration property is the same as in [90], but the non-exfiltration property in our
work covers both their kernel integrity and non-exfiltration.

B.8 Conclusion

We introduced and proved several security properties including a non-exfiltration,
a non-infiltration and a safe switching property for user mode executions on the
ARM architecture, using the Cambridge HOL4 ISA model. A logical framework
based on (relational) Hoare logic has been developed for the analysis, supported
by a tool, ARM-prover, which helps automate the proof. The ARM-prover can be
used to prove general invariants about the ARM model (i.e., statements that need
to hold at each execution point). We are planning to continue the development of
the ARM-prover to improve automation further and cater for more general proof
tasks.

Our results concerning register contents are generally valid and with small adap-
tations applicable in isolation verification of other hypervisors, separation kernels,
and operating systems. Statements on memory safety depend on our specific setup.
A reformulation that is independent of concrete MMU configurations should require
a minor effort and is planned for future work.

The HOL4 model of ARM supports a partial coprocessor model. We made
the assumption that the access to coprocessors via dedicated instructions is always
denied in user mode. To have a more precise analysis and cover all possible side

84
PAPER B. MACHINE ASSISTED PROOF OF ARMV7 INSTRUCTION

LEVEL ISOLATION PROPERTIES

channels, a more comprehensive model of the available coprocessors involving all
registers, the coprocessors’ behavior and an acceptance/rejection-mechanism for
register reads and writes that follows the specification is required. During context
switches kernels need to mediate coprocessor registers user-accessible by dedicated
coprocessor instructions. All other coprocessor registers are guaranteed to be non-
modifiable in user mode. However, kernels must not introduce information flow
from non-active processes to the coprocessor registers that are part of the present
ARM model, since those might influence user mode execution.

Instructions that are underspecified (“unpredictable”) in the ARM Architecture
Reference Manual (ARMARM) are problematic. The ARM specification states
that “unpredictable behavior must not perform any function that cannot be per-
formed at the current or lower level of privilege using instructions that are not
unpredictable”[13]. In one interpretation of this statement, theorems 5, 6 and 7
are valid on unpredictable instructions as well. In general, this is not true for non-
infiltration. Yet, ARMARM requires further that “unpredictable behavior must not
represent security holes” [12]. This formulation is very vague. However, we make
the assumption that non-infiltration is preserved. In fact, we argue that the secu-
rity properties we have presented provide manufacturers of ARM processors with
a precise description of secure behavior for unpredictable cases.

C
Paper C

Automatic Derivation of Platform
Noninterference Properties

Oliver Schwarz and Mads Dam

Abstract

For the verification of system software, information flow properties of the
instruction set architecture (ISA) are essential. They show how information
propagates through the processor, including sometimes opaque control regis-
ters. Thus, they can be used to guarantee that user processes cannot infer
the state of privileged system components, such as secure partitions. Formal
ISA models - for example for the HOL4 theorem prover - have been available
for a number of years. However, little work has been published on the formal
analysis of these models. In this paper, we present a general framework for
proving information flow properties of a number of ISAs automatically, for
example for ARM. The analysis is represented in HOL4 using a direct seman-
tical embedding of noninterference, and does not use an explicit type system,
in order to (i) minimize the trusted computing base, and to (ii) support a large
degree of context-sensitivity, which is needed for the analysis. The framework
determines automatically which system components are accessible at a given
privilege level, guaranteeing both soundness and accuracy.

C.1 Introduction

From a security perspective, isolation of processes on lower privilege levels is one
of the main tasks of system software. More and more vulnerabilities discovered in
operating systems and hypervisors demonstrate that assurance of this isolation is
far from given. That is why an increasing effort has been made to formally verify
system software, with noticeable progress in recent years [90, 105, 124, 53, 5]. How-
ever, system software depends on hardware support to guarantee isolation. Usually,
this involves at least the ability to execute code on different privilege levels and with

85

86
PAPER C. AUTOMATIC DERIVATION OF PLATFORM

NONINTERFERENCE PROPERTIES

basic memory protection. Kernels need to control access to their own code and data
and to critical software, both in memory and as content of registers or other compo-
nents. Moreover, they need to control the management of the access control itself.
For the correct configuration of hardware, it is essential to understand how and
under which circumstances information flows through the system. Hardware must
comply to a contract that kernels can rely on. In practice, however, information
flows can be indirect and hidden. For example, some processors automatically set
control flags on context switches that can later be used by unprivileged code to see
if neighbouring processes have been running or to establish a covert channel [161].
Such attacks can be addressed by the kernel, but to that end, kernel developers
need machinery to identify the exact components available to unprivileged code,
and specifications often fail to provide this information in a concise form. When
analysing information flow, it is insufficient to focus on direct register and memory
access. Confidentiality, in particular, can be broken in more subtle ways. Even if
direct reads from a control flag are prevented by hardware, the flag can be set as an
unintended side effect of an action by one process and later influence the behaviour
of another process, allowing the latter to learn something about the control flow of
the former.

In this paper we present a framework to automate information flow analysis
of instruction set architectures (ISAs) and their operational semantics inside the
interactive theorem prover HOL4 [95]. We employ the framework on ISA models
developed by Fox et al. [68] and verify noninterference, that is, that secret (high)
components can not influence public (low) components. Besides an ISA model,
the input consists of desired conditions (such as a specific privilege mode) and a
candidate labelling, specifying which system components are already to be consid-
ered as low (such as the program counter) and, implicitly, which components might
possibly be high. The approach then iteratively refines the candidate labelling
by downgrading new components from high to low until a proper noninterference
labelling is obtained, reminiscent of [96]. The iteration may fail for decidability
reasons. However, on successful termination, both soundness and accuracy are
guaranteed unless a warning is given indicating that only an approximate, sound,
but not necessarily accurate solution has been found.

What makes accurate ISA information flow analysis challenging is not only the
size and complexity of modern instruction sets, but also particularities in semantics
and representation of their models. For example, arithmetic operations (e.g., with
bitmasks) can cancel out some information flows and data structures can contain a
mix of high and low information. Modification of the models to suit the analysis is
error prone and requires manual effort. Automatic, and provably correct, prepro-
cessing of the specifications could overcome some, but not all, of those difficulties,
but then the added value of standard approaches such as type systems over a direct
implementation becomes questionable. By directly embedding noninterference into
HOL4, we can make use of machinery to address the discussed difficulties and at
the same time we are able to minimize the trusted computing base (TCB), since
the models, the preprocessing and the actual reasoning are all implemented/repre-

C.2. PROCESSOR MODELS 87

sented in HOL4. Previous work on HOL4 noninterference proofs for ISA models
[102] had to rely on some manual proofs, since its compositional approach suffered
from the lack of sufficient context in some cases (e.g., the secrecy level of a register
access in one step can depend on location lookups in earlier steps). In contrast, the
approach suggested in the present paper analyses ISAs one instruction at a time,
allowing for accuracy and automation at the same time. However, since many in-
structions involve a number of subroutines, this instruction-wide context introduces
complexity challenges. We address those by unfolding definitions of transitions in
such a way that their effects can be extracted in an efficient manner.

Our analysis is divided into three steps: (i) rewriting to unfold and simplify
instruction definitions, (ii) the actual proof attempt, and (iii) automated counter-
example-guided refinement of the labelling in cases where the proof fails. The
framework can with minor adaptations be applied to arbitrary HOL4 ISA models.
We present benchmarks for ARMv7 and MIPS. With a suitable labelling identified,
the median verification time for one ARMv7 instruction is about 40 seconds. For
MIPS, the complete analysis took slightly more than one hour and made configura-
tion dependencies explicit that we had not been aware of before. We report on the
following contributions: (i) a backward proof tactic to automatically verify nonin-
terference of HOL4 state transition functions, as used in operational ISA semantics;
(ii) the automated identification of sound and accurate labellings; (iii) benchmarks
for the ISAs of ARMv7-A and MIPS, based on an SML-implementation of the
approach.

C.2 Processor Models

C.2.1 ISA Models

In the recent years, Fox et al. have created ISA models for x86-64, MIPS, several
versions of ARM and other architectures [70, 68]. The instruction sets are modelled
based on official documentations and on the abstraction level of the programmer’s
view, thus being agnostic to internals like pipelines. The newest models are pro-
duced in the domain-specific language L3 [68] and can be exported to the interactive
theorem prover HOL4. Our analysis targets those purely-functional HOL4 models
for single-core systems. An ISA is formalized as a state transition system, with
the machine state represented as record structure (on memory, registers, opera-
tional modes, control flags, etc.) and the operational semantics as functions (or
transitions) on such states. The top-level transition NEXT processes the CPU by
one instruction. While L3 also supports export to HOL4 definitions in monadic
style, we focus our work on the standard functional representation based on let-
expressions. States resulting from an unpredictable (i.e., underspecified) operation
are tagged with an exception marker (see Section C.7 for a discussion).

88
PAPER C. AUTOMATIC DERIVATION OF PLATFORM

NONINTERFERENCE PROPERTIES

C.2.2 Notation
A state s = {C1 := c1, C2 := c2, . . .} is a record, where the fields C1, C2, . . . depend
on the concrete ISA. As a naming convention, we use Ri for fields that are records
themselves (such as control registers) and Fi for fields of a function/mapping type
(such as general purpose register sets). The components of a state are all its fields
and subfields (in arbitrary depth), as well as the single entries of the state’s map-
pings. The value of field C in s is derived by s.C. An update of field C in s with
value c is represented as s[C := c]. Similarly, function updates of F in location
l by value v are written as F [l := v]. Conditionals and other case distinctions
are written as C(b, a1, a2, . . . , ak), with b being the selector and a1, a2, . . . , ak the
alternatives. A transition Φ transforms a pre-state s into a return-value v and a
post-state s′, formally Φs = (v, s′). Usually, a transition contains subtransitions
Φ1,Φ2, . . . ,Φn, composed of some structure φ of abstractions, function applica-
tions, case distinctions, sequential compositions and other semantic operators, so
that Φs = φ(Φ1,Φ2, . . . ,Φn)s. Transition definitions can be recursively unfolded:
φ(Φ1, . . . ,Φn)s = φ(φ1(Φ1,1, . . . ,Φ1,m), . . . ,Φn)s = . . . = ~φs, where ~φ is the com-
pletely unfolded transition, called the evaluated form. For the transitions of the
considered instruction sets, unfolding always terminates. Note that ’=’ is used here
for the equivalence of states, transitions or values, not for the syntactical equiva-
lence of terms. Below we give the definition of the ARMv7-NOOP-instruction and
its evaluated (and simplified) form:

dfn′NoOperation s
= BranchTo(s.REG RName_PC + C(FST (ThisInstrLength () s) = 16, 2, 4)) s
= ((), s[REG := s.REG[RName_PC := s.REG RName_PC + C(s.Encoding = Thumb, 2, 4)]])

NOOP branches to the current program counter (s.REG RName_PC) plus some
offset. The offset depends on the current instruction length, which in turn de-
pends on the current encoding. Here, FST selects the actual return value of the
ThisInstrLength transition, ignoring its unchanged post-state.

C.2.3 Memory Management
For simplicity, our analysis focuses on core-internal flows (e.g., between registers)
and abstracts away from the concrete behaviour of the memory subsystem (in-
cluding address translation, memory protection, caching, peripherals, buses, etc.).
Throughout the course of the - otherwise core internal - analysis, a contract on the
memory subsystem is assumed that then allows the reasoning on global properties.
The core can communicate with the memory subsystem through an interface, but
never directly accesses its internal state. The interface expects inputs like the type
of access (read, fetch, write, . . .), the virtual address, the privilege state of the
processor, and other parameters. It updates the state of the memory subsystem
and returns a success or error message along with possibly read data. While be-
ing agnostic about the concrete behaviour of the memory subsystems, we assume
that there is a secure memory configuration Pm, restricting unprivileged accesses,

C.3. ISA INFORMATION FLOW ANALYSIS 89

e.g., through page table settings. Furthermore, we assume the existence of a low-
equivalence relation Rm on pairs of memory subsystems. Typically, two memories
inRm would agree on memory content accessible in an unprivileged processor mode.
When in unprivileged processor mode and starting from secure memory configura-
tions, transitions on memory subsystems are assumed to maintain both the memory
relation and secure configurations. Consider an update of state s assigning the sum
of the values of register y and the memory at location a to register x, slightly
simplified: s[x := s.y + read(a, s.mem)]. Since read - as a function of the memory
interface - satisfies the constraints above, for two pre-states s1 and s2 satisfying
Pms1.mem∧Pms2.mem∧Rm(s1.mem, s2.mem), we can infer that read will return the
same value or error. Overall, with preconditions met, two states that agree on x, y,
and the low parts of the memory before the computation, will also agree after the
computation. That is, as long as read fulfils the contract, the analysis of the core
(and in the end the global analysis) does not need to be concerned with details of
the memory subsystem.

C.3 ISA Information Flow Analysis

C.3.1 Objectives
Consider an ISA model with an initial specification determining some preconditions
(e.g., on the privilege mode) and some system components, typically only the pro-
gram counter, that are to be regarded as observable (or low) by some given actor.
If there is information flow from some other component (say, a control register) to
some of these initially-low components, this other component must be regarded as
observable too for noninterference to hold. The objective of the analysis is to iden-
tify all these other components that are observable due to their direct or indirect
influence on the given low components.

A labelling L assigns to each atomic component (component without subcom-
ponents) a label, high or low. 1 It is sound if it does not mark any component
as high that can influence, and hence pass information to, a component marked as
low. In the refinement order the labelling L′ refines L (L v L′), if low components
in L are low also in L′. The labelling L is accurate, if L is minimal in the refinement
order such that L is sound and refines the initial labelling.

Determining whether a labelling is accurate is generally undecidable. Suppose
C(P (x), s.C, 0) is assigned to a low component. Deciding whether C needs to
be deemed low requires deciding whether there is some valid instantiation of x,
such that P (x) holds, which might not be decidable. However, it appears that in
many cases, including those considered here, accurate labellings are feasible. In
our approach we check the necessity of a label refinement by identifying an actual
flow from the witness component to some low component. We cannot guarantee
that this check always succeeds, for undecidability reasons. If it does not, the tool

1We have not found a use for ISA security lattices of finer granularity.

90
PAPER C. AUTOMATIC DERIVATION OF PLATFORM

NONINTERFERENCE PROPERTIES

still tries to refine the low equivalence and a warning that the final relation may
no longer be accurate is generated. For the considered case studies the tool always
finds an accurate labelling, which is then by construction unique.

Labellings correspond to low-equivalence relations on pairs of states, relations
that agree on all low components including the memory relation Rm and leave
all other components unrestricted. Noninterference holds if the only components
affecting the state or any return value are themselves low. Formally, assume the
two pre-states s1 and s2 agree on the low-labelled components, expressed by a
low-equivalence relation R on those states. Then, for a given transition Φ and
preconditions P, noninterference N (R,P,Φ) holds if after Φ the post-states are
again in R and the resulting return values are equal:

N (R,P,Φ) := ∀s1, s2, v1, v2, t1, t2 :
((v1, t1) = Φs1) ∧ ((v2, t2) = Φs2) ∧R(s1, s2) ∧ Ps1 ∧ Ps2
⇒ R(t1, t2) ∧ (v1 = v2)

Preconditions on the starting states can include architecture properties (version
number, present extensions, etc.), a secure memory configuration and a specifica-
tion of the privilege level. In our framework the user defines relevant preconditions
and an initial low-equivalence relation R0 for an input ISA. The goal of the analysis
is to statically and automatically find an accurate refinement of R0 so that nonin-
terference holds for Φ = NEXT. The analysis yields the final low-equivalence relation,
the corresponding HOL4 noninterference theorem demonstrating the soundness of
the relation, and a notification of whether the analysis succeeded to establish a
guarantee on the relation’s accuracy. The proof search is not guaranteed to termi-
nate successfully, but we have found it robust enough to reliably produce accurate
output on ISA models of considerable complexity (see Section C.5). We do not
treat timing and probabilistic channels and leave safety-properties about unmodi-
fied components for future work.

C.3.2 Challenges
Our goal is to perform the analysis from an initial, user-supplied labelling on a
standard ISA with minimal user interaction. In particular, we wish to avoid user
supplied label annotations and error-prone manual rewrites of the ISA specification,
that a type-based approach might depend on to eliminate some of the complica-
tions specific to ISA models. Instead, we address those challenges with symbolic
evaluation and the application of simplification theorems. Since both are available
in HOL4, and so are the models, we verify noninterference in HOL4 directly. This
also frees us from external preprocessing and soundness proofs, thus minimizing the
TCB. Below, we give examples for common challenges.

Representation The functional models that we use represent register sets as
mappings. Static type systems for (purely) functional languages [89, 137] need to

C.4. APPROACH 91

assign secrecy levels uniformly to all image values, even if a mapping has both public
and secret entries. Adaptations of representation and type system might allow
to type more accurately for lookups on constant locations. But common lookup
patterns on locations represented by variables or complex terms would require a
preprocessing that propagates constraints throughout large expressions.

Semantics Unprivileged ARMv7 processes can access the current state of the
control register CPSR. The ISA specifies to (i) map all subcomponents of the control
register to a 32-bit word and (ii) apply the resulting word to a bitmask. As a result,
the returned value does actually not depend on all subcomponents of the CPSR,
even though all of them were referred to in the first step. For accuracy, an actual
understanding of the arithmetics is required.

reg’PSR s.CPSR N Z C V Q IT
1-0

J re-
served

GE
3-0

IT
7-2

E A I F T M
4-0

&& 0xf8ff03df 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1

= N Z C V Q 0 0 re-
served

GE
3-0

0 E A I F 0 M
4-0

Figure C.1: Mapping an ARMv7 control register to a 32-bit word

Context-sensitivity Earlier work on ISA information flow [102] deals with ARM’s
complex operational semantics in a stepwise analysis, focusing on one subprocedure
at a time. This allows for a systematic solution, but comes with the risk of insuf-
ficient context. For example, when reading from a register, usually two steps are
involved: first, the concrete register identifier with respect to the current processor
mode is looked up; second, the actual reading is performed. Analysing the reading
operation in isolation is not accurate, since the lack of constraints on the register
identifier would require to deem all registers low. In order to include restrictions
from the context, [102] required a number of manual proofs. To avoid this, we anal-
yse entire instructions at a time, using HOL4’s machinery to propagate constraints.

C.4 Approach

We are not the first to study (semi-)automated hardware verification using theo-
rem proving. As [51] points out for hardware refinement proofs, a large share of
the proof obligations can be discharged by repeated unfolding (rewriting) of defi-
nitions, case splits and basic simplification. While easy to automate, these steps
lead easily to an increase in complexity. The challenge, thus, is to find efficient
and effective ways of rewriting and to minimize case splits throughout the proof.
Our framework traverses the instruction set instruction by instruction, managing

92
PAPER C. AUTOMATIC DERIVATION OF PLATFORM

NONINTERFERENCE PROPERTIES

a task queue. For each instruction, three steps are performed: (i) rewriting/un-
folding to obtain evaluated forms, (ii) attempting to prove noninterference for the
instruction, (iii) on failure, using the identified counterexample to refine the low-
equivalence relation. This section details those steps. After each refinement, the
instructions verified so far are re-enqueued. The steps are repeated until the queue
is empty and each instruction has successfully been verified with the most recent
low-equivalence relation. Finally, noninterference is shown for NEXT, employing all
instruction lemmas, as well as rewrite theorems for the fetch and decode transi-
tions. Soundness is inherited from HOL4’s machinery. Accuracy is tracked by the
counterexample verification in step (iii).

C.4.1 Rewriting towards an Evaluated Form
The evaluated form of instructions is obtained through symbolic evaluation. Start-
ing from the definition of a given transition, (i) let-expressions are eliminated,
(ii) parameters of subtransitions are evaluated (in a call-by-value manner), (iii) the
subtransitions are recursively unfolded by replacing them with their respective eval-
uated forms, (iv) the result is normalized, and (v) in a few cases substituted with
an abstraction. Normalization and abstraction are described below. For the first
three steps we reuse evaluation machinery from [68] and extend it, mainly to add
support for automated subtransition identification and recursion. Preconditions,
for example on the privilege level, allow to reduce rewriting time and the size of the
result. Since they can become invalid during instruction execution, they have to be
re-evaluated for each recursive invocation. Throughout the whole rewriting process,
various simplifications are applied, for example on nested conditional expressions,
case distinctions, words, and pairs, as well as conditional lifting, which we motivate
below. For soundness, all steps produce equivalence theorems.

C.4.1.1 Step Library

The ISA models are provided together with so-called step libraries, specific to ev-
ery architecture [68]. They include a database of pre-computed rewrite theorems,
connecting transitions to their evaluated forms. Those theorems are computed in
an automated manner, but are guided manually. Our tool is able to employ them
as hints, as long as their preconditions are not too restrictive for the general secu-
rity analysis. Otherwise, we compute the evaluated forms autonomously. Besides
instruction specific theorems, we use some datatype specific theorems and general
machinery from [68].

C.4.1.2 Conditional Lifting

Throughout the rewriting process, the evaluated forms of two sequential subtransi-
tions might be composed by passing the result of the first transition into the formal
parameters of the second. This often leads to terms like γ(s) := C(b, s[C1 :=

C.4. APPROACH 93

c1], s[C2 := c2]).C3. However, in order to derive equality properties in the noninter-
ference proof (e.g., [s1.C3 = s2.C3] ` γ(s1) = γ(s2)) or to check validity of premises
(e.g., γ(s) = 0), conditional lifting is applied:

γ(s) = C(b, s[C1 := c1], s[C2 := c2]).C3 lifting
= C(b, (s[C1 := c1]).C3, (s[C2 := c2]).C3) simplifying
= C(b, s.C3, s.C3) merging
= s.C3

To mitigate exponential blow-up, conditional lifting should only be applied where
needed. For record field accesses we do this in a top-down manner, ignoring fields
outside the current focus. For example, in γ(s) there is no need to process c1 at
all, even in cases where c1 itself is a conditional expression.

C.4.1.3 Normalization

With record field accesses being so critical for performance, both rewriting and
proof benefit from (intermediate) evaluated forms being normalized. A state term
is normalized if it only consists of record field updates to a state variable s, that is,
it has the form

s[C1 := c1, . . . , Cn := cn, R1 := s.R1[C1,1 := c1,1, . . . , C1,k := c1,k], . . .].

For a state term τ updating state variable s in the fields C1, . . . , Cn with the
values c1, . . . , cn, we verify the normalized form in a forward construction (omitting
subcomponents here and below for readability; they are treated analogously):

τ = τ [C1 := τ.C1, . . . , Cn := τ.Cn] (C.1)
= s[C1 := τ.C1, . . . , Cn := τ.Cn] (C.2)
= s[C1 := c1, . . . , Cn := cn] (C.3)

We significantly improve proof performance with the abstraction of complex expres-
sions by showing (C.1) independently of the concrete τ and (C.2) independently of
the values of the updates, both those inside τ and those applied to τ . We obtain
c1, . . . , cn by similar means to those shown in the lifting example of γ above.

In [68], both conditional lifting and normalization are based on the precomputa-
tion of datatype specific lifting and unlifting lemmas for updates. Our procedures
are largely independent of record types and update patterns. However, because of
the performance benefits of [68], we plan to generalize/automate their normalization
machinery or combine both approaches in future work.

C.4.1.4 Abstracted Transitions

Even with normalization, the specification of a transition grows quickly when un-
folding complex subtransitions, especially for loops. We therefore choose to abstract

94
PAPER C. AUTOMATIC DERIVATION OF PLATFORM

NONINTERFERENCE PROPERTIES

selected subtransitions. To this end, we substitute their evaluated forms with terms
that make potential flows explicit, but abstract away from concrete specifications.
Let the normalized form of transition Φ be ~φs = (β(s), s[C1 := γ1(s), . . . , Cn :=
γn(s)]). The values of all primitive state updates γ1(s), . . . , γn(s) on s and the
return value β(s) of Φ are substituted with new function constants f0, f1, . . . , fn

applied to relevant state components actually accessed instead of to the entire state:

Φs = ~φs = (f0(s.C0,1, . . . , s.C0,k0),
s[C1 := f1(s.C1,1, . . . , s.C1,k1), . . . , Cn := fn(s.Cn,1, . . . , s.Cn,kn

)])

Except for situations that suggest the need for a refinement of the low-equivalence
relation, f0, . . . , fn do not need to be unfolded in the further processing of Φ. Low-
equivalence of the post-states can be inferred trivially:

[(s1.C1,1 = s2.C1,1) ∧ . . .] ` f1(s1.C1,1, s1.C1,2, . . .) = f1(s2.C1,1, s2.C1,2, . . .))

To avoid accuracy losses in cases where ~φ mentions components that neither return
value nor low components actually depend on, we unfold abstractions as last resort
before declaring a noninterference proof as failed.

C.4.2 Backward Proof Strategy
Having computed the evaluated form for an instruction Φ, we proceed with the
verification attempt of N (R,P,Φ) through a backward proof, for the user-provided
preconditions P and the current low-equivalence relation R. The sound backward
proof employs a combination of the following steps:

• Conditional Lifting: Especially in order to resolve record field accesses
on complex state expressions, we apply conditional lifting in various scopes
(record accesses, operators, operands) and degrees of aggressiveness.

• Equality of Subexpressions: Let F be a functional component and n and
m be two variables ranging over {0, 1, 2}. The equality

C(n = 2, 0, s1.F (C(n, a, b, c))) + s1.F (C(m, a, b, a))
= C(n = 2, 0, s2.F (C(n, a, b, c))) + s2.F (C(m, a, b, a))

can be established from the premises s1.F (a) = s2.F (a) and s1.F (b) = s2.F (b)
by lifting the distinctions on n and m outwards or - alternatively - by case
splitting on n and m. Either way, equality should be established for each
summand separately, in order to limit the number of considered cases to
3 + 3 instead of 3 × 3. Doing so in explicit subgoals also helps in discarding
unreachable cases, such as the one where c would be chosen. We identify
relevant expressions via pre-defined and user-defined patterns.

• Memory Reasoning: Axioms and derived theorems on noninterference
properties of the memory subsystem and maintained invariants are applied.

C.4. APPROACH 95

• Simplifications: Throughout the whole proof process, various simplifica-
tions take effect, for example on record field updates.

• Case Splitting: Usually the mentioned steps are sufficient. For a few harder
instructions or if the low-equivalence relation requires refinement, we apply
case splits, following the branching structure closely.

• Evaluation: After the case splitting, a number of more aggressive simplifica-
tions, evaluations, and automatic proof tactics are used to unfold remaining
constants and to reason about words, bit operations, unusual forms of record
accesses, and other corner cases.

C.4.3 Relation Refinement
Throughout the analysis, refinement of the low-equivalence relation is required
whenever noninterference does not hold for the instruction currently considered.
Counterexamples to noninterference enable the identification of new components
to be downgraded to low. When managed carefully, failed backward proofs of non-
interference allow to extract such counterexamples. However, backward proofs are
not complete. Unsatisfiable subgoals might be introduced despite the goal being
verifiable. For accuracy, we thus verify the necessity of downgrading a component C
before the actual refinement of the relation. To that end, it is sufficient to identify
two witness states that fulfil the preconditions P, agree on all components except
C, and lead to a violation of noninterference in respect to the analysed instruction
Φ and the current (yet to be refined) relation R. We refer to the existence of such
witnesses as N :

N (R,P,Φ, C) := ∃s, x1, x2, v1, v2, t1, t2 :
((v1, t1) = Φ(s[C := x1])) ∧ ((v2, t2) = Φ(s[C := x2]))
∧P(s[C := x1]) ∧ P(s[C := x2]) ∧ (¬R(t1, t2) ∨ (v1 6= v2))

If such witnesses exist, any sound relation R′ refining R will have to contain
some restriction on C. With the chosen granularity, that translates to ∀s1, s2 :
R′(s1, s2)⇒ (R(s1, s2)∧s1.C = s2.C). We proceed with the weakest such relation,
i.e., R′(s1, s2) := (R(s1, s2) ∧ s1.C = s2.C). As discussed in Section C.3.1, it can
be undecidable whether the current relation needs refinement. However, for the
models that we analyzed, our framework was always able to verify the existence
of suitable witnesses. The identification and verification of new low components
consists of three steps:

1. Identification of a new low component. We transform subgoal G on top
of the goal stack into a subgoal false with premises extended by ¬G. In this
updated list of premises for the pre-states s1 and s2, we identify a premise on
s1 which would solve the transformed subgoal by contradiction when assumed
for s2 as well. Intuitively, we suspect that noninterference is prevented by the

96
PAPER C. AUTOMATIC DERIVATION OF PLATFORM

NONINTERFERENCE PROPERTIES

disagreement on components in the identified premise. We arbitrarily pick
one such component as candidate for downgrading.

2. Existential verification of the scenario. To ensure that the extended
premises alone are not already in contradiction, we prove the existence of a
scenario in which all of them hold. We furthermore introduce the additional
premise that the two pre-states disagree on the chosen candidate, but agree
on all other components. An instantiation satisfying this existential state-
ment is a promising suspect for the set of witnesses for N . The existential
proof in HOL4 refines existentially quantified variables with patterns, e.g.,
symbolic states for state variables, bit vectors for words, and mappings with
abstract updates for function variables (allowing to reduce ∃f : P (f(n)) to
∃x : P (x)). If possible, existential goals are split. Further simplifications
include HOL4 tactics particular to existential reasoning, the application of
type-specific existential inequality theorems, and simplifications on word and
bit operations. If after those steps and automatic reasoning existential sub-
goals remain, the tool attempts to finish the proof with different combinations
of standard values for the remaining existentially quantified variables.

3. Witness verification. We use the anonymous witnesses of the existential
statement in the previous step as witnesses forN . After initialisation, the core
parts of the proof strategy from the failed noninterference proof are repeated
until the violation of noninterference has been demonstrated.

In order to keep the analysis focused, it is important to handle case splits before
entering the refinement stage. At the same time, persistent case splits can be
expensive on a non-provable goal. Therefore, we implemented a depth first proof
tactical, which introduces hardly any performance overhead on successful proofs,
but fails early in cases where the proof strategy does not succeed. Furthermore,
whenever case splits become necessary in the proof attempt, the framework strives
to diverge early, prioritizing case splits on state components.

C.5 Evaluation

We applied our framework to analyse information flows on ARMv7-A and MIPS-III
(64-bit RS4000). For ARM, we focus on user mode execution without security or
virtualization extension. Since unprivileged ARM code is able to switch between
several instructions sets (ARM, Thumb, Thumb2, ThumbEE), the information flow
analysis has to be performed for all of them. For MIPS, we consider all three
privilege modes (user, kernel, and supervisor). The single-core model does not
include floating point operations or memory management instructions.

Table C.1 shows the initial and accurate final low-equivalence relations for the
two ISAs with different configurations. All relations refine the memory relation.
The final relation column only lists components not already restricted by the cor-
responding initial relations. For simplicity, the initial relation for MIPS restricts

C.5. EVALUATION 97

ISA mode initial relation final relation
ARMv7-A user mode program counter user registers; control register CPSR (all

flags); floating point registers of FP.REG and
FP.FSPCR; TEEHBR register (coprocessor 14);
Encoding ghost component; system control
register SCTLR (coprocessor 15, flags: EE, TE,
V, A, U, DZ)

MIPS-III user or kernel
or supervisor
mode

program counter;
BranchTo; BranchDelay;
CP0.Count; exception
marker; CP0.Status.KSU;
CP0.Status.EXL;
CP0.Status.ERL

all modelled system components

MIPS-III restricted user
mode

general purpose register set; LLbit;
lo; hi; CP0.Config.BE; CP0.Status.RE;
CP0.Status.BEV; exceptionSignalled

Table C.1: Identified flows (model components might deviate from physical sys-
tems)

ISA rewrite instr. NEXT total
ARMv7 29,829 46,146 2,171 78,146 (21 h, 42 min)
MIPS (1) 537 1,790 1,594 3,921 (1 h, 5 min)
MIPS (2) 537 1,216 562 2,315 (38 min)

Table C.2: Proof performance (in seconds)

step min median mean max
rewrite 1 25 167 2,384
instr. (success) 1 15 96 3,605
instr. (fail) 3 26 72 1,544
refinement 7 50 89 1,326

Table C.3: Performance ARMv7 proof

three components accessed on the highest level of NEXT. The corresponding table
cell also lists components already restricted by the preconditions. Initially unaware
of the privilege management in MIPS, we were surprised that our tool first yielded
the same results for all MIPS processor modes and that even user processes can
read the entire state of system coprocessor CP0, which is responsible for privileged
operations such as the management of interrupts, exceptions, or contexts. To re-
strict user privileges, the CU0 status flag must be cleared (see last line of the table).
While ARMv7-processes in user mode can not read from banked registers of privi-
leged modes, they can infer the state of various control registers. Alignment control
register flags (CP15.SCTLR.A/U in ARMv7) are a good example for implicit flows in
CPUs. Depending on their values, an unaligned address will either be accessed as
is, forcibly aligned, or cause an alignment fault.

Table C.2 shows the time that rewriting, instruction proofs (including relation
refinement), and the composing proof for NEXT took on a single Xeonr X3470 core.
The first benchmark for MIPS refers to unrestricted user mode (with similar times
as for kernel and supervisor mode), the second one to restricted user mode. Even
though we borrowed a few data type theorems and some basic machinery from
the step library, we did not use instruction specific theorems for the MIPS verifi-

98
PAPER C. AUTOMATIC DERIVATION OF PLATFORM

NONINTERFERENCE PROPERTIES

cation. Both ISAs have around 130 modelled instructions, but with 9238 lines of
L3 compared to 2080 lines [68], the specifications of the ARMv7 instructions are
both larger and more complex. Consequently, we observed a remarkable difference
in performance. However, as Table C.3 shows, minimum, median, and mean pro-
cessing times (given in seconds) for the ARM instructions are actually moderate
throughout all steps (rewriting, successful and failed noninterference proofs, and
relation refinement). Merely a few complex outliers are responsible for the high
verification time of the ARM ISA. While we believe that optimizations and paral-
lelization could significantly improve performance, those outliers still demonstrate
the limits of analyzing entire instructions as a whole. Combining our approach with
compositional solutions such as [102] could overcome this remaining challenge. We
leave this for future work.

C.6 Related Work

While most work on processor verification focuses on functional correctness [36, 51,
167] and ignores information flow, we survey hardware noninterference, both for
special separation hardware and for general purpose hardware.

Noninterference Verification for Separation Hardware Wilding et al. [180]
verify noninterference for the partitioning system of the AAMP7G microprocessor.
The processor can be seen as a separation kernel in hardware, but lacks for example
user-visible registers. Security is first shown for an abstract model, which is later
refined to a more concrete model of the system, comprising about 3000 lines of
ACL2. The proof appears to be performed semi-automatically.

SAFE is a computer system with hardware operating on tagged data [22]. Non-
interference is first proven for a more abstract machine model and then transferred
to the concrete machine by refinement. The proof in Coq does not seem to involve
much automation.

Sinha et al. [163] verify confidentiality of x86 programs that use Intel’s Software
Guard Extensions (SGX) in order to execute critical code inside an SGX enclave,
a hardware-isolated execution environment. They formalize the extended ISA ax-
iomatically and model execution as interleaving between enclave and environment
actions. A type system then checks that the enclave does not contain insecure code
that leaks sensitive data to non-enclave memory. At the same time, accompany-
ing theorems guarantee some protection from the environment, in particular that
an adversary can not influence the enclave by any instruction other than a write
to input memory. However, [163] assumes that SGX management data structures
are not shared and that there are no register contents that survive an enclave exit
and are readable by the environment. Once L3/HOL4 models of x86 with SGX are
available, our machinery would allow to validate those assumptions in an automated
manner, even for a realistic x86 ISA model. Such a verification would demonstrate

C.6. RELATED WORK 99

that instructions executed by the environment do not leak enclave data from shared
resources (like non-mediated registers) to components observable by the adversary.

Noninterference Verification for General Purpose Hardware Information
flow analysis below ISA level is discussed in [138] and [112]. Procter et al. [138]
present a functional hardware description language suitable for formal verification,
while the language in [112] can be typed with information flow labels to allow for
static verification of noninterference. Described hardware can be compiled into
VHDL and Verilog, respectively. Both papers demonstrate how their approaches
can be used to verify information flow properties of hardware executing both trusted
and untrusted code. We are not aware of the application of either approach to
information flow analysis of complex commodity processors such as ARM.

Tiwari et al. [173] augment gate level designs with information flow labels, al-
lowing simulators to statically verify information flow policies. Signals from outside
the TCB are modelled as unknown. Logical gates are automatically replaced with
label propagating gates that operate on both known and unknown values. The au-
thors employ the machinery to verify the security of a combination of a processor,
I/O, and a microkernel with a small TCB. It is unclear to us how the approach
would scale to commodity processors with a more complex TCB. From our own ex-
perience on ISA-level, the bottleneck is mainly constituted by the preprocessing to
obtain the model’s evaluated form and by the identification of a suitable labelling.
The actual verification is comparatively fast.

In earlier work [102] we described a HOL4 proof for the noninterference (and
other isolation properties) of a monadic ARMv7-model. A compositional approach
based on proof rules was used to support a semi-automatic analysis. However, due
to insufficient context, a number of transitions had to be verified manually or with
the support of context-enhancing proof rules. In the present work, we overcome
this issue by analysing entire instructions. Furthermore, our new analysis exhibits
the low-equivalence relation automatically, while [102] provides it as fixed input.
Finally, the framework described in the present paper is less dependent of the
analysed architecture.

Verification of Binaries Fox’s ARM model is also used to automatically verify
security properties of binary code. Balliu et al. [23] does this for noninterference,
Tan et al. [170] for safety-properties. Despite the seeming similarities, ISA analysis
and binary code analysis differ in many respects. While binary verification considers
concrete assembly instructions for (partly) known parameters, ISA analysis has to
consider all possible assembly instructions for all possible parameters. On the
other hand, it is sufficient for an ISA analysis to do this for each instruction in
isolation, while binary verification usually reasons on a sequence (or a tree of)
instructions. In effect, that makes the verification of a binary program an analysis
on imperative code. In contrast, ISA analysis (in our setting) is really concerned
with functional code, namely the operational semantics that describe the different

100
PAPER C. AUTOMATIC DERIVATION OF PLATFORM

NONINTERFERENCE PROPERTIES

steps of single instructions. In either case, to enable full automation, both analyses
have to include a broader context when the local context is not sufficient to verify
the desired property for a single step in isolation. As discussed above, we choose
an instruction-wide context from the beginning. Both [23] and [170] employ a
more local reasoning. In [170] a Hoare-style logic is used and context is provided
by selective synchronisation of pre- and postconditions between neighbouring code
blocks. In [23] a forward symbolic analysis carries the context in a path condition
when advancing from instruction to instruction. SMT solvers then allow to discard
symbolic states with non-satisfiable paths.

C.7 Discussion on Unpredictable Behaviour

ISA specifications usually target actors responsible for code production, like pro-
grammers or compiler developers. Consequently, they are often based on the as-
sumption that executed code will be composed from a set of well-defined instruc-
tions and sound conditions, so that no one relies on combinations of instructions,
parameters and configurations not fully covered by the specification. This allows
to keep instructions partly underspecified and leave room for optimizations on the
manufacturer’s side. However, this practice comes at the cost of actors who have
to trust the execution of unknown and potentially malicious third-party code. For
example, an OS has an interest in maintaining confidentiality between processes.
To that end, it has different means such as clearing visible registers on context
switches. But if the specification is incomplete on which registers actually are visi-
ble to an instruction with uncommon parameters, then there is no guarantee that
malicious code can not use underspecified instructions (i.e., instructions resulting in
unpredictable states) to learn about otherwise secret components. ARM attempts
to address this by specifying that “unpredictable behaviour must not perform any
function that cannot be performed at the current or lower level of privilege us-
ing instructions that are not unpredictable” [13]. While this might indeed remedy
integrity concerns, it is still problematic for noninterference. An underspecified in-
struction can be implemented by two different “safe” behaviours, with the choice of
the behaviour depending on an otherwise secret component. The models by Fox et
al. mark the post-states of underspecified operations as unpredictable by assigning
an exception marker to those states. In addition, newer versions still model a rea-
sonable behaviour for such cases, but there is no guarantee that the manufacturer
chooses the same behaviour. A physical implementation might include flows from
more components than the model does, or vice versa. A more conservative analy-
sis like ours takes state changes after model exceptions into account, but can still
miss flows simply not specified. To the rescue might come statements from proces-
sor designers like ARM that “unpredictable behaviour must not represent security
holes” [12]. In one interpretation, flows not occurring elsewhere can be excluded in
underspecified instructions. The need to rely on this interpretation can be reduced
(but not entirely removed) when the exception marker itself is considered low in the

C.8. CONCLUSIONS AND FUTURE WORK 101

initial labelling. As an example, consider an instruction that is well-defined when
system component C1 is 0, but underspecified when it is 1. The manufacturer might
choose different behaviours for both cases, thus possibly introducing a flow from
C1 to low components. At the same time, the creator of the formal model might
implement both cases in the same way, so that the analysis could miss the flow. But
with a low exception marker, C1 would also be labelled low, since it influences the
marker. However, an additional undocumented dependency on another component
C2 that only exists when C1 is 1 can still be missed.
To obtain security guarantees on their products, manufacturers should either
follow an already analyzed model when implementing underspecified behaviour
or adapt/create models according to their implementation choices and analyze
those new models with the machinery presented in this work or with similar
tools.

C.8 Conclusions and Future Work

We presented a sound and accurate approach to automatically and statically verify
noninterference on instruction set architectures, including the automatic identifica-
tion of a least restrictive low-equivalence relation. Besides applying our framework
to more models such as the one of ARMv8, we intend to improve robustness and
performance, and to cover integrity properties as well.

Integrity Properties We plan to enhance the framework by safety-properties
such as nonexfiltration [90, 102] and mode switch properties [102]. Nonexfiltration
asserts that certain components do not change throughout (unprivileged) execu-
tion. Mode switch properties make guarantees on how components change when
transiting to higher privilege levels, for example that the program counter will point
to a well-defined entry point of the kernel code. We believe that both properties
can be derived relatively easily from the normalized forms of the instructions.

Performance Optimization While our benchmarks have demonstrated that
ISA information flow analysis on an instruction by instruction basis allows for a
large degree of automation, they also have shown that this approach introduces
severe performance penalties for more complex instructions. To increase scalability
and at the same time maintain automation, we plan to investigate how to combine
the compositional approach of [102] with the more global reasoning demonstrated
here. Furthermore, there is potential for improvements in the performance of indi-
vidual steps. E.g., our normalization could be combined with the one of [68].

DPaper D

Formal Verification of Secure User
Mode Device Execution with DMA

Oliver Schwarz and Mads Dam

Abstract

Separation between processes on top of an operating system or between
guests in a virtualized environment is essential for establishing security on
modern platforms. A key requirement of the underlying hardware is the abil-
ity to support multiple partitions executing on the shared hardware without
undue interference. For modern processor architectures - with hardware sup-
port for memory management, several modes of operation and I/O interfaces
- this is a delicate issue requiring deep analysis at both instruction set and
processor implementation level. In a first attempt to rigorously answer this
type of questions we introduced in previous work an information flow analysis
of user program execution on an ARMv7 platform with hardware supported
memory protection, but without I/O. The analysis was performed as a semi-
automatic proof search procedure on top of an ARMv7 ISA model imple-
mented in the Cambridge HOL4 theorem prover by Fox et al. The restricted
platform functionality, however, makes the analysis of limited practical value.
In this paper we add support for devices, including DMA, to the analysis.
To this end, we propose an approach to device modeling based on the idea
of executing devices nondeterministically in parallel with the (single-core)
deterministic processor, covering a fine granularity of interactions between
the model components. Based on this model and taking the ARMv7 ISA
as an example, we provide HOL4 proofs of several noninterference-oriented
isolation properties for a partition executing in the presence of devices which
potentially use DMA or interrupts.

103

104
PAPER D. FORMAL VERIFICATION OF SECURE USER MODE DEVICE

EXECUTION WITH DMA

D.1 Introduction

Modern computing platforms usually execute multiple kinds of services together.
Entertainment software runs next to online-banking applications. Personal com-
munication services run next to business software. For security, there is a strong
need to execute processes in isolation from each other, such that mutual influence is
minimized and their integrity and confidentiality fully protected. Some approaches
attempt to achieve this level of isolation within the commodity operating system,
while others base upon separation kernels, micro kernels or virtualization. In all
cases, the hardware platform is required to allow for strong compartmentalization of
process execution. Untrusted processes should neither be able to influence processes
at higher trust levels nor to learn anything about their state of execution. Basic
protection is enabled by several privilege rings of operation and memory protec-
tion/management units (MPU/MMU), controlled by control registers, coprocessors
and configurations in memory. Information can potentially flow via multiple system
components and operations, such as memory accesses by the CPU, directly accessi-
ble registers, side effects of control registers, coprocessors, timing channels, device
ports, device accesses to memory, or interrupts, to just name a few. Therefore it
is crucial to understand and document the information flows that are possible on
a complex platform. These flows are not always obvious. For example, on some
x86 processors it is possible for low-privilege code to overwrite higher privilege code
by writing to an address that usually refers to the video card [62]. To enable this
attack, it suffices to flip a configuration bit usually accessible from the low privi-
lege level. On ARM, comparison instructions change flags in the current program
status register (CPSR). When switching processes, those flags therefore need to
be cleared or reloaded from the register bank of the invoked process. Peripheral
devices further increase a system’s complexity. Assigning them to only one process
per device is sometimes insufficient to prevent information flow between processes.
If a device has the capability of performing direct memory access (DMA), it can be
programmed to circumvent the access policy of the MMU unless advanced hard-
ware support for virtualization is provided and this support is soundly configured,
which is by no means self-evident. Even if the configuration of DMA controllers is
monitored to prevent copying between partitions, undesired information flows can
still occur. For example, a device can fire an interrupt depending on the content
of memory controlled by a user process, allowing for side channel communication
based on the delays introduced by such interrupts. Given the complexity of mod-
ern hardware, it is not trivial to avoid misconfiguration. In previous work [102] we
introduced a formal information flow analysis of ARMv7 user mode execution on
instruction set architecture (ISA) level, however, not yet covering devices. With
devices, the system’s state increases and so does the set of possible information
flows. CPU and multiple DMA devices with unknown behaviour can execute in
parallel, possibly accessing the same memory, with an unknown interleaving.

This paper presents the following contributions. First, we extend the Cambridge
HOL4 model of the ARM architecture [70] by a general device framework. To the

D.2. RELATED WORK 105

best of our knowledge, this is the first theorem prover model for devices capable of
reasoning on DMA. It is sufficiently detailed to capture possible information flows
on modern systems. The adaptation to other processor architectures can be done
with a minor effort. Second, we identify several secure device configurations. Since
the focus is on platform information flow security rather than functionality, we
do not restrict verification to concrete device specifications, but provide a suitable
abstraction. For the verification of a system’s separation properties, it is then
sufficient to show that the configuration of the system devices complies with the
identified abstract requirements. Finally, based on the proposed configurations and
the device framework, we prove the following partitioning-related properties of the
ARMv7 architecture with devices:

1. Non-infiltration states that the user mode execution of an ARMv7 processor
is independent of devices that neither write to the memory accessed by the
active process nor fire interrupts.

2. The integrity property of extended non-exfiltration states in turn that user
mode processes are unable to influence devices that do not read from CPU-
modifiable memory. Moreover, other protected resources1, such as memory of
neighboring processes, can not be modified by the process. That is true even
if dedicated peripheral devices do access these resources in parallel. More
specifically, the transformation of these resources depends only on such dedi-
cated and inaccessible devices.

3. The third property, filtered device non-infiltration, states that devices which
operate on disjunct resources can not influence each other without the inter-
action of the CPU.

One of the added challenges in the formulation and verification of the properties
compared to [102] is that - with CPU and devices operating in parallel - different
principles can cause different effects on the shared state. Covering separation during
user mode execution, the results can be applied in the verification of hypervisors,
separation kernels and operating systems. To the best of our knowledge, this is
the first work on non-interference like platform properties for autonomous device
execution.

D.2 Related Work

Hillebrand et al. [92] describe a pen and paper model, later formalized in Is-
abelle/HOL [4], for a memory-mapped hard disk integrated with a RISC architec-
ture. The model includes side effects on device port reads/writes, interrupts and an
external environment. The latter is also used to realize non-determinism, especially
in timing matters. Direct memory access is not covered. Furthermore, unlike ARM,

1See Section D.6.3 for the complete list of protected resources.

106
PAPER D. FORMAL VERIFICATION OF SECURE USER MODE DEVICE

EXECUTION WITH DMA

the processor model does not perform multiple memory operations per instruction
(instruction fetches are assumed to not refer to device ports), which allows for exe-
cuting processor and device steps in an interleaved way after one another, without
considering device progress within a single processor step. In [4] they describe the
exploitation of an oracle that enables the sequentialization of the concurrent exe-
cution of devices and CPU. While the concrete order of events in a system is hard
to predict, this oracle allows for the quantification over all execution orders and ex-
ternal inputs. These results were applied in the functional correctness verification
of a microkernel [6]. The system architecture includes concurrent devices; besides
a hard disk used for page fault handling also devices accessible by user processes
are considered. Using refinement techniques, the authors were able to establish a
simulation relation between an abstract microkernel programming framework and
the instruction level. On the abstract levels devices are represented as ghost data
structures.

Duan and Regehr [61] describe a general device model framework integrated
with the HOL4 model for ARM6 by Anthony Fox [67] in a lock-step manner. They
provide a proof of concept for a UART device and its driver, presenting statements
on functionality, (memory) safety and timing. Similar to [92] and [4], they model
side effects of memory mapped accesses to device ports and exploit input streams.
Again, DMA is not supported. The authors prove that the integration of new de-
vices to the system does not cause new undefined behaviour and preserves already
established system predicates. This allows to verify driver correctness for one de-
vice at a time, but clearly would not hold for DMA devices. In his PhD thesis
[60], Duan integrates his model into the Cambridge model of ARMv7 and adds
reasoning about interrupts. Since ARMv7 has instructions that perform multiple
memory accesses, device port reads/writes have been integrated into the primitives
for memory accesses. Also autonomous device transitions are integrated into the
execution cycle, however, they occur only once per instruction. In a DMA setting
this is not sufficient since physical memory can be changed by devices between
two memory accesses from the CPU side. In order to reason about DMA with a
finer granularity and to allow for non-deterministic device progress, we propose a
different model in Section D.5.

Monniaux modelled a USB controller in C and used an extended version of the
Astrée static analyzer to verify that neither controller nor its driver will trans-
fer data incorrectly [122]. He includes asynchronous DMA into his reasoning.
By modelling the controller’s behaviour with non-deterministic choices, an over-
approximation is achieved. Isolation from untrusted software is not discussed.

XMHF [175] is a hypervisor framework for x86 exploiting virtualization support,
in particular the DMA protection of Intel Vt-d and AMD’s device exclusion vec-
tors. The framework allows unmodified guests direct device access. System devices
are included in the attacker model. Exploiting the model checker CBMC, mainly
memory integrity is verified. As for direct memory access, CBMC verifies that the
control register value written to the DMA protection hardware register has the bit
set which enables DMA protection. The DMA table is manually audited. However,

D.3. THE HOL4 ARM MODEL 107

arm_state = < | psrs : PSRName→ ARMpsr;
regs : RName→ word32;
memory : word32→ word8;
coproc : coprocessors;
accesses : memory_accesslist;
misc : Monitors # ARMinfo # bool # bool | >;

Figure D.1: The ARM state in HOL4

it seems that the actual effects of devices or the DMA protection unit are not part
of the model. In the present paper we focus on systems without hardware support
for virtualization.

The properties shown in this paper are inspired by Heitmeyer et al. [90], who
formulated non-infiltration and non-exfiltration for a separation kernel. We adapt
those properties to a platform with DMA devices and a CPU in user mode.

D.3 The HOL4 ARM Model

We base our work on Fox et al’s monadic HOL4 ISA model [70] of ARMv7 platforms
without hardware extensions such as TrustZone or virtualization support. Figure
D.1 shows a simplified definition of the processor state in this model. The function
psrs returns the value of a processor state register (of type ARMpsr). The processor
state registers include the current program status register, CPSR, in addition to the
banked psrs SPSR_m for each privileged mode m, except for system mode. The
ARMv7 core provides seven processor modes: one non-privileged user mode usr,
and six privileged modes, activated when an exception (such as an interrupt) is
invoked. The function regs takes a register name and returns its value. The ARM
registers include sixteen general purpose registers (r0− r15) that are available
from all modes in addition to the banked registers of each privileged mode that are
available only in that mode. The function memory maps an address (word32) to a
byte (word8). Caches are not represented in the model. The field coproc represents
the set of coprocessor registers in CP14 and CP15 implicitly influencing execution,
to a large extent even user-mode/exception execution. The field misc represents
exclusive monitors for synchronization purposes, general information about the
state, e.g. the architecture version, if the system is waiting for an interrupt etc,
and accesses records the accesses to the memory.

A computation in the monadic HOL4 ARM model is a term of the type

α M = arm_state 7→ (α, arm_state) error_option

where error_option is a datatype defined as:

(α, β) error_option = ValueState of α ⇒ β | Error of string

108
PAPER D. FORMAL VERIFICATION OF SECURE USER MODE DEVICE

EXECUTION WITH DMA

Computations act on a state (arm_state) and return either ValueState a s, a
new state s along with a return value a of type α, or an error e (if the computation
is underspecified by the ARM specification). The monad unit constT injects a
value into a computation, i.e. constT a s = ValueState a s, while binding is a
sequential composition operation

f1 �=e f2 = λs.case f1 s of Error c → Error c

| ValueState a s′ → if e s′ then f2 a s
′ else f1 s.

That is, if e holds in the final state of f1, the return value of f1 is passed to
f2 as the input parameter, otherwise f2 is not executed. In addition to unit and
binding, the ARM monadic specification uses standard constructs for lambda, full
conditional, let, and case, as well as the monad operations parallel composition,
positive conditional (condT e f = if e then f else constT ()), error (errorT a =
Error a), and an iterator. Values of state components can be obtained and set by
readT f = λy.(ValueState (f y) y) and writeT f = λy.(ValueState () (f y)).

D.4 Memory Management

The Memory Management Unit (MMU) enforces memory access policies and is
therefore crucial for isolation. MMU configurations consist of page tables in memory
and dedicated registers of CP15. Specific to ARM is the possibility of partitioning
pages into collections of memory regions (domains), each representing one security
role. The coprocessor registers involved are SCTLR, TTBR0 and DACR. The SCTLR
register determines whether the MMU is enabled, TTBR0 contains the base address
of the page table, and DACR manages the ARM domains.

In [102] we extended the ARM model with MMU functionality. The extended
model defines two key functions, permitted, to account for access permissions, and
mmu_setup, to reflect a “good configuration” property. The permission evaluation
function permitted a bw (vs, vt, vd) bp m takes as parameters an address a, a flag
bw indicating whether reading or writing access is to be evaluated, the values of
SCTLR, TTBR0 and DACR, a flag bp indicating whether permissions are to be checked
against a privileged mode, and the memory m containing the page tables. The
pair of booleans returned by permitted states whether the access permission on
the specified location is defined in the given configuration, and the outcome of that
decision (true if access is granted). Here, we apply a basic version of permitted,
supporting one-level page tables with an identity address translation, but including
the interpretation of ARM domains. It is shown that permitted is defined for all
addresses in all reachable states.

The history of memory accesses is tracked in the accesses ghost field of the
machine state, allowing to compute the set of memory locations accessed by an
instruction. To stop computation after the first access violation, �=nav has been
chosen as standard binding operator. The property nav s holds if there is no access
violation recorded in state s. Formally, this is the case if there is no entry in the

D.5. DEVICE MODEL FRAMEWORK 109

access list of machine state s that causes permitted to return a negative answer in
the current configuration of s. The recording of an access always happens before
the access itself.

We finally need to formulate a suitable well-formedness condition for the MMU
configuration. Let accessible i a express that address a is readable and writable
by user process i. Other, more refined, static user level access policies can be
supported with minor effort. The predicate mmu_setup i s holds if (i) the MMU
configuration ((d, p) = permitted a bw (mmu_registers s) ⊥ s.memory) for any
address a and access type bw is defined (i.e., d is true), (ii) the state s implements
the desired access policy for process i (i.e., p = accessible i a), and (iii) none of
the active page tables in s (represented by the address set page_table_adds s) is
accessible according to the policy.

mmu_setup i s :=
∀a,w, d, p. ((d, p) = permitted a bw (mmu_registers s) ⊥ s.memory)
⇒ d ∧ (p = accessible i a) ∧ (a ∈ (page_table_adds s)⇒ ¬accessible i a)

For the properties shown in Section D.6 we furthermore prohibit user space pro-
cesses to access device ports by assuming that the (state-independent) set of device
addresses and accessible addresses are disjoint for every user process.

D.5 Device Model Framework

We present a general device model framework, capable of reasoning on DMA de-
vices and with the ambition to cover all possible executions of a platform where the
single-core processor and multiple devices run in parallel. In practice, changes to
shared resources such as memory happen asynchronously and in a practically un-
predictable order. We apply a non-deterministic approach that takes into account
all possible interleavings and - to be conservative on timing behaviour - all possible
durations of device and CPU actions, without restrictions on deadlines. Naturally,
this does not allow to reason on whether an operation will be finished before a
certain event or not. A timing accurate model would need to take CPU and system
implementation specific details into account, including caches, MMU implementa-
tion specifics (such as the translation lookaside buffer), pipeline architecture and
bus contention protocols. Models at this level of detail are surely interesting, but
likely to be vastly more complex. The main challenge when integrating DMA into
a device model is that memory can potentially change at any time, for example, be-
tween reading two words belonging to a multiple load instruction. Also inter-device
communication can occur in any order and granularity. This precludes models that
synchronize CPU and devices only between different CPU instructions. To address
this challenge and allow for asynchronous device execution, we augment the CPU
model with an abstract scheduler as suggested in [4], an oracle of the type

oracle : num→ (dev_name # word32 option) option

The oracle provides a non-deterministic sequence of activity entries where the n-th
activity entry oracle n is either NONE (then the CPU is progressed rather than a
device) or a tuple SOME (d, eiopt), indicating the device with identifier (dev_name)

110
PAPER D. FORMAL VERIFICATION OF SECURE USER MODE DEVICE

EXECUTION WITH DMA

d to progress one step, possibly in the context of the optional external 32-bit input
eiopt. We assume processor liveness: ∀n. ∃m. (m ≥ n) ∧ (oracle m = NONE).
Liveness of devices can be optionally included, but is not required for the properties
we show in this paper. To include devices into the machine state, arm_state is
extended by the following components:

devices : dev_rec;
ext_out : dev_name→ word32 list;
int_fired : bool;
counter : num

The record devices subsumes the states of all devices 2. The external output is
represented by a finite stream of 32-bit words for each device, accessible via the
map ext_out, mapping each device identifier to the list of outputs produced so far
for that device. Whether an interrupt has been fired during the current execution
cycle is stored in int_fired. Fast interrupts or advanced interrupt controllers are
not part of the model. Finally, counter points to the current position in the oracle
index and is incremented every time the oracle is invoked. Devices can progress in
one of four ways:

• Autonomously: A device may make processor-independent progress, either by
entirely internal actions or by receiving external inputs, accessing memory,
raising interrupts, or producing external outputs. The function

progress : device 7→ (word32 option)
7→ (mem_req option # bool # word32 option # device) option

takes as arguments a device state D and a possible external input eiopt. It
returns either an "error" (NONE) representing undefined behaviour or a tuple
(ropt, bint, eoopt, D

′) with an optional read/write access request ropt to the
system’s memory bus (including an address and the access type), a flag bint

indicating a possible interrupt, an optional external output eoopt and the
updated device state D′. This function is used to progress devices with a non-
deterministic frequency after every executed CPU instruction and between
memory accesses made by the CPU or other devices.

• Upon reception of a pending reply to a memory bus read: As a result of an
autonomous step, a device can send a read request to the bus, in order to
read from the system memory or from the port of another device. The result
is communicated to the device by invoking the receive operation:

receive : device 7→ mem_req 7→ mem_answer 7→ device option

For a given device state D and request r being answered, receive D r v
passes the read value v (as either byte or word) to D and returns either an
error (NONE) or the updated device D′. Write operations requested by devices

2We notate devices.d for the state of the device with identifier d in the record devices.

D.5. DEVICE MODEL FRAMEWORK 111

do not have an answer and thus change only the memory, but not the device.
We assume that reads are atomic operations and the memory bus will always
complete an issued read before handling new operations. In other words, we
exclude scenarios where a device notices that one of its ports is being read
and already starts side effect computations affecting memory or other system
components without first returning the requested value. That is no limitation
for the properties we show in this paper, since we do not consider port accesses
in them.
As for device reads from physical memory, we refer to the discussion in
Section D.8.

• As side effect on port reads: The CPU or another device may read from an
address that is mapped to a device. This address can belong to a device
register, but in general it is not required that such a register is physically
existing, for example when the address is associated with a side effect. We
therefore use the general term port rather than register. We assume atomic
32-bit accesses to device ports and that port accesses are not cached. The
function

d_read : device 7→ word32 7→ (word32 # device) option

takes as arguments a device state D and the port number indicating which
port of the device is to be read. A special data structure of the model maps
any virtual address to either physical memory or a device identifier together
with a port number. The result of d_read is either NONE or the read 32-bit
value together with a possibly updated device state D′.

• As side effect on port writes: the function

d_write : device 7→ word32 7→ word32 7→ device option

takes as arguments a device state D, the port number indicating which port
of the device is to be written to and the 32-bit value to be written. It returns
either an error (NONE) or the updated device state D′.

Different types of devices will have different behaviour. That is, the concrete func-
tionalities of the device functions depend on the addressed device. While d_write
and d_read are integrated into the existing memory access primitives of the ARM
model (similar to [60]), progress and receive are used to realize autonomous
progress of devices. Figure D.2 defines advance_single f n that uses the oracle
at position n to determine the next device to progress autonomously and that up-
dates the state with the effect of this progress accordingly. Subsequently, resulting
memory requests are realized (including possible side effects when directed to other
devices) and finally counter is increased. A filtering predicate f can be used to
apply those steps only to devices d for which f d holds. Here, update_device and
update_output update the devices and ext_out components of the current state,

112
PAPER D. FORMAL VERIFICATION OF SECURE USER MODE DEVICE

EXECUTION WITH DMA

advance_single f n := readT (λs. s.devices)�=T

(λD̂. (case oracle n of NONE⇒ constT ()
|SOME (d, eiopt)⇒
condT (f d)

(case progress D̂.d eiopt of NONE⇒ errorT ε
|SOME (ropt, bint, eoopt, D

′)⇒
update_device d D′ �=T
(λu. update_output d eoopt �=T
(λu. condT bint

(writeT (λs. s with int_fired := T))�=T
(λu. case ropt of NONE⇒ constT ()
|SOME r ⇒ mem_acc_by_dev r d)))))�=T

(λu. increment_counter))

Figure D.2: The advance_single computation.

respectively, and mem_acc_by_dev r d realizes the memory access request r on be-
half of device d. Our model does not include any IOMMU. The repeated execution
of advance_single is realized by advance, where for n > 0, advance f n traverses
the oracle with filtering predicate f up to oracle position n and advance f 0 tra-
verses the oracle until a NONE as activity entry indicates that execution will continue
on the CPU side. The advance computation will synchronize devices and CPU be-
fore each memory bus access (for memory mapped ports and physical memory)
of the CPU3 and additionally between two execution cycles. The model supports
instruction fetching from device addresses, but we assume that page table walks
are not performed on device ports. In the properties shown in this paper we as-
sume an MMU setting that prohibits both, by choosing device addresses, page table
addresses and user space accessible memory to be disjoint.

Incorporating the MMU and device extension, the instruction execution function
next (Fig. D.3) involves the following functionality: if an interrupt is pending and
not masked, an interrupt exception is taken. Otherwise, the CPU may (if requested
so by the previous instruction) wait for an interrupt or fetch and execute the next
instruction pointed to by the program counter. If an access violation is recorded
during instruction fetching or execution, a prefetch or data abort exception is initi-
ated. The access list is cleared between the single steps and unconditional binding
�=T is used occasionally, preventing the execution from halting and instead allow-
ing the initiation of exceptions and the detection of possible further violations. In
addition to the synchronization phases before any of the CPU’s memory operations,
possible autonomous device steps are considered after each instruction execution,

3Consequently, accesses to the shared state, in particular the memory bus, determine the
granularity of the system.

D.6. SECURITY PROPERTIES 113

next := (clear_alist�=
(λu. readT (λs. s.int_fired ∧ ¬s.psrs(0, CPSR).I) �=
(λb. if (¬b) then

waiting_for_interrupt �=
(λw. condT (¬w)

(fetch_instruction �=T
(λ(o, i). is_viol �=T (λa. clear_alist �=
(λu. if a then prefetch_abort

else (execute i �=T (λu. is_viol �=T
(λa. condT a

(clear_alist �=
(λu. data_abort)))))))))) �=T

(λu. advance all 0)
else take_irq_exception �= (λu. clear_interrupts))))

Figure D.3: The next computation.

in order to account for interrupt initiations.
As discussed earlier, our model is not clock accurate. While this is common

with related work, usually a fixed duration is assumed for all instructions [60].
In our model, durations are non-deterministic, controlled by the oracle. However,
given a specific oracle sequence, memory extensive instructions generally consume
more oracle entries (i.e, time). For the properties of this paper and the targeted
abstraction level, concrete instruction time is not relevant.

D.6 Security Properties

We next turn to formalizing several partitioning properties in terms of non-infiltration
and non-exfiltration (cf. [90]), adapted to our setting, i.e., arbitrary and unknown
user mode code executing on an ARMv7 CPU and in parallel with DMA devices.
The isolation does not rely on an IOMMU. Together with a proper separation kernel
(configuring devices, mediating user registers etc.) the discussed properties allow
for establishing full process isolation within a system.

D.6.1 Suitable Device Configurations
Since isolation between CPU and DMA devices requires controlled device behaviour,
we first describe possible device configurations that we consider secure. They allow
the devices to change their internal state in an arbitrary way, but impose restric-
tions on DMA and interrupts. Kernels are responsible for realizing such a device
configuration, in order to guarantee that process isolation is maintained when yield-
ing to user mode. We expect those configurations to stay preserved throughout the
whole user mode execution (while access to device ports is forbidden to both CPU

114
PAPER D. FORMAL VERIFICATION OF SECURE USER MODE DEVICE

EXECUTION WITH DMA

and other devices). Formally, a configuration C is called invariant if it is preserved
over autonomous steps, including the reception of replies to autonomously issued
read requests:

invariant C := ∀D. C D ⇒
(∀eiopt, ropt, bint, eoopt, D

′.
(progress D eiopt = SOME (ropt, bint, eoopt, D

′))⇒ C D′)
∧ (∀r, v, D′. (receive D r v = SOME D′)⇒ C D′)

A property P holds on a device D in a stable way if it is established by an invariant
configuration C:

stable P D := ∃C. invariant C ∧ C D ∧ (∀D′. C D′ ⇒ P D′)

The stable properties we are interested in guarantee that devices are configured
in a way that prevents them from communicating with other devices, running into
an undefined state, accessing memory out of well-defined boundaries or firing in-
terrupts in dependency on DMA operations. We believe that many devices (e.g.,
timers or DMA controllers) can be configured to respect those restrictions. The
restricted_dma predicate holds if a device is configured to restrict its DMA re-
quests to a set A of memory addresses.

restricted_dma A D := ∀eiopt, r, bint, eoopt, D
′.

(progress D eiopt = SOME (SOME r, bint, eoopt, D
′))⇒ (access_request_map r ⊆ A)

Here, access_request_map maps a memory request to the set of byte addresses it
involves. A device is called silent if A does not include device ports. Devices not
firing interrupts are called interrupt_free. We say that a device is errorfree,
if progress and receive do not return NONE for any inputs. Based on those
properties, we distinguish three specific device configurations: devices involving
DMA operations on the memory of the active process, devices involving DMA
operations on the memory of other processes, and devices that are allowed to fire
an interrupt.

own_devices i D := stable (restricted_dma (own_add i)) D
∧ stable interrupt_free D

foreign_devices i D := stable (restricted_dma (foreign_add i)) D
∧ stable interrupt_free D

interrupt_devices D := stable (restricted_dma empty_set) D

Here, own_add i is the set of addresses belonging to process or partition i, while
foreign_add i spans exactly over the other user partitions. We do not allow
a device to do both, accessing memory and firing interrupts. This is to prevent
information flow from a user process’ memory to another process’ perception of
execution time. 4 For a given user process i we assign each device d to one of

4Alternative configurations could allow DMA devices to fire interrupts, as long as those in-
terrupts are masked while foreign processes are executing. However, this requires a very careful
and more complex design at kernel level to avoid timing channels when interrupts occur close to
context switches.

D.6. SECURITY PROPERTIES 115

Figure D.4: a.) non-infiltration, b.) extended non-exfiltration, c.) filtered device
non-infiltration

three classes, OWN i d, FOREIGN i d or INTERRUPT d, that correspond to the config-
urations own_devices i D, foreign_devices i D and interrupt_devices D,
respectively. While configurations refer to a concrete device state D, device classes
are state-independent. We require that each device is in at least one of the three
classes. The system properties discussed in the following subsections have a correct
configuration of the devices as a prerequisite. The configuration of each device in
the current state is supposed to follow the specification of the given class. More-
over, devices are not allowed to communicate with other devices or to run into an
underspecified state.

device_setup i s := ∀d.
(OWN i d⇒ own_devices i s.devices.d)

∧ (FOREIGN i d⇒ foreign_devices i s.devices.d)
∧ (INTERRUPT d⇒ interrupt_devices s.devices.d)
∧ stable errorfree s.devices.d ∧ stable silent s.devices.d

D.6.2 Non-infiltration

Confidentiality of the kernel and neighboring user processes (including their de-
vices) and the integrity of the active user process is guaranteed by non-infiltration,
a noninterference-like property at the user mode single instruction level. Consider
two machine states in user mode that are low equivalent in the sense that the two
states agree on the resources (devices, registers and memory) that are permitted
to influence user mode execution, but do not necessarily agree on other resources.
Non-infiltration (Fig. D.4.a) holds if the poststates, after execution of one instruc-
tion, remain low equivalent (or produce the same error).

116
PAPER D. FORMAL VERIFICATION OF SECURE USER MODE DEVICE

EXECUTION WITH DMA

Theorem 12. Non-infiltration
∀s1, s2, i. (mode s1 = mode s2 = usr) ∧ mmu_setup i s1 ∧ mmu_setup i s2

∧ device_setup i s1 ∧ device_setup i s2 ∧ bisim i s1 s2
⇒ (∃t1, t2. (next s1 = ValueState () t1) ∧ (next s2 = ValueState () t2)
∧ bisim i t1 t2) ∨ (∃e. (next s1 = Error e) ∧ (next s2 = Error e))

The relation bisim is the low equivalence relation. User mode processes are
allowed to be influenced by the user mode registers, the memory assigned to them,
devices with access to that memory, interrupt devices, the CPSR, the coprocessors,
pending access violations and the misc state component. Formally:

bisim i s1 s2 :=
(s1.counter = s2.counter) ∧ (s1.int_fired = s2.int_fired)

∧ equal_user_regs s1 s2 ∧ (∀a. accessible i a⇒ (s1.memory a = s2.memory a))
∧ (∀d. OWN i d ∨ INTERRUPT d
⇒ (s1.devices.d = s2.devices.d) ∧ (s1.ext_out d = s2.ext_out d))

∧ (s1.psrs(CPSR) = s2.psrs(CPSR)) ∧ (s1.coproc.state = s2.coproc.state)
∧ (nav s1 = nav s2) ∧ (s1.misc = s2.misc)

Non-infiltration guarantees that system components outside the bisim relation can
not give rise to information flow. In particular, privileged registers, memory foreign
to the current process and devices that operate on such memory can not influence
the execution on the CPU. External output has no impact on other components
either. However, it was included into the relation to obtain guarantees on that
information from the kernel and neighboring processes can not be leaked through
the system’s output, as long as the configuration of the devices producing that
output prevents them from accessing confidential memory.

D.6.3 Extended Non-exfiltration
Non-exfiltration guarantees the integrity of resources foreign to the active user pro-
cess. Given a valid configuration for user process i active, the execution of a single
instruction in user mode will not modify any other resources but those considered
to be modifiable by i. In [102] this was expressed by the equality of protected
components in pre- and poststate. However, when some of those protected compo-
nents are modified by devices executing in parallel, this equality can not be proven.
Therefore, we extend non-exfiltration to a triangle shaped property (compare Fig.
D.4.b), in which the poststate t of a system-wide progress is compared to both, the
prestate s and a third state of comparison r that is the result of applying only the
effects of the device operations to the prestate.

Theorem 13. Extended Non-exfiltration
∀s, t, r, i. (mode s = usr) ∧ mmu_setup i s ∧ device_setup i s
∧ (next s = ValueState () t) ∧ (advance all t.counter s = ValueState () r)
⇒ intact i s t r

D.6. SECURITY PROPERTIES 117

For synchronization, advance is applied up to the oracle counter state in post-
state t. The intact relation between the prestate s with active process i, the
poststate t and the comparison state r guarantees that coprocessors and memory
not belonging to any user process remain unchanged. The memory of neighboring
user processes, new interrupts, and devices that do not access memory of i, are
determined by the device operations only. In particular, they can not be influenced
by writing to the memory of i. The only modifiable registers are the CPSR, user
mode registers, and the PSR and the link register of the mode in t.

intact i s t r :=
(t.coproc = s.coproc) ∧ (∀a.(∀j.¬accessible j a)⇒ (t.memory a = s.memory a))
∧ (∀a, j. (i 6= j) ∧ accessible j a⇒ (t.memory a = r.memory a))
∧ (t.int_fired = r.int_fired)
∧ (∀d. FOREIGN i d ∨ INTERRUPT d
⇒ (t.devices.d = r.devices.d) ∧ (t.ext_out d = r.ext_out d))

∧ (∀q. q /∈ accessible_regs (mode t)⇒ (t.regs(q) = s.regs(q)))
∧ (∀p. p /∈ {CPSR, spsr_(mode t)} ⇒ (t.psrs(p) = s.psrs(p)))

D.6.4 Filtered Device Non-Infiltration
In addition to the non-infiltration property of the overall system, we provide one
for device activities only. It can be combined with extended non-exfiltration to
guarantee that devices not accessing the active partition form their own group of
resources which executes independently from the CPU. Formally, filtered device
non-infiltration (Fig. D.4.c) states that devices configured to not access more than
the memory of active process i (devices d for which OWN i d holds) cannot influence
devices not operating on that memory. Consequently, when comparing two systems
and their executions, removing the activities of devices in the OWN class from one
of the executions (through the filtering predicate of advance) will not change the
effects that the other devices can observe.

Theorem 14. Filtered Device Non-Infiltration
f2 = (λd. f1 d ∧ ¬OWN i d) ∧ devsim i s1 s2

∧ device_setup i s1 ∧ (advance f1 n s = ValueState () t1)
∧ device_setup i s2 ∧ (advance f2 n s = ValueState () t2)
⇒ devsim i t1 t2

The devsim equivalence relation describes the resources visible to interrupt
devices and to devices that operate on memory of non-active user processes.

devsim i s1 s2 :=
(s1.counter = s2.counter) ∧ (s1.int_fired = s2.int_fired)
∧ (∀a, j. (i 6= j) ∧ accessible j a⇒ (s1.memory a = s2.memory a))
∧ (∀d. ¬OWN i d⇒ (s1.devices.d = s2.devices.d) ∧ (s1.ext_out d = s2.ext_out d))

118
PAPER D. FORMAL VERIFICATION OF SECURE USER MODE DEVICE

EXECUTION WITH DMA

D.7 Implementation

We proved the theorems of Section D.6 for the ARMv7 platform inside HOL4. This
work extends the proof presented in [102], in which we showed non-infiltration, non-
exfiltration and mode switching properties for ARMv7 user mode execution on ISA
level without devices. Given the complexity of the ARM model and the instruction
set, we exploited automation based on a sound, but incomplete inference system.
For example, for two computations f and g that both preserve non-infiltration,
the inference rule for sequential composition derives that also f �nav g preserves
non-infiltration. We have proven further rules for parallel composition, loops, al-
ternatives, lambda abstraction and other constructors of the operational semantics.
They enabled us to develop a proof tool for relational and invariant reasoning that
- after being provided with the desired properties for primitive operations - was
able to discharge large parts of the proof obligations (but not all) automatically.
Details are discussed in [102].

In the present extended work, the separation properties had to be proven man-
ually for advance, mainly because they would not hold for intermediate computa-
tions in isolation. Due to the complexity, this was one of the main challenges. We
followed a bottom-up approach. Basic properties on mem_acc_by_dev, a rather
extensive case analysis and automatic simplification allowed for the verification of
properties on advance_single. This step often required to split the analysis into
the effects on the device currently progressed by advance_single and the effects
on all other devices. Finally, properties for advance were proven by induction. In
order to allow for the continued application of the proof tool to the existing parts,
we had to verify the transitivity of advance. Subsequently, the vast majority of the
automatic proofs could be repeated without any interruptions, which gives confi-
dence that our proof framework scales well for extensions of the platform model.
The Cambridge model of ARM is 9 kLOC. In addition to the ARM model, we rely
mainly on the relatively small inference kernel of the HOL4 theorem prover, our
MMU extension (about 180 lines of definitions), the device framework (about 350
lines) and the formulation of the discussed properties (about 380 lines). The entire
proof script has a length of about 20 kLOC and needs roughly two and a half hours
to run on an Intel(R) Xeon(R) X3470 core at 2.9 GHz. We invested about five
person months of effort into this work.

D.8 Conclusions

Summary We extended the Cambridge HOL4 ISA model for ARM by a general
device framework for DMA devices. Based on the extended model we identified
secure device configurations and proved several isolation properties for platforms
where DMA devices execute in parallel with a CPU in user mode. The results can
be used in separation proofs, be it in a hypervisor, separation kernel or operating
system setting. Model, properties and verification approach can be adapted to

D.8. CONCLUSIONS 119

other architectures. We gained confidence that our proof framework scales well for
extensions of the model.

Future Work The model allows for further interesting angles, which we plan to
explore in future work: It is rather common that devices communicate with each
other. So far, we can only support such constellations by merging communicating
devices into one block, so that the model understands the block as a single device.
Removing this restriction comes with the challenge of ensuring that device con-
figurations still remain secure when devices are allowed to write to ports of other
devices. Probably easier to achieve is the augmentation of the set of device classes
by devices that neither use DMA nor interrupts, but that can be accessed by user
space processes. A UART interface managed by a single process is one such ex-
ample. From a security perspective, such a device is similar to physical memory
assigned to a process, in spite of the self-modifying nature and external influence
that such components have. Even if devices (like a timer) are shared between dif-
ferent user processes, user mode access to their ports can still preserve isolation, for
example, if that access is always reading. Further potential future work includes
the investigation of connected external input/output channels or the enhancement
of the model by an IOMMU.

Discussion on Weak Memory Models This paper focuses on secure device
configurations and the integration of devices into the platform information flow
analysis on ISA level. We have deliberately chosen a flat sequential memory
model and leave weak memory effects for future work. In the following, we
briefly discuss possible benefits of such future effort. A sequential memory model
does not accurately account for all observable effects that can occur in practice.
Even in a single core system with peripheral devices, system components such as
store buffers or caches can cause behaviour that is not reflected by our current
model. Furthermore, practical implementations of bus and peripherals might
violate assumptions we made in this paper. For instance, in Section D.5 we
assumed that read requests sent by devices to the bus are answered in an atomic
manner. For some bus systems this assumption holds, for others it does not. In
practice, most devices are not affected by this matter, since they wait for read
request being answered before issuing new ones. However, for some combinations
of peripherals and bus systems our current model might miss some behaviour.
This gets apparent when multiple reads are considered: assume a zero-initialized
memory and two locations that are overwritten with 1’s by the CPU. Without
loss of generality, let the first write that takes effect be at location a and the
second write be at location b. A peripheral might issue a read request for b
first and then – without waiting for the response – a read request for a directly
afterwards. If the request for a is answered before the one for b, then the
peripheral will not only notice the inverse order on a low level, it may also

120
PAPER D. FORMAL VERIFICATION OF SECURE USER MODE DEVICE

EXECUTION WITH DMA

receive the values b = 1 and a = 0. In our current model there is no oracle
instantiation that would cause this outcome for reading request order b before
a.

More accurate models might be beneficial for the functional verification of
drivers, for example. When it comes to the information flow properties studied
in this paper, the implications of a sequential or a weak memory model are more
subtle. A potential non-atomicity in the handling of memory read requests from
a device could conceivably lead to reply orders that depend on the activities of
other devices. This might allow a partition to infer if devices of other partitions
are currently operating on the bus. It is not clear how much exactly a partition
might be able to learn about others through such a channel. Reply orders
depending on otherwise inaccessible registers or memory locations could allow
an attacker to infer information about these resources, potentially even in a more
controllable and predictable manner than with the channel discussed above.
However, a dependency of the read order from such system components is not
documented in the ISA specifications. They do not rule such dependencies out
either, but we believe that for non-malicious hardware implementations their
existence is unlikely, and certainly not something that is intended by the ISA
designers. A model that does not assume atomicity in the reads, but applies
a completely non-deterministic read order cannot uncover any additional flows
and would in the end – like our current model – eliminate such information
channels that are not supported by explicit descriptions of dependencies in the
ISA specifications. Developers who write drivers that are dependent on a specific
reply order or who need to ensure confidentiality of device actions beyond logical
level are advised to take measures external to the model.

In a context switch, the kernel usually sets up new address translations and
access control policies. Directly after returning to user-mode, weak memory
might lead to the usage of unintended addresses or access rights. However,
kernels can employ cache evictions and barriers to ensure that static access
permission settings take effect before execution is handed over to unprivileged
processes. Side-channels related to caches [83] have been widely studied. Not
all of the cache issues discussed in literature apply to our scenario, but caches
are relevant even for systems with a single core and devices. Typically, an
attacker partition might attempt to use the cache to learn about the control
flow of a victim partition and, for example, infer secret keys [185]. To that end,
the attacker might fill parts of the cache, wait until it is called again after the
victim’s execution phase, and check which cache lines have been evicted. The
last step is not trivial, since the attacker cannot directly see whether a value
in a certain address resides in cache or the actual memory. But if the attacker
can share cacheable memory with one of its devices, then it might be able to
configure the device in such a way that it copies the address to observe to some
other shared (non-cached) memory location. Since the device reads the values
from memory and not from the cache, the attacker would learn whether the

D.8. CONCLUSIONS 121

value it has written to the cache is still there or has been evicted. A kernel
can counter this attack by disallowing the shared memory between a partition
and a device to be cacheable. To that end, the kernel would need to know the
exact range of the DMA operations or over-approximate the range with possible
performance costs.

The discussed issues are examples of the relevance of weak memory models.
The list is not complete. In particular, we have not discussed timing channels,
which are hard to avoid and would need models of a different nature than the one
presented in this paper. Generally, more work needs to be done to understand
the implications of weak memory effects for ISA security analyses such as the
one we introduce in this paper. The creation of sufficiently precise models is a
challenge in its own right.

E

Paper E

Securing DMA through
Virtualization

Oliver Schwarz and Christian Gehrmann

Abstract

We present a solution for preventing guests in a virtualized system from
using direct memory access (DMA) to access memory regions of other guests.
The principles we suggest, and that we also have implemented, are purely
based on software and standard hardware. No additional virtualization hard-
ware such as an I/O Memory Management Unit (IOMMU) is needed. Instead,
the protection of the DMA controller is realized with means of a common
ARM MMU only. Overhead occurs only in pre- and postprocessing of DMA
transfers and is limited to a few microseconds. The solution was designed
with focus on security and the abstract concept of the approach was formally
verified.

E.1 Introduction

Different types of embedded systems are present in all kinds of computing and
control devices ranging from low power sensor nodes to mobile phones. Not only
the usage of embedded systems is increasing, also the number of their vulnera-
bilities is. The trend towards the usage of common software components, highly
interconnected systems and open architectures increases the risk of software attacks
even more, evoking the need for more powerful protection mechanisms. A promising
approach is the usage of virtualization as mean to isolate security-critical from non-
security-critical execution, for example a commodity operating system from trusted
services. Such a separation can be achieved independently from the complexity of
the guest systems. In fact, the trusted computing base can be reduced by the in-
troduction of a virtualization layer. The smaller the trusted computing base is, the

123

124 PAPER E. SECURING DMA THROUGH VIRTUALIZATION

earlier it is possible to get assurance on the security achieved, for example through
formal verification. The idea of using virtualization as an enabler for security is
not new; however, there is still a deficit of solutions targeting the special needs
of embedded systems while keeping a small code base. In [75] we presented such
an approach. It targets the widespread ARMv5 platforms and focuses on security
by providing isolation between guests. With a footprint of less than 10 KB the
described hypervisor is reasonable thin. Furthermore, the performance overhead
has been shown to be low, even though ARMv5 does not provide any advanced
hardware support for virtualization. This shortcoming is expected to change in
the future and the recent ARMv7 Cortex-A15 has additional hardware support to
handle virtual to physical address translation [14]. Their System MMU [120] even
targets Direct Memory Access (DMA) in particular. However, legacy embedded
systems will exist for a very long time and currently there is still a lack of essential
hardware functions such as assisted handling of peripheral units by an IOMMU [2].

To provide peripheral devices with quick access to the memory, DMA became
essential even in embedded systems. DMA controllers are able to copy data faster
than the CPU. However, most of the related work that aims at virtualization of
DMA does not (or not sufficiently) take care of security matters in respect to DMA.
The purpose of our paper is thus to address this issue. That is indeed needed as
DMA potentially opens an alternative way for attackers to modify otherwise inac-
cessible memory by bypassing CPU and MMU. We show how to extend the previous
hypervisor design by adding protection against such attacks. Common solutions use
to address this challenge by the usage of an IOMMU. However, many embedded
systems lack this hardware feature. We therefore show how to prevent DMA at-
tacks with high secure isolation guarantees through DMA virtualization based on
standard ARM Memory Management Unit (MMU) functionality only. Our design
approach is generic and applies to newer ARM architectures such as ARMv6 and
ARMv7 as well. Embedded platforms without hardware virtualization support like
ARMv5 will remain widespread for many years. Especially low end devices still use
early designs.

The following contributions are made in the paper:

• We describe how virtualization can be used to protect DMA on ARMv5 based
systems.

• We show that secure DMA virtualization is feasible without additional hard-
ware.

• We make a careful security and performance analysis of our design proposal.

• We provide a formal proof of the abstract concept of the approach.

The remainder of this paper is organized as follows: First, we give an overview
of related work. Next, assumptions, the threat model and security requirements

E.2. RELATED WORK 125

are defined. After an introduction to the ARM architecture and the hypervisor, the
DMA virtualization approach is explained in detail. An analysis of the results and
a discussion of the concept’s formal verification subsequently underline the value of
the approach. Finally, we conclude the paper.

E.2 Related Work

Virtualization as mean to provide security in embedded systems was discussed in
[42]. Previous attempts to actual use virtualization on embedded systems have
mostly been focused on porting of widely used virtualization layers such as Xen
[24], [98] or on performance analysis aspects [18].

That strong isolation can be achieved through advanced combination of virtu-
alization and the standard memory protection support on for example Intel based
systems was convincingly showed in the recent works by Seshadri et al in [155] and
[115]. Our design allows even the support of DMA without loss of isolation or the
need for advanced I/O memory protection (such as an IOMMU). Härtig et al. [86]
describe how to monitor potentially malicious device drivers of a system without
a hardware IOMMU. However, different from our approach, their work is neither
designed to support several guests nor does it cover scheduling or virtual views on
the DMA controller. Furthermore we put the assurance of security properties into
the focus.

Recent work has shown that verification of low level software is in fact feasible.
Klein et al. successfully verified the micro kernel seL4 [105] and the Robin project
[171] made progress on the verification of the Nova hypervisor [168]. This gives us
motivation to perform verification effort on our solutions (such as the here described
approach) as well.

E.3 Prerequisites

E.3.1 Assumptions
The following assumptions are made in this paper:

• The only DMA controller present on the platform is a general purpose DMAC
not bounded to any particular peripheral. It does not perform any action
without being programmed to do so by the CPU. The programming interface
of the DMAC is known to the hypervisor.

• The MMU supports the management of ARM domains (see Sect. E.4.2).
Peripherals are memory mapped and access to them can be controlled through
the MMU.

• All hardware entities, including the DMAC and the MMU, are working cor-
rectly and are not malicious. No physical attacks or tampering attempts are
present.

126 PAPER E. SECURING DMA THROUGH VIRTUALIZATION

• The hypervisor code is loaded unmodified at system startup. All upstream
entities (such as the BIOS and the boot loader) are trusted. To ensure this,
a secure boot process [10] can be used.

E.3.2 Threat Model
The attacker is assumed to have complete control over one or several guests. That
includes the possibility to execute arbitrary code and to access data with its/their
rights. The attacker’s goal is to compromise any other guest, that is, to modify
or read its code or data, or to prevent, delay or control execution of foreign code.
We assume that he or she has no intention to determine whether DMA is used
by other parties or not. However, should a stricter security property be desired,
the hypervisor could be extended in one of the following ways to prevent revealing
delays:

• “Secret” DMA tasks can be stopped in favor of DMA tasks issued by a guest
which might possibly be interested in observing the DMA activities of the
system. They can be resend to the DMAC after other tasks are done.

• The hypervisor can introduce pseudo delays if the DMAC is not used by
other guests, so that an attacker cannot distinguish between free and occupied
DMAC channels.

• The concurrent execution of guests can be (temporarily) disallowed or the hy-
pervisor can wait until all “secret” DMA tasks are finished before a potentially
malicious guest is called.

All those measures can be provided optionally so that they only apply for certain
critical guest configurations.

E.3.3 Security Requirements
The goal is to provide isolation between guests to prevent any of the attacks de-
scribed in the threat model. Furthermore it shall be guaranteed that DMA func-
tionality is always available to non-malicious guests. This means that any policy-
conform DMA task will eventually be processed. Given those targets, the following
security requirements need to be implemented:

1. Every attempt to access the DMA controller leads to a trap into the hyper-
visor.

2. The DMAC performs only those copy operations which comply with the access
policy. A word is accessible according to that policy if and only if it can be
written/read by the current guest even without DMA support, that is, via
the CPU, but in context of the valid MMU settings.

E.4. ARCHITECTURE AND HYPERVISOR 127

3. No guest can (re-)program a DMA request on behalf of another guest. This
is independent from the access policy. Assume guest 1 has access to the
addresses A,B,C,D and intents a copying from A to B, then guest 2 is not
able to alter this request to, e.g. “from C to D”, even though this would be
a valid request when issued by guest 1 without interference of guest 2.

4. The scheduling does not influence the security.

5. Virtualization solutions which are supposed to provide security may have
the vulnerability that they are attackable in their configuration [151]. In
contrast, our hypervisor can not be modified by guests, neither using DMA
functionality nor otherwise.

6. All DMA tasks that comply with the policy are either directly processed by
the DMAC or enqueued.

7. Every DMA request will be processed (either executed or denied) and sub-
sequently deleted from the DMAC and internal structures, so that they can
not get blocked.

The isolation target is covered by requirements 1 - 5. DMA functionality can
only be used through the hypervisor (1), which itself is not modifiable (5) and works
correctly. Working correctly here means that it only grants valid accesses (2) issued
by the right guest (3) and that itself will not modify accesses so that they would
influence security (4). Availability follows directly from requirements 6 and 7.

E.4 Architecture and Hypervisor

E.4.1 Operation Modes
ARMv5 has one non-privileged mode and six privileged modes without further
hierarchy. As a hypervisor needs to supervise guest kernels, it has to operate in the
privileged ring while all guests have to be placed completely into the non-privileged
mode. On interrupts and data aborts, the CPU switches to the privileged ring. By
using a software interrupt, guests can intentionally pass control to the hypervisor.

E.4.2 Memory Access Control
The MMU is used to ensure separation between guests and to protect the hyper-
visor. The ARM architecture allows to define so called “domains”. Each page can
be assigned to one of them. Depending on the access bits for a domain, all its
pages are either not accessible at all, fully accessible or subject to the settings on
page table level. This allows the simultaneous changing of memory access rights
for all domains by only one register access. Input and output devices are memory
mapped and are thus also subject to the MMU based access control. This enables

128 PAPER E. SECURING DMA THROUGH VIRTUALIZATION

a hypervisor to intercept on interaction with the DMAC via an according abort
handler.

E.4.3 OVP and the DMA Controller
We have developed a proof of concept implementation, which has been tested on an
emulated platform by Open Virtual Platforms (OVP) [133]. Our implementation
utilizes the general purpose DMAC provided by OVP. Different from the ARM
provided PrimeCell DMA Controller (PL080) [16], the OVP DMAC has only two
channels instead of eight and is restricted to the simplest functionality. However,
the programming interface is similar and the simplified DMAC is still sufficient to
demonstrate the effectiveness of the approach described in this paper. The focus
lies on four channel specific registers, namely a source and a destination register,
the control register, in which information about the burst size and the total size
of the data is encoded, and the configuration register, which causes the copying to
start on certain values.

E.4.4 The Hypervisor
The starting point for our design was a hypervisor previously designed and im-
plemented by the Swedish Institute of Computer Science. The hypervisor aims at
the isolation of guests. Each guest is made up of an arbitrary number of guest
modes. Besides separating different guests from each other, the hypervisor can
also strengthen isolation between the guest modes of one single guest (such as the
user and the kernel mode of an operating system). In either case the hypervisor
can be configured to allow inter-mode-access mono- or bi-directional or to prohibit
it so that isolation is guaranteed. A typical scenario would include a setup of
one commodity operating system along with a domain (guest mode) for trusted
services. Several memory regions can be defined, for example one for each guest
mode, and pages can be assigned accordingly to determined ARMmemory domains,
which allow quick locking and unlocking of the guests’ data and executable code.
Additionally, when switching between two guest modes, the hypervisor saves and
restores the respective contexts, that is, the registers’ contents. For the commu-
nication between guest modes the hypervisor offers the possibility of establishing
remote procedure calls (RPC). The operating system FreeRTOS was successfully
ported to the hypervisor.

E.5 DMA Virtualization

Common to other hardware virtualization solutions, we use an approach where
we emulate the DMAC. Different from typical approaches though, our design is
driven by a careful security analysis, making sure that a hostile guest will not be
able to circumvent any system access rules. This includes interrupt handling and
memory access control. Guests do not interact directly with the physical controller.

E.5. DMA VIRTUALIZATION 129

Instead, each access attempt will result in trapping into the hypervisor, which then
controls and manages the DMA tasks before forwarding them to the physical DMA
controller. Thus, programming a DMA task appears to the guest as if there were no
virtualization. In the background the hypervisor checks access conditions and takes
care of scheduling issues. When the DMA task is done, the hypervisor forwards the
interrupt it has received from the DMAC to the guest in charge.

E.5.1 Shadow Copies and Scheduling
To prevent guests from interfering during foreign DMAC setups, the hypervisor
maintains shadow copies of the DMAC (one for each guest mode). When a guest
tries to access a certain register of the physical DMAC, the hypervisor is invoked
via the data abort handler and writes the given value into the guest mode’s shadow
DMAC instead. The physical DMAC will only receive complete and bundled data
from the hypervisor. There might exist more guests concurrently interested in
DMA than resources are available. As guests may assume that they are possessing
the hardware for their own use, they will not actively wait with submitting DMA
requests until the DMAC is not longer occupied. Instead, they will post their
request assuming that it is processed. Thus, the hypervisor keeps track on which
guests have commanded a DMA task and memorizes the parameters as long as
the task is not sent to the real DMAC (when occupied). The decision to manage
shadow DMACs makes the memorization of parameters simple. A queue is used to
schedule the DMA tasks. As we assume a symmetric system, tasks can be assigned
to any free channel of the physical DMAC, regardless of whether the physical and
the virtual channel numbers are equivalent. Depending on whether a DMA task
is enqueued or posted to the physical DMAC, the according virtual channel in the
guests’s shadow DMAC will be marked as waiting or active, respectively.

E.5.2 Trapping with the Data Abort Handler
After trapping to the privileged ring, the data abort handler of the hypervisor
determines from where an access attempt came and to which address it was directed.
To get to know whether it was a reading or writing access and which CPU register
was supposed to be involved, the hypervisor decodes the machine instruction. If
the instruction refers to the DMAC, the hypervisor will calculate which channel
and which register was meant and as long as the (virtual) channel is not marked
busy the value to be written will be filled in into the shadow register. In case of an
correctly formatted access to the configuration register, the DMA task in question
is checked with respect to the access policy.

E.5.3 Access Control
The DMA access policy is directly derived from the system’s access definitions.
Whether or not a guest is allowed to read or write from or to a certain spot in

130 PAPER E. SECURING DMA THROUGH VIRTUALIZATION

memory is already defined in the MMU coprocessor registers and the access control
data structures of the hypervisor. The same rules will apply for copying operations
with the use of DMA.

E.5.4 Handling DMA Interrupts
The purpose of DMA interrupts is to inform the issuer of a DMA task that the op-
eration is done. In our scenario the hypervisor will receive those interrupts. Besides
forwarding them to the corresponding guest mode by calling a special handler pro-
vided by the guest, the hypervisor also uses the interrupts to determine when the
DMAC is available again. Summarized, the hypervisor safes the execution context
of involved guest modes, disables further interrupts and switches to the interrupt
handling mode. After finishing its procedure, the just called guest yields back to the
hypervisor by a hypercall. Finally, the hypervisor re-enables interrupts, dequeues
waiting DMA tasks and returns to the interrupted guest mode.

E.6 Evaluation

E.6.1 Performance
With the help of the emulator by OVP we compared the performance of the de-
scribed virtualization solution with DMA support to:

1. the performance of DMA in a non-virtualized (not protected) system and

2. the performance of copying without DMA.

Especially the latter underlines the value of our work. The usage of an emulator
allows us to make a very detailed performance analysis based on the granularity
of cycle numbers. Table E.1 gives an overview on how many cycles the setup
of the DMAC, the programming of a task and the handling of a DMA interrupt
take in the standard and the secured virtualized version, respectively. The DMA
programming step is detailed analyzed in respect to its substeps: trapping into
the hypervisor, obtaining the shadow copy (SC) of the guest mode, filling out the
shadow copy, performing the access control check, submitting the task to the real
controller and the possible need to enqueue a task. The number of required cycles
of different requests can vary slightly, depending on the channel addressed (due to
address calculation), the number of channels used, the access policy etc. Therefore,
both the minimum and the maximum values of our tests are listed. The upper
bounds for setup, programing and interrupt handling, respectively, are compared
to the performance values of the non-virtualized reference system. The resulting
factors are listed in the fourth column. Our reference processor, the ARM926EJ-S,
performs at least 200 million instructions per second (MIPS) so that the required
time for the single steps can be approximated (in micro seconds). Even though
the factors seem to be quite high at first glance, the security effort is nonetheless

E.6. EVALUATION 131

reasonable for a solution that does not require any hardware changes to the legacy
system at all: a whole DMA cycle (programming a task and handling the interrupt)
will not take more than 15 micro seconds. This low overhead in the pre- and
postprocessing is negligible compared to the benefits of using DMA (for details see
below).

Table E.1: Overhead of securing through virtualization

step standard virtualized × µsec
setup of DMAC 51 51 1 0.26
programming
.. trapping 466
.. obtaining SC 135 - 178
.. filling out SC 233 - 272
.. access control 462
.. submission 44 380 - 458
.. (enqueuing) (57)
= total 44 1676 - 1836 42 9.18
interrupt handling 89 1155 13 5.78
total per task 133 2831 - 2991 23 14.96

Besides comparing non-secured and secured DMA with each other, we also have
analyzed when the performance benefits of secure DMA exceed its costs. More
specificly, we have measured the CPU cycles required to copy different amounts
of data without DMA, that is, only with the CPU running copying instructions
in a loop. Figure E.1 displays those results (“CPU”) and compares them to the
constant costs of using DMA (“DMA”). Copying a single word (4 bytes) without
DMA requires 21 to 25 cycles on average, depending on the data structure and
loop overheads. While for small tasks the use of DMA is not appropriate, from
around 128 words (0.5 KB) on it consumes less CPU cycles than the standard way.
Note that both variants are secured by the hypervisor. Finally, the graph labeled
“DMA/CPU” shows the ratio of the costs when copying with DMA and CPU only,
respectively. It is clearly visible that the use of DMA quickly becomes strongly
preferable, even without loss of security.

E.6.2 Security Analysis
Referring back to the security requirements defined in Sect. E.3.3, we now go
through them step by step (original numbering kept) and reason why our solution
fulfills them.

1. The memory region in which the DMAC is situated is configured to deny
any access from the unprivileged processor mode in which all guest code is

132 PAPER E. SECURING DMA THROUGH VIRTUALIZATION

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 200 400 600 800 1000 1200
 0.1

 1

 10

 100

c
y
c
l
e
s

r
a
t
i
o

number of words to copy

DMA
CPU

DMA/CPU

Figure E.1: Comparison between DMA and CPU copying of words in a secured
environment

executed. Every access attempt invokes the data abort handler defined by
the hypervisor.

2. The hypervisor is the only entity which is able to program the DMAC. Before
filling out its registers, the DMA task in question is checked according to
the same criteria which apply to writing and reading processes without DMA
support. Should this test fail, the task will neither be submitted nor enqueued.
Once a task is actually submitted or enqueued, it cannot be modified anymore.

3. All programming steps are performed on a guest specific shadow DMAC first.
That is, no guest can interrupt another one and modify specifications such
as source and destination address in the name of the interrupted guest. This
protection ensures that interferences during the programming of the DMAC
are not possible. Only the very last step, the actual commitment, causes the
physical DMAC to be filled out. This is done by the hypervisor on the basis
of the shadow DMAC of the current guest. With other words, no data from
other guests can influence this process. Interrupts are disabled during this
last step.

4. The queuing operations do not modify the actual content of DMA tasks. Only
the physical channel chosen can differ from the virtual channel number, which
does neither affect which data is copied nor to which address. Furthermore,
the hypervisor keeps track from which guest a certain DMA task came so that
interrupts are forwarded to the actual issuer of a DMA request.

E.6. EVALUATION 133

5. The memory region in which the hypervisor is situated is configured to deny
any access from the unprivileged processor mode, in which all guest code
is executed. Therefore, the protection of the hypervisor itself follows from
observation 2.

6. The number of bytes to copy and the source and destination address of a
DMA request communicated by the guest are saved without modifications
in the shadow structure of the guest mode. As each guest mode has an own
shadow copy, no interference between guests can occur. The request procedure
is completed by a write attempt to the configuration register. This will invoke
the access policy check. In case of acceptance, the task is submitted to the
DMAC or, if this is occupied, will be enqueued. The queue can not overflow
as the number of DMA tasks marked waiting is limited by the number of
guest modes times the number of DMA channels. This follows from the fact
that each channel can only be programmed once at a time per guest mode.

7. First, the characteristics of a queue ensures that each task enqueued will be
processed at some time. Invalid requests will not even be enqueued. Tasks
are finite and after their completion the DMAC will fire an interrupt, which
will reach the hypervisor. The latter will delete the task from the DMAC and
its internal structures. If an interrupt occurs while another one is processed,
the hypervisor will notice the second task completion as well as it (re-)checks
the states of all DMAC channels immediately before leaving the interrupt
service routine again. However, denial of service attacks can be a threat to
the complete handling of DMA interrupts. How they can be prevented or at
least limited is described below.

The possibility that a guest does not yield back to the hypervisor is always
given, not only in the context of DMA support. A good way to get control back
in any case is the use of a timer tick counter or watchdog interrupt, which will
call a hypervisor function after a predefined amount of time. Especially for the
DMA interrupt handling presented here there are additional means by extending
the configuration of the hypervisor. For example, the hypervisor can be changed to
disallow or postpone the interrupting of guest modes which are seen as especially
important and protect worthy. That way, a malicious guest mode cannot use a
DMA task to get execution time (via its DMA interrupt handler) during a sensitive
operation of another guest mode. Vice versa, it is conceivable to grant only trusted
guests the possibility of own DMA interrupt handlers, at least in critical situations.
But not only the DMA interrupts need to be considered. Each attempt to program
the DMAC, no matter if successful or not, causes a delay in the system. To prevent
malicious guests to use this for slowing the system down, the hypervisor can easily
be modified to restrict accesses to a certain number or frequency per guest mode.

134 PAPER E. SECURING DMA THROUGH VIRTUALIZATION

E.7 Formal Verification of a Simplified DMA Model

One of the benefits of using virtualization for security is the relatively small size
of a special purpose hypervisor compared to a complex modern operating system.
This reduces the trusted computing base distinctly and allows formal verification
of the system’s overall security properties. We used the Coq theorem prover [33] to
show memory isolation in the context of DMA on a highly simplified model.

Assuming there are exactly two guests, either of them potentially malicious.
Guest 2 is the “object of comparison”: it is shown that the memory region and
data structures assigned to guest 2 are not influenced by DMA operations of guest
1. It follows that both the integrity of guest 2 and the confidentiality of guest 1
hold.1 We model the machine state as a record of a simplified memory, the DMAC
and its two shadow copies, flags indicating which guest system has DMA transfers
active, resp. waiting, and finally an interrupt flag indicating the completion of a
DMA transfer. We assume that a guest system can read the memory addresses
belonging to it at any time. In contrast, the MMU prevents accesses (not using
DMA) to the other guest’s memory. An execution consists of a sequence of state
transformations. Three state transformations are represented in the model, namely
the activities of the hypervisor initialized whenever a guest attempts to access
the DMAC, the operations performed by the DMAC and the functionality of the
interrupt handler. As those transformations usually occur together, we summarize
such a chain to an execution block, denoted by F . Depending whether it was
evoked by guest 1 or 2, it is referred to by F1 or F2, respectively. Following those
conventions the execution of the system can be seen as a sequence of blocks, as for
example F1−F2−F1−F2−F2−F2−F1− We show that, in this model, under
no circumstances the content of the memory region for guest 2 will depend on the
inputs made by guest 1. With other words no information can flow from guest 1
to guest 2. This is done by proving that for any execution sequence, neither the
memory content belonging to guest 2 nor the content of guest 2’s shadow DMAC
registers change when eliminating blocks of type F1. The proof uses an important
state invariant, reflecting that the state is correctly and soundly configured, defined
as follows:

• The DMAC is set up according to the access policy.

• If some shadow DMAC is marked enabled, its source and destination registers
follow the access policy.

• No guest is active and waiting at the same time.

• The interrupt flag is only set if the DMAC is enabled.

• The physical DMAC is enabled if and only if at least one of the shadow DMAC
is.

1Confidentiality of guest 1 and integrity of guest 2 hold by symmetry.

E.8. CONCLUSIONS 135

• A shadow DMAC is marked enabled if and only if the corresponding guest is
marked as active or waiting.

• If some guest is marked as waiting then the other guest is marked as active.

It is shown that all hardware and hypervisor operations maintain this invariant,
that is, when starting in a correct and soundly configured state, the execution will
result in another correct and soundly configured state. Finally the main theorem is
formulated as follows: Starting in a correct and sound configured initial state and
building up two execution sequences of which one represents any actual execution
and the other is the related sequence ignoring all operation/execution blocks caused
by guest 1, then at every step both sequences will be equivalent with respect to guest
2. We were successful in proving the theorem in Coq using 2200 lines of proof, out
of which 300 describe the actual model. Even though this initial verification effort
demonstrates that the DMA approach of the paper is based on sound fundamentals,
it still relies on strong assumptions and a very simplified model. Work on refining
the approach is in progress.

E.8 Conclusions

We have demonstrated that DMA virtualization only based on software and stan-
dard hardware can provide high security guarantees. To strengthen this even more
we also have applied formal verification. Besides isolation, availability is warranted.
Moreover, our approach has a low performance overhead, on the order of a few mi-
croseconds in pre- and postprocessing of DMA transfers. We intend to compare
our performance results to systems with ARMv7 and/or System MMU. Additional
features such as broader platform support or secure booting are also left for future
work. As for verification, we plan to analyze the whole hypervisor on binary level.

F

Paper F

Affordable Separation on
Embedded Platforms:
Soft Reboot Enabled
Virtualization on a Dual Mode
System

Oliver Schwarz, Christian Gehrmann, and Viktor Do

Abstract

While security has become important in embedded systems, commodity
operating systems often fail in effectively separating processes, mainly due
to a too large trusted computing base. System virtualization can establish
isolation already with a small code base, but many existing embedded CPU
architectures have very limited virtualization hardware support, so that the
performance impact is often non-negligible. Targeting both security and per-
formance, we investigate an approach in which a few minor hardware ad-
ditions together with virtualization offer protected execution in embedded
systems while still allowing non-virtualized execution when secure services
are not needed. Benchmarks of a prototype implementation on an emulated
ARM Cortex A8 platform confirm that switching between those two execution
forms can be done efficiently.

F.1 Introduction

Embedded systems are becoming more powerful, distributed and globally con-
nected. We see a transition from classical single function embedded systems to
powerful collaborative special purpose computing devices often controlling sensitive

137

138 PAPER F. AFFORDABLE SEPARATION ON EMBEDDED PLATFORMS

or critical infrastructure functions, so called cyber-physical systems. In the past,
software attacks were mainly targeting high performance computers such as desk-
top computers, laptops, and recently also mobile devices. This is about to change
rapidly. Security threats against cyber-physical systems have become a severe is-
sue, requiring strong platform security protection techniques such as separation
[158] without overly increasing performance or system costs.

The need for separation of security critical data and code on mobile devices mo-
tivated ARM to introduce the TrustZone technology [11], available for some (but
not all) ARM systems. TrustZone is a System-on-Chip (SoC) isolation technique
that establishes a high degree of separation between trusted and non-trusted ex-
ecution, while keeping context switches fast. To distinguish between trusted and
non-trusted address space, TrustZone adds an additional address bit to the bus
system. In order to not break isolation, careful SoC adaptations at the design level
of application specific integrated circuits (ASIC) are necessary to make memory
interfaces, interrupt controllers, Direct Memory Access (DMA) devices etc. aware
of that bit.

System virtualization is an alternative way to protect security critical assets
[79, 80]. However, in tiny embedded systems with limited hardware virtualization
support, system virtualization implies a non-negligible performance overhead [58].
On the other hand, security services typically do not run on the system all the time.
They can be scheduled on a regular basis to perform monitoring or be called upon
demand (e.g., for secret key operations).

In this paper we propose an alternative system virtualization enabled approach
for separation, based on dual mode execution, i.e., the ability of choosing between
virtualized and non-virtualized execution mode, and switching between the modes
through soft reboots. The goal of the solution is to provide separation while keeping
both performance overhead and required SoC adaptations to a minimum. Only a
few hardware adaptations to an existing architecture are required. In one of the
typical use cases, a service for proving the device’s identity to its environment
wants to keep the authentication key secret from the rest of the system. The
system would run non-virtualized in the majority of the time, but activate the
trusted service domain only for the actual authentication process. The exchange
of required challenge-response-messages throughout that process will happen via
remote procedure calls (RPCs).

Different from general purpose hypervisors (also called virtual machine monitors
(VMM)) such as Xen [98] and KVM for ARM [58], a hypervisor with the purpose
of separation or monitoring has a more focused scope and several optimizations can
be made. We have developed a tiny hypervisor for ARM Cortex A8 with focus on
separation. It was recently released as open source, and isolation properties of one
version of this hypervisor have been formally verified on binary level. Based on
this hypervisor, FreeRTOS as main guest, and emulated ARM Cortex A8 hardware
enriched by our hardware extensions, we have implemented the suggested approach
for dual mode protected execution. Benchmark figures show the feasibility of the
concept. The main costs for enabling isolated services consists of their decryption

F.2. HARDWARE AND PROTOCOL 139

and the integrity check of those services and of the lightweight hypervisor. Re-
turning to non-virtualized execution does not take much longer than the erasure of
newly produced confidential data.

Contrary to other approaches, that are for example based on TrustZone or
trusted computing enabled late launch [82], the solution presented in this paper does
not require any particular CPU architecture or extensions to the CPU, which keeps
costs low and makes the concept applicable to a large set of embedded systems.
Summarized, our solution offers the following benefits:

1. Trusted domains can be executed with guaranteed separation without causing
performance overhead in phases where their services are not required.

2. If desired and the use case allows the resulting latency, the commodity OS
can be paused throughout the protected phase, so that trusted domains can
execute without the need of paravirtualization1 of the commodity OS.2

3. The proposed protocol includes a secure boot scheme, so that confidentiality
and integrity of hypervisor and trusted domains are maintained even in the
presence of external accesses to their non-volatile storage.

F.2 Hardware and Protocol

We consider a concept that relies on minor adaptations on SoC design level to make
it possible to run the system in two modes, protected mode and normal mode. In
protected mode a dedicated hypervisor runs in the most privileged level on each
CPU in the system and trusted guests (such as secret key services) can run separated
by the commodity OS, while in normal mode no hypervisor needs to be present in
the system, as depicted in Figure F.1 for a single CPU system.3 Priviliged software
can cause transitions between modes by requesting a soft reboot (also referred to
as soft reset or warm reboot), which is initiated by the system’s reset signal.

The SoC contains two special purpose volatile memory registers: a mode state
register and a transition register. The mode state register states whether the system
is currently in protected or normal mode. The transition register is used to state
the intention of commodity OS or hypervisor about which mode to enter. The
mode state register can only be changed in early booting phases. Thereafter it
will be locked through a sticky bit so that it can not be modified anymore until
a chip reset (and consequently a soft reboot) occurs. The boot code responsible

1Paravirtualization [165, p. 422] describes any modification of guest operating systems, in
order to enable their execution on a virtualized environment instead of bare metal, e.g. by mak-
ing them use software interrupts (hypercalls) to perform privileged operations, according to the
hypervisor’s API.

2Depending on the scenario, interrupts would be recorded by the hypervisor or just masked
during the pause.

3Here, we illustrate a single CPU architecture, but the principle can easily be extended to a
multicore architecture, see Section F.2.1.

140 PAPER F. AFFORDABLE SEPARATION ON EMBEDDED PLATFORMS

Figure F.1: Dual mode operation.

for the hypervisor and OS kernel launch determines which mode to boot into -
and consequently the value to set in the mode state register. In a cold boot (full
hardware reset) the default mode value is given by a boot configuration. In a
warm/soft reboot the value is determined by the transition register, as set by the
higher level software.

When running in protected mode, the hypervisor controls sensitive applica-
tions, I/O devices and data and can protect the system from illegal access to these
units. This can be achieved using the normal Memory Management Unit (MMU)
or Memory Protection Unit (MPU) present in most systems. If applicable, addi-
tional hardware protection support can be utilized, such as an Input/Output MMU
(IOMMU). The memory protection mechanisms are also used to make sure that,
when running in protected mode, a soft reboot to normal mode can only be ini-
tiated by the hypervisor or hypervisor protected units, such as a watch dog timer
reset function (placed in a protected address space). 4

Figure F.2 shows a SoC design according to the approach and the proof of
concept implementation we have done using emulated hardware (see Section F.5).
In addition to the two special purpose registers, the SoC design includes one or
several chip unique secret key(s), stored in non-volatile registers. They are used
to decrypt and check the integrity of security critical code/data that is loaded into
the chip internal or external RAM. To prevent any usage of the chip unique secrets
in normal mode, they are tied to the mode state register and locked to protected

4As discussed in Section F.5.2, unprivileged software can at most achieve a soft reboot to
protected mode or a cold reboot.

F.2. HARDWARE AND PROTOCOL 141

Figure F.2: SoC system view.

mode. In our proof of concept implementation we have optimized performance with
a fully functional cryptographic module, the transition crypto module. However,
cryptographic operations can be performed in software as well, reducing the number
of changes to integrated circuits, but at the prize of an increased performance
overhead. If not mentioned otherwise, we assume the presence of a transition
crypto module in the remainder of the paper.

In order to show how these SoC components are used in the suggested approach,
below we describe the details of the cold boot, the transition from protected to
normal mode and the transition from normal to protected mode.
The flowchart in Figure F.3 summarizes the course in respect to the bootloader
code.

Cold Boot The following steps are performed in a cold boot:

1. After the machine is powered on, a first stage boot code is executed. To
prevent security from being compromised, this code needs to be protected
from modifications by storing it in write-protected memory such as on-chip-
ROM.

2. The first stage boot code loads the integrity protected second stage boot code
and boot configurations into on-chip-RAM. The second stage boot code and
its configurations are protected with signatures verifiable with a public key
stored in write-protected memory, such as ROM, or hardware registers, such
as e-fuse registers.

142 PAPER F. AFFORDABLE SEPARATION ON EMBEDDED PLATFORMS

Figure F.3: Flowchart

F.2. HARDWARE AND PROTOCOL 143

3. The first stage boot code reads the verified boot configurations and writes the
default boot mode (normal or protected) into the mode state register, which
is then locked.

4. The first stage boot code launches the second stage boot code. Depending on
the system and use case, one or several intermediate boot stages are processed
until the boot code responsible for hypervisor or operating system launch is
reached. We call this boot stage transition boot stage.

5. The transition boot stage reads the current value of the mode state register.
If the register indicates normal mode, the operating system indicated in the
boot configurations is launched. If the register indicates protected mode, the
following steps are performed:

a) The transition boot code loads hypervisor, trusted guest(s) and data
from external memory and verifies the integrity (e.g., by using a transi-
tion crypto module). The confidentiality of trusted guests is protected
through fast symmetric encryption with a chip unique secret key. If re-
quired, confidentiality protection can also be applied to the hypervisor
or parts thereof.

b) If decryption and integrity verification in the previous step were success-
ful, the transition boot code hands over the execution to the hypervisor.
Otherwise, the transition boot stage code clears all security sensitive
data on the system, writes “normal mode” into the transition register
and issues a soft reset, so that the system reboots into normal mode.
This allows the system to recover even if it could not be started into
protected mode.

Transition from Protected to Normal Mode When the system is in pro-
tected mode and secure services are no longer needed on the system, the hypervisor
switches the system back to normal mode, as follows:

1. All trusted guests currently running are halted by the hypervisor. If re-
quired, persistent data is stored, integrity and confidentiality protected. Sub-
sequently, the memory of trusted guests is cleared.

2. All confidential hypervisor data is cleared from memory.

3. The hypervisor can choose to maintain non-confidential code/data in memory
to avoid reloading and reinitializing when returning to protected mode. In
that case, Message Authentication Codes (MACs) protecting the integrity are
recomputed, given that the concerned memory regions have changed.

4. The hypervisor sets the transition register to “normal” and issues a SoC-wide
(soft) reset signal. This can be done via the component containing the two
special purpose registers. The resulting soft reboot of the system will keep the

144 PAPER F. AFFORDABLE SEPARATION ON EMBEDDED PLATFORMS

content of most volatile memories, which allows a rather quick booting process
without the need to reload all code and data from non-volatile memories.

At reset, the system will be booted into normal mode (analogous to the previous
paragraph) running the OS kernel in the most privileged CPU mode as “usual”,
i.e., as in a non-virtualized system (see Figure F.1). Before handing over execution
to the commodity OS, the boot code clears all registers to avoid that confidential
data from a protected mode phase is leaked into normal mode.

Transition from Normal to Protected Mode When the system is in normal
mode and one or several security critical services are required, the commodity op-
erating system writes “protected” into the transition register and issues a soft reset
signal. It can inform the hypervisor about requested services and their parame-
ters by writing service request values into dedicated transition memory before the
reset. Subsequently, the boot is performed in analogy to the cold boot into pro-
tected mode, retrieving mode information from the transition register. However,
the commodity OS is not loaded again and, if chosen so, the non-confidential parts
of the hypervisor (such as code, page tables, constants) are not either. In contrast
to that, integrity verification is always performed, possibly even for new memory
regions used by, for example, page tables created in the previous hypervisor session.
If hypervisor memory has been compromised in normal mode or protected mode has
not been active before, a fallback option will (re-)load the entire hypervisor from
the storage as done in cold boot. Once the system is rebooted, the hypervisor will
check the requested secure service(s) by reading the transition memory and launch
them with the given parameters after checking that both services and parameters
are valid and sound. Alternatively, this information can be passed via a hypercall
from the commodity OS, once it is invoked by the hypervisor.

On a mode transition in either direction the commodity OS is usually aware
of the upcoming soft reboot and will pause active processes as well as store their
contexts before releasing control. Those processes (kept in memory) can then eas-
ily be resumed in the new mode. Before the hypervisor or OS reconfigures the
peripherals, it needs to check whether interrupts (masked throughout the soft re-
boot) have occurred. Depending on the use case, the boot code can also be used to
record events in a queue. In typical scenarios, the user will be aware of the inherent
latency.

F.2.1 Implementation Alternatives
Enforced Protected Mode through Watch Dog Timer An alternative re-
alization of the presented approach connects the watch dog timer of the SoC to
the mode state register, so that the timer can only be reset if the system is in
protected mode. If not kept alive, the watch dog issues a soft reset. At soft re-
set, the transition boot stage code checks the status of the watch dog timer and if
it has reached zero, the transition boot code will boot the system into protected

F.2. HARDWARE AND PROTOCOL 145

mode, independently of the transition register. This forces the system into pro-
tected mode in some pre-defined time intervals, which can be useful for monitoring
or to counteract denial of other trusted services.

Soft Reboot Enabled by TrustZone The ARM TrustZone technology for
ARM11 and ARM Cortex embedded processors [11] offers support for creating two
securely isolated virtual cores (or worlds as they are termed) on a single real core.
Both secure world and normal world manage an own virtual MMU, as well as an
own vector table and thus own exception handlers [59]. System hardware, including
memory and peripherals, can be allotted to each world. This is realized by an ad-
ditional address bit. However, that separation requires that peripheral devices are
adapted to the setting. A transition between the worlds is initiated by a hardware
interrupt or a Secure Mode Call (SMC), both invoking the so called monitor mode,
which is responsible for context switches. The concept of turning a hypervisor on
and off on demand, as described in this paper, can also be implemented based on
TrustZone instead of the discussed hardware extensions. Bootloader, hypervisor,
trusted guest and the current mode would then be kept stored in the memory of
the secure world, which only executes code to realize the soft reboot transitions.
The execution of all other software (including the hypervisor and the trusted guest)
happens in the normal world. Soft resets would be realized through SMCs. One
of the advantages of this variant is that no soft reboot specific hardware extension
in form of, e.g., a mode state register is required, something which is especially
useful when TrustZone is already present anyway. Furthermore, keeping assets in
the secure world reduces the need for crypto operations considerably. However, a
secure boot scheme would still be needed to ensure that the hypervisor and the
trusted guest(s) are loaded into the secure world memory confidentially and in-
tegrity protected. Hardware protected keys are therefore still required. Moreover,
peripherals have to be adapted in order to maintain separation between the two
worlds. This limitation together with the costs of the TrustZone extension makes
a TrustZone driven implementation variant only preferable to the standard one if
the soft reboot is to be enabled on an already existing system that (including its
peripherals) supports TrustZone from the beginning.

Multicore Systems The presented solution is also applicable to multicore sys-
tems. Since the mode state is a global property to control access to the chip unique
keys, all CPUs have to agree on the mode. Consequently, when in protected mode,
all CPUs need to be protected by a hypervisor, irrespectively if they are running
secure services or not. There would be some master hypervisor on the system,
which has the responsibility to coordinate, to execute trusted services and to issue
soft reboots. In order to switch from protected to normal mode, the master hyper-
visor would inform its neighbors and wait until it has received acknowledgments
from all of them before issuing the actual reset signal. Likewise, when booting into

146 PAPER F. AFFORDABLE SEPARATION ON EMBEDDED PLATFORMS

protected mode, the master hypervisor will be booted first on the main CPU and
then launch all other hypervisors.

F.3 Hypervisor

A prototype implementation for the described solution has been established on the
basis of a type-1 hypervisor5, available as open source from [162]. Its focus lies
on providing security by MMU-supported separation and its isolation properties
have been formally verified on binary level [53]. Following the system virtualiza-
tion principle, it allows the parallel execution of multiple paravirtualized guests in
user mode. Both Linux and FreeRTOS have been ported to the hypervisor. Isola-
tion between guests can intentionally be relaxed by the possibility to communicate
with well-defined and parameterizable RPCs via the hypervisor. In addition to
inter-guest-separation, the hypervisor offers introspection features such as virtual
guest modes that enable intra-guest-separation as well, for example in order to
maintain the guest OS’ kernel separation even when executing in the processor’s
non-privileged operation mode. The implementation of the hypervisor comprises
2717 lines of C code and 942 lines of assembly, resulting in a compiled binary of
31 KB. The hypervisor was developed for single-core ARMv5 and ARMv7 archi-
tectures and deployed on Beaglebone [31], Beagleboard [29], Beagleboard-xM [30],
NovaThor [166] and the Integrator development board [15], as well as on emulated
platforms within the OVP framework [133].

F.4 Software Adaptions

We have implemented a single-core prototype of the solution, based on FreeRTOS
as commodity OS and the inhouse hypervisor for ARMv7 described in Section
F.3. Both FreeRTOS and the hypervisor had to be modified to support the soft
reboot functionality, as described in this section. The trusted domain was easily
implemented since it only needs to offer an entry point for receiving RPCs and the
awareness about the RPC parameter passing protocol. Three different interrupt
vector tables were configured and are mapped according to the mode; while the
vector of the boot code is only referred to on reset, the hypervisor vector is active
in protected mode and FreeRTOS’ vector is either referred to directly (in normal
mode) or used to receive control from the hypervisor. Otherwise, memory mapping
is static and access rights only change in dependency to the current mode. Binaries
are linked/built separately for each entity and, where required, encrypted and/or
integrity protected before deployment.

Adaptations to the Commodity OS The core adaptation in the commodity
OS consists of changes that enables it to run both as guest on top of the hypervisor

5Hypervisors of type 1, also called native hypervisors, are not running on any host OS, but
on bare metal.

F.4. SOFTWARE ADAPTIONS 147

and natively on bare metal with control over the privileged operation ring of the
CPU. While in the latter setting, privileged operations are performed directly by
the corresponding privileged instructions, hypercalls have to be used in the first
setting. We added a dual API layer that selects the required implementation for
each functionality in dependency of a mode indicating configuration bit set by the
bootloader. Similarly, FreeRTOS was made able to switch between its own kernel
separation enforcement and the kernel protection provided by the hypervisor. On
startup, the commodity OS either performs its own hardware configurations or it
registers itself to the hypervisor, before creating or resuming processes. Finally,
we inserted code that makes use of the RPC functionality to communicate with
a trusted domain and that actually initiates soft reboots for demonstration and
benchmark purposes.

Adaptations to the Hypervisor The adaptations to the hypervisor were quite
limited. Essentially, besides providing configuration information about commodity
OS and trusted guest, only a hypercall needed to be added, that realizes the initi-
ation of a soft reboot into normal mode, including the optional write back of the
trusted domain and the erasure of all confidential data. The hypervisor makes use
of the possibility to be partly kept in memory on soft reboot. In particular, this
applies to the sections for code and constants, that both do not change through-
out the system’s uptime, and the page tables, for which a new MAC is computed
after they are generated. Data section, BSS section, heap and stack are treated
confidential and cleared before soft reboot. The data section is the only part that
needs to be reloaded when coming back to protected mode, given that no memory
corruptions have occurred in normal mode. Whether the hypervisor memory is still
uncorrupted or had to be reloaded by the bootloader is indicated as argument to
the hypervisor, so that page tables can be recomputed if necessary. Note that we
migrated the responsibility of loading guests from the hypervisor to the bootloader.
Similarly, we decided to invoke trusted services via RPCs by the commodity OS af-
ter a soft reboot to protected mode instead of passing parameters about the desired
service to the hypervisor. In that way, no decisions are required by the hypervisor
upon boot, but control can simply be transfered to the guest’s entry point directly.

Bootloader The implementation of the bootloader was carried out in a straight
forward manner according to the protocol in Section F.2, using a transition crypto
module for cryptographic operations. In our implementation the bootloader is
divided into two stages. The first stage boot code checks the transition register,
loads and verifies the second stage boot code and is placed into ROM along with its
vector table. The second stage boot code loads the commodity OS, the hypervisor
and the trusted guest (depending on the mode), carries out needed verification
steps and finally calls the commodity OS or hypervisor.

148 PAPER F. AFFORDABLE SEPARATION ON EMBEDDED PLATFORMS

F.5 Evaluation

The approach can be implemented on many current embedded architectures with
minor hardware changes (a few special purpose registers and hardware protected
keys), as most of the functionality relies on existing hardware features and functions
implemented in software, mainly the boot code and the hypervisor. To demon-
strate our solution and in order to obtain benchmarks on its performance, we have
implemented the described hardware extensions within the emulation framework
OVP [133]. It allows to implement and simulate the behavior of new SoC hard-
ware components with reasonable effort. The additional registers are realized as
memory mapped device connected to a SoC (emulation) with an integratorCP plat-
form that includes a single ARM Cortex-A8 CPU. The register extension has been
wired to perform system resets when required. Furthermore, a dedicated transi-
tion crypto module has been modelled in OVP, allowing us to verify the required
encryption/decryption and integrity check tasks. As OVP can not provide exact
simulation times, especially with respect to peripherals, MMU and caches, the main
purpose has been to test the concept as such and get a good picture of the per-
formance one can expect. Hence, the transition crypto module is simplified with
respect to its hardware interface and we allow direct memory read from the tran-
sition crypto module over the bus. This allows us to test the different boot cases
and the concept, but not to simulate real transition crypto module data transfers
from the CPU or via DMA. We believe those simplifications are reasonable since
exact time estimates for these access forms can not be obtained in an emulation
environment such as OVP anyway.

F.5.1 Performance
The suggested approach allows running secure services isolated by a hypervisor
layer only when needed instead of permanently. Consequently, the secure services
can be implemented with a very small performance impact. This comes at the price
of soft resets when the secure services are needed. The objective of our benchmarks
is thus to estimate the overall costs for a soft reboot.

The evaluation includes three factors:

• the number of bytes copied (or erased) between/from storage devices (NAND
flash, RAM),

• the number of bytes fed into the transition crypto module for en-/decryption
or integrity value calculation and integrity checks,

• the number of remaining CPU instructions not involved in any such feeding,
copying or clearing operations.

These figures together allow us to estimate the overall time for all steps of the
suggested approach, making the following assumptions about the platform:

F.5. EVALUATION 149

• The CPU is clocked with 720 MHz and nominally executes 200 MIPS, as
typical on many Cortex A8 development boards such as BeagleBoard [29].

• We assume a rather conservative RAM copy speed of 150 MB/second, which
is a lower estimate from [17].

• The copy speed from NAND flash to RAM is estimated by 6 MB/second
[114].

• We assume a transition crypto module supporting SHA-256 HMAC genera-
tion and AES-128 en-/decryption with a fair trade off between size and speed,
clocked at 174 MHz and with the ability to perform parallel hashing/encryp-
tion or hashing/decryption with the speed of 171 MB/second. Since hashing
is the dominating work load in such parallelized operations, the feasibility of
such a speed can be concluded from, e.g., [45].

Table F.1 provides an overview of the results for the single steps required, de-
pending on which transition is been considered. We distinguish between a cold
boot into protected mode (cp), a cold boot into normal mode (cn), a (warm/soft)
reboot into protected mode (wp) and a (warm/soft) reboot into normal mode (wn).
Crosses (X) indicate which step is involved in which transition. A dash (-) indicates
that the step in question is optional or does only occur in the first of typically many
soft reboots.

The benchmarks are based on a second stage boot code of 2.9 KB, FreeRTOS as
commodity operating system with a binary blob of 1 MB, the hypervisor sections
for code and constants, together 30 KB, hypervisor data of 1 KB and a trusted
domain of 380 KB. Those specifications refer to the initial volumes. However, we
allow the trusted domain to grow up to 1 MB for the usage of stacks, data structures
etc. The space reserved for the hypervisor’s heap, stack and BSS section is 900 KB,
while page table memory can be up to 64 KB.

A complete soft reboot cycle including two mode switches is with 19 millisec-
onds estimated considerably faster than any cold boot, irrespectively of the targeted
mode. Avoiding slow accesses to external storage is responsible for the main share
of those performance benefits. However, also the number of boot instructions is
reduced in warm reboot, in respect to both the hypervisor and the commodity OS.
In both cases this optimization is mainly due to the dispensed page table reconfigu-
ration. Preconfigured page tables could reduce the hypervisor’s booting phase also
in a cold boot, but that would come at the costs of an increased foot print and less
flexibility. Since we allow the trusted guest to grow to a size of up to 1 MB, writing
it back (including MAC computation and encryption) is comparatively expensive,
and so is its deletion. In order to optimize write back and clearing, one would need
to narrow down the space actually claimed by the trusted guest. However, writing
the trusted guest back might not be needed in many cases and is therefore listed as
optional. The share of cryptographic operations on the estimated costs of a warm
reboot to protected mode is 88%. Clearing confidential data is constituting the

150 PAPER F. AFFORDABLE SEPARATION ON EMBEDDED PLATFORMS

main part of the costs when soft rebooting into normal mode. We believe that the
soft reboot performance is more than reasonable in settings where a hypervisor is
only needed sporadicly. Assuming the estimations from above and a hypervisor
overhead of at least 2%, an execution phase of 1 second in which secure services are
not required is already enough to make a temporarily deactivation of service and
hypervisor through a soft reboot profitable. As the soft reset, different from a full
reset, keeps all volatile memory content, soft reboots are also considerably faster
than cold reboots with full resets. In order to achieve the same functionality of
enabling and disabling virtualization on demand with full resets, additional costs
to the ones listed above would arise, for example for storing application data before
rebooting.

F.5.2 Security

F.5.2.1 Attacker Model

We assume that the attacker has full control over the commodity OS. However,
the hypervisor is supposed to be free from vulnerabilities, which can be assured
by formal verification. Furthermore, we trust CPU, MMU and BIOS. Hardware
attacks are out of scope of this paper. Devices are assumed to reset whenever a
reset signal is issued.6 In particular, no previously pending DMA operations will be
performed after the reset until DMA controllers are reprogrammed. We furthermore
assume that the hypervisor is aware of the specification of all present DMA devices,
so it can intercept accordingly, and that the devices’ behavior actually follows
their (non-hostile) specifications. Alternatively, an IOMMU can be used to protect
against DMA attacks.

We assume that the attacker aims at obtaining confidential data about the
trusted guest and/or to affect its execution outside of the controlled communica-
tion channel provided. Denial of Service (DoS) attacks are out of scope of this
paper, since a malicious commodity OS has the ability of shutting down the ma-
chine or otherwise introducing delays anyway. However, making the watch dog
timer aware of the mode state register as described in Section F.2.1 improves the
protection against DoS attacks, even though complete protection is not achieved
by this enhancement either.

F.5.2.2 Protection in Different Execution Phases

In the following, we discuss the different aspects of the system’s security in detail.

6For functionality, the operating system or hypervisor respectively needs to wait until devices
have finished pending tasks before issuing a reset signal. However, the specific time of a reset has
no effect on the security.

F.5. EVALUATION 151

Execution in Normal Mode When in normal mode, the trusted guest and
confidential parts of the hypervisor are stored in encrypted form. Access to the
corresponding chip unique key(s) is rejected.

Entering Protected Mode The system can only enter protected mode along
with the execution of a trusted and unmodifiable bootcode. In order to change
the mode register, it needs to be unlocked. It is guaranteed by hardware that this
unlocking is performed together with a CPU reset. The reset sets the program
counter to a fixed address pointing to the bootcode in ROM. On ARM processors,
neither this address nor the endianess or the instruction set used after reset can be
changed by the commodity OS, even when running in privileged mode, since the
values for those system parameters are copied from the System Control Register
(SCTLR) register of coprocessor 15 which in turn is set back to default values first
on reset [13, pp. B1-1202, B1-1203]. In particular, the MMU is disabled [13, p.
B3-1308], so that the used entrance point of the exception vector table can not
be translated to a different address. Standard interrupts are masked by the reset
and not unmasked before control has been transferred to the hypervisor. Fast
interrupts are disabled by the boot code, even though there are no devices tied
to fast interrupts in our setting. The remaining bits of the Current Processor
State Register (CPSR) are set to default values by the boot code. If the integrity
verification of either hypervisor or trusted guest fails, the memory is cleared and
a reset to normal mode is enforced, so that compromised software will never be
executed.

Execution in Protected Mode The hypervisor is the first software invoked by
the boot code. It configures the system’s memory protection in such a way that
the hypervisor code and data, the trusted domain, the transition crypto module,
chip unique keys and register extensions are inaccessible to guests. All exceptions
are mapped to handlers under the control of the hypervisor.

Leaving Protected Mode In order for the commodity OS to (re-)gain privileged
rights, a reset has to be issued, since the hypervisor is maintaining control over the
system in all other cases. From a functional perspective, this is ideally done through
the hypervisor by sending an unlock request to the mode register. However, from
a security point of view we have to assume that the attacker can establish a reset
signal at any arbitrary time. In case this happens when the transition register
is (still) set to protected, the system will either get back to a state where the
hypervisor is in charge or (if integrity verification fails) all data will be erased and
the mode changed to normal before booting the commodity OS. Even achieving
one or several more reset signals during the soft reboot process will not be of any
benefit to the attacker since she has no possibility to set the transition register
to normal during that phase. In the other case that the transition register is set
to normal before reset, the system has either been in normal mode anyway (and

152 PAPER F. AFFORDABLE SEPARATION ON EMBEDDED PLATFORMS

confidential data is not present) or the hypervisor has already erased all confidential
data (as required by the protocol before setting the transition register back to
normal). The MMU is preventing unprivileged access to the transition register.
Multiple randomized overwriting of confidential memory regions can be used instead
of single overwriting, if deleted information must to not be retrievable in hardware
forensics. Before handing over execution to the commodity OS, the boot code clears
all registers to avoid that confidential data from a protected mode phase is leaked
to normal mode.

F.5.2.3 Further Aspects

DMA Devices In normal mode, devices do not have any more privileges than
the commodity OS. In protected mode, the hypervisor is able to intercept all at-
tempts to program DMA devices or can configure an IOMMU to protect security
critical parts of the memory. On soft reboot, pending DMA tasks are canceled. In
particular, the only DMA operations performed during the booting phase are those
executed with respect to the (trusted) transition crypto module.

Proof of Mode A design assumption of our solution was that the fact that the
system is running in protected mode will be proven to the user by functionality.
For many common applications (e.g., for secret key services such as signing) it is
impossible for the attacker to make the user believe the trusted application was
active if it was actually not. However, alternative embodiments are possible where
a secret is displayed to the user or a LED is tied to the mode register.

F.6 Related Work

In [85] IBM describes a method for directing the system’s reset signal to a specific
partition in a virtualized setting. The method is therefore another suggestion on
how to make use of reset functionality in virtualized environments, but does not
address virtualization overhead.

Instead of disabling virtualization completely when it is not needed, a natural
first step is to reduce its costs to a minimum. For example, in specific I/O opera-
tions hypervisors can be bypassed [113]. However, this requires hardware support
and applies only to a subset of all (I/O) operations. Naughton et al. [128] dis-
cuss approaches to extend the Xen hypervisor dynamically by loading additional
modules on runtime. In that way, the usage of space and other resources can be
optimized. Still, a basic instance of Xen would always be active, something we
avoid in our solution.

How to turn off a hypervisor while keeping other software running has been
demonstrated for a machine with a dedicated processor mode for virtualization
[73]. However, in many embedded architectures - for example on the common
ARMv7-processor - the additional requirement of lifting the operating system to

F.6. RELATED WORK 153

the privileged ring needs to be accomplished as well. Furthermore, the soft reboot
approach described in the present paper allows turning on the hypervisor (again),
guaranteeing the integrity protection of both the booted hypervisor and additional
guests while the hypervisor is off.

The separation facilities provided by TrustZone (see Section F.2.1) can be used
to execute trusted services isolated without suffering from the performance overhead
introduced by virtualization and without the need of paravirtualizing the commod-
ity OS. At the same time, other CPUs on the system stay unaffected, which can
be seen as additional advantage over the soft reboot approach, which requires all
CPUs to agree on the mode. However, even if considering a system with a CPU
already supporting TrustZone (which is not given for many embedded processors,
such as CPUs with ARMv5 architecture), using TrustZone to execute software iso-
lated requires from the SoC that peripherals are adapted in order to respect the
extended address format and thus maintain separation between the two worlds. In
contrast, the solution presented in this paper requires only minor additions to the
SoC. If the execution of several isolated services or a symmetric protection between
service(s) and commodity OS is required in a TrustZone solution, the secure world
will need to run a separation kernel, as used in the proposed soft reboot solution
as well. Note that TrustZone based approaches still need to make sure that trusted
services are kept confidential before being loaded from external storage to the se-
cure world. To achieve this, further hardware extensions are required in order to
provide a secure boot scheme.

An alternative way to securely invoke a hypervisor at an arbitrary point of
time is provided by trusted computing technology [174]. Similar to our solution,
trusted guests (and hypervisor) would be kept encrypted and integrity protected
until a cryptographic hardware module (in that case the Trusted Platform Module
(TPM)) decrypts and verifies them. However, in this method called sealed storage,
the collaboration of the decrypting module does not depend on a mode, but on
binaries loaded to the system. Applying the late launch technology, as available for
modern Intel and AMD processors, this check ignores already loaded software and
instead ensures that a dedicated secure load block (SLB) is executed. Only a loaded
and unmodifed SLB will enable the decryption of the sealed data [82, 1, 116]. This
principle is comparable to the entanglement of the mode register’s unlocking and
the reset that enforces the execution of the first stage boot code in our approach.
However, not only is the technology not available for embedded systems, it has also
been demonstrated that late launch can be circumvented and hypervisors can be
modified by malicious code injected to the system before the late launch [182, 153].
Even if this attack cannot be applied to all architectures and the vulnerability might
be fixed in the future, it gives reason to doubt that TPM-based solutions provide
a holistic principle covering the entire system. Furthermore, TPM-operations are
comparatively expensive, due to a slow bus connection and relatively slow asymmet-
ric decryption algorithms. A proper (and still simple) mode aware cryptographic
module (with DMA support), which we suggest for our approach, is more efficient
and cost-effective and does not require any modifications to the CPU.

154 PAPER F. AFFORDABLE SEPARATION ON EMBEDDED PLATFORMS

Making use of the same enablers (sealed storage and late launch), the Flicker
environment [116] focuses on the isolated execution of single trusted applications
instead of the delayed activation of a hypervisor. This decision against virtualiza-
tion certainly decreases the trusted computing base even more, but comes with the
drawback that the commodity operating system has to be paused while the trusted
application is being executed and that only one trusted service can be active at
a time. A similar functionality to the one of Flicker can be achieved with the
hardware extensions that we propose. However, the feature of remote attestation
is naturally reserved to platforms with trusted computing support. Furthermore,
[116] admittedly provides a stronger protection against replay attacks even without
further hardware extension.

SICE [21] makes use of x86’s System Management Mode (SMM) to provide an
asymmetric isolation between commodity OS and isolated software, based on a TCB
including only the hardware, the BIOS and the SMM with a software foundation
of 300 LoC (excluding cryptographic libraries). However, isolated software can
not access peripherals directly and - as the authors point out themselves - since
the SMM was not designed with security in mind and several attacks on it are
already known, careful security reviews are necessary before deployment. While
still seeming to be a promising approach for asymmetric isolation on x86 systems,
SICE’s principle is not applicable to embedded systems.

F.7 Conclusion

We have presented a dual mode approach to turn the system’s hypervisor on and
off on demand. Integrity and privacy of trusted guests are maintained at all times:
while virtualization is active (in protected mode), while it is not (in normal mode),
and while the machine is powered off. The solution requires only minor additions
to an existing SoC design, namely two new registers and hardware protected keys.
Hardware support for the cryptographic operations guarantees efficiency. No ex-
tensions to the CPU or adaption of other devices are needed. The performance
measurements of a prototype implementation in emulated hardware show that soft
reboots can provide benefits in several scenarios for embedded systems. In particu-
lar, the efficiency is higher than when performing a cold reboot or maintaining vir-
tualization while not needed. The main costs for enabling isolated services consists
of their decryption and the integrity check of those services and of the lightweight
hypervisor. Returning to non-virtualized execution does not take much longer than
the erasure of newly produced confidential data. Furthermore, paravirtualization is
not necessary in settings where the commodity OS can be paused while in protected
mode. We leave the formal verification of our approach as possible future work.

F.7. CONCLUSION 155

step cp cn wp wn Bytes crypto other estimated
accessed module instr. time
in storage load in B in ms

configure regis-
ters and mode

X X X X 29 0.0001

clean registers X 41 0.0002
load + verify 2nd
stage code

X X X X 2,987 2,987 26 0.4916

load FreeRTOS X X 1,043,288 19 165.8263
load + verify hy-
pervisor code

X 30,500 30,500 24 5.0181

verify hypervisor
code

X 30,500 22 0.1940

load + verify hy-
pervisor data

X X 960 960 22 0.1581

verify hypervisor
page tables

X 65,536 21 0.4168

copy encrypted
trusted guest

X 389,732 0 61.9562

decrypt + verify
trusted guest

X X 389,732 24 4.9558

boot hypervisor X 247,940 1.2397
reboot hypervisor X 27,707 0.1385
boot FreeRTOS,
normal mode

X 9,146 0.0457

reboot Free-
RTOS, normal
mode

X 140 0.0007

(re-)boot Free-
RTOS, protected

X X 305 0.0015

compute page ta-
ble MAC

- 65,536 129 0.4173

(write back
trusted guest)

- 1,048,576 216 13.3341

erase confidential
memory

X 1,964,252 98 12.4889

initiate reset to
protected mode

X 41 0.0002

cold boot, pro-
tected mode

X 248,389 239.6374

cold boot, normal
mode

X 9,220 166.3637

warm reboot,
protected mode

X 28,197 6.3566

warm reboot,
normal mode

X 334 12.9815

Table F.1: Execution Costs per Step

Reference Lists

157

SICS Dissertation Series

Dissertation series of SICS Swedish ICT:

1. Bogumil Hausman, Pruning and Speculative Work in OR-Parallel PROLOG, 1990.
2. Mats Carlsson, Design and Implementation of an OR-Parallel Prolog Engine, 1990.
3. Nabiel A. Elshiewy, Robust Coordinated Reactive Computing in SANDRA, 1990.
4. Dan Sahlin, An Automatic Partial Evaluator for Full Prolog, 1991.
5. Hans A. Hansson, Time and Probability in Formal Design of Distributed Systems,

1991.
6. Peter Sjödin, From LOTOS Specifications to Distributed Implementations, 1991.
7. Roland Karlsson, A High Performance OR-parallel Prolog System, 1992.
8. Erik Hagersten, Toward Scalable Cache Only Memory Architectures, 1992.
9. Lars-Henrik Eriksson, Finitary Partial Inductive Definitions and General Logic,

1993.
10. Mats Björkman, Architectures for High Performance Communication, 1993.
11. Stephen Pink, Measurement, Implementation, and Optimization of Internet Proto-

cols, 1993.
12. Martin Aronsson, GCLA. The Design, Use, and Implementation of a Program De-

velopment System, 1993.
13. Christer Samuelsson, Fast Natural-Language Parsing Using Explanation-Based Learn-

ing, 1994.
14. Sverker Jansson, AKL – A Multiparadigm Programming Language, 1994.
15. Fredrik Orava, On the Formal Analysis of Telecommunication Protocols, 1994.
16. Torbjörn Keisu, Tree Constraints, 1994.
17. Olof Hagsand, Computer and Communication Support for Interactive Distributed

Applications, 1995.
18. Björn Carlsson, Compiling and Executing Finite Domain Constraints, 1995.
19. Per Kreuger, Computational Issues in Calculi of Partial Inductive Definitions, 1995.
20. Annika Waern, Recognising Human Plans: Issues for Plan Recognition in Human-

Computer Interaction, 1996.
21. Björn Gambäck, Processing Swedish Sentences: A Unification-Based Grammar and

Some Applications, 1997.
22. Klas Orsvärn, Knowledge Modelling with Libraries of Task Decomposition Methods,

1996.

159

160 SICS DISSERTATION SERIES

23. Kia Höök, A Glass Box Approach to Adaptive Hypermedia, 1996.
24. Bengt Ahlgren, Improving Computer Communication Performance by Reducing

Memory Bandwidth Consumption, 1997.
25. Johan Montelius, Exploiting Fine-grain Parallelism in Concurrent Constraint Lan-

guages, 1997.
26. Jussi Karlgren, Stylistic experiments in information retrieval, 2000.
27. Ashley Saulsbury, Attacking Latency Bottlenecks in Distributed Shared Memory

Systems, 1999.
28. Kristian Simsarian, Toward Human Robot Collaboration, 2000.
29. Lars-Åke Fredlund, A Framework for Reasoning about Erlang Code, 2001.
30. Thiemo Voigt, Architectures for Service Differentiation in Overloaded Internet Servers,

2002.
31. Fredrik Espinoza, Individual Service Provisioning, 2003.
32. Lars Rasmusson, Network capacity sharing with QoS as a financial derivative pricing

problem: algorithms and network design, 2002.
33. Martin Svensson, Defining, Designing and Evaluating Social Navigation, 2003.
34. Joe Armstrong, Making reliable distributed systems in the presence of software

errors, 2003.
35. Emmanuel Frécon, DIVE on the Internet, 2004.
36. Rickard Cöster, Algorithms and Representations for Personalised Information Ac-

cess, 2005.
37. Per Brand, The Design Philosophy of Distributed Programming Systems: the Mozart

Experience, 2005.
38. Sameh El-Ansary, Designs and Analyses in Structured Peer-to-Peer Systems, 2005.
39. Erik Klintskog, Generic Distribution Support for Programming Systems, 2005.
40. Markus Bylund, A Design Rationale for Pervasive Computing – User Experience,

Contextual Change, and Technical Requirements, 2005.
41. Åsa Rudström, Co-Construction of hybrid spaces, 2005.
42. Babak Sadighi Firozabadi, Decentralised Privilege Management for Access Control,

2005.
43. Marie Sjölinder, Age-related Cognitive Decline and Navigation in Electronic Envi-

ronments, 2006.
44. Magnus Sahlgren, The Word-Space Model: Using Distributional Analysis to Repre-

sent Syntagmatic and Paradigmatic Relations between Words in High-dimensional
Vector Spaces, 2006.

45. Ali Ghodsi, Distributed k-ary System: Algorithms for Distributed Hash Tables,
2006.

46. Stina Nylander, Design and Implementation of Multi-Device Services, 2007
47. Adam Dunkels, Programming Memory-Constrained Networked Embedded Systems,

2007
48. Jarmo Laaksolahti, Plot, Spectacle, and Experience: Contributions to the Design

and Evaluation of Interactive Storytelling, 2008
49. Daniel Gillblad, On Practical Machine Learning and Data Analysis, 2008

161

50. Fredrik Olsson, Bootstrapping Named Entity Annotation by Means of Active Ma-
chine Learning: a Method for Creating Corpora, 2008

51. Ian Marsh, Quality Aspects of Internet Telephony, 2009
52. Markus Bohlin, A Study of Combinatorial Optimization Problems in Industrial

Computer Systems, 2009
53. Petra Sundström, Designing Affective Loop Experiences, 2010
54. Anders Gunnar, Aspects of Proactive Traffic Engineering in IP Networks, 2011
55. Preben Hansen, Task-based Information Seeking and Retrieval in the Patent Do-

main: Process and Relationships, 2011
56. Fredrik Österlind, Improving Low-Power Wireless Protocols with Timing-Accurate

Simulation, 2011
57. Ahmad Al-Shishtawy, Self-Management for Large-Scale Distributed Systems, 2012
58. Henrik Abrahamsson, Network overload avoidance by traffic engineering and content

caching, 2012
59. Mattias Rost, Mobility is the Message: Experiment with Mobile Media Sharing,

2013
60. Amir H. Payberah, Live Streaming in P2P and Hybrid P2P-Cloud Environments

for the open Internet, 2013
61. Oscar Täckström, Predicting Linguistic Structure with Incomplete and Cross-Lingual

Supervision, 2013
62. Cosmin Arad, Programming Model and Protocols for Reconfigurable Distributed

Systems, 2013
63. Tallat M. Shafaat, Partition Tolerance and Data Consistency in Structured Overlay

Networks, 2013
64. Shahid Raza, Lightweight Security Solutions for the Internet of Things, 2013
65. Mattias Jacobsson, Tinkering with Interactive Materials: Studies, Concepts and

Prototypes, 2013
66. Baki Cakici, The Informed Gaze: On the Implications of ICT-Based Surveillance,

2013
67. John Ardelius, On the Performance Analysis of Large Scale, Dynamic, Distributed

and Parallel Systems, 2013
68. Fatemeh Rahimian, Gossip-Based Algorithms for Information Dissemination and

Graph Clustering, 2014
69. Rebecca Steinert, Probabilistic Fault Management in Networked Systems, 2014
70. Mudassar Alsam, Bringing Visibility in the Clouds: Using Security, Transparency

and Assurance Services, 2014
71. Anna Ståhl, Designing for Interactional Empowerment, 2015
72. Pedro Sanches, Health Data: Representation and (In)visibility, 2015
73. Tomas Olsson, A Data-Driven Approach to Remote Fault Diagnosis of Heavy-duty

Machines, 2015
74. Nicolas Tsiftes, Storage-Centric System Architectures for Networked, Resource-

Constrained Devices, 2016
75. Oliver Schwarz, No Hypervisor Is an Island: System-wide Isolation Guarantees for

Low Level Code, 2016

Bibliography

[1] Advanced Micro Devices. AMD64 virtualization: Secure virtualization: Se-
cure virtual machine architecture reference manual, 2005. Publication number
33047, revision 3.01.

[2] Advanced Micro Devices. AMD I/O Virtualization Technology (IOMMU)
Specification, November 2009. Publication number 34434, revision 1.26.

[3] Eyad Alkassar, Ernie Cohen, Mikhail Kovalev, and Wolfgang J. Paul. Ver-
ification of TLB virtualization implemented in C. In Rajeev Joshi, Pe-
ter Müller, and Andreas Podelski, editors, Verified Software: Theories,
Tools, Experiments: 4th International Conference, VSTTE 2012, Philadel-
phia, PA, USA, January 28-29, 2012. Proceedings, pages 209–224, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg. ISBN 978-3-642-27705-4. URL
http://dx.doi.org/10.1007/978-3-642-27705-4_17.

[4] Eyad Alkassar and Mark A. Hillebrand. Formal functional verification of
device drivers. In Verified Software: Theories, Tools, Experiments, 2008.

[5] Eyad Alkassar, Mark A. Hillebrand, Wolfgang J. Paul, and Elena Petrova.
Automated verification of a small hypervisor. In Proc. VSTTE, volume 6217
of Lecture Notes in Computer Science, pages 40–54. Springer, 2010.

[6] Eyad Alkassar, Wolfgang J. Paul, Artem Starostin, and Alexandra Tsyban.
Pervasive verification of an OS microkernel. In Verified Software: Theories,
Tools, Experiments, 2010.

[7] Torben Amtoft and Anindya Banerjee. Information flow analysis in logi-
cal form. In Roberto Giacobazzi, editor, Static Analysis, volume 3148 of
Lecture Notes in Computer Science, pages 100–115. Springer Berlin Heidel-
berg, 2004. ISBN 978-3-540-22791-5. URL http://dx.doi.org/10.1007/
978-3-540-27864-1_10.

[8] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent R. Scarlata. Inno-
vative technology for CPU based attestation and sealing. In Proceedings of
the 2nd International Workshop on Hardware and Architectural Support for

163

http://dx.doi.org/10.1007/978-3-642-27705-4_17
http://dx.doi.org/10.1007/978-3-540-27864-1_10
http://dx.doi.org/10.1007/978-3-540-27864-1_10

164 BIBLIOGRAPHY

Security and Privacy, HASP ’13, New York, NY, USA, 2013. ACM. ISBN
978-1-4503-2118-1.

[9] Oana Fabiana Andreescu, Thomas Jensen, and Stéphane Lescuyer. Corre-
lating structured inputs and outputs in functional specifications. In Rocco
De Nicola and Eva Kühn, editors, Proceedings of Software Engineering and
Formal Methods: 14th International Conference, SEFM 2016, pages 85–103.
Springer International Publishing, 2016. ISBN 978-3-319-41591-8.

[10] W.A. Arbaugh, D.J. Farber, and J.M. Smith. A secure and reliable bootstrap
architecture. IEEE Symposium on Security and Privacy, page 0065, 1997.
ISSN 1540-7993.

[11] ARM. ARM TrustZone technology. http://www.arm.com/products/
processors/technologies/trustzone.php.

[12] ARM. ARMv7-A architecture reference manual, issue B.

[13] ARM. ARMv7-A architecture reference manual, issue C. http://
infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c.

[14] ARM. Cortex-A15 processor. http://www.arm.com/products/processors/
cortex-a/cortex-a15.php.

[15] ARM. Integrator baseboards. http://infocenter.arm.com/help/topic/
com.arm.doc.subset.boards.integratorbaseboards.

[16] ARM. PrimeCell DMAController (PL080) Technical Reference Manual, rev
r1p3 edition, 2005. http://infocenter.arm.com/help/topic/com.arm.
doc.ddi0196g/index.html.

[17] ARM Technical Support Knowledge Articles. What is the fastest way to copy
memory on a Cortex-A8? http://infocenter.arm.com/help/index.jsp?
topic=/com.arm.doc.faqs/ka13544.html, 2011.

[18] François Armand and Michel Gien. A Practical Look at Micro-Kernels and
Virtual Machine Monitors. In Proceedings of the 6th Consumer Communica-
tions and Networking Conference (IEEE CCNC ’09), Las Vegas, NV, USA,
January 2009.

[19] Aslan Askarov, Sebastian Hunt, Andrei Sabelfeld, and David Sands.
Termination-insensitive noninterference leaks more than just a bit. In Pro-
ceedings of the 13th European Symposium on Research in Computer Security:
Computer Security, ESORICS ’08, pages 333–348, Berlin, Heidelberg, 2008.
Springer-Verlag. ISBN 978-3-540-88312-8. URL http://dx.doi.org/10.
1007/978-3-540-88313-5_22.

http://www.arm.com/products/processors/technologies/trustzone.php
http://www.arm.com/products/processors/technologies/trustzone.php
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c
http://www.arm.com/products/processors/cortex-a/cortex-a15.php
http://www.arm.com/products/processors/cortex-a/cortex-a15.php
http://infocenter.arm.com/help/topic/com.arm.doc.subset.boards.integratorbaseboards
http://infocenter.arm.com/help/topic/com.arm.doc.subset.boards.integratorbaseboards
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0196g/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0196g/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka13544.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka13544.html
http://dx.doi.org/10.1007/978-3-540-88313-5_22
http://dx.doi.org/10.1007/978-3-540-88313-5_22

BIBLIOGRAPHY 165

[20] Thomas H. Austin, Cormac Flanagan, and Martín Abadi. A functional view
of imperative information flow. In Ranjit Jhala and Atsushi Igarashi, edi-
tors, Programming Languages and Systems, volume 7705 of Lecture Notes in
Computer Science, pages 34–49. Springer Berlin Heidelberg, 2012. ISBN 978-
3-642-35181-5. URL http://dx.doi.org/10.1007/978-3-642-35182-2_4.

[21] Ahmed M Azab, Peng Ning, and Xiaolan Zhang. SICE: a hardware-level
strongly isolated computing environment for x86 multi-core platforms. In
Proceedings of the 18th ACM conference on Computer and communications
security, pages 375–388. ACM, 2011.

[22] Arthur Azevedo de Amorim, Nathan Collins, André DeHon, Delphine De-
mange, Cătălin Hriţcu, David Pichardie, Benjamin C. Pierce, Randy Pollack,
and Andrew Tolmach. A verified information-flow architecture. In Princi-
ples of Programming Languages, POPL, pages 165–178. ACM, 2014. ISBN
978-1-4503-2544-8. URL http://doi.acm.org/10.1145/2535838.2535839.

[23] Musard Balliu, Mads Dam, and Roberto Guanciale. Automating information
flow analysis of low level code. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, CCS, pages 1080–
1091. ACM, 2014. ISBN 978-1-4503-2957-6. URL http://doi.acm.org/10.
1145/2660267.2660322.

[24] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the Art of
Virtualization. In Proceedings of the nineteenth ACM symposium on Oper-
ating systems principles, volume 37, 5 of Operating Systems Review, pages
164–177, New York, October 19–22 2003. ACM Press.

[25] Gilles Barthe, Gustavo Betarte, Juan Diego Campo, and Carlos Luna. For-
mally verifying isolation and availability in an idealized model of virtualiza-
tion. In Michael Butler and Wolfram Schulte, editors, Proc. FM’11, volume
6664 of Lecture Notes in Computer Science, pages 231–245. Springer, 2011.
ISBN 978-3-642-21436-3.

[26] Gilles Barthe, Gustavo Betarte, Juan Diego Campo, and Carlos Luna. Cache-
leakage resilient OS isolation in an idealized model of virtualization. In Proc.
CSF’12, pages 186–197, Washington, DC, USA, 2012. IEEE Computer So-
ciety. ISBN 978-0-7695-4718-3. URL http://dx.doi.org/10.1109/CSF.
2012.17.

[27] Christoph Baumann, Bernhard Beckert, Holger Blasum, and Thorsten
Bormer. Formal verification of a microkernel used in dependable software
systems. In Bettina Buth, Gerd Rabe, and Till Seyfarth, editors, Computer
Safety, Reliability, and Security (SAFECOMP), pages 187–200. Springer,
2009. ISBN 978-3-642-04468-7.

http://dx.doi.org/10.1007/978-3-642-35182-2_4
http://doi.acm.org/10.1145/2535838.2535839
http://doi.acm.org/10.1145/2660267.2660322
http://doi.acm.org/10.1145/2660267.2660322
http://dx.doi.org/10.1109/CSF.2012.17
http://dx.doi.org/10.1109/CSF.2012.17

166 BIBLIOGRAPHY

[28] Max Bazaliy, Seth Hardy, Michael Flossman, Kristy Edwards, Andrew Blaich,
and Mike Murray. Technical analysis of Pegasus spyware: An investi-
gation into highly sophisticated espionage software. Whitepaper, Look-
out, August 2016. https://info.lookout.com/rs/051-ESQ-475/images/
lookout-pegasus-technical-analysis.pdf.

[29] BeagleBoard.org Foundation. BeagleBoard product page. http://
beagleboard.org/Products/BeagleBoard.

[30] BeagleBoard.org Foundation. BeagleBoard-xM product page. http://
beagleboard.org/Products/BeagleBoard-xM.

[31] BeagleBoard.org Foundation. BeagleBone product page. http://
beagleboard.org/Products/BeagleBone.

[32] Michael Becher, Maximillian Dornseif, and Christian N Klein. FireWire: all
your memory are belong to us. Presentation, CanSecWest/core05, 2005.

[33] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development : Coq’Art: The Calculus of Inductive Constructions. Springer-
Verlag, Berlin, 2004. ISBN 3-540-20854-2.

[34] William R. Bevier. A verified operating system kernel. Technical Report 11,
Computational Logic, Inc., Austin, Texas, USA, October 1987. http://www.
cs.utexas.edu/users/boyer/ftp/cli-reports/011.pdf.

[35] William R. Bevier. Kit: a study in operating system verification. IEEE
Transactions on Software Engineering, 15(11):1382–1396, Nov 1989. ISSN
0098-5589.

[36] Sven Beyer, Christian Jacobi, Daniel Kröning, Dirk Leinenbach, and Wolf-
gang J. Paul. Putting it all together – formal verification of the VAMP.
International Journal on Software Tools for Technology Transfer, 8(4):
411–430, 2006. ISSN 1433-2779. URL http://dx.doi.org/10.1007/
s10009-006-0204-6.

[37] Bruno Blanchet. An Efficient Cryptographic Protocol Verifier Based on Pro-
log Rules. In 14th IEEE Computer Security Foundations Workshop (CSFW-
14), pages 82–96, Cape Breton, Nova Scotia, Canada, June 2001. IEEE Com-
puter Society.

[38] Bruno Blanchet, Martín Abadi, and Cédric Fournet. Automated verification
of selected equivalences for security protocols. Journal of Logic and Algebraic
Programming, 75(1):3–51, 2008.

[39] Rolf Blom and Oliver Schwarz. High assurance security products on COTS
platforms. ERCIM News, Special Theme: Trustworthy Systems of Systems
(number 102):39–40, 2015. ISSN 0926-4981.

https://info.lookout.com/rs/051-ESQ-475/images/lookout-pegasus-technical-analysis.pdf
https://info.lookout.com/rs/051-ESQ-475/images/lookout-pegasus-technical-analysis.pdf
http://beagleboard.org/Products/BeagleBoard
http://beagleboard.org/Products/BeagleBoard
http://beagleboard.org/Products/BeagleBoard-xM
http://beagleboard.org/Products/BeagleBoard-xM
http://beagleboard.org/Products/BeagleBone
http://beagleboard.org/Products/BeagleBone
http://www.cs.utexas.edu/users/boyer/ftp/cli-reports/011.pdf
http://www.cs.utexas.edu/users/boyer/ftp/cli-reports/011.pdf
http://dx.doi.org/10.1007/s10009-006-0204-6
http://dx.doi.org/10.1007/s10009-006-0204-6

BIBLIOGRAPHY 167

[40] Pauline Bolignano, Thomas Jensen, and Vincent Siles. Modeling and abstrac-
tion of memory management in a hypervisor. In International Conference on
Fundamental Approaches to Software Engineering, pages 214–230. Springer
Berlin Heidelberg, 2016.

[41] R.S. Boyer and J.S. Moore. A Computational Logic Handbook. Academic
Press international series in formal methods. Academic Press Incorporated,
1988. ISBN 9780121229528.

[42] Jörg Brakensiek, Axel Dröge, Martin Botteck, Hermann Härtig, and Adam
Lackorzynski. Virtualization as an enabler for security in mobile devices.
In Proceedings of the 1st workshop on Isolation and integration in embedded
systems, IIES ’08, pages 17–22. ACM, 2008.

[43] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J. Schwartz.
BAP: A binary analysis platform. In Ganesh Gopalakrishnan and Shaz
Qadeer, editors, Proc. CAV, volume 6806 of Lecture Notes in Computer Sci-
ence, pages 463–469. Springer, 2011. ISBN 978-3-642-22109-5.

[44] Reto Buerki and Adrian-Ken Rueegsegger. Muen - an x86/64 separation
kernel for high assurance. Technical report, University of Applied Sci-
ences Rapperswil (HSR), Switzerland, 2013. https://muen.codelabs.ch/
muen-report.pdf.

[45] Ricardo Chaves, Georgi Kuzmanov, Leonel Sousa, and Stamatis Vassiliadis.
Improving SHA-2 hardware implementations. In In Workshop on Crypto-
graphic Hardware and Embedded Systems, CHES 2006, 2006.

[46] Hao Chen, Xiongnan (Newman) Wu, Zhong Shao, Joshua Lockerman, and
Ronghui Gu. Toward compositional verification of interruptible OS kernels
and device drivers. In Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’16, pages 431–
447. ACM, 2016. ISBN 978-1-4503-4261-2. URL http://doi.acm.org/10.
1145/2908080.2908101.

[47] Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, Michal
Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies. VCC: A prac-
tical system for verifying concurrent C. In Stefan Berghofer, Tobias Nipkow,
Christian Urban, and Makarius Wenzel, editors, conf. theorem proving in high
order logics (TPHOLS), volume 5674 of LNCS, volume 5674 of Lecture Notes
in Computer Science, pages 23–42. Springer, 2009. ISBN 978-3-642-03358-2.
URL http://dx.doi.org/10.1007/978-3-642-03359-9.

[48] Stephen A. Cook. The complexity of theorem-proving procedures. In
Proceedings of the Third Annual ACM Symposium on Theory of Comput-
ing, STOC ’71, pages 151–158, New York, NY, USA, 1971. ACM. URL
http://doi.acm.org/10.1145/800157.805047.

https://muen.codelabs.ch/muen-report.pdf
https://muen.codelabs.ch/muen-report.pdf
http://doi.acm.org/10.1145/2908080.2908101
http://doi.acm.org/10.1145/2908080.2908101
http://dx.doi.org/10.1007/978-3-642-03359-9
http://doi.acm.org/10.1145/800157.805047

168 BIBLIOGRAPHY

[49] David Costanzo, Zhong Shao, and Ronghui Gu. End-to-end verification of
information-flow security for C and assembly programs. In Proceedings of
the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’16, pages 648–664. ACM, 2016. ISBN 978-1-4503-
4261-2. URL http://doi.acm.org/10.1145/2908080.2908100.

[50] Patrick Cousot, Radhia Cousot, Jerôme Feret, Laurent Mauborgne, Antoine
Miné, David Monniaux, and Xavier Rival. The ASTREÉ analyzer. In Mooly
Sagiv, editor, Programming Languages and Systems, volume 3444 of LNCS,
pages 21–30. Springer Berlin Heidelberg, 2005. ISBN 978-3-540-25435-5. URL
http://dx.doi.org/10.1007/978-3-540-31987-0_3.

[51] David Cyrluk, S. Rajan, Natarajan Shankar, and Mandayam K. Srivas. Ef-
fective theorem proving for hardware verification. In Theorem Provers in
Circuit Design, pages 203–222. Springer, 1994. ISBN 3-540-59047-1. URL
http://dl.acm.org/citation.cfm?id=645903.672930.

[52] Christoffer Dall, Shih-Wei Li, Jin Tack Lim, Jason Nieh, and Georgios
Koloventzos. ARM virtualization: Performance and architectural implica-
tions. In Proceedings of the 43rd International Symposium on Computer Ar-
chitecture (ISCA), June 2016.

[53] Mads Dam, Roberto Guanciale, Narges Khakpour, Hamed Nemati, and
Oliver Schwarz. Formal verification of information flow security for a sim-
ple ARM-based separation kernel. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer and Communications Security, CCS, pages 223–234,
2013.

[54] Mads Dam, Roberto Guanciale, and Hamed Nemati. Machine code verifica-
tion of a tiny ARM hypervisor. In International Workshop on Trustworthy
Embedded Devices (TrustED), 2013.

[55] Matthias Daum, Nelson Billing, and Gerwin Klein. Concerned with the un-
privileged: user programs in kernel refinement. Formal Aspects of Computing,
26(6):1205–1229, 2014. ISSN 1433-299X.

[56] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In
C. R. Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), volume 4963 of Lecture
Notes in Computer Science, pages 337–340. Springer, 2008. ISBN 978-3-540-
78800-3.

[57] Dorothy E. Denning. A lattice model of secure information flow. Commun.
ACM, 19(5):236–243, May 1976. ISSN 0001-0782. URL http://doi.acm.
org/10.1145/360051.360056.

http://doi.acm.org/10.1145/2908080.2908100
http://dx.doi.org/10.1007/978-3-540-31987-0_3
http://dl.acm.org/citation.cfm?id=645903.672930
http://doi.acm.org/10.1145/360051.360056
http://doi.acm.org/10.1145/360051.360056

BIBLIOGRAPHY 169

[58] Jiun-Hung Ding, Chang-Jung Lin, Ping-Hao Chang, Chieh-Hao Tsang, Wei-
Chung Hsu, and Yeh-Ching Chung. ARMvisor: System virtualization for
ARM. In Linux Symposium, 2012.

[59] Heradon Douglas and Christian Gehrmann. Secure virtualization and mul-
ticore platforms state-of-the-art report. Technical Report T2009:14A, SICS
Swedish ICT, Kista, Sweden, December 2009. http://soda.swedish-ict.
se/3800/.

[60] Jianjun Duan. Formal verification of device drivers in embedded systems.
PhD thesis, University of Utah, 2013.

[61] Jianjun Duan and John Regehr. Correctness proofs for device drivers in em-
bedded systems. In Proceedings of the 5th international conference on Systems
software verification, SSV’10, Berkeley, CA, USA, 2010. USENIX Association.
URL http://dl.acm.org/citation.cfm?id=1929004.1929009.

[62] Loïc Duflot, Daniel Etiemble, and Olivier Grumelard. Using CPU system
management mode to circumvent operating system security functions. In
Proc. CanSecWest, 2006.

[63] Jan-Erik Ekberg, Kari Kostiainen, and N. Asokan. The untapped potential
of trusted execution environments on mobile devices. IEEE Security and
Privacy, 12(4):29–37, 2014. ISSN 1540-7993.

[64] Shawn Embleton, Sherri Sparks, and Cliff C. Zou. SMM rootkits: a new
breed of OS independent malware. In Security and Privacy in Communication
Networks (SecureComm), pages 11:1 – 11:12, 2008.

[65] E. Allen Emerson. The beginning of model checking: A personal perspective.
In Orna Grumberg and Helmut Veith, editors, 25 Years of Model Checking:
History, Achievements, Perspectives, pages 27–45. Springer-Verlag, Berlin,
Heidelberg, 2008. ISBN 978-3-540-69850-0. URL http://dx.doi.org/10.
1007/978-3-540-69850-0_2.

[66] Richard J Feiertag and Peter G Neumann. The foundations of a provably
secure operating system (PSOS). In National Computer Conference, pages
329–334. AFIPS Press, 1979.

[67] Anthony C. J. Fox. Formal specification and verification of ARM6. In Theo-
rem Proving in Higher Order Logics. Springer Berlin Heidelberg, 2003.

[68] Anthony C. J. Fox. Improved tool support for machine-code decompilation
in HOL4. In Interactive Theorem Proving (ITP), pages 187–202, 2015.

[69] Anthony C. J. Fox, Michael J. C. Gordon, and Magnus O. Myreen. Specifi-
cation and verification of ARM hardware and software. In S. David Hardin,
editor, Design and Verification of Microprocessor Systems for High-Assurance
Applications, pages 221–247. Springer US, 2010. ISBN 978-1-4419-1539-9.

http://soda.swedish-ict.se/3800/
http://soda.swedish-ict.se/3800/
http://dl.acm.org/citation.cfm?id=1929004.1929009
http://dx.doi.org/10.1007/978-3-540-69850-0_2
http://dx.doi.org/10.1007/978-3-540-69850-0_2

170 BIBLIOGRAPHY

[70] Anthony C. J. Fox and Magnus O. Myreen. A trustworthy monadic formal-
ization of the ARMv7 instruction set architecture. In Matt Kaufmann and
Lawrence C. Paulson, editors, Interactive Theorem Proving (ITP), volume
6172 of Lecture Notes in Computer Science, pages 243–258. Springer, 2010.
ISBN 978-3-642-14051-8.

[71] Jason Franklin, Arvind Seshadri, Ning Qu, Anupam Datta, and Sagar Chaki.
Attacking, Repairing, and Verifying SecVisor: A Retrospective on the Secu-
rity of a Hypervisor. Technical Report CMU-Cylab-08-008, Carnegie Mellon
University/Cylab, June 2008.

[72] FreeRTOS/real time engineers ltd. http://www.freertos.org.

[73] František Gábriš. Turning off hypervisor and resuming OS in
100 instructions. Presentation at FASM CON 2009, Myjava, Slo-
vak Republic, http://fdbg.x86asm.net/Turning_off_hypervisor_and_
resuming_OS_in_100_instructions.ppt.

[74] Vijay Ganesh and David L. Dill. A decision procedure for bit-vectors and ar-
rays. In Werner Damm and Holger Hermanns, editors, Proc. CAV’07, volume
4590 of Lecture Notes in Computer Science, pages 519–531. Springer, 2007.
ISBN 978-3-540-73367-6.

[75] Christian Gehrmann, Heradon Douglas, and Dennis Kengo Nilsson. Are there
good reasons for protecting mobile phones with hypervisors? In IEEE Con-
sumer Communications and Networking Conference (CCNC), pages 906–911,
January 2011.

[76] Daniel Genkin, Lev Pachmanov, Itamar Pipman, Adi Shamir, and Eran
Tromer. Physical key extraction attacks on PCs. Communications of the
ACM, 59(6):70–79, 2016. ISSN 0001-0782. URL http://doi.acm.org/10.
1145/2851486.

[77] Joseph A. Goguen and José Meseguer. Security policies and security models.
In IEEE Symposium on Security and Privacy, pages 11–20, 1982.

[78] Joseph A. Goguen and José Meseguer. Unwinding and inference control. In
IEEE Symposium on Security and Privacy, pages 75–86, April 1984.

[79] Robert P. Goldberg. Architectural principles for Virtual Computer Systems.
PhD thesis, Harvard University, 1973.

[80] Robert P. Goldberg. Survey of virtual machine research. IEEE Comp. Mag-
azine, 1974.

[81] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: a theorem
proving environment for higher order logic. Cambridge University Press, 1993.
ISBN 0-521-44189-7.

http://www.freertos.org
http://fdbg.x86asm.net/Turning_off_hypervisor_and_resuming_OS_in_100_instructions.ppt
http://fdbg.x86asm.net/Turning_off_hypervisor_and_resuming_OS_in_100_instructions.ppt
http://doi.acm.org/10.1145/2851486
http://doi.acm.org/10.1145/2851486

BIBLIOGRAPHY 171

[82] David Grawrock. The Intel Safer Computing Initiative: Building Blocks for
Trusted Computing. Books by engineers, for engineers. Intel Press, 2006.
ISBN 9780976483267.

[83] Roberto Guanciale, Hamed Nemati, Christoph Baumann, and Mads Dam.
Cache storage channels: Alias-driven attacks and verified countermeasures.
In IEEE Symposium on Security and Privacy, SP, 2016.

[84] Jonas Haglund. Formal verification of systems software: No execution of
malicious software in linux in networked embedded systems. master thesis at
KTH Royal Institute of Technology, 2016.

[85] Bradley Ryan Harrington, Chetan Mehta, Devon Miller II Milton,
Michael Anthony Perez, David Lee Randall, and David R. Willoughby. Sys-
tem and method for selectively executing a reboot request after a reset to
power on state for a particular partition in a logically partitioned system. US
patent US 7146515 B2, http://www.google.com/patents/US7146515.

[86] Hermann Härtig, Jork Löser, Frank Mehnert, Lars Reuther, Martin Pohlack,
and Alexander Warg. An I/O architecture for mikrokernel-based operating
systems. Technical Report TUD-FI03-08, Dresden University of Technol-
ogy, Dresden, Germany, 2003. http://os.inf.tu-dresden.de/papers_ps/
tr-ioarch-2003.pdf.

[87] HASPOC project. http://haspoc.sics.se/.

[88] Steve Heath. Embedded Systems Design. Elsevier Science, second edition,
2002. ISBN 9780080477565.

[89] Nevin Heintze and Jon G. Riecke. The SLam calculus: Programming with
secrecy and integrity. In Principles of Programming Languages, POPL, pages
365–377. ACM, 1998. ISBN 0-89791-979-3. URL http://doi.acm.org/10.
1145/268946.268976.

[90] Constance Heitmeyer, Myla Archer, Elizabeth Leonard, and John McLean.
Applying formal methods to a certifiably secure software system. IEEE Trans.
Softw. Eng., 34(1):82–98, January 2008. ISSN 0098-5589. URL http://dx.
doi.org/10.1109/TSE.2007.70772.

[91] Constance L. Heitmeyer, Myla Archer, Elizabeth I. Leonard, and John
McLean. Formal specification and verification of data separation in a sep-
aration kernel for an embedded system. In Proceedings of the 13th ACM
conference on Computer and communications security, CCS ’06, pages 346–
355, New York, NY, USA, 2006. ACM. ISBN 1-59593-518-5. URL http:
//doi.acm.org/10.1145/1180405.1180448.

http://www.google.com/patents/US7146515
http://os.inf.tu-dresden.de/papers_ps/tr-ioarch-2003.pdf
http://os.inf.tu-dresden.de/papers_ps/tr-ioarch-2003.pdf
http://haspoc.sics.se/
http://doi.acm.org/10.1145/268946.268976
http://doi.acm.org/10.1145/268946.268976
http://dx.doi.org/10.1109/TSE.2007.70772
http://dx.doi.org/10.1109/TSE.2007.70772
http://doi.acm.org/10.1145/1180405.1180448
http://doi.acm.org/10.1145/1180405.1180448

172 BIBLIOGRAPHY

[92] M. A. Hillebrand, T. In der Rieden, and Wolfgang J. Paul. Dealing with I/O
devices in the context of pervasive system verification. In International Con-
ference on Computer Design (ICCD): VLSI in Computers and Processors,
pages 309–316, 2005.

[93] Charles Antony Richard Hoare. An axiomatic basis for computer program-
ming. Commun. ACM, 12(10):576–580, October 1969. ISSN 0001-0782. URL
http://doi.acm.org/10.1145/363235.363259.

[94] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and
Juan Del Cuvillo. Using innovative instructions to create trustworthy software
solutions. In Proceedings of the 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy, HASP ’13, pages 11:1–11:1,
New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2118-1. URL http:
//doi.acm.org/10.1145/2487726.2488370.

[95] HOL4 project. https://hol-theorem-prover.org/.

[96] Sebastian Hunt and David Sands. On flow-sensitive security types. In Prin-
ciples of Programming Languages, POPL, pages 79–90. ACM, 2006. ISBN
1-59593-027-2. URL http://doi.acm.org/10.1145/1111037.1111045.

[97] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and
Reasoning about Systems. Cambridge University Press, second edition, 2004.
ISBN 9781139453059.

[98] Joo-Young Hwang, Sang-Bum Suh, Sung-Kwan Heo, Chan-Ju Park, Jae-Min
Ryu, Seong-Yeol Park, and Chul-Ryun Kim. Xen on ARM: System virtualiza-
tion using Xen hypervisor for ARM-based secure mobile phones. In 5th IEEE
Consumer Communications and Networking Conference (CCNC 2008), Las
Vegas, NV, USA, January 2008.

[99] Mehmet Sinan İnci, Berk Gülmezoğlu, Gorka Irazoqui, Thomas Eisenbarth,
and Berk Sunar. Seriously, get off my cloud! Cross-VM RSA key recovery in
a public cloud. Technical report, IACR Cryptology ePrint Archive, 2015.

[100] Intel Corporation. Intel Trusted Execution Technology (Intel TXT)
- Software Development Guide, revision 012 edition, July 2015.
http://www.intel.com/content/dam/www/public/us/en/documents/
guides/intel-txt-software-development-guide.pdf.

[101] Isabelle website. https://isabelle.in.tum.de/.

[102] Narges Khakpour, Oliver Schwarz, and Mads Dam. Machine assisted proof
of ARMv7 instruction level isolation properties. In Certified Programs and
Proofs (CPP), pages 276–291, 2013.

http://doi.acm.org/10.1145/363235.363259
http://doi.acm.org/10.1145/2487726.2488370
http://doi.acm.org/10.1145/2487726.2488370
https://hol-theorem-prover.org/
http://doi.acm.org/10.1145/1111037.1111045
http://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
https://isabelle.in.tum.de/

BIBLIOGRAPHY 173

[103] Gerwin Klein. Operating system verification — an overview. Sādhanā, 34(1):
27–69, February 2009. ISSN 0973-7677. URL http://dx.doi.org/10.1007/
s12046-009-0002-4.

[104] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas
Sewell, Rafal Kolanski, and Gernot Heiser. Comprehensive formal verification
of an OS microkernel. ACM Trans. Comput. Syst., 32(1):2:1–2:70, February
2014. ISSN 0734-2071. URL http://doi.acm.org/10.1145/2560537.

[105] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski,
Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. seL4:
formal verification of an OS kernel. In Jeanna Neefe Matthews and Thomas E.
Anderson, editors, Proc. 22nd ACM Symposium on Operating Systems Prin-
ciples (SOSP), pages 207–220, Big Sky, MT, USA, October 2009. ACM. ISBN
978-1-60558-752-3.

[106] Paul Carl Kocher. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In Proceedings of the 16th Annual International
Cryptology Conference on Advances in Cryptology, CRYPTO ’96, pages 104–
113. Springer-Verlag, 1996. ISBN 3-540-61512-1. URL http://dl.acm.org/
citation.cfm?id=646761.706156.

[107] Paul Carl Kocher. Computer security is broken: Can better hardware help
fix it? Commun. ACM, 59(8):22–25, 2016. ISSN 0001-0782. URL http:
//doi.acm.org/10.1145/2955112.

[108] Xeno Kovah and Corey Kallenberg. How many million BIOSes would you
like to infect? Whitepaper, June 2015.

[109] Butler Lampson, Martín Abadi, Michael Burrows, and Edward Wobber.
Authentication in distributed systems: Theory and practice. ACM Trans.
Comput. Syst., 10(4):265–310, November 1992. ISSN 0734-2071. URL
http://doi.acm.org/10.1145/138873.138874.

[110] Donald C Latham. Department of defense trusted computer system eval-
uation criteria. Technical Report DoD 5200.28-STD, U.S. Department of
Defense, december 1986.

[111] Dirk Leinenbach and Thomas Santen. Verifying the Microsoft Hyper-V hyper-
visor with VCC. In Proc. FM’09, volume 5850 of Lecture Notes in Computer
Science, pages 806–809. Springer Berlin Heidelberg, 2009. ISBN 978-3-642-
05088-6. URL http://dx.doi.org/10.1007/978-3-642-05089-3_51.

[112] Xun Li, Mohit Tiwari, Jason K. Oberg, Vineeth Kashyap, Frederic T. Chong,
Timothy Sherwood, and Ben Hardekopf. Caisson: A hardware description
language for secure information flow. In Programming Language Design and

http://dx.doi.org/10.1007/s12046-009-0002-4
http://dx.doi.org/10.1007/s12046-009-0002-4
http://doi.acm.org/10.1145/2560537
http://dl.acm.org/citation.cfm?id=646761.706156
http://dl.acm.org/citation.cfm?id=646761.706156
http://doi.acm.org/10.1145/2955112
http://doi.acm.org/10.1145/2955112
http://doi.acm.org/10.1145/138873.138874
http://dx.doi.org/10.1007/978-3-642-05089-3_51

174 BIBLIOGRAPHY

Implementation, PLDI, pages 109–120. ACM, 2011. ISBN 978-1-4503-0663-8.
URL http://doi.acm.org/10.1145/1993498.1993512.

[113] Jiuxing Liu, Wei Huang, Bulent Abali, and Dhabaleswar K. Panda. High
performance VMM-bypass I/O in virtual machines. In Proceedings of the
annual conference on USENIX ’06 Annual Technical Conference, ATEC ’06,
pages 3–3, Berkeley, CA, USA, 2006. USENIX Association.

[114] Make Linux Software. Super fast boot of embedded Linux. http://www.
makelinux.com/emb/fastboot/omap.

[115] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta,
Virgil Gligor, and Adrian Perrig. TrustVisor: Efficient TCB reduction and
attestation. In Proceedings of the IEEE Symposium on Security and Privacy,
May 2010.

[116] Jonathan M. McCune, Bryan J. Parno, Adrian Perrig, Michael K. Reiter, and
Hiroshi Isozaki. Flicker: an execution infrastructure for TCB minimization.
SIGOPS Oper. Syst. Rev., 42:315–328, 2008.

[117] John McDermott, Bruce Montrose, Margery Li, James Kirby, and Myong
Kang. Separation virtual machine monitors. In Proceedings of the 28th Annual
Computer Security Applications Conference, ACSAC ’12, pages 419–428, New
York, NY, USA, 2012. ACM. ISBN 978-1-4503-1312-4. URL http://doi.
acm.org/10.1145/2420950.2421011.

[118] Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror Caspi, Simon Johnson,
Rebekah Leslie-Hurd, and Carlos Rozas. Intel Software Guard Extensions
(Intel SGX) support for dynamic memory management inside an enclave. In
Proceedings of the 5th International Workshop on Hardware and Architectural
Support for Security and Privacy, HASP ’15, 2016.

[119] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham
Shafi, Vedvyas Shanbhogue, and Uday R. Savagaonkar. Innovative instruc-
tions and software model for isolated execution. In Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for Secu-
rity and Privacy, HASP ’13. ACM, 2013. ISBN 978-1-4503-2118-1. URL
http://doi.acm.org/10.1145/2487726.2488368.

[120] Roberto Mijat and Andy Nightingale. Virtualization is coming to a plat-
form near you. ARM Whitepaper, 2011. http://www.arm.com/files/pdf/
System-MMU-Whitepaper-v8.0.pdf.

[121] Manoranjan Mohanty, Viktor Do, and Christian Gehrmann. Media data
protection during execution on mobile platforms – a review. Technical
Report T2014:02, SICS Swedish ICT, Kista, Sweden, July 2014. http:
//soda.swedishict.se/5685/.

http://doi.acm.org/10.1145/1993498.1993512
http://www.makelinux.com/emb/fastboot/omap
http://www.makelinux.com/emb/fastboot/omap
http://doi.acm.org/10.1145/2420950.2421011
http://doi.acm.org/10.1145/2420950.2421011
http://doi.acm.org/10.1145/2487726.2488368
http://www.arm.com/files/pdf/System-MMU-Whitepaper-v8.0.pdf
http://www.arm.com/files/pdf/System-MMU-Whitepaper-v8.0.pdf
http://soda.swedishict.se/5685/
http://soda.swedishict.se/5685/

BIBLIOGRAPHY 175

[122] David Monniaux. Verification of device drivers and intelligent controllers: a
case study. In Embedded Software, 2007.

[123] µClinux. http://www.uclinux.org/.

[124] Toby C. Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Timo-
thy Bourke, Sean Seefried, Corey Lewis, Xin Gao, and Gerwin Klein. seL4:
From general purpose to a proof of information flow enforcement. In IEEE
Symposium on Security and Privacy, pages 415–429. IEEE Computer Society,
2013. ISBN 978-1-4673-6166-8.

[125] Toby C. Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, and Ger-
win Klein. Noninterference for operating system kernels. In Chris Hawblitzel
and Dale Miller, editors, CPP, volume 7679 of Lecture Notes in Computer
Science, pages 126–142. Springer, 2012. ISBN 978-3-642-35307-9.

[126] Magnus O. Myreen, Anthony C. J. Fox, and Michael J. C. Gordon. Hoare
logic for ARM machine code. In Farhad Arbab and Marjan Sirjani, editors,
FSEN, volume 4767 of LNCS, pages 272–286. Springer, 2007. ISBN 978-3-
540-75697-2.

[127] Mats Näslund, Christian Gehrmann, Christoph Baumann, Hans Thorsen,
and Oliver Schwarz. A high assurance virtualization platform for ARMv8. In
European Conference on Networks and Communications (EUCNC), 2016.

[128] T. Naughton, G. Vallee, and S. Scott. Dynamic adaptation using Xen.
In System-level Virtualization for High Performance Computing (HPCVirt),
2007.

[129] Hamed Nemati, Roberto Guanciale, and Mads Dam. Trustworthy virtualiza-
tion of the ARMv7 memory subsystem. In Giuseppe F. Italiano, Tiziana
Margaria-Steffen, Jaroslav Pokorný, Jean-Jacques Quisquater, and Roger
Wattenhofer, editors, Proceedings of Theory and Practice of Computer Sci-
ence (SOFSEM), pages 578–589. Springer Berlin Heidelberg, 2015. ISBN
978-3-662-46078-8.

[130] Peter Neumann, Robert S Boyer, Richard J Feiertag, Karl N Levitt, and
Lawrence Robinson. A provably secure operating system: The system, its
applications, and proofs. Technical Report CSL-116, second edition, SRI
International, May 1980.

[131] Job Noorman, Pieter Agten, Wilfried Daniels, Raoul Strackx, Anthony Van
Herrewege, Christophe Huygens, Bart Preneel, Ingrid Verbauwhede, and
Frank Piessens. Sancus: Low-cost trustworthy extensible networked devices
with a zero-software trusted computing base. In USENIX Security Symposium
(USENIX Security 13), pages 479–498. USENIX, 2013. ISBN 978-1-931971-
03-4.

http://www.uclinux.org/

176 BIBLIOGRAPHY

[132] Michael Norrish and Konrad Slind. The HOL System, DESCRIPTION, 3rd
edition, November 2014. HOL Kananaskis-10.

[133] Open Virtual Platforms. OVP website. http://www.ovpworld.org/.

[134] Wolfgang J. Paul, Sabine Schmaltz, and Andrey Shadrin. Completing the
automated verification of a small hypervisor - assembler code verification.
In George Eleftherakis, Mike Hinchey, and Mike Holcombe, editors, SEFM,
volume 7504 of Lecture Notes in Computer Science, pages 188–202. Springer,
2012. ISBN 978-3-642-33825-0.

[135] Colin Percival. Cache missing for fun and profit. In Proc. of BSDCan, 2005.

[136] Global Platform. The trusted execution environment: Delivering enhanced
security at a lower cost to the mobile market. Whitepaper, June 2015.

[137] François Pottier and Vincent Simonet. Information flow inference for ML.
In Principles of Programming Languages, POPL, pages 319–330. ACM, 2002.
ISBN 1-58113-450-9. URL http://doi.acm.org/10.1145/503272.503302.

[138] Adam Procter, William L. Harrison, Ian Graves, Michela Becchi, and Gerard
Allwein. Semantics driven hardware design, implementation, and verification
with ReWire. In Languages, Compilers and Tools for Embedded Systems,
LCTES, pages 13:1–13:10. ACM, 2015. ISBN 978-1-4503-3257-6. URL http:
//doi.acm.org/10.1145/2670529.2754970.

[139] PROSPER project. http://prosper.sics.se/.

[140] Alastair Reid. Trustworthy specifications of ARMv8-A and v8-M system level
architecture. In Proceedings of Formal Methods in Computer-Aided Design
(FMCAD), 2016.

[141] Alastair Reid, Rick Chen, Anastasios Deligiannis, David Gilday, David Hoyes,
Will Keen, Ashan Pathirane, Owen Shepherd, Peter Vrabel, and Ali Zaidi.
End-to-end verification of processors with ISA-Formal. In International Con-
ference on Computer Aided Verification (CAV), pages 42–58. Springer Inter-
national Publishing, 2016.

[142] Raymond J. Richards. Modeling and security analysis of a commercial
real-time operating system kernel. In David S. Hardin, editor, Design
and Verification of Microprocessor Systems for High-Assurance Applications,
pages 301–322. Springer US, 2010. ISBN 978-1-4419-1538-2. URL http:
//dx.doi.org/10.1007/978-1-4419-1539-9_10.

[143] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey,
you, get off of my cloud: Exploring information leakage in third-party com-
pute clouds. In Proceedings of the 16th ACM Conference on Computer and
Communications Security, CCS ’09, pages 199–212, New York, NY, USA,

http://www.ovpworld.org/
http://doi.acm.org/10.1145/503272.503302
http://doi.acm.org/10.1145/2670529.2754970
http://doi.acm.org/10.1145/2670529.2754970
http://prosper.sics.se/
http://dx.doi.org/10.1007/978-1-4419-1539-9_10
http://dx.doi.org/10.1007/978-1-4419-1539-9_10

BIBLIOGRAPHY 177

2009. ACM. ISBN 978-1-60558-894-0. URL http://doi.acm.org/10.1145/
1653662.1653687.

[144] John Rushby. Design and verification of secure systems. In Proceedings of the
8th ACM Symposium on Operating System Principles (SOSP), pages 12–21.
ACM, 1981.

[145] John Rushby. Noninterference, transitivity, and channel-control security poli-
cies. Technical Report CSL-92-02, SRI International, Computer Science Lab-
oratory, dec 1992. URL http://www.csl.sri.com/papers/csl-92-2/.

[146] John Rushby. Formally verified hardware encapsulation mechanism for secu-
rity, integrity, and safety. Technical report, DTIC Document, 2002.

[147] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow
security. Selected Areas in Communications, IEEE Journal on, 21(1):5–19,
2003. ISSN 0733-8716.

[148] Andrei Sabelfeld and David Sands. Declassification: Dimensions and prin-
ciples. J. Comput. Secur., 17(5):517–548, October 2009. ISSN 0926-227X.
URL http://dl.acm.org/citation.cfm?id=1662658.1662659.

[149] Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Ronald Perez, Leendert Van
Doorn, John Linwood Griffin, Stefan Berger, Reiner Sailer, Enriquillo Valdez,
Trent Jaeger, Ronald Perez, Leendert Doorn, John Linwood, and Griffin Ste-
fan Berger. sHype: Secure hypervisor approach to trusted virtualized systems.
In IBM Research Report RC23511, 2005.

[150] David Sanán, Andrew Butterfield, and Mike Hinchey. Separation kernel
verification: The XtratuM case study. In Dimitra Giannakopoulou and
Daniel Kroening, editors, Verified Software: Theories, Tools and Experiments
(VSTTE), pages 133–149. Springer International Publishing, 2014. ISBN 978-
3-319-12154-3.

[151] Fernand Lone Sang, Éric Lacombe, Vincent Nicomette, and Yves Deswarte.
Exploiting an I/OMMU vulnerability. In 5th International Conference on
Malicious and Unwanted Software (MALWARE), pages 7–14, 2010.

[152] Davide Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge
University Press, 2012.

[153] Dries Schellekens. Design and Analysis of Trusted Computing Platforms. PhD
thesis, Katholieke Universiteit Leuven, 2012.

[154] Joshua Schiffman and David Kaplan. The SMM rootkit revisited: Fun with
USB. In Availability, Reliability and Security (ARES), pages 279–286, Sept
2014.

http://doi.acm.org/10.1145/1653662.1653687
http://doi.acm.org/10.1145/1653662.1653687
http://www.csl.sri.com/papers/csl-92-2/
http://dl.acm.org/citation.cfm?id=1662658.1662659

178 BIBLIOGRAPHY

[155] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. SecVisor: A tiny
hypervisor to provide lifetime kernel code integrity for commodity OSes. In
Proceedings of the 21st Symposium on Operating System Principles(SOSP
2007), pages 335–350, Stevenson, Washington, USA, October 14–17 2007.

[156] Thomas Arthur Leck Sewell, Magnus O. Myreen, and Gerwin Klein. Trans-
lation validation for a verified OS kernel. In Proc. PLDI’13, pages 471–482,
2013.

[157] Thomas Arthur Leck Sewell, Simon Winwood, Peter Gammie, Toby Mur-
ray, June Andronick, and Gerwin Klein. seL4 enforces integrity. In Marko
van Eekelen, Herman Geuvers, Julien Schmaltz, and Freek Wiedijk, editors,
Proceedings of Interactive Theorem Proving (ITP), pages 325–340. Springer,
2011. ISBN 978-3-642-22863-6.

[158] Q. Shafi. Cyber physical systems security: A brief survey. In Computational
Science and Its Applications (ICCSA), pages 146–150, 2012.

[159] Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Checking safety prop-
erties using induction and a SAT-solver. In Warren A. Hunt and Steven D.
Johnson, editors, Proceedings of Formal Methods in Computer-Aided Design
(FMCAD), pages 127–144. Springer, 2000. ISBN 978-3-540-40922-9.

[160] Junaid Shuja, Abdullah Gani, Kashif Bilal, Atta Ur Rehman Khan, Sajjad A.
Madani, Samee U. Khan, and Albert Y. Zomaya. A survey of mobile device
virtualization: Taxonomy and state of the art. ACM Computing Surveys
(CSUR), 49(1):1:1–1:36, 2016. ISSN 0360-0300. URL http://doi.acm.org/
10.1145/2897164.

[161] O. Sibert, P. A. Porras, and R. Lindell. The Intel 80x86 processor architec-
ture: Pitfalls for secure systems. In Security and Privacy, SP, pages 211–222.
IEEE Computer Society, 1995. URL http://dl.acm.org/citation.cfm?
id=882491.884240.

[162] SICS. SICS Thin Hypervisor (STH) source. https://bitbucket.org/
sicssec/sth.

[163] Rohit Sinha, Sriram Rajamani, Sanjit Seshia, and Kapil Vaswani. Moat:
Verifying confidentiality of enclave programs. In Comp. and Comm. Security,
pages 1169–1184. ACM, 2015. ISBN 978-1-4503-3832-5. URL http://doi.
acm.org/10.1145/2810103.2813608.

[164] James E. Smith and Ravi Nair. The architecture of virtual machines. Com-
puter, 38(5):32–38, May 2005. ISSN 0018-9162.

[165] Jim E. Smith and Ravi Nair. Virtual Machines: Versatile Platforms for
Systems and Processes. Morgan Kaufmann Publishers, USA, 2005. ISBN
1558609105.

http://doi.acm.org/10.1145/2897164
http://doi.acm.org/10.1145/2897164
http://dl.acm.org/citation.cfm?id=882491.884240
http://dl.acm.org/citation.cfm?id=882491.884240
https://bitbucket.org/sicssec/sth
https://bitbucket.org/sicssec/sth
http://doi.acm.org/10.1145/2810103.2813608
http://doi.acm.org/10.1145/2810103.2813608

BIBLIOGRAPHY 179

[166] Sony Mobile. NovaThor U8500 product page. http://developer.
sonymobile.com/knowledge-base/technologies/novethor-u8500/.

[167] Mandayam Srivas and Mark Bickford. Formal verification of a pipelined
microprocessor. IEEE Softw., 7(5):52–64, 1990. ISSN 0740-7459. URL http:
//dx.doi.org/10.1109/52.57892.

[168] Udo Steinberg and Bernhard Kauer. NOVA: A Microhypervisor-Based Secure
Virtualization Architecture. In Proceedings of EuroSys, 2010.

[169] Patrick Stewin and Iurii Bystrov. Understanding DMA malware. In Ul-
rich Flegel, Evangelos P. Markatos, and William Robertson, editors, De-
tection of Intrusions and Malware, and Vulnerability Assessment - 9th In-
ternational Conference, DIMVA 2012, Heraklion, Crete, Greece, July 26-
27, 2012, Revised Selected Papers, volume 7591 of Lecture Notes in Com-
puter Science, pages 21–41. Springer, 2012. ISBN 978-3-642-37299-5. URL
http://dx.doi.org/10.1007/978-3-642-37300-8_2.

[170] Jiaqi Tan, Hui Jun Tay, Rajeev Gandhi, and Priya Narasimhan. AUSPICE:
Automatic safety property verification for unmodified executables. InWorking
Conference on Verified Software: Tools, Theories and Experimems (VSTTE),
2015.

[171] Hendrik Tews. Micro hypervisor verification: Possible approaches and rele-
vant properties, 2007.

[172] Ken Thompson. Reflections on trusting trust. Commun. ACM, 27(8):761–
763, August 1984. ISSN 0001-0782. URL http://doi.acm.org/10.1145/
358198.358210.

[173] Mohit Tiwari, Jason K. Oberg, Xun Li, Jonathan Valamehr, Timothy Levin,
Ben Hardekopf, Ryan Kastner, Frederic T. Chong, and Timothy Sherwood.
Crafting a usable microkernel, processor, and I/O system with strict and
provable information flow security. In International Symposium on Computer
Architecture, ISCA, pages 189–200. ACM, 2011. ISBN 978-1-4503-0472-6.
URL http://doi.acm.org/10.1145/2000064.2000087.

[174] Trusted Computing Group. PC client specific TPM interface specification.
Version 1.2, Revision 1.0, 2005.

[175] Amit Vasudevan, Sagar Chaki, Limin Jia, Jonathan McCune, James New-
some, and Anupam Datta. Design, implementation and verification of an eX-
tensible and Modular Hypervisor Framework. In Security and Privacy, 2013.
ISBN 978-0-7695-4977-4. URL http://dx.doi.org/10.1109/SP.2013.36.

[176] Amit Vasudevan, Sagar Chaki, Petros Maniatis, Limin Jia, and Anupam
Datta. überSpark: Enforcing verifiable object abstractions for automated

http://developer.sonymobile.com/knowledge-base/technologies/novethor-u8500/
http://developer.sonymobile.com/knowledge-base/technologies/novethor-u8500/
http://dx.doi.org/10.1109/52.57892
http://dx.doi.org/10.1109/52.57892
http://dx.doi.org/10.1007/978-3-642-37300-8_2
http://doi.acm.org/10.1145/358198.358210
http://doi.acm.org/10.1145/358198.358210
http://doi.acm.org/10.1145/2000064.2000087
http://dx.doi.org/10.1109/SP.2013.36

180 BIBLIOGRAPHY

compositional security analysis of a hypervisor. In 25th USENIX Security
Symposium (USENIX Security 16). USENIX Association, 2016.

[177] Luca Viganò. Automated security protocol analysis with the AVISPA tool.
Electronic Notes in Theoretical Computer Science, 155:61–86, May 2006.
ISSN 1571-0661. URL http://dx.doi.org/10.1016/j.entcs.2005.11.
052.

[178] David Von Oheimb. Information flow control revisited: Noninfluence = non-
interference + nonleakage. In ESORICS 2004, pages 225–243. Springer, 2004.

[179] David A. Wheeler. Countering trusting trust through diverse double-
compiling. In 21st Annual Computer Security Applications Conference (AC-
SAC’05), Dec 2005.

[180] Matthew M. Wilding, David A. Greve, Raymond J. Richards, and David S.
Hardin. Formal verification of partition management for the AAMP7G
microprocessor. In David S. Hardin, editor, Design and Verification of
Microprocessor Systems for High-Assurance Applications, pages 175–191.
Springer, 2010. ISBN 978-1-4419-1538-2. URL http://dx.doi.org/10.
1007/978-1-4419-1539-9_6.

[181] Rafal Wojtczuk. Subverting the Xen hypervisor. Black Hat USA, 2008.

[182] Rafal Wojtczuk and Joanna Rutkowska. Attacking Intel trusted execution
technology. Black Hat DC, 2009.

[183] Bin (Cedric) Xing, Mark Shanahan, and Rebekah Leslie-Hurd. Intel Soft-
ware Guard Extensions (Intel SGX) software support for dynamic memory
allocation inside an enclave. In Proceedings of the 5th International Workshop
on Hardware and Architectural Support for Security and Privacy, HASP ’15,
2016.

[184] Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks: Determinis-
tic side channels for untrusted operating systems. In IEEE Symposium on
Security and Privacy (SP), pages 640–656, May 2015.

[185] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Cross-
VM side channels and their use to extract private keys. In Proc. CCS’12,
pages 305–316. ACM, 2012.

[186] Lu Zhao, Guodong Li, B. De Sutter, and J. Regehr. ARMor: Fully verified
software fault isolation. In Proceedings of the International Conference on
Embedded Software, EMSOFT 2011, pages 289–298, 2011. ISBN 978-1-4503-
0714-7.

[187] Yongwang Zhao. A survey on formal specification and verification of separa-
tion kernels. ArXiv e-prints, 1508.07066v2, October 28 2015.

http://dx.doi.org/10.1016/j.entcs.2005.11.052
http://dx.doi.org/10.1016/j.entcs.2005.11.052
http://dx.doi.org/10.1007/978-1-4419-1539-9_6
http://dx.doi.org/10.1007/978-1-4419-1539-9_6

	Contents
	Thesis
	Acronyms
	Introduction
	Background
	Platform Security
	Formal Verification
	Verification of Platform Security

	Contributions
	Summary of Included Papers
	Further Publications

	Conclusions

	Included Papers
	Formal Verification of Information Flow Security for a Simple ARM-Based Separation Kernel
	Introduction
	ARMv7
	The PROSPER Kernel
	The ideal system
	Proof Strategy
	Isolation Properties
	Proof Implementation
	Evaluation
	Related Works
	Discussion

	Machine Assisted Proof of ARMv7 Instruction Level Isolation Properties
	Introduction
	The Formal Specification of ARM
	Memory Management
	Security Properties
	The Logic Framework
	Implementation and Evaluation
	Related Work
	Conclusion

	Automatic Derivation of Platform Noninterference Properties
	Introduction
	Processor Models
	ISA Information Flow Analysis
	Approach
	Evaluation
	Related Work
	Discussion on Unpredictable Behaviour
	Conclusions and Future Work

	Formal Verification of Secure User Mode Device Execution with DMA
	Introduction
	Related Work
	The HOL4 ARM Model
	Memory Management
	Device Model Framework
	Security Properties
	Implementation
	Conclusions

	Securing DMA through Virtualization
	Introduction
	Related Work
	Prerequisites
	Architecture and Hypervisor
	DMA Virtualization
	Evaluation
	Formal Verification of a Simplified DMA Model
	Conclusions

	Affordable Separation on Embedded Platforms: Soft Reboot Enabled Virtualization on a Dual Mode System
	Introduction
	Hardware and Protocol
	Hypervisor
	Software Adaptions
	Evaluation
	Related Work
	Conclusion

	Reference Lists
	SICS Dissertation Series
	Bibliography

