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Abstract
We present previously unknown high severity vulnera-
bilities in Android.

The first is in the Android Platform and Google
Play Services. The Platform instance affects Android
4.3-5.1, M (Preview 1) or 55% of Android devices
at the time of writing1. This vulnerability allows for
arbitrary code execution in the context of many apps
and services and results in elevation of privileges. In this
paper we also demonstrate a Proof-of-Concept exploit
against the Google Nexus 5 device, that achieves code
execution inside the highly privileged system_server

process, and then either replaces an existing arbitrary
application on the device with our own malware app
or changes the device’s SELinux policy. For some other
devices, we are also able to gain kernel code execution
by loading an arbitrary kernel module. We had respon-
sibly disclosed the vulnerability to Android Security
Team which tagged it as CVE-2015-3825 (internally
as ANDROID-21437603/21583894) and patched An-
droid 4.4 / 5.x / M and Google Play Services.

For the sake of completeness we also made
a large-scale experiment over 32,701 of Android
applications, finding similar previously unknown
deserialization vulnerabilities, identified by
CVE-2015-2000/1/2/3/4/20, in 6 SDKs affecting
multiple apps. We responsibly (privately) contacted
the SDKs’ vendors or code maintainers so they would
provide patches. Further analysis showed that many of
the SDKs were vulnerable due to weak code generated
by SWIG, an interoperability tool that connects C/C++
with a variety of languages, when fed with some bad
configuration given by the developer. We therefore
worked closely with the SWIG team to make sure
it would generate more robust code — patches are
available.

1https://developer.android.com/about/dashboards

I. Introduction

Android is the most popular mobile operating system
with 78% of the worldwide smartphone sales to end
users in Q1 2015 [1].

Android apps are executed in a sandboxed envi-
ronment to protect both the system and the hosted
applications from malware [2]. The Android sandbox
relies on the Linux kernel’s isolation facilities. While
sandboxing is a central security feature, it comes at the
expense of interoperability. In many common situations,
apps require the ability to interact. For example, the
browser app should be capable of launching the Google
Play app if the user points toward the Google Play
website. To recover interoperability, a key aspect of
the Android architecture is Inter-App Communication
(IAC) , which enables modular design and reuse of
functionality across apps and app components. The
Android IAC model is implemented as a message-
passing system, where messages are encapsulated by
Intent objects. Through Intents, an app (or app
component) can utilize functionality exposed by another
app (or app component), e.g. by passing a message
to the browser to render content or to a navigation
app to display a location and provide directions to it.
For implementing IAC, including sending and receiving
Intents, Android uses a mechanism called Binder. As
described thoroughly by [3],in the center of the Binder
mechanism is the Binder Linux driver, that transfers
messages between processes. Each such Inter-Process
Communication (IPC) message is a ’transaction’. When
an application talks to a service, it does so using
proxy and stub methods that get translated to Binder
transactions under the hood, albeit appear like a local
function call to the developer.

Due to its significance, much past research has been
invested, from multiple angles, in IAC. The research
varies from Testing [4, 5, 6], Verification [7], Prevention
[8, 9] and Offensive Security [10, 11, 12, 13, 14, 15, 16].
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II. Serialization

Intents may contain arbitrary data of arbitrary types
via a provided Bundle2 object. For instance, an appli-
cation may provide another app with a String which
can then be accessed via Bundle.getString(String

key) or through Intent.getStringExtra(String

key). Moreover, a completely arbitrary object can be
sent and later be accessed by the recipient via the
Bundle.getObject(String key) method. In order
to be able to send objects via IAC they must be
serialized (or use the Parcelable interface explained
briefly below). The recipient needs to deserialize them
upon instantiation.

General-purpose serialization of objects can be
achieved by implementing the Serializable interface
in the object’s class. Object members which shall not
be serialized (for example, pointers used in native code)
can easily be declared by the developer by providing the
transient modifier before each of such a member. By
default, during deserialization, ObjectInputStream’s
defaultReadObject method is called, receives the
class name of the object being deserialized from the
stream, and instantiates it, populating its fields that are
non-transient and non-static with the stream’s data. In
addition, developers can implement special methods in
their classes, that will override the default serialization
methods. These methods, covered by the Java Doc-
umentation3 include readObject, readResolve and
writeReplace.

In addition, Android provides another serialization
facility through the Parcleable interface. Objects of
implementing classes can be placed inside a Parcel4

object which is designed as a high-performance IPC
transport.

III. The General Android Problem

In 2014, Jann Horn has disclosed a significant vulner-
ability [17] in Android. The vulnerability, identified as
CVE-2014-7911, was a serious flaw in the way An-
droid derserialized objects via ObjectInputStream.
In Android versions earlier than 5.0, the deserializing
code did not verify that the received object is indeed
serializable by making sure that its class implements
the Serializable interface. This allowed for inserting
arbitrary objects (available to the target’s class loader)
into a target app or service. Things became more

2http://developer.android.com/reference/android/-
os/Bundle.html

3http://docs.oracle.com/javase/7/docs/api/java/io/Serializable.html/
4http://developer.android.com/reference/android/-

os/Parcel.html

serious because oftentimes the inserted object is auto-
matically deserialized, and later freed by the Garbage
Collector (GC), which calls the finalize method of
the deserialized object. The finalize method may
switch into native code that may access non-transient
pointers provided by the deserialized object, that the
adversary controls. In current Android versions, any
object put inside a Bundle can be initialized by a
victim app (or service) if the latter only uses (touches)
a Bundle arriving from the attacker’s IAC. Using a
Bundle is a very common behavior among apps..
Internally, when the Bundle is touched (e.g. by call-
ing getStringExtra() or similar), it unparcels it-
self - initializing (and instantiating) all of its val-
ues (even unused ones). These values may include
Serializable and Parcelable objects, that will get
deserialized (or unparcelled). Together with his dis-
closure, Horn released a Proof-of-Concept (PoC) code
crashing Android’s system_server which runs under
the system context. Horn’s PoC worked by provid-
ing system_server with an evil, non-Serializable
android.os.BinderProxy object, by inserting it
into the setApplicationRestrictions’s method
Bundle parameter. While Horn’s PoC only crashed
system_server, it clearly demonstrated the problem,
which indeed proved to be exploitable as a few months
later Yaron Lavi and Nadav Markus released a write-up
[18] describing a fully working exploit.

Despite the fact that CVE-2014-7911 has been
patched, there can still be Serializable classes avail-
able to applications that are dangerous to load if they
can be controlled by the adversary. One prominent
scenario happens if the developer had forgotten to add
the transient modifier to a sensitive member (such as a
pointer).

This game is asymmetric as one vulnerable class
that is available to the default Android class loader
is enough for all apps (or one highly-privileged ser-
vice) to be compromised. Objects of such classes may
cause damage in several ways, including automatic code
execution of their finalize method with deserialized
params or by other methods (such as writeReplace

or writeObject) that can be called implicitly .

Hypothetically, even in an ideal world where there
aren’t such vulnerable classes available in the Android
framework, such classes could be found in third-party
frameworks (SDKs) or in specific apps - making a more
targeted attack.

It is important to note that Bundle isn’t the only vec-
tor. Each code path that leads to Parcel’s readValue,
readParcelable or readSerializable will also in-
stantiate whatever object is on the stream (that is
loadable).
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IV. Finding a Vulnerable Class

We wanted to find a class available to any Android
app that both implements the Serializable interface,
holds a native pointer as a member without declaring it
to be transient, and also provides a finalize method
which accesses that pointer. The finalize method does
not have to be implemented by the class itself, but rather
by an ancestor class, accessing the pointer via a call to
an overidden method.

We automatically created a list of candidate classes
using the following mechanics. We first wrote a small
app with a single Activity, and then ran it, waiting for
a debugger, using the following am command, under an
emulator running Android 4.2 through 5.1.1.

am start -D -n <activity class>

We remotely attached our custom debugger to the
application through JDWP. On top of JDWP we ran
a Java code that utilizes JDI as shown by Figure
IV.1. We ignored the Object’s and Enum’s finalize

implementations because they were simply empty func-
tions, creating a lot of uninteresting candidates. We
printedout only classes which have at least one attacker-
controllable field. A field is attacker-controllable if it is
(1) non-transient (2) non-static (3) all of the classes
in the class hierarchy from the candidate class to the
class that actually defines the field (can be the candidate
class itself) are Serializable. (4) of a Serializable
type (or primitive) (5) no readObject / readResolve
implementation that prevents us from controlling it.

Note that this code does not check for the 5th property
of our attacker-controllable definition, so it only yields
an upper bound, which we can verify manually. This
code yields a couple of classes:

1) java.util.regex.Pattern5

2) com.android.org.conscrypt-

OpenSSLX509Certificate6 in Android 4.4
and org.apache.harmony.xnet.provider-

.jsse.OpenSSLX509Certificate7 in Android
4.3.

We then analyzed the candidate classes by hand. The
first class has an interesting finalize method which
accesses a native pointer, address, however, marked
as transient, thus cannot be controlled by the adversary.
We had this false positive because this class had an-
other non-transient field which was not interesting. We
therefore were left with the second candidate only.

5http://androidxref.com/5.1.0_r1/xref/libcore-
/luni/src/main/java/java/util/regex/Pattern.java

6http://androidxref.com/5.1.0_r1/xref/external-
/conscrypt/src/main/java/org/conscrypt-
/OpenSSLX509Certificate.java

7http://androidxref.com/4.3_r2.1/xref/libcore-
/luni/src/main/java/org/apache/harmony/xnet/provider-
/jsse/OpenSSLX509Certificate.java

V i r t u a l M a c h i n e vm = < r e t r i e v e d when a t t a c h e d t o
debuggee >

f o r ( Re fe renceType r e f : vm . a l l C l a s s e s ( ) )
{

i f ( ! ( r e f i n s t a n c e o f ClassType ) )
{

c o n t i nu e ;
}
ClassType c r e f = ( ClassType ) r e f ;

boolean i s S e r i a l i z a b l e = f a l s e ;
f o r ( I n t e r f a c e T y p e i r e f : c r e f . a l l I n t e r f a c e s ( ) )
{

i f ( " j a v a . i o . S e r i a l i z a b l e " . e q u a l s ( i r e f . name ( ) ) )
{

i s S e r i a l i z a b l e = t rue ;
break ;

}
}
i f ( ! i s S e r i a l i z a b l e ) c o n t i nu e ;

boolean h a s F i n a l i z e = f a l s e ;
f o r ( Method m : c r e f . methodsByName ( " f i n a l i z e " ) )
{

S t r i n g d e c l a r i n g C l a s s = m. d e c l a r i n g T y p e ( ) . name ( ) ;
i f ( ! " j a v a . l a n g . O b j e c t " . e q u a l s ( d e c l a r i n g C l a s s ) &&

! " j a v a . l a n g . Enum" . e q u a l s ( d e c l a r i n g C l a s s ) )
{

h a s F i n a l i z e = t rue ;
break ;

}
}
i f ( ! h a s F i n a l i z e ) c o n t in u e ;

boolean h a s F i e l d = f a l s e ;
f o r ( F i e l d f : c r e f . f i e l d s ( ) )
{

i f ( f . i s S t a t i c ( ) ) c o n t in u e ;
i f ( f . i s T r a n s i e n t ( ) ) c o n t in u e ;

/ / i s S e r i a l i z a b l e i s our own i m p l e m e n t a t i o n
i f ( i s S e r i a l i z a b l e ( f , c r e f ) )
{

h a s F i e l d = t rue ;
break ;

}
}
i f ( ! h a s F i e l d ) c o n t in u e ;

System . o u t . p r i n t l n ( c r e f . name ( ) ) ;
}

Figure IV.1. JDI code that finds candidate vulnerable classes

The more pedantic reader would notice that our
experiment was limited to the preloaded classes only.
In order to overcome that, we created a list of loadable
classes by parsing the output of the oatdump tool
over boot.art. This resulted in 13321 loadable classes
under our Android 5.1 build. One could then try to
add them to /system/etc/preloaded-classes, and
re-run our experiment. We decided to take a different
approach and write a small Android app, that loads the
classes using Java Reflection, and examines whether
they are candidate to be vulnerable, by the same criteria
defined above. We did not find any additional candi-
dates.

3



V. Attacking OpenSSLX509Certificate

OpenSSLX509Certificate is Serializable since
it is a descendant of Certificate which is
Serializable. It also has a finalize method which
calls a native function with its mContext mem-
ber, which is a pointer of type long, as an argu-
ment. Since OpenSSLX509Certificate doesn’t imple-
ment any special deserialization methods (readObject
or readResolve), and since mContext is attacker-
controllable (as per our definition in Section IV),
the adversary can control it. Eventually, as ex-
plained in Section III, OpenSSLX509Certificate's
finalize method will be invoked automatically
by the GC. The finalize method then invokes
NativeCrypto.X509_free with mContext as a pa-
rameter. Its execution ends with a decrement of *(int
*)(mContext + 0x10). (In native code.)

Constrained "Write What Where" in user-mode
memory can be achieved by decrementing a positive
WORD’s value one by one (also by accessing its
high/low HALFWORDs with unaligned addressing).
Freeing of an arbitrary object could also be achieved,
but there’s no need as we managed to create a fully
functional exploit without that.

Note that instead of relying on the GC
to call finalize, we could have abused the
OpenSSLX509Certificate’s writeReplace method,
that is inherited from Certificate. As explained
in Section III, when implemented in a class, this
method overrides the default method for serializing
an object. The writeReplace method in our
case calls getEncoded, a method implemented by
OpenSSLX509Certificate that leads to the invocation
of a native function (NativeCrypto.i2d_X509) with
our attacker-controlled parameter (mContext).Unlike
finalize, this method doesn’t depend on the
GC, but is triggered immediately when our
OpenSSLX509Certificate object is serialized
(at the other end). One way of abusing it would be
sending an Intent with OpenSSLX509Certificate

as an Intent Extra to an application that uses (touches)
the Intent’s Extras Bundle, and later serializes the
Bundle which will trigger a writeReplace call on
our deserialized object.

VI. Proof-of-Concept Exploit

In order to demonstrate the impact of such a vulnerabil-
ity, we developed and successfully tested a PoC exploit,
running under Google Nexus 5 Hammerhead equipped
with Android 5.1.1. The exploit can easily be ported
to run on other devices running vulnerable Android
versions. This paper describes a PoC that demonstrates

the feasibility of the attack. It does not include any
exploit code. The exploit’s fundamental goal is to
achieve code execution in an arbitrary app or service.
One significant candidate is a process with elevated
privileges - Android’s system_server, which hosts
many core services such as Android’s Package Man-
ager, Activity Manager and Power Manager services.
It runs under UID 1000 - Android’s system user. We
attack system_server by inserting our objects into the
setApplicationRestrictions method’s Bundle pa-
rameter, see [17]. After being able to run code in the
system_server process, we demonstrated three different
goals the exploit can achieve: The first is replacing an
application already on the target device with our own
malware app. The second goal we achieved was com-
pletely bypassing SElinux, by changing and reloading
the SElinux policy. Third, on devices running kernels
that were compiled with loadable modules support (not
recent Google Nexus devices), we were also able to
leverage the exploit to gain arbitrary kernel code execu-
tion. This was done by making our shellcode, running
inside system_server, load our own kernel module –
see Section VII-C.

A. Constrained “Write What Where”

As we mentioned in Section V, we are able to
decrement the value of a positive integer by one. This
is because our pointed object is believed to contain a
reference counter of type signed integer at offset 0x10.
Thus every time NativeCrypto.X509_free is called,
it gets decremented and the function returns (without
freeing anything). When the value reaches zero, the
flow towards free continues, and may cause a crash
by dereferencing an unmapped pointer.

Because the decrement doesn’t crash the remote app
(on a positive integer), we can re-run it multiple times,
decrementing the target WORD until it reaches the value
of 1.

In order to do it efficiently, we include many (0x500)
OpenSSLX509Certificate objects inside each trans-
action’s Bundle, making the WORD’s value decrement
faster. (Each Binder transaction is limited to 1MB in
size otherwise a TransactionTooLargeException is
thrown8.) In order to further improve the efficiency,
to allow us to both target WORDs that initially are
negative, and set WORDs with a negative value without
crashing, we can also decrement from the middle of our
target WORD (2 bytes aligned), lowering the value of
the upper half of our WORD to reach a desired value,
or until our WORD’s MSB (sign-bit) is zeroed, so that
we will later be able to operate on the target WORD

8http://developer.android.com/reference/android/os/-
TransactionTooLargeException.html
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directly and also decrement the lower HALFWORD.
In case the desired value is negative, after setting the
lower HALFWORD, we can get back to the address+2
WORD and set the higher HALFWORD to a negative
value. The ability to do this of course depends, again,
on the value of the WORD we decrement and of the
next adjacent HALFWORD.

Note that for the constrained “Write What Where” we
have to know the original value of the target WORD in
the remote process as well. This is possible thanks to
the Zygote creation model, see Section VI-D.

B. Controlling the Program Counter (PC)

Now that we have the ability to control a value from
another process’s address space, we can use it to subvert
a target program’s logic, by changing authentication or
privilege states for example. In addition, we can try
to achieve arbitrary code execution. Android, a Linux-
based OS, has memory page permissions. Since we
didn’t find any memory page that is both writable
and executable, we thought we could modify a func-
tion’s address from the Global Offset Table (.got

section). Unfortunately for us, the shared libraries in
memory were all compiled with the Relocation Read
Only (RELRO) flag. This compile-time flag instructs the
loader to resolve all symbols’ addresses immediately
during the binary loading, and then set their memory
pages to read-only, making .got overwrite impossible.

C. Writable Function Pointers

Another approach for gaining code execution by
controlling memory is by changing a writable function
pointer. In some cases, libraries let other apps hand
pointers of callback functions, which are invoked in
specific places in the library’s code. For example, li-
braries may allow an application to hand a callback
for logging purposes, that will be invoked every time
the library needs to write to a log. These callbacks
sometimes appear as global function pointers in the
library’s (writable) data section, making them a perfect
target for achieving arbitrary code execution.

In our case, we found that libcrypto (the OpenSSL
library) offers this functionality which is used by lib-
javacrypto (conscrypt’s native library). libcrypto holds
the pointers as global variables in the data section, and
thus they are writable. We found calls to the callback
throughout the code.

Specifically, we chose to override the id_callback

function pointer to point to our code. We then make
the target process reach a code path that invokes the
callback function. We do this again using the same trick
of serializing an object that will be instantiated at the
other end. This time we put an OpenSSLECPrivateKey

object, with bad contents in its byte array mem-
ber inside the bundle. The byte array won’t be suc-
cessfully decoded as PKCS8, but will help us in
later stage, see Section VI-H. OpenSSLECPrivateKey
implements the readObject method, that over-
rides the default deserialization method, and thus
is called during object deserialization. This function
calls the NativeCrypto.d2i_PKCS8_PRIV_KEY_INFO

function with the byte array we supplied. Our
supplied byte array makes the function call the
throwExceptionIfNecessary function (after failing
to parse our byte array to a valid value), that eventually
leads to an invocation of CRYPTO_THREADID_current,
that directly calls our callback function .

A minor drawback we encountered of using the
id_callback function pointer is that its adjacent
HALFWORD is zeroed. This means that by decre-
menting this function pointer, we are practically limited
to positive addresses [1,0x7 f f f f f f f ] . We practically
bypass this limit in Section VI-G.

D. Bypassing Address Space Layout Randomization
(ASLR)

ASLR is a security mechanism whose purpose is to
make it harder for attackers to build a reliable exploit.
ASLR randomly arranges key data areas of a process,
including the base of the executable and the positions
of the stack, heap and libraries. ASLR could have easily
prevented us from gaining code execution by overriding
a specific function pointer, because we wouldn’t have
known where the function pointer lies in memory, and
not less important, what its initial value is, which is an
address of a function in the libjavacrypto module.

Android’s Zygote Process Creation Model: In An-
droid, every application, and most of the service pro-
cesses are created by forking from a single process
named Zygote. The design was intended to improve
the responsiveness of applications at launch-time, but it
adversely affects the effectiveness of ASLR. The Zygote
process is created among the first processes at boot time,
and contains a full Dalvik or ART Virtual Machine
instance with frequently used classes preloaded. Lee
et al. [19] concluded that “all running apps inherit the
commonly used libraries from the Zygote process and
thus share the same virtual memory mappings of these
libraries, which represent a total of 27 MB of executable
code in memory”. Other research also abused Zygote.
For example, Kaplan et al. [13] leaked a random value
generated in early boot in order to reconstruct the Linux
Psuedo-Random Number Generator (PRNG) state.

Thanks to Zygote, by observing our own, malicious
process’s, memory we are able to realize the function
pointer’s address and value in the remote target pro-
cess’s memory. Both of these are addresses in libraries
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that were forked from Zygote (even in system_server,
which also forks from Zygote).

E. Towards Code Execution

Currently, using the function callback we decre-
mented, we have the ability to control the PC, i.e. to
execute code from an arbitrary address (constrained to
a positive int value) in memory. As we don’t currently
have code instructions that will perform the tasks we
want in the target process’s memory, at this stage we
manipulate memory and register values in order to
prepare our own shellcode for execution. We then jump
to it. We achieved this by passing the shellcode bytes
to the target process, and by chaining multiple Return-
Oriented Programming (ROP) gadgets as explained in
the next sections. In order to execute the chain of
gadgets using returns, we placed the gadgets’ addresses
on the (pivoted) stack and jumped to the first gadget.
We used the Stack Pivot technique to achieve this (see
Section VI-H).

F. Reliably Locating our Shellcode in the Remote Pro-
cess

For the Stack Pivot and later steps, we need to
have a memory buffer (for the shellcode) at a reliable
location in the remote process’s memory. Traditionally,
placing the shellcode in the target process’s memory
is done by using a technique called Heap Spraying,
that basically involves filling the target process’s heap
memory with repetitions of the desired shellcode, in-
creasing the probability that the shellcode will reside at
an arbitrary address during the exploitation. In our case,
though, the byte array that we fully control during the
deserialization of the OpenSSLECPrivateKey object
for triggering our code execution (see Section VI-C)
happens to be directly pointed by the fp (r13) register
at the time our first gadget’s (see G1, Section VI-J)
opcode is reached.

G. Running Code from an Unconstrained Arbitrary
Address

The next adjacent HALFWORD of id_callback

happens to be zero, meaning the value we can overwrite
it with is limited. Due to the fact that id_callback’s
value always happens to be above 0x7fffffff (it is set
to the address of a function under libjavacrypto,
which sits at high memory), we can practically change
id_callback’s value to any positive integer. To over-
come this limitation, and gain the ability to execute
gadget at any user-space address, we wanted to find
a gadget residing at a positive integer address, that will
let us jump to any address.. Observing the memory

layout of Android processes forked from Zygote, we
noticed boot.oat (used by ART) has a large executable
mapping around the 0x70000000 area. Since our con-
trolled memory is pointed by fp (see Section VI-F) we
searched for a gadget that directly jumps to a deref-
erenced value relative to fp. We haven’t found such
a gadget, but instead, found a gadget (G1, see Section
VI-J) that takes fp[0], dereferences it 2 more times and
jumps to the resulting address. Since we control fp[0]’s
value (the very first WORD in our byte array), and we
could make sure that the dereferenced pointer chain will
all be at addresses whose adjacent HALFWORDs are
a positive short, allowing us to fully control the jump
address by our constrained decrement. We thus have
to set 2 additional WORDs using the decrementation
method described in Section VI-A before running the
gadget.

H. Stack Pivoting

A common method for attackers to conveniently
control program execution involves pointing the stack
pointer to an attacker-controlled memory. This allows
the attacker to prepare a call stack that includes the
addresses of the desired ROP gadgets so that each
time a return instruction (pop {...,pc}) occurs, the
next gadget runs. The second gadget we run (after
achieving unconstrained arbitrary address execution) is
G2 (Section VI-J). It changes the value of sp to a value
relative to fp, and then returns. Thus from that point
forwards, our controlled byte array (from Section VI-C.)
becomes the program’s stack.

I. Running Our Shellcode Despite SElinux

Security-Enhanced Linux (SElinux) is a security en-
hancement to Linux which allows fine-grained control
over access control. It is comprised of kernel modifi-
cations and user-space tools that have been added to
various Linux distributions. It was incorporated into
Android in Android 4.3, in permissive mode (permission
denials are logged but not enforced), and gradually
moved to full enforcement in Android 5.0 [20]. SElinux
assigns processes with a security domain (or type),
adding the ability to restrict specific processes’ from do-
ing certain actions (regardless of the user running them).
The types’ restrictions are defined in .te files. SElinux
takes a secure white-list approach where everything is
disallowed, except for the specific rules defined for the
process.

We decided to run our own shellcode inside the
system_server process due to the amount of SELinux
capabilities this process has. (Which is due to the
fact that it hosts many system services.) Our shellcode
can then do many sensitive actions. The process is
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subject to the restrictions of the system_server type
9. A required step for running our shellcode, which
we put as part of the OpenSSLECPrivateKey object’s
byte array, is to map it as an executable memory.
By default, such an action will be restricted because
of SElinux, but as one can see, system_server.te

includes the “allow system_server self:process

execmem” rule, giving the system_server process the
PROCESS__EXECMEM permission, which allows it to map
anonymous memory as executable. We take advantage
of this fact, and use our ROP chain (explained in the
next section) to map a readable, writable and executable
(rwx) memory location, copy our shellcode to that
location, and run it from there.

We note that we had to overcome a caching problem.
ARM has two separate memory caches types - one for
instructions and another for data [21]. When we first
copied our code to the rwx memory area, it was written
to the data cache, and was not immediately flushed
into memory. Thus when we jumped to the shellcode
location, the processor fetched instructions for execution
directly from memory, while our shellcode was still
residing in the data cache. In order to overcome this,
we copy a large memory amount after our shellcode,
filling the data cache. By doing so, we manage to evict
(flush) our shellcode from the data cache to memory.

J. ROP Chain
The series of of ROP gadgets we use is summarized

here. The gadgets map a rwx memory area in (the
unused) address 0x50000000, copy the shellcode there
and jump to it. All the gadgets were found inside
libraries that are loaded by Zygote. They were found
either manually (in boot.oat, which isn’t a valid ELF
binary), or by using ROPGadget10.

(G1) Jump to an Arbitrary Address: mov r1,

fp; ldr r0, [r1, #0]; ldr.w r0, [r0, #444];

ldr.w lr, [r0, #44]; blx lr. Found in boot.oat,
which is at a positive integer address . This gadget is
used for jumping to an unconstrained arbitrary memory
address by taking a value relative to fp and jumping
to it.

(G2) Stack Pivot: mov sp, fp, and return.
(G3) Allocate Buffer on Stack: add.w sp, sp,

#0x420, and return. Used to allow more stack space
before calling libc functions. It is needed since our
byte array happens to be near the beginning of a page,
and we don’t want the stack to grow down to an
unmapped memory area.

(G4) Map RWX memory: pop {r0, r1,

r2, r3, pc}. This gadget is used for

9https://android.googlesource.com/platform/external/sepolicy/+/android-
5.1.1_r6/system_server.te

10https://github.com/JonathanSalwan/ROPgadget

running mmap(0x50000000, shellcode_size

+ EXTRA_FOR_CACHE_EVICTION, PROT_READ

| PROT_WRITE | PROT_EXEC, MAP_PRIVATE |

MAP_ANONYMOUS | MAP_FIXED, 0, 0). Note that
mmap’s prologue includes pushing the LR register to
the stack. In its epilogue it is popped from the stack
and jumped into. Because we couldn’t easily find a
gadget that sets LR value, we used a small trick: we
don’t jump to mmap’s real beginning, but rather into
mmap just after the instruction that pushes LR. This way
LR isn’t placed on the stack at all, and thus later in
the epilogue, when mmap pops a value from the stack
(which was meant to be the saved LR), it gets what we
placed on the stack in advance, which is the address of
the next gadget.

(G5) Progress the Stack: pop {r0, r1, r2, r3,

pc}. This gadget advances the stack pointer abit forward
before jumping to next gadget, so we don’t have an
overlapping with the previous gadget’s mmap 5th and
6th parameters, which lie on the stack.

(G6) Call memcpy and return to Shellcode: add

r1, sp, #0x24c; pop {r0, r2, r5, r7, pc}.
This gadget prepares r1 (memcpy’s first argument)
to point to our shellcode in memory, and then
calls memcpy(0x50000000, OUR_SHELLCODE,

shellcode_size + EXTRA_FOR_CACHE_EVICTION).
Note that we used the same trick as mentioned in the
mmap gadget, for setting the return address to be our
shellcode location.

K. The Shellcode
We compiled a shellcode written in C that uses

library functions to perform its actions. The shellcode
is compiled with placeholders for the library functions,
that are resolved (using the Zygote method, see Section
VI-D.) and changed by our application before triggering
the exploit (i.e. before the shellcode is sent). In Section
VII we list some options for the shellcode.

VII. Impact

In this section we list a few options for a shellcode
targeting system_server. While this list is incomplete,
it surely demonstrates the severity of the vulnerability.

A. Replacing Existing Applications
The shellcode can replace any user app on the device

(residing in /data/app/<target-app>/base.apk)
with arbitrary (malicious) app. It can then reboot the
device (so changes will take place immediately) by
setting the sys.powerctl property (by calling the
libcutil’s property_set function). The malware
will have access to the original app’s data and will be
launched instead of the original app.
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B. Completely Bypassing SElinux

On Android, the SElinux policy can be updated
by writing the policy configuration files to the
/data/security/current directory, and setting
the selinux.reload_policy property to 1. In the
original SElinux policy that comes with Android
5.1.1 (and others), the only process that is allowed
to write to files under the /data/security is the
process we control, system_server. One can find this
allowance in the system_server.te file under the
macro selinux_manage_policy(system_server)

which gets transformed (definition in the te_macros
file) to allow permissions for directory, file or link
creation inside /data/security, and permission to
set the selinux.reload_policy property.

In order to change the policy, we need to create
the current directory inside /data/security, and
write the policy files inside it. The policy consists
of the sepolicy binary file, and 6 textual files11:
(1) selinux_version. (2) file_contexts. (3)
property_contexts. (4) seapp_contexts. (5)
service_contexts and (6) mac_permissions.xml.
In order to load the new policy, the contents of
/data/security/current/selinux_version

file must be equal to the contents of the
/selinux_version file. This is not a difficult
task, since the latter just contains the current
Android BUILD_FINGERPRINT value which can be
retreived by reading the ro.build.fingerprint

property using libcutils’ property_get.
As for the mac_permissions.xml file, we
create a symbolic link to the original file in
/system/etc/security/mac_permissions.xml.
We simply create a symbolic link, because in contrast
to the rest of the files, this file isn’t opened with
the O_NOFOLLOW flag, and thus can follow links. As
for the contents of the rest of the files, we use files
generated in advance by either building a custom
Android AOSP image (after changing the SELinux
rules in the textual configuration as we like), or take
the original files of the same Android build, but edit
the binary sepolicy file using the sepolicy-inject

tool [22]. By taking the second approach, we ran our
exploit and successfully changed sepolicy domains
(system_server and shell_exec) to be permissive.
We then ran a shell command execve with sh, that
we were not allowed to perform previously.

C. Kernel Code Execution

Linux kernels can be compiled with loadable modules
support, by specifying the CONFIG_MODULES option.

11http://selinuxproject.org/page/NB_SEforAndroid_1-
#Device_Policy_File_Locations

When this feature is supported, privileged processes can
load arbitrary modules into the kernel using a syscall, as
long as the kernel was not compiled with module signa-
ture verification (CONFIG_MODULE_SIG). As can be seen
in the SElinux policy rules for the system_server pro-
cess (system_server.te, explained in Section VI-I),
system_server is not restricted from loading ker-
nel modules, thanks to the “allow system_server

kernel:system module_request” rule.
For security reasons, many Android kernels, in-

cluding Google Nexus 5’s were not compiled with
CONFIG_MODULES, and hence this section is irrelevant to
them. Despite that, we have encountered other new pop-
ular up-to-date Android devices whose kernels do sup-
port CONFIG_MODULES (without CONFIG_MODULE_SIG).

For testing this basic idea (on our device), we con-
ducted the following experiment: we replaced our Nexus
5 device’s kernel with a kernel we compiled from AOSP
with CONFIG_MODULES support. We then used our ex-
ploit against it, with a shellcode that loads our kernel
module (that we compiled in advance) into memory.
We were indeed able to verify the exploit’s success by
seeing our module’s printk’s messages appear in the
device’s dmesg (kernel messages) log.

VIII. Finding Vulnerable Classes in SDKs
and Apps

As mentioned in Section III, vulnerable classes can
be found in specific apps or frameworks, implying a
more restricted (targeted) attack. We therefore decided
to analyze the 32,701 most downloaded and free An-
droid apps in order to find such classes. Since using
our aforementioned runtime technique to conduct this
experiment would take hours to complete, we decided
to use a different approach. We created a tool that runs
dexlib212 over the apps’ dex files. dexlib2 gives a
Reflection-like interface which allowed us to statically
find classes that meet the criteria defined in section IV
(again without property 5) in mere 93 minutes. One
caveat of this approach is that dexlib2 is limited to
the classes defined in the given APK’s dex files, so our
approach would have false negatives on classes which
inherit from a Serializable Android SDK class or
from an Android SDK class that has a finalize

method. In order to compensate for that we created two
caches. The first cache is of Serializable Android
SDK classes with their attacker-controllable fields (see
Section IV), while the second is of SDK classes that
contain a finalize method. Both are based on classes
found in boot.art of our Android 5.1 build (using the
technique explained in Section IV). We found a total of

12https://github.com/JesusFreke/smali/tree/master/dexlib2
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358 classes over 176 APKs that met our criteria. Our
analysis had quite a few interesting findings.

A. Vulnerable Classes Generated by SWIG (CVE-2015-
2000/1/3/4/20)

We witnessed several APKs with a Serializable

implementing class that contained a non-transient long
member named swigCPtr. This immediately raised a
red flag. Investigating further revealed a very simi-
lar to OpenSSLX509Certificate situation, with the
swigCPtr variable passed to native code.

SWIG13 or ’Simplified Wrapper and Interface Gen-
erator’ is an interoperability tool that connects C/C++
code with a variety of high-level languages including
Java. Running SWIG over a C++ class generates 2
additional components: A Java wrapper to be used by
Java apps, and a JNI interface that interconnects the
wrapper to the original C++ code. For example, running
SWIG over the very simple C++ code shown by Figure
VIII.1 generates the Java wrapper class found in Figure
VIII.2 and the JNI binding code partially given by
Figure VIII.3.

c l a s s Foo
{
p u b l i c :

Foo ( ) {}
v i r t u a l ~Foo ( ) {}

} ;

Figure VIII.1. C++ code as an input to SWIG

p u b l i c c l a s s Foo {
p r i v a t e long swigCPt r ;
p r o t e c t e d boolean swigCMemOwn ;
. . .
p r o t e c t e d void f i n a l i z e ( ) {

d e l e t e ( ) ;
}
p u b l i c synchronized void d e l e t e ( ) {

i f ( swigCPt r != 0 ) {
i f ( swigCMemOwn ) {
swigCMemOwn = f a l s e ;
exampleJNI . d e l e t e _ F o o ( swigCPt r ) ;

}
swigCPt r = 0 ;
}
super . d e l e t e ( ) ;

}
. . .

}

Figure VIII.2. SWIG-generated Java wrapping class

As shown by Figure VIII.5, it is possible to instruct
SWIG to make the wrapping class extend another or
implement a specific interface by having a special SWIG
interface file (Figure VIII.4) .

13http://www.swig.org/

SWIGEXPORT void JNICALL J a v a _ e x a m p l e J N I _ d e l e t e _ 1 F o o (
JNIEnv ∗ j env , j c l a s s j c l s , j l o n g j a r g 1 ) {

Foo ∗a rg1 = ( Foo ∗) 0 ;
( void ) j e n v ;
( void ) j c l s ;
a rg1 = ∗( Foo ∗∗)&j a r g 1 ;
d e l e t e a rg1 ;

}

Figure VIII.3. Part of the JNI binding code

%typemap ( j a v a b a s e ) Foo " Bar " ;
%typemap ( j a v a i n t e r f a c e s ) Foo " Baz "

Figure VIII.4. SWIG interface with custom class extension and
interface implementation

This means that if the developer explicitly chose
to implement the Serializable interface, by us-
ing SWIG’s javainterfaces typemap, or more com-
monly, implicitly and probably accidentally by extend-
ing a class, using SWIG’s javabase typemap, which is
Serializable, the generated code would be vulnerable
to our attack since the generated swigCPtr would not
be transient. It should be noted that the generated native
code (Figure VIII.6) for a class with a virtual destructor
can be exploited more easily since the attacker can
trivially control the PC due to the fact that its address is
fetched from the object’s provided vtable whose pointer
(swigCPtr) the attacker fully controls. Therefore it does
not require overwriting a callback pointer as opposed to
the technique shown in Section VI. As for non-virtual
destructors, the flow reaches the global delete operator
which reduces the problem to exploiting an arbitrary
free.

The fact that SWIG can generate vulnerable code has
an amplification potential. We indeed found multiple
SDKs that included vulnerable SWIG-generated classes
which further amplified the problem. Among the vulner-
able SDKs were Jumio (CVE-2015-2000), MetaIO SDK
(CVE-2015-2001), PJSIP PJSUA2 (CVE-2015-2003),
GraceNote GNSDK (CVE-2015-2004) and MyScript
(CVE-2015-2020). A total of 18 APKs in our sample
set used these SDKs and ended-up to be vulnerable.

We argue that the fact that the application can ac-
cidentally implement the Serializable interface, by
extending a Serializable class such as Exception,
is the root cause of this issue, although we also encoun-
tered an explicit implementation of the Serializable

interface.

B. ArcGis Runtime SDK for Android (CVE-2015-2002)

Similarly, ArcGis Runtime SDK for Android by esri
contained a class with a attacker-controllable pointer
which propagated to native code.
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p u b l i c c l a s s Foo ex tends Bar implements Baz {
p r i v a t e long swigCPt r ;
p r o t e c t e d boolean swigCMemOwn ;
. . .

}

Figure VIII.5. Result of using the custom SWIG interface file

J a v a _ e x a m p l e J N I _ d e l e t e _ 1 F o o

. t e x t :000023A4 PUSH {R0−R2 , LR} es

. t e x t :000023A6 MOVS R0 , R2

. t e x t :000023A8 STR R2 , [ SP , # 0 x10+ var_10 ]

. t e x t :000023AA STR R3 , [ SP , # 0 x10+var_C ]

. t e x t :000023AC CMP R2 , #0

. t e x t :000023AE BEQ l o c r e t _ 2 3 B 6

. t e x t :000023 B0 LDR R3 , [ R2 ]

. t e x t :000023 B2 LDR R3 , [ R3 , # 4 ]

. t e x t :000023 B4 BLX R3

. t e x t :000023 B6 POP {R0−R2 , PC}

Figure VIII.6. Compiled JNI code using the Android NDK tool-chain

C. Google Play Services (ANDROID-2153894)

We also encountered the vulnerable
OpenSSLX509Certificate class in the Google
Play Services (GMS) APK. Google has tracked it with
the above internal identifier and the same CVE as of
the Android Platform instance.

IX. Mitigation

We privately disclosed the vulnerabilities to the various
vendors and code maintainers prior to the publication
of this paper. The disclosure timeline is summarized by
Table I. The following describes the various patches that
the vendors made to their vulnerable code.

A. Patched OpenSSLX509Certificate

Google has fixed the two
OpenSSLX509Certificate instances by adding the
transient modifier to the mContext member. Google
has also backported the patch to Android 4.4 (commit id
0b9d6334acde7460502face82417de40e438a3f4),
5.0 and 5.1 (commit id de55e62f6c7ecd57d0-

a91f2b497885c3bdc661d3). The patch is also
available in Android M (build MPZ79M).

B. Patched SDKs

We reported the issues to the relevant vendors or
code maintainers. Jumio removed the vulnerable SWIG
classes. esri has patched the ArcGis Runtime SDK
by adding the transient modifier to the native pointer.
MyScript and GraceNote fixed their SDKs by adding
the transient modifier to the sensitive variables, PJSIP
patched PJSUA2 by by overriding the readObject

/ writeObject methods, effectively making the vul-
nerable class non-Serializable. The MetaIO SDK
was fixed as well, as it no longer implements the
Serializable interface.

C. Patched SWIG

Since the generated vulnerable code was due to bad
configuration given by the developer, we do not consider
SWIG to be vulnerable. This is somewhat analogous
to blaming a compiler for buffer overflows. However,
even the most competent developers could miss the fact
that they accidentallly extended a Serializable class.
Therefore we decided to contact SWIG team which
released a more secure version. The patched version
generates the swigCPtr member with the transient
modifier.

X. Discussion

While the patches fixed the specific instances that
we had found, we feel that a general problem de-
serves a general mitigation, reducing the impact of
such serialization attacks. Since Bundles are very
common in Android’s Inter-Process Communication,
we suggest changing the Bundle’s default behavior
that automatically instantiates all of its values (under
BaseBundle.unparcel, that is invoked by any ’touch’
of the Bundle) to a lazy approach, i.e. retrieving
only the values of keys it is asked for. Of course by
design the problem will still remain, but will depend
more on specific developer’s code, so less apps will
be vulnerable if another vulnerable class is found,
significantly narrowing the attack surface. In addition,
further protection that prevents arbitrary readObject,
readReplace, writeObject or writeResolve meth-
ods to be called can be achieved by deprecating the cur-
rent getParcelable and getSerializable methods
(of both Bundle and Parcel) and change the APIs to
include the class name of the expected objects.

Furthermore, mitigating exploitation is also possible.
First, as explained in Section VI, ASLR is pretty much
useless in Android if the attacker can launch malware.
[19] provides a secure replacement for the insecure
Zygote implementation. In addition, as our PoC exploit
overwrites a function pointer, pointer integrity mecha-
nisms are also possible. One might think that callback
pointers must be writable, because of their functionality,
i.e. they have to be dynamically changed throughout
program lifetime. However, this does not have to be the
case. One mechanism that solves this problem is keep-
ing the memory area that holds the function pointers to
read only, and the memory will become writable by the
callback setter functions just for the period of changing
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Product Identifiers Report date Patched version(s)
Android CVE-2015-3825

ANDROID-21437603
05/22/2015 Android M / 5.x / 4.4

Google Play Services CVE-2015-3825
ANDROID-21583894

06/01/2015 7.5.73

Jumio SDK CVE-2015-2000 06/11/2015 1.5.0
MetaIO SDK CVE-2015-2001 06/11/2015 6.0.2.1
esri ArcGis CVE-2015-2002 06/11/2015 10.2.6-2
MyScript CVE-2015-2020 06/16/2015 1.3

PJSIP PJSUA2 CVE-2015-2003 06/14/2015 SVN Changeset 5132
GraceNote GNSDK CVE-2015-2004 06/14/2015 1.1.7

SWIG - 06/11/2015 3.0.7
Table I

DISCLOSURE LOG

the values. A different mitigation approach, that is
discussed by Stefan Rattger [23] proposes to white-
list function pointer values to identify cases where the
function pointers are being abused. Another interesting
mitigation is treating fields as transient by default (i.e.
an opt-in approach as opposed to the current opt-out
one). As for the specific payloads we show in Section
VII, disabling CONFIG_MODULES,or at least enabling
CONFIG_MODULE_SIG as well, is a good practice. A
more restrictive SELinux non-bypassable policy should
also be deployed.

In Android 5.0, the WebView component was moved
to an updatable APK [24], decoupling it from the rest of
the system. This had quite a few significant advantages
with respect to security. First, it allowed Google to
release security patches much faster. Second, it tackled
the Android fragmentation problem as patches could be
backported for old Android versions more easily, and
delivered to various devices all at once. We encourage
Google to continue their efforts towards decoupling the
vendors’ dependent code from the rest of the system, so
patches will be available much faster. Our case showed
the significance of such a separation, as the Google Play
Services instance of OpenSSLX509Certificate was
updated, in multiple Android versions, 3 days after our
report.

As opposed to vulnerabilities found in final products,
such as operating systems or applications, where an
automatic update mechanism is usually available, the
situation is by far worse for SDKs. One vulnerable SDK
can affect dozens of apps whose developers are usually
unaware of it, taking months to update. For example, a
recent study [15] shows that a high severity vulnerability
[11] found in Apache Cordova for Android, although
been patched for months, still affects dozens of An-
droid apps which use Cordova. The situation is most
frustrating for apps which use orphan SDKs, ones that
no longer receive security updates. Developers should
be aware that depending on 3rd-party SDKs has that
significant risk, prepare for alternatives, or choose their
used SDKs wisely. Developers also deserve better tools -

Gradle and its 3rd-party plugin, Gradle Versions Plugin,
which notify the developer when a new version is
available for a used SDK, are a pretty good start.
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