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Abstract—Several defenses have increased the cost of tradi-
tional, low-level attacks that corrupt control data, e.g. return
addresses saved on the stack, to compromise program execution.
In response, creative adversaries have begun circumventing
these defenses by exploiting programming errors to manipulate
pointers to virtual tables, or vtables, of C++ objects. These attacks
can hijack program control flow whenever a virtual method of
a corrupted object is called, potentially allowing the attacker to
gain complete control of the underlying system. In this paper we
present SAFEDISPATCH, a novel defense to prevent such vtable
hijacking by statically analyzing C++ programs and inserting
sufficient runtime checks to ensure that control flow at virtual
method call sites cannot be arbitrarily influenced by an attacker.
We implemented SAFEDISPATCH as a Clang++/LLVM extension,
used our enhanced compiler to build a vtable-safe version of
the Google Chromium browser, and measured the performance
overhead of our approach on popular browser benchmark suites.
By carefully crafting a handful of optimizations, we were able to
reduce average runtime overhead to just 2.1%.

I. INTRODUCTION

Applications like web browsers and office productivity
suites are increasingly trusted to store and manipulate highly
sensitive data in domains ranging from medical record manage-
ment to banking. Such systems demand both performance and
abstraction, making a low-level, object-oriented language like
C++ the tool of choice for their implementation. Unfortunately,
this focus on performance has all too often taken precedence
over critical security concerns. Malicious attacks frequently
exploit the low-level programming errors that plague these sys-
tems, allowing an adversary to corrupt control data, pointers
to code which the program later jumps to. By compromising
control data, attackers are able to hijack program execution, in
the worst case leading to arbitrary code execution.

Buffer overflows are one of the most familiar techniques
for corrupting control data: by overwriting the return address
in a function’s activation record on the stack, the attacker
can specify which instruction the CPU will jump to when
the function returns, thus hijacking the program’s execution.

The security community has responded to such attacks with
numerous defenses, including stack canaries [1], data execution
prevention [2], and custom allocators to protect the heap [3].
These successful defenses have increased the cost of mounting
traditional attacks, forcing adversaries to adopt increasingly
sophisticated approaches.

Instead of overwriting return addresses saved on the stack,
several recent, high profile attacks have shifted their focus to
corrupting another class of control data: heap-based pointers to
virtual tables, or vtables. A C++ class’s vtable contains func-
tion pointers to the implementations for each of its methods.
All major C++ compilers, including GCC, Visual C++, and
LLVM, use vtables to implement dynamic dispatch: whenever
an object invokes a virtual method, the vtable for that object’s
class is consulted to determine which function should be
called. This layer of indirection enables polymorphism in C++
by allowing a subclass to invoke its own version of a method,
overriding its parent class.

For performance, the first word of a C++ object with virtual
methods is a pointer to its class’s vtable. Unfortunately, this
efficiency comes at a price: memory safety violations can
nullify an important invariant: the vtable pointer stored in an
object of type τ always points to the vtable of τ or one of its
subclasses. If an attacker can corrupt an object’s vtable pointer
to instead point to a counterfeit vtable, then they can hijack
program control flow whenever that object calls one of its
virtual methods, potentially executing malicious shellcode [4].
In this paper, we call such attacks vtable hijacking and describe
an efficient technique to prevent them.

Security researchers previously demonstrated one of the
many ways an attacker can hijack vtables: by exploiting use-
after-free errors. In this particular attack method, an adversary
first identifies a dangling pointer, a reference to an object
that has been freed. The attacker then tricks the program into
allocating both: (1) a counterfeit vtable and (2) a pointer to
this counterfeit vtable at the start of the memory where the
freed object was stored. Finally, the attacker manipulates the
program to invoke a virtual method via the dangling pointer.
Because the attacker has overwritten the vtable pointer in the
freed object, this method call will jump to an address of the
attacker’s choosing, as specified by their counterfeit vtable.
Exploiting such use-after-free errors is just one way to launch
vtable hijakcing attacks, others include traditional buffer over-
flows on the stack or the heap [4] and type confusion [5],
[6] attacks. Unfortunately, such vtable hijacking attacks are no
longer merely a hypothetical threat [7], [8].
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We increasingly observe robust vtable hijacking attacks
in the wild, often leading to the execution of malicious
shellcode. Such attacks have recently been shown practical in
complex applications, including major web browsers: in recent
Pwn2Own competitions, vtable hijacking enabled multiple
arbitrary code execution attacks in Google Chrome [9], Internet
Explorer [10], and Mozilla Firefox [11]. In fact, abusing
dynamic dispatch in C++ was the major security weakness
in all these browsers. In a recent Google Chrome exploit,
Pinkie Pie employed a vtable hijacking attack to construct a
Zero-day vulnerability to escape the tab sandbox and execute
arbitrary code [12]. As a result of such attacks, researchers
have recently singled out vtable hijacking as one of the most
straightforward attack vectors exploiting heap vulnerabilities,
as an attacker can often construct inputs to influence when a
program allocates and frees objects.

Unfortunately, existing defenses that could prevent vtable
hijacking are either incomplete or do not specifically take
advantage of the C++ type system to provide the best possible
performance. Techniques like reference counting can help miti-
gate vtable hijacking attacks that exploit dangling pointers, e.g.
by preventing dangling pointers from being used for invoking
methods. Unfortunately, there are many other ways to mount
vtable hijacking attacks that do not require a dangling pointer.
Other techniques like control flow integrity [13], [14], [15],
[16], [17] can secure all indirect jumps to prevent many kinds
of control flow hijacking attacks, including vtable hijacking.
However, these techniques do not take advantage of the C++
type system for the specific task of securing virtual method
calls, and therefore none of these techniques treat C++ virtual
method calls both precisely and efficiently.

In this paper, we address the growing threat of vtable
hijacking with SAFEDISPATCH, an enhanced C++ compiler
that prevents such attacks. SAFEDISPATCH first performs a
static class hierarchy analysis (CHA) to determine, for each
class c in the program, the set of valid method implementations
that may be invoked by an object of static type c. SAFEDIS-
PATCH uses this information to instrument the program with
dynamic checks, ensuring that, at runtime, all method calls
invoke a valid method implementation according to C++
dynamic dispatch rules. By carefully optimizing these checks,
we were able to reduce runtime overhead to just 2.1% and
memory overhead to just 7.5% in the first vtable-safe version
of the Google Chromium browser which we built with the
SAFEDISPATCH compiler.

To summarize, this paper makes the following contribu-
tions:

• We develop SAFEDISPATCH, a comprehensive defense
against vtable hijacking attacks. We detail the static
analysis and compilation techniques to efficiently en-
sure control flow integrity through virtual method
calls.

• We detail the implementation of SAFEDISPATCH as an
enhanced C++ compiler and discuss several security
and performance trade offs that influenced our design.

• We applied SAFEDISPATCH to the entire Google
Chromium web browser code base to evaluate the
effectiveness and efficiency of our approach. By de-
veloping a handful of carefully crafted optimizations,

// for displaying content on screen
class Window: {
public: virtual void display(string s) { ... }

};

// specialized for small screens on mobile devices
class MobileWin: public Window {
public: virtual void display(string s) { ... }

};

Window* w = flag ? new Window() : new MobileWin();
w->display("Hello"); // invoke virtual method
delete w; // free w, now dangling

// behavior of code generated for w->display("Hello")
typedef void* method; // method is func ptr of any type
typedef method* vtable; // vtable is array of methods
vtable t = *((vtable *)w); // 1. vtable @ 1st word of object
method m = t[0]; // 2. lookup by display’s id, 0
m(w, "Hello"); // 3. make virtual call

Fig. 1. C++ Dynamic Dispatch. Consider the simple Window class above
for displaying a string on the screen. C++ compilers translate each virtual
method call into lower level code that performs three steps: (1) dereference the
first word of the calling object to retrieve its class’s vtable, (2) index into the
vtable by the method’s position in the class to retrieve the appropriate function
pointer, and (3) call the retrieved function pointer, passing the calling object
as the first argument, followed by any additional arguments. If an attacker
corrupts an object’s vtable pointer to point to a counterfeit vtable, possibly by
exploiting a dangling pointer, then they can cause steps (1) and (2) to lookup
malicious code and step (3) to execute it.

we were able to reduce runtime overhead to just 2.1%
and memory overhead to just 7.5%.

In the next section we provide additional background on
C++ dynamic dispatch and vtable hijacking and then overview
how SAFEDISPATCH prevents such attacks. Section III follows,
where we detail the SAFEDISPATCH compiler, key optimiza-
tions we developed to minimize overhead, and some of the
different security and performance tradeoffs we considered.
Next, in Section VI, we evaluate our SAFEDISPATCH imple-
mentation along several dimensions, including performance
overhead, while in Section VII we discuss the security im-
plications of our approach. In Section VIII we survey existing
defenses, discussing their effectiveness at mitigating vtable hi-
jacking in complex, high performance systems and comparing
them with SAFEDISPATCH. Finally, in Section IX we consider
future directions and conclude.

II. SAFEDISPATCH OVERVIEW

In this section we provide additional background on dy-
namic dispatch in C++, illustrate vtable hijacking with a
detailed example, and provide a high level description of how
SAFEDISPATCH prevents such attacks.

A. Dynamic Dispatch in C++

Before detailing an example vtable hijacking attack, we
briefly review how dynamic dispatch invokes object methods
in C++. Consider the code in the upper part of Figure 1, which
declares two classes: a Window class with one virtual method
named display for displaying a string on the screen and a
MobileWin subclass of Window which overrides display
to provide an implementation specialized for smaller screens.

C++ dynamic dispatch rules dictate that when an object
calls a virtual method, the actual implementation invoked
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depends on the runtime type of the calling object. This layer
of indirection allows subclasses to override their parent class’s
implementation of methods and is one of the key mechanisms
for polymorphism in C++. For example, in the code snippet
from Figure 1, the call w->display("Hello") will either
invoke Window::display or MobileWin::display,
depending on what w refers to at run-time, which in turn is
determined by the flag variable.

Of the many implementation strategies for dynamic dis-
patch, Virtual Method Tables, or vtables are the most common.
Prevalent C++ compilers, including GCC, Visual C++, and
Clang++, all use vtables due to their efficiency. To implement
vtables, the compiler assigns each virtual method in a class
an identifier, which for simplicity we assume is done by
numbering virtual methods sequentially. A vtable for class C is
then an array t such that t[i] is the implementation of method i
for class C. At compile time, the compiler constructs a vtable
for each class, and inserts code in the constructor of each class
to initialize the first word of the constructed object with a
pointer to the vtable for that class.

To implement a virtual method call the compiler generates
code that performs three steps: (1) load the vtable pointer,
located at position 0 in the calling object, (2) lookup index i in
the vtable, where i is the index of the method being called (3)
call the method implementation found at index i in the vtable.
The lower part of Figure 1 uses C++ notation to illustrate
the behavior of code generated for w->display("Hi"),
assuming that display is given index 0 by the compiler.
Note that if w points to a Window object, then the vtable
will contain Window::display at location 0, whereas if w
points to a MobileWin object, then the vtable will contain
MobileWin::display at location 0.

Because vtables are used in determining control flow,
if an attacker can illegally manipulate an object’s vtable
pointer, they can hijack program execution whenever that
object invokes a virtual method. Since objects are ubiquitous
in C++ programs, such control data is abundant, making
vtable hijacking an attractive target for adversaries seeking to
exploit low-level programming errors. We next illustrate how
an attacker may mount such attacks.

B. vtable Hijacking

Having reviewed C++ dynamic dispatch, we now illustrate
an example of vtable hijacking using the code in Figure 2.
This code mimics the structure of a browser kernel in the style
of OP [18] or Google Chrome [19], [20]. In these browsers,
tabs run as separate, strictly sandboxed, processes whose only
capability is communicating with the browser kernel process.
To perform privileged operations, e.g. rendering to the screen
or initiating a network connection, a tab process must send
requests to the browser kernel process which enforces access
control for privileged operations. This architecture provides
strong security properties: even fully compromising a tab does
not immediately grant an attacker the ability to run arbitrary
code since the tab sandbox prevents an exploited tab from
performing any privileged operations. Of course, if the browser
kernel contains an exploitable bug, the attacker may take full
control of the underlying system.

class Shell {
public: virtual string run(string cmd) { ... }

};

// for displaying content on screen
class Window: {
public: virtual void display(string s) { ... }

};

// specialized for small screens on mobile devices
class MobileWin: public Window {
public: virtual void display(string s) { ... }

};

void tab_request_handler_loop(void) {
Shell* sh = NULL;
Window* win = SMALL_SCREEN ? new MobileWin() : new Window();

while (TRUE) {
TabRequest r = recv_tab_request();
switch (r.kind) {
case GET_DATE:
if (sh == NULL)
sh = new Shell();

// run shell with safe, const string
string d = sh->run("date");
send_tab_response(r.originating_tab, d);
break;

case DISPLAY_ALERT:
win->display(r.msg);
// equivalently:
// vtable t = *((vtable *)win);
// method m = t[0];
// m(win, r.msg)
//
// If the object that win points to was accidentally
// deleted, and a Shell object was allocated in its
// place, then the above call invokes method 0 of
// Shell via the dangling win ptr, namely "run" with
// a tab-controlled arg!
break;

case GET_HTML:
...
// BUG: accidental delete, win ptr now dangling
delete win;
...
break;

}
}

}

// attack request sequence to run arbitrary shell command
GET_HTML, GET_DATE, DISPLAY_ALERT

Fig. 2. Example vtable Hijacking. The above code sketches the core of a
browser kernel in the style of Google Chrome: tabs run as separate, strictly
sandboxed processes and send requests to the kernel to perform privileged
operations like running shell commands or accessing the network. The main
loop above illustrates how such a browser kernel responds to unprivileged tab
requests. Due to a use-after-free error, an attacker can craft a sequence of
requests causing the above code to run arbitrary shell commands.

The attack we demonstrate here assumes an adversary has
already compromised a tab process which they now use to
mount an attack against the highly privileged browser kernel.
Although the code in this example is greatly simplified, a
similar attack was central to Pinkie Pie’s 2012 Zero-day exploit
against Google Chrome [12]. Furthermore, while this example
shows how vtable hijacking can be used to compromise a
browser kernel, the approach generalizes to mounting attacks
against many kinds of software, allowing an adversary to hijack
program control flow, and thus potentially execute malicious
shellcode.

The core of Figure 2 depicts a loop inside the browser
kernel to handle requests from unprivileged tab processes.
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For this simplified example, we consider three handlers which
together enable a vtable hijacking attack that will allow an
adversary to execute an arbitrary shell command.

The handler for GET_DATE uses a Shell object to
execute a shell command which retrieves the system’s date
information, and then sends the result back to the requesting
tab. Note that the parameter passed to Shell::run is a safe,
constant string.

The handler for DISPLAY_ALERT renders a tab-provided
string to the screen using a Window object. According to the
C++ type system, at runtime this object will be an instance
of Window or any of its subclass. In this case, there are
two possibilities, either the Window class or the MobileWin
class, which is specialized to render on smaller screens, and is
used depending on the setting in the SMALL_SCREEN variable
flag.

These two handlers alone do not contain an exploitable bug.
However, we now introduce a third handler for GET_HTML
requests which, somewhere in the process of fetching HTML
for a tab-provided URL, inadvertently deletes the Window
object pointed to by win, leaving the win pointer dangling.

The attack now consists of the adversary controlled
tab sending three requests: GET_HTML, GET_DATE,
and DISPLAY_ALERT. First, when kernel processes the
GET_HTML request, the win object is accidently deleted.
Second, when the kernel processes the GET_DATE request,
a new Shell object is allocated. The memory allocator
may place this object at the same memory location just
freed by the previous handler, leaving the dangling win
pointer to refer to this newly allocated Shell object. Third,
when the kernel processes the DISPLAY_ALERT request,
the method call win->display(r.msg) dereferences the
first word of win to get a vtable and calls the first function
contained in that vtable. However, since win now points
to a Shell object, its vtable pointer refers to Shell’s
vtable whose first element is the run method. Therefore,
win->display(r.msg) actually calls Shell::run
with r.msg as a parameter, a value provided by the attacker
controlled tab. Thus, by sending these three requests in order,
the compromised tab has tricked the kernel into running an
arbitrary shell command, completely violating the kernel’s
security guarantee: the browser kernel’s prime directive is to
ensure all privileged operations are appropriately guarded,
even in the face of a fully comprised tab processes.

This example illustrates just one of the many ways an
attacker may mount a vtable hijacking attack. In addition to
exploiting use-after-free errors, traditional buffer overflows (on
the stack or heap), type confusion attacks, and vtable escape
vulnerabilities are some of the techniques an attacker can em-
ploy to corrupt an object’s vtable pointer and hijack program
execution. We next sketch how SAFEDISPATCH prevents the
attack shown in this example and consider the general case in
subsequent sections.

C. SAFEDISPATCH vtable Protection

The attack illustrated in Figure 2 compromises control flow
through the win->display(r.msg) method call to trick
the program into invoking Shell::run(r.msg) instead.

// SAFEDISPATCH protection for win->display(r.msg)
vtable t = *((vtable *)win); // load vtable
method m = t[0]; // lookup method
if(m == Window::display ||

m == MobileWin::display) // check ensures m valid
m(win, r.msg);

else // otherwise, signal error
error("bogus method implementation!");

Fig. 3. SAFEDISPATCH Protection. The SAFEDISPATCH compiler inserts
checks at each method call site, analogous to those shown in bold above,
to ensure that a method looked up from an object’s vtable is valid given
the object’s static type, i.e. that it is a method of the object’s class or one
of its subclasses. Since our Window class has one subclass which overrides
display, there are two valid methods in this case, Window::display
and MobileWin::display. This check ensures that control flow through
method calls satisfies the C++ type system, effectively preventing the attacker
from executing arbitrary code. We detail our general approach in Section III.

To prevent such attacks, SAFEDISPATCH inserts code to check
the integrity of control-flow transfers for virtual method calls.
In particular, at each virtual method call site, SAFEDISPATCH
inserts checks to ensure that the code being invoked is a valid
implementation of the called method according the static type
of the object being called. For example, Figure 3 sketches
the code that SAFEDISPATCH generates to protect the call
win->display(r.msg). The additional checking code,
shown in bold, guarantees that the method being called is either
Window::display or MobileWin::display, which
SAFEDISPATCH knows are the only two valid possibilities
given the static type of win. This checking code not only
prevents the previously described attack, but also adds only
minimal overhead compared to the existing dynamic dispatch
code.

So far, we have shown how SAFEDISPATCH prevents an
attack on a simple example. In the remainder of the paper we
explain how SAFEDISPATCH works in the general case, and
present experimental results demonstrating that the overhead
on complex, industrial scale applications is relatively low.

III. THE SAFEDISPATCH COMPILER

At their core, vtable hijacking attacks cause a virtual
method call to jump into code which is not a valid imple-
mentation of that method. SAFEDISPATCH defends against all
such attacks by instrumenting programs to ensure that, at every
virtual method call site, the function pointer retrieved from
the object’s vtable at runtime is a valid implementation of
the method being called (according to C++ dynamic dispatch
rules), even if an attacker has managed to corrupt memory by
exploiting a bug in the program.

In this section we describe our implementation of
SAFEDISPATCH as an enahnced C++ compiler, built on top of
the Clang++/LLVM compiler infrastructure [21]. SAFEDIS-
PATCH extends this infrastructure with three major passes
to insert checks which protect an application from vtable
hijacking: (1) a variant of static Class Hierarchy Analysis [22]
(CHA) which allows us to determine, at compile time, all
the valid method implementations that may be invoked by
an object of a particular static type at a given method call
site, (2) a pass which uses the results from CHA to insert
runtime checks that will ensure all method calls jump to valid
implementations during program execution, and (3) various
optimizations to reduce the SAFEDISPATCH runtime and code

4



m1 m2 m3

A
A::m1
B::m1
C::m1

A::m2
D::m2

A::m3
E::m3

B B::m1 A::m2 A::m3

C C::m1 A::m2
D::m2

A::m3
E::m3

D C::m1 D::m2 A::m3

E C::m1 A::m2 E::m3

m1
m2
m3

A

m1
*
*

B
m1
*
*

C

*
m2
*

D
*
*
m3

E

ValidM

Fig. 4. Example Class Hierarchy Analysis (CHA). Our Class Hierarchy
Analysis is a static (compile time) analysis that uses the class hierarchy to
compute which method implementations can be invoked by objects of each
class type. The left diagram above shows an example hierarchy of five classes
where subclasses point to their parent class: D and E are subclasses of C while
B and C are subclasses of A. These classes have three methods: m1, m2, m3.
In each class’s box, we denote inheriting a parent’s method implementation
with * and list the names of overridden methods. For example, in this case
C overrides A’s implementation of m1, but inherits the implementations of
m2 and m3. The results of our Class Hierarchy Analysis (CHA) is the
ValidM table, specifying for each object type which implementations of
a method may be invoked at runtime, according to C++ dynamic dispatch
rules. In the example table above right, we see that calling method m2 on an
object statically declared to have type C can invoke either class A’s or D’s
implementation of m2.

size overhead. We describe each of these three passes in more
detail below.

A. Class Hierarchy Analysis

SAFEDISPATCH instruments a program to ensure all run-
time virtual method calls are valid, but before inserting these
dynamic checks we must first determine, at compile time,
which implementations are valid for each virtual method call
site. Class Hierarchy Analysis [22] (CHA) is a static analysis
that gathers this information by constructing the program’s
class hierarchy, i.e. immediate subtyping relation, and then
traverses this class hierarchy to compute the set of valid
implementations for each virtual method of every class. The
end result produced by CHA will be a map ValidM which
gives us, for each class c and each virtual method n, the
set ValidM[c][n] of method implementations that could be
invoked at runtime if an object with static type c were used to
call n.

Consider the example CHA results in Figure 4. In this
case, the program being analyzed only contains five classes
forming a three-layer hierarchy: D and E are subclasses of
C while B and C are subclasses of A. Conceptually, this
hierarchy is computed by creating a graph containing a node
for each class in the program and then adding an edge from
class c to c′ whenever c extends c′. Each node also stores
information about its class’s methods, in particular indicating
which implementations are inherited from parents (which we
depict using *) and which the class overrides with its own
implementation (which we depict using the method’s name).

Our version of CHA analyzes, for each method n of each
class c, which of c’s subclasses override n with their own

// ValidM maps class C and method name N to the set of
// func ptrs implementing N for C and its subclasses
map<class, map<string, set<method>> ValidM;

// computing ValidM at compile time
ValidM = new map<class, map<string, set<method>>();
foreach (class c in all_classes()) {

ValidM[c] = new map<string, set<method>>();
// all_method_names(c) returns all method names of class c,
// including any methods inherited from parent classes
foreach (string n in all_method_names(c)) {
ValidM[c][n] = new set<method>();
// all_subclasses(c) returns c and all its subclasses
foreach (class sc in all_subclasses(c)) {

// static_lkup(sc, n) returns the func ptr
// implementing the method named n for an object of
// class sc, according to C++ dynamic dispatch rules
ValidM[c][n].add(static_lookup(sc,n));

}
}

}

Fig. 5. Our CHA which constructs ValidM at Compile Time. At compile
time SAFEDISPATCH performs CHA to construct ValidM, a table specifying
for each method of each class type which implementations may legitimately
be invoked at runtime. The SAFEDISPATCH compiler generates ValidM by
iterating over all the program’s classes. For each class c, SAFEDISPATCH
considers all the names of c’s methods, including those transitively inherited
from parent classes. For a given method name n, SAFEDISPATCH determines
which implementations of n may be invoked at runtime by iterating over
all of c’s (transitive) subclasses, including c itself. For each subclass sc
of c, SAFEDISPATCH determines statically which implementation of n an
sc object would invoke and adds it to the set of valid implementations in
ValidM[c][n].

implementation. Along with c’s (possibly inherited) implemen-
tation, the set of such method implementations are the only
valid callees that may be invoked by an object of static type c
when it calls n at runtime. This is made precise by the code
shown in Figure 5, which computes this information and stores
the result in a table called ValidM.

In practice, implementing CHA for large, complex applica-
tions like browsers poses a serious challenge, primarily due to
subtle interactions between the many C++ inheritance mecha-
nisms, e.g. access modifiers, templates, virtual vs. non-virtual
method properties, overloading, and multiple inheritance. To
manage this complexity, we build on top of the Clang++
module responsible for constructing C++ vtables at compile
time. Clang++ is an industrial strength compiler, capable of
handling the tremendous complexity that arises in real-world
C++ applications.

Precision and Scalability. SAFEDISPATCH uses CHA
to determine, at compile time, which program locations a
runtime method call may legitimately jump to. As a type-
based analysis, CHA is relatively lightweight and scales up
to large, complex applications. However, type-based analyses
scale because they are generally coarse-grained and therefore
less precise. It is possible that an object x stored in a variable of
static type c only ever has runtime type c′ where c′ is a subclass
of c. In such instances, CHA will overestimate the set of valid
implementations x may invoke, including the implementation
for c and all implementations in subclasses of c, while in reality
only the implementation in c′ should be called at runtime.

Such sources of imprecision could be remedied by using a
more powerful static analysis. The additional precision would
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// source level method call
o->x(args);

// (A) generated code without check inlining
vtable t = *((vtable *)o);
method m = t[vtable position(x)];
check(static typeof(o), "x", m);
m(o, args);

// (B) generated code with check partially inlined
vtable t = *((vtable *)o);
method m = t[vtable position(x)];
if (m != m1 && m != m2 && m != m3)

check(static typeof(o), "x", m);
m(o, args);

void check(type c, string n, method m) {
if (!ValidM[c][n].contains(m)) {

error("bogus method implementation!");
}

}

Fig. 6. SAFEDISPATCH Instrumentation. At each method call site,
SAFEDISPATCH inserts a check in the generated code to ensure that objects
only invoke methods allowed by the static C++ type system. As shown in
(A), the basic SAFEDISPATCH instrumentation simply adds a call to the
check() function immediately before the jump to a method implementation.
check(c, n,m) consults the ValidM table to ensure that function pointer m
is a valid implementation of the method named n for objects with static type c.
To avoid an extra function call at every method invocation, SAFEDISPATCH
actually uses profiling information to partially inline check(). As shown
in (B), SAFEDISPATCH inserts a branch to test if the function pointer
looked up from the calling object’s vtable is one of the most common valid
implementations of the method used at this call site. If it is, SAFEDISPATCH
safely skips the call to check(), thus avoiding the overhead of an additional
function call in the common case. Note that all expressions in italics in
the code above are evaluated at compile time as they require source-level
information available only to the compiler.

provide stronger security guarantees by further restricting an
attacker’s ability to invoke method implementations that should
never arise during legitimate program execution. However,
accurately tracking which classes flow to a particular variable
x at compile time would require a precise whole program
dataflow analysis. While such analyses exist, they often don’t
scale to the kinds of programs we aim to protect, leading to
unacceptable increases in compile time. Those analyses that
can scale in fact do so by giving up on precision, which
would bring us back to square one. As a result, we feel that
our type-based approach in CHA presents the best tradeoff
by being precise enough to prevent real world attacks without
dramatically increasing compile times.

We do note that CHA is fundamentally a whole program
analysis, and thus requires all an application’s code to be
available at compile time. Unfortunately, this currently pre-
cludes the use of separate compilation in our prototype im-
plementation. However, our SAFEDISPATCH implementation
is a research prototype and we feel that future work can
address this limitation by annotating compiled object files with
partial analysis results and composing those results to complete
SAFEDISPATCH’s program instrumentation at linktime.

B. SAFEDISPATCH Method Checking Instrumentation

After SAFEDISPATCH computes the CHA results, it can
instrument the program with checks to ensure that when-
ever an object calls a virtual method, control jumps to one
of the method implementations statically determined to be
valid. Figure 6 shows how SAFEDISPATCH instruments each
source level method call. For now, consider the basic strategy
illustrated in part (A) of Figure 6. In the generated code
for o->x(args), after the implementation m for method
name "x" has been looked up in the vtable dereferenced
from o’s vtable pointer, SAFEDISPATCH inserts a call to
check(static typeof(o), "x", m) before invoking m. This
call to check consults the CHA results in ValidM to ensure
that m is one of the valid implementations for "x" when called
by an object which has o’s static type. Note that expressions
in italics are evaluated at compile time as they require source-
level information available only to the compiler. As shown
in part (B) of Figure 6, SAFEDISPATCH also reduces runtime
overhead by partially inlining calls to the check function,
which we discuss in greater detail below.

Data Structures for Checking. The operation for checking
method validity, ValidM[c][n].contains(m), is critical
for performance since it is inserted at every virtual method
call site. Broadly speaking, SAFEDISPATCH uses an array of
sets of valid method implementations to perform this validity
checking. More specifically, for each pair (c, n) where c is a
class and n is a method name, SAFEDISPATCH generates at
compile time a unique natural number i(c,n) which is used to
index into a large array of sets. The set at position i(c,n), which
contains the possible implementations for method n of class
c, is represented as an unordered array of pointers to method
addresses. Therefore ValidM[c][n].contains(m) in-
volves an array lookup to retrieve ValidM[c][n], followed
by a linear scan through the resulting set. In our experiments
we found that the average set size was very small (1.44 for
method checking) and as result we do not expect that using a
more elaborate data structure for representing these sets (e.g.
a hash-set) would reduce the overhead significantly. Instead,
we focus on other aggressive optimizations, for example the
inlining of common checks, as explained in Section III-C.

Externalizing Linktime Symbols. One subtlety of the
method checking instrumentation is that the compiler does
not statically know the concrete address where method im-
plementations will be placed at linktime. It may seem that
the SAFEDISPATCH compiler can handle this issue by simply
referring to the linktime symbols for each method imple-
mentation. However, many modern C++ compilers restrict the
linktime symbols for method implementations to only internal
symbols, meaning that they cannot be referred to outside of
code for their class. This poses a problem for SAFEDISPATCH
as we need to check method implementation addresses wher-
ever they may be called, not just in the class where they’re
defined. To address this issue, we externalize all linktime
symbols for method implementations, allowing us to refer to
them outside of their defining class. It would be straightforward
to add an additional pass to check that these externalized
symbols are only used in (1) internally by the defining class
or (2) in SAFEDISPATCH instrumentation, together providing
a guarantee equivalent to that of the unmodified C++ compiler.
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C. SAFEDISPATCH Optimizations

To minimize SAFEDISPATCH’s runtime overhead, we de-
veloped a handful of optimizations to reduce the cost of each
check. Most importantly, we profile applications and partially
inline the checks performed by the check function as shown
in part (B) of Figure 6. This partial inlining compares the
function pointer retrieved from an object’s vtable against the
concrete addresses of the N most common implementations
of the method being called in profiling. In Figure 6 we limit
N to just the three most common implementations, but in
practice we can choose a value that balances the performance
improvement of inlining against the increase in code size,
which, in the worst case, could negatively impact instruction
cache performance. In our actual experiments, discussed in
Section VI, we inline all checks observed during profiling,
which increases codesize, but did not present significant per-
formance overhead for our benchmarks.

SAFEDISPATCH also performs devirtualization: in the case
that CHA is able to statically determine there is a single valid
method implementation at a given method call site, we rewrite
the call to forgo vtable lookup and directly call the unique valid
implementation. This avoids unnecessary memory operations
to load the vtable and other computations to set up a virtual
method call.

Now that we have inlined frequently executed checks, the
high-level code in part (B) of Figure 6 still needs to be
translated into low-level code. A direct naı̈ve translation leaves
room for two important optmizations, which we now describe.
Consider again the code in part (B) of Figure 6, and let’s
look at a direct unoptimized translation to low-level code, as
shown in part (A) of Figure 7. One source of overhead in this
low-level code is that there are two opportunities for branch
mis-prediction: one is to mis-predict which of the if (..)
goto L1 statements will fire; the second is to mis-predict
where the indirect call through m will go (note that m is a
function pointer). Our first low-level optimization is that we
can remove the second mis-prediction opportunity by placing
a direct call once we know which of the three conditional has
fired. This is shown in part (B) of Figure 7, where we now
have direct calls for all checks that have been inlined. However,
this code now has a lot of code duplication – namely all the
setup for parameters. While this doesn’t affect the number of
instructions executed at run-time, it creates code bloat, which
can have adverse effects on instruction-cache performance. Our
second low-level optimization is that we hoist the duplicate
code from inside the conditionals and use a single copy right
before the conditionals, as shown in part (C) of Figure 7.

With all of the above optimizations, namely profile-based
inlined checks and low-level optimizations, we were able
to reduce the runtime overhead of SAFEDISPATCH to 2.1%
and the codesize overhead to 7.5%. Section VI will provide
a more detailed empirical evaluation of the overheads of
SAFEDISPATCH.

IV. AN ALTERNATE APPROACH: VTABLE CHECKING

The previous section showed how SAFEDISPATCH checks
the control flow transfer at virtual method call sites. In this
section, we present an alternate technique which establishes
the same control-flow guarantee, but provides additional data

// source level method call
o->x(args);

// (A) direct unoptimized translation
vtable t = *((vtable *)o);
method m = t[vtable position(x)];
if (m == m1) goto L;
if (m == m2) goto L;
if (m == m3) goto L;
check(static typeof(o), "x", m);

L: setup_call_args(o, args);
indirect_call m;
...

// (B) eliminate indirect calls
vtable t = *((vtable *)o);
method m = t[vtable position(x)];
if (m == m1) goto L1;
if (m == m2) goto L2;
if (m == m3) goto L3;
check(static typeof(o), "x", m);
setup_call_args(o, args);
indirect_call m;
goto LR;

L1: setup_call_args(o, args);
direct_call m1;
goto LR;

L2: setup_call_args(o, args);
direct_call m2;
goto LR;

L3: setup_call_args(o, args);
direct_call m3;
goto LR;

LR: ...

// (C) eliminate duplicate code
vtable t = *((vtable *)o);
method m = t[vtable position(x)];
setup_call_args(o, args);
if (m == m1) goto L1;
if (m == m2) goto L2;
if (m == m3) goto L3;
check(static typeof(o), "x", m);
indirect_call m;
goto LR;

L1: direct_call m1;
goto LR;

L2: direct_call m2;
goto LR;

L3: direct_call m3;
goto LR;

LR: ...

Fig. 7. Low-level SAFEDISPATCH Optimization. The code above illus-
trates low-level optimizations used in SAFEDISPATCH to eliminate branch
misprediction for frequently called methods and to eliminate duplicate code
for setting up method invocations. As in Figure 6, all expressions in italics
above are evaluated at compile time.

integrity guarantees in the face of multiple inheritance, at the
expense of additional runtime overhead. Later, in Section VI,
we evaluate and compare the overhead of both approaches.

A. Pointer Offsets for Multiple Inheritance

To better explain this alternate approach, we first review
vtables in more detail. In practice, vtables store more than just
function pointers; they also contain offset values that are used
to adjust the this pointer appropriately in the face of multiple
inheritance.

For example, consider a class C that inherits from both A
and B. The data layout of C objects will first include the fields
from A, followed by the fields from B. Inherited methods from
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A will work unmodified on objects of type C because the offset
of A’s data fields are the same in A as in C. However, methods
inherited from B will not work, because B’s methods assume
that B’s fields start at the beginning of the object, whereas in
C these fields are located after A’s fields.

To address this problem, the compiler creates wrappers in
C for methods inherited from B. Before calling B’s original
implementation of the method, the wrapper adjusts the calling
object’s this pointer by an appropriate offset so that it
points to the B part of the C object. The situation is further
complicated if C is subclassed again using additional multiple
inheritance, in which case the layout for the fields inherited
from A and B could change in the subclass of C. To address
this problem, pointer offsets for this are stored in the vtable,
so that the correct offset can be used at run-time depending
on what class is being used to make the method call.

While our approach from Section III always protects
against malicious control flow at virtual method call sites,
it does not defend against an attacker counterfeiting a vtable
with incorrect this pointer offsets. If an attacker successfully
mounts such an attack, our previously described approach
would still protect the control flow at virtual method calls,
but the attacker could corrupt the this offset on entry to a
method, potentially leading to further data corruption.

B. vtable Checking

To additionally protect this pointer offsets at method
calls, we implemented an alternate vtable hijacking defense
called vtable checking. Instead of checking the validity of the
function pointer looked up from an object’s vtable, we check
the vtable pointer itself to ensure that it is valid given the static
type of the calling object. In this way, we not only guarantee
valid control flow at method calls, but also ensure that the
offset value of this is computed appropriately.

Figure 8 shows how each source level method call is
instrumented in the vtable checking approach. As in Fig-
ure 6, expressions in italics are evaluated at compile time
as they require source-level information available only to the
compiler. We insert a check similar to the method check-
ing instrumentation shown in Figure 6, but move the in-
strumentation earlier to check the vtable itself instead of
the function pointer retrieved from it. In general, for code
generated for method call o->x(args), we insert a call
to the vt_check(static typeof(o), t) after vtable t has
been loaded from o’s vtable pointer. This call to vt_check
consults the results of a modified CHA analysis to ensure
that t is one of the valid vtables for an object of o’s
static type. The computation for ValidVT is a modified,
simpler version of the computation for ValidM described
in the previous section, since the compiler already computes
vtables. In particular, for each class c we collect the vtables
for c and all of its subclasses, and store this entire set
in ValidVT[c]. Similarly to method checking, the oper-
ation ValidVT[c].contains(t) is performed in two
steps: ValidVT[c] is implemented as an array lookup and
contains(t) is implemented using linear search. Here
again, the average size of ValidVT[c] in our experiments
was very small (2.58) and we reduce runtime overhead by
selectively inlining calls to the vt_check function, taking

// source level method call
o->x(args);

// generated code with vtable check partially inlined
vtable t = *((vtable *)o);
if (t != t1 && t != t2 && t != t3)
vt_check(static typeof(o), t);
method m = t[vtable position(x)];
m(o, args);

void vt_check(type c, vtable t) {
if (!ValidVT[c].contains(t)) {
error("bogus vtable!");

}
}

Fig. 8. Alternate SAFEDISPATCH vtable Checking. The instrumentation
above illustrates an alternate vtable hijacking defense: checking the vtable
pointer itself before using it to look up a method implementation. Similar
to the approach shown in Figure 6, the SAFEDISPATCH instrumentation for
this alternate strategy inserts a check in the generated code at each method
call site, but in this case the check ensures that the calling object’s vtable
pointer agrees with the static C++ type system. The vt_check(c, t) function
(analogous to the check() function discussed earlier) consults the ValidVT
table (constructed from a modified CHA) to ensure that vtable t is a valid
vtable for objects of c’s static type. As in Figure 6, we partially inline this
check using profiling information to avoid the overhead of an extra function
call at most method invocations. Again, note that all expressions in italics
in the code above are evaluated at compile time as they require source-level
information available only to the compiler. This alternate defense has higher
overhead, but provides stronger data integrity guarantees in the face of multiple
inheritance.

advantage of profiling information as discussed in the previous
section.

C. Performance Implications

The vtable checking approach described above provides a
stronger security guarantee than the method checking approach
described in the previous section, as it also ensures the integrity
of this pointer offsets. Unfortunately, this stronger guar-
antee also incurs higher runtime overhead: since subclasses
frequently inherit method implementations from their parent
classes, at any virtual method call site, the number of valid
vtables is always greater than or equal to the number of valid
method implementations that can be invoked.

To better understand why this is the case, consider an
example in which a class A declares method foo, and suppose
there are many subclasses of A, none of which override foo.
Now for any method call x->foo() where the static type
of x is A, method checking just needs to compare against
A::foo, since it is the only valid implementation of foo.
On the other hand, vtable checking must compare against
each vtable of the many subclasses of A, since each subclass
has its own vtable. In practice, we’ve measured the difference
between the number of valid vtables and the number of valid
method implementations at a given call site to be roughly a
factor of two. We explore the performance implications of this
difference further in Section VI.

V. A HYBRID APPROACH FOR METHOD POINTERS

In previous sections we described two vtable hijacking de-
fenses, method checking and vtable checking, each presenting
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class A {
public: virtual void foo(int) { ... }

};

class B: A {
public: virtual void foo(int) { ... }

};

void (A::*f)(int); // declare f as ptr to some method of A
f = &A::foo; // f now points to the foo method

A* a = new A();
(a->*f)(5); // method call via f ptr, invokes A::foo

a = new B();
(a->*f)(5); // method call via f ptr, invokes B::foo

Fig. 9. Method Pointer Example. Because C++ method pointers are invoked
via dynamic dispatch, even though f is only assigned once, the first call above
jumps to A::foo while the second jumps to B::foo.

different tradeoffs. To best choose between these tradeoffs, we
must consider additional subtleties arising from yet another
C++ feature: method pointers. Conceptually, C++ method
pointers are similar to traditional function pointers, except that
pointers to virtual methods are invoked by dynamic dispatch,
which means they could be exploited by vtable hijacking
attacks and thus SAFEDISPATCH must also protect virtual calls
through method pointers.

Figure 9 illustrates the behavior of C++ method pointers
with two simple classes, A and B, where A contains a single
method foo and B extends A and overrides foo. The method
pointer f is declared to point to a method of an object of
type A or one of A’s subclasses, and then f is assigned to
point to A::foo. Next an A object is allocated and A::foo
is called through the method pointer f. Afterward a B object
is allocated and the same method pointer, f, is used to call
one of the object’s methods. However, in this case, control
jumps to B::foo instead of A::foo since method pointers
are invoked by dynamic dispatch.

To implement method pointer semantics, C++ compilers
generate code which stores a vtable index in method pointers
instead of the concrete address of a method’s implementation.
For example, if foo is placed at index 0 in the vtables of A and
B, then the statement f = &A::foo will store the value 0 in
f. When a call is made through a method pointer, the method
pointer’s value is used to index into the calling object’s vtable
to retrieve the appropriate method implementation to invoke.

A. Revisiting Previous Approaches

We now evaluate our previous two approaches, method
checking and vtable checking, in the face of method pointers.
First, consider our vtable checking technique from Section IV.
Fortunately, vtable checking correctly handles method pointers
with only a slight modification: since a method pointer is
simply a vtable index and vtable checking guarantees the
validity of vtables at runtime, SAFEDISPATCH simply checks
that vtable indices from method pointers are within the valid
range of methods for the given class, thus ensuring that method
implementations retrieved by indexing into valid vtables with
a method pointer will also be valid. While simple, this mod-
ification is essential for preventing hijacking attacks through
method pointers: if an attacker could arbitrarily set the method

index to be out of range for the given class’s vtable, they could
cause a virtual method pointer call to jump to malicious code.

Second, consider our method checking technique from
Section III. In particular, consider a call through a method
pointer of the form (x->*f)(...), where the class used in
the declaration of method pointer f is C. We must modify
our method checking approach so that for such calls, the
instrumentation checks, at runtime, that the function pointer
extracted from the calling object’s vtable is one of the im-
plementations for any method of C or its subclasses. This
conservative approach can lead to a blow up in the number of
required checks for large class hierarchies with many methods,
like those found in modern web browsers. This effect is seen
in Section VI where we evaluate and further compare our
different defenses. Unfortunately, improving on this approach
would require a precise whole program dataflow analysis to
compute which method implementations a pointer may point
to. Despite decades of research, such analyses are very difficult
to scale to the large, complex applications most frequently
targeted by vtable hijacking attacks.

B. Hybrid Approach

Comparing method checking and vtable checking in the
face of method pointers leads to a key observation: at
method pointer call sites, vtable checking typically requires
many fewer comparisons than method pointer checking, since
method pointer checking must compare against all method
implementations from several classes. This situation is exactly
the opposite from traditional method calls where vtable check-
ing always demands at least as many comparisons as method
checking, as discussed at the end of Section IV.

This observation suggests a hybrid approach: perform
vtable checking (enhanced with vtable index range checks)
at method pointer call sites and method checking at traditional
method call sites. We implemented this hybrid approach in
SAFEDISPATCH and found that it incurs less runtime overhead
than all other techniques, while providing the same strong
security guarantees against vtable hijacking. We further dis-
cuss the performance implications of our hybrid approach in
Section VI. At a member function call site, the numbers of
method/vtable checks are compared, and vtable checks are
used only when the number of the vtable checks is stricly
less than the number of the method checks.

VI. EVALUATION

In this section we evaluate SAFEDISPATCH along three
primary dimensions: (A) runtime and code size overhead, (B)
effort to develop our prototype, and (C) compatibility with
existing applications and programming practice.

A. SAFEDISPATCH Overhead

To evaluate the overhead of our SAFEDISPATCH defense,
we used our enhanced C++ compiler to build a vtable-safe
version of Google Chromium [20], a full-featured, open source
web browser which forms the core of the popular Google
Chrome browser [19]. Google Chromium is extremely large
and complex, far larger than any SPEC benchmark for exam-
ple. It contains millions of lines of production code, in di-
verse components (HTML renderer, JPEG decoder, Javascript
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Fig. 10. SAFEDISPATCH Overhead. We measured the overhead of SAFEDISPATCH on the Google Chromium browser over six demanding benchmarks: three
industry standard JavaScript performance suites (octane, kraken, and sunspider) and three HTML rendering performance tests (balls, linelayout, and html5). All
results are reported from the average of five runs, using percentage overhead compared to a baseline with no instrumentation. “mchk” is the unoptimized method
pointer checking from Section III, “vtchk” is the unoptimized vtable checking from Section IV. “inline rand” indicates that we inline all checks that our Class
Hierarchy Analysis tells us are needed for safety, but we inline them in a random order (i.e. no profile information). “inline prof” indicates that we inline the
checks observed during profiling in order of how frequently they occur. “hybrid” is the hybrid approach from Section V, which does profile-based inlining, but
also combines method pointer checking and vtable checking. Note that two bars did not fit in the graph with the scale we chose for the y axis, namely “vtchk”
and “vtchk inline rand” for html5; we shortened those bars, and show their values right on top of the bars (rather than change the scale and make all the other
bars more difficult to read).

JIT, IPC library, etc.) developed across multiple organizations
(Google and various open source groups). Chromium serves as
an ideal test case for SAFEDISPATCH: not only is it a complex,
high performance C++ application with millions of users, but
has also been targeted by several vtable hijacking attacks [12],
[9].

Benchmarks. We measured SAFEDISPATCH overhead on
Chromium over six demanding benchmarks: three industry-
standard JavaScript performance suites (octane [23], sun-
spider [24], and kraken [25]), and three HTML rendering
performance tests (balls, linelayout, and html5). The three
HTML rendering benchmarks are drawn from the WebKit
performance test suite [26], the engine underlying several
major web browsers including Google Chrome, Apple Safari,
and Opera. We selected these benchmarks from the suite as
three of the most important for performance and rendering
correctness. We briefly describe the benchmarks below:

octane, kraken, and sunspider are the JavaScript perfor-
mance benchmarking suites from the Google Chrome, Mozilla
Firefox, and Apple WebKit teams respectively. These bench-
marks strive to measure real-world workloads and exercise
the most important browser functionality, while remaining
statistically sound and pushing for improvement on bleeding-
edge features. For octane we report the benchmark score where
higher is better and for kraken and sunspider we measure
running time in milliseconds where smaller is better.

balls creates thousands of small ball-shaped DOM ele-
ments, moves them around on the screen, measures how many
of them can be moved in a fixed amount of time, and reports

frames per second as its output. We report frames per second
(fps); higher is better.

linelayout creates multiple DOM objects containing copi-
ous text. The renderer must draw many text lines, automatically
inserting line breaks and allocating DOM objects efficiently on
the screen, ensuring the renderer correctly handles the layout of
DOM elements on the screen. We report number of complete
runs in a fixed period; higher is better.

html5 performs millions of DOM manipulations to test
numerous HTML5 features and is one of the most demand-
ing WebKit performance tests. Each complex rendering is
compared to an industry-standard reference rendering, thus
ensuring optimizations have not introduced incorrect behavior.
We report timing results in milliseconds; smaller is better.

Runtime Overhead. Figure 10 presents the runtime over-
head percentage of SAFEDISPATCH on benchmarks using a
number of different approaches and optimizations, whereas
Figure 11 presents the raw numbers, including memory over-
head. See the caption of Figure 10 for what each configuration
of SAFEDISPATCH corresponds to (e.g., “mchk inline rand”).
All our results are the average of five runs on an otherwise
quiescent system running Ubuntu 12.04 on an Intel i7 Quad
Core machine with 8GB of RAM.

From Figure 10, we can see that in general, all the “mchk”
overheads are smaller than the “vtchk” overheads. This is
consistent with the fact that, as described in Section 8, the
number of valid vtables at a given method callsite is often
2x greater than the number of valid method implementations.
Figure 10 shows the effectiveness of partial inlining of checks
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Instrumentation
octane kraken sunspider balls linelayout html5 Code Size
(score) (ms) (ms) (fps) (runs) (ms) Overhead %

none 15353 1556 254 14.95 106.26 3543 -
mchk 14454 1643 285 12.73 90.43 4233 7.20

mchk inline rand 14897 1599 272 13.84 94.47 3974 14.11

mchk inline prof 15278 1570 263 14.50 100.71 3830 7.48

vtchk 14101 1782 310 11.47 88.10 5294 7.31

vtchk inline rand 14969 1725 304 11.24 74.91 6793 44.18

vtchk inline prof 15228 1574 270 13.42 97.43 3892 7.85

hybrid 15299 1570 256 14.71 102.39 3721 7.48

Fig. 11. SAFEDISPATCH Benchmarking Results and Code Size Overhead. The table above shows our benchmarking measurements for SAFEDISPATCH
which correspond to the runtime overhead graph in Figure 10: for times reported in milliseconds, smaller is better, for other reported quantities (score, fps, and
runs), larger is better. We additionally measured average code size increase due to SAFEDISPATCH data structures and instrumentation, and observed overheads
typically well under 10%.

Benchmark Overhead %
Profile octane kraken sunspider

octane 0.30 2.51 6.30

kraken 0.79 1.22 6.69

sunspider 1.15 2.25 1.97

Fig. 12. Cross Profiling. To evaluate the effect of profiling across bench-
marks, we measured the overhead of running each binary optimized for one
JavaScript performance suite on the other suites. The numbers reported are
percentage overhead for the hybrid approach.

not just using profile information, but also using a random
order. The random order is meant to capture the situation where
we perform inlining, but we don’t have profile information.
We can see that inlining alone, without profile information
(“mchk inline rand” and “vtchk inline rand”) improves per-
formance compared to the unoptimized instrumentation, but
only for method checking. For vtable checking, the random-
order inlining causes a slowdown because there were too
many checks to inline, which affected performance negatively
(this is confirmed by the memory overhead shown in Fig-
ure 11. Inlining with profile information (“mchk inline prof”
and “vtchk inline prof”) provides a significant reduction in
percentage overhead compared to the unoptimized instrumen-
tation. Finally, Figure 10 also shows that that the hybrid
approach from Section V has the lowest overhead by far, about
2% on average.

Cross Profiling. As shown above, profiling information
can significantly reduce SAFEDISPATCH overhead. However,
once deployed, applications are often run on inputs that were
not profiled. To measure the effectiveness of profiling on one
application and running on another, we used each of the
binaries optimized for each JavaScript benchmark and ran it
on the others. We focused on JavaScript benchmarks for this
cross-profiling evaluation because the rendering benchmarks
each evaluate a different kind of rendering (e.g. text, graphics,
html rendering), and it would be unlikely that one of them
would be a good predictor for others (in essence we would have

Component Framework Language LOC

Basic Instrumentation Clang++ C++ 177
Class Hierarchy Analysis - Python 691
Inlining Optimizations LLVM C++ 381
Total 1249

Fig. 13. SAFEDISPATCH Prototype LOC. The table above characterizes
the major components in our SAFEDISPATCH implementation. The basic
instrumentation module is implemented as a Clang++ compiler pass and inserts
calls to the check() fucntion as described in Section III function at each
method call site, additionally logging some type data. These logs are used
by the CHA module, written in Python, to build the ValidM and ValidVT
used during checking at runtime. The final module is implemented as a set of
low-level LLVM passes to inline checks based on profiling information.

to profile all three rendering benchmarks to get a representative
set, but then this would not evaluate cross-profiling). Figure 12
shows the results of cross-profiling for the hybrid approach.
Each row and each column is a benchmark, and at row y
and column x, we show the percentage overhead of running
the x benchmark using the binary optimized for y’s profile
information. While we can see that in some cases the overhead
jumps to 6%, if we profile with sunspider, the overhead still
remains in the vicinity of 2%. This may indicate that sunspider
is a more representative Javascript benchmark, which is better
suited for generating good profile information.

Code Size Overhead. We also measured the increase to
code size resulting from SAFEDISPATCH data structures and
instrumentation in the generated executable, shown in the
final column of the table from Figure 11. For the hybrid
approach, the generated executable size was within 10% of
the corresponding unprotected executable. Note that the mem-
ory overhead for “vtchk inline rand” is substantial, which is
consistent with the run-time overhead for “vtchk inline rand”
from Figure 10.

B. Development Effort

Our prototype implementation of SAFEDISPATCH has three
major components: (1) the basic instrumentation compiler pass,
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(2) CHA analysis to generate the ValidM and ValidVT
internal SAFEDISPATCH checking data structures, and (3)
inlining optimizations. The size of each component is listed
in Figure 13.

The basic instrumentation pass is implemented as a pass
in Clang++ while the compiler has access to source-level type
information which is erased once a program is translated into
the lower level LLVM representation. This pass also produces
information used in our second major component, the CHA
analysis, which we implemented in a set of Python scripts to
build the intermediate ValdiM and ValidVT tables. Finally,
we implemented our inlining passes as an optimization in
LLVM which can take advantage of profiling information to
order checking branches by how frequently they were taken in
profile runs.

C. Compatibility

In principle, SAFEDISPATCH only incurs minimal compile
time overhead to build the ValidM and ValidVT tables and
instrument virtual method call sites as described in Sections III,
IV and V. Thus, the programmer should be able to use
SAFEDISPATCH on every compilation without disrupting the
typical edit, compile, test workflow. However, in our current
prototype implementation, SAFEDISPATCH performs two full
compilations to gather necessary analysis results before instru-
menting the code, leading to a roughly 2x increase in compile
time. As mentioned above, this is an artifact of our prototype
implementation which can easily be fixed and is not an inherit
limitation of SAFEDISPATCH.

The SAFEDISPATCH prototype also requires a whole-
program CHA to perform instrumentation, and does not cur-
rently support separate compilation. There are two main chal-
lenges in supporting separate compilation. The first challenge
is to make CHA modular. In particular, the compiler would
have to generate CHA information per-compilation unit, which
the linker would then combine into whole-program informa-
tion. This approach to CHA is very similar to the approach
taken in GCC’s vtable verification branch [27], [28], more
details of which are discussed in Section VIII. The second
challenge is to inline checks in a modular way. In particular,
editing code in one file could require additional checks in
another file. To address this challenge, the compiler could
insert calls to check at compile time, and then replace these
calls with inserted inlined checks at link-time (similarly to
link-time inlining of function calls). Finally, profiling data
for inlining optimizations can be collected using a profile
build in which the check function collects the required
function/vtable pointers. This profile build can easily support
separate compilation, as it does not require inlining or CHA.

VII. SAFEDISPATCH SECURITY ANALYSIS

In this section we consider the security implications of
SAFEDISPATCH including the class of attacks SAFEDISPATCH
prevents and some limitations of our approach.

A. SAFEDISPATCH Guarantee

The instrumentation inserted by the SAFEDISPATCH com-
piler guarantees that each virtual method call made at runtime
jumps to a valid implementation of that method according

to C++ dynamic dispatch rules. This guarantee immediately
eliminates an attacker’s ability to arbitrarily compromise the
control flow of an application using a vtable hijacking attack.
Our defense would prevent crucial steps in many recent, high
profile vtable hijacking attacks, e.g. Pinkie Pie’s 2012 Zero-day
exploit of Google Chrome which escaped the tab sandbox and
allowed an adversary to compromise the underlying system. In
addition to preventing many attacks, SAFEDISPATCH provides
an intuitive guarantee in terms of the C++ type system,
which is easy to understand for programmers who are familiar
with the type system. Furthermore, the programmer cannot
inadvertently nullify the SAFEDISPATCH guarantee through a
programming mistake; the checks inserted by SAFEDISPATCH
will detect errors such as incorrect type casts which would
otherwise lead to a method call invoking an invalid method
implementation.

The SAFEDISPATCH guarantee provides strong defense
against vtable hijacking attacks, regardless of how the attack is
mounted, e.g. use-after-free error, heap based buffer overflow,
type confusion, etc. As discussed further in the next section
on related work, other defenses only focus on particular
styles of attack (for example mitigating use-after-free errors
by reference counting), or incur non-trivial overhead (for
example using a custom allocator to ensure the memory safety
properties necessary to prevent vtable hijacking). Furthermore,
SAFEDISPATCH protection is always safe to apply: all pro-
grams should already satisfy the SAFEDISPATCH guarantee –
we are simply enforcing it.

SAFEDISPATCH also defends against potentially ex-
ploitable, invalid typecasts made by the programmer [29].
If a programmer incorrectly casts an object of static type c
to another type c′ and at runtime the object does not have
type c′, then methods invoked on the object will not be valid
implementation and SAFEDISPATCH will signal an error.

The astute reader may wonder why the checks inserted
by SAFEDISPATCH instrumentation are any more secure than
the vtable pointer stored in a runtime object. Unlike such
heap pointers, the checks inserted by SAFEDISPATCH and
their associated data structures are embedded in the generated
executable which resides in read-only memory, ensuring that an
attacker will not be able to corrupt SAFEDISPATCH inserted
checks at runtime. Of course, this assumes the attacker will
not be able to remap the program’s text segment, or portion
of memory containing the application’s executable code, to be
writable.

B. SAFEDISPATCH Limitations

SAFEDISPATCH guarantees that one of the valid method
implementations for a given call site will be invoked at run-
time, not that the correct method will be called. For example,
an attacker could still corrupt an object’s vtable pointer to point
to the vtable of a child class, causing an object to invoke a child
class’s implementation of a method instead of it’s own. While
this call would technically satisfy the static C++ dynamic
dispatch rules, it could lead to further memory corruption or
other undesirable effects. However, we are not aware of any
exploits in the wild which take advantage of such behavior.

SAFEDISPATCH detects vtable pointer corruption precisely
when it would result in an invalid method invocation. This does
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not prevent other memory corruption attacks, such as overwrit-
ing the return address stored in a function’s activation record
on the stack. SAFEDISPATCH also does not currently prevent
corrupting arbitrary (non-object) function pointer values. Such
function pointers are important in systems making extensive
use of callbacks or continuations. SAFEDISPATCH could be
extended to protect such calls through function pointers by
conceptually treating them as method invocations of a special
ghost class introduced by the compiler. This change, which we
will explore in future work, would also be transparent to the
programmer and would further strengthen our guarantee.

SAFEDISPATCH only protects the code it compiles. Thus, if
an application dynamically loads unprotected system libraries,
an attacker may be able to compromise control flow within the
library code via vtable hijacking. While such libraries can be
compiled with SAFEDISPATCH to prevent such attacks, it’s
important to note that SAFEDISPATCH requires performing
a whole program Class Hierarchy Analysis on the entire
program, including all application libraries and all system
libraries. Unfortunately, it is well known that such whole
program analyses present challenges in the face of separate
compilation, dynamically linked libraries, and shared libraries.
As a result, our current SAFEDISPATCH prototype protects the
entire application code, including all application libraries, but
it does not protect shared system libraries such as the C++
standard library.

Dynamically linked libraries are also a possible source of
incompatibility with the current SAFEDISPATCH prototype.
For example, consider an application that uses a subclass
implemented in an external, dynamically linked library. Since
the subclass information is not statically available to SAFEDIS-
PATCH’s CHA, any such dynamically loaded subclass method
implementations will be reported as invalid by check at
runtime. To overcome this limitation, SAFEDISPATCH would
be required to dynamically update its ValidM and ValidVT
tables as dynamic libraries are loaded at runtime by instru-
mentation of certain system calls (e.g., dlopen). In future
work, we hope to address this limitation by developing better
techniques for performing our CHA analysis in the face of
separate compilation and dynamically linked libraries.

C. Performance and Security Tradeoffs

As discussed in previous sections, there are multiple
strategies for enforcing the SAFEDISPATCH guarantee which
lead to different security and performance tradeoffs. Vtable
checking provides additional data integrity guarantees over
method checking, in particular for this pointer offsets in
the face of multiple inheritance, but at the cost of additional
runtime overhead. Our hybrid approach adopts vtable checking
at method pointer call sites to reduce runtime overhead, but
uses method checking at non-method-pointer call sites, and so
does not provide the same data integrity guarantees as vtable
checking. Although the additional data integrity guarantee
provided by vtable checking may mitigate some attacks, we
feel that the significantly reduced overhead of our method
checking and hybrid approaches offer a more realistic tradeoff
for complex, high performance applications like web browsers.

VIII. RELATED WORK

The research community has developed numerous defenses
to increase the cost of mounting low-level attacks that corrupt
control data, steadily driving attackers to discover new classes
of exploitable programming errors like vtable hijacking. In
this section we survey the existing defenses most relevant to
vtable hijacking, consider their effectiveness at mitigating such
attacks, and compare them to SAFEDISPATCH.

Reference Counting. Reference counting [30], [31], [32]
is a memory management technique used in garbage collectors
and complex applications to track how many references point
to an object during program execution. When the number
of references reaches zero, the object may safely be freed.
Use-after-free errors can be avoided using reference counting
by checking that an object has a non-zero number of refer-
ences before calling any methods with the object. While this
may help increase the attack complexity of vtable hijacking
attacks mounted by exploiting use-after-free bugs, reference
counting can have a non-trivial run-time overhead, and it
also makes reclaiming cyclic data-structures complicated. Most
importantly, however, reference counting cannot fundamentally
prevent such attacks. In reference counting, the number of
references to an object is stored in the heap, and thus an
adversary capable of corrupting vtable pointers would also be
able to corrupt reference counts, thereby circumventing any
reference counting based defense. In contrast, SAFEDISPATCH
instrumentation is placed in the program binary which resides
in read-only memory and thus is not susceptible to corruption
by an attacker.

Memory Safety. Programs written in memory safe lan-
guages are guaranteed, by construction, to be free of ex-
ploitable, low-level memory errors. This kind of memory
safety guarantee is clearly stronger than the guarantee that
SAFEDISPATCH provides. However, unfortunately programs
written in such languages often suffer significant performance
overhead from runtime checking to ensure that all memory
operations are safe. This overhead is sufficient to preclude the
use of memory safe languages in many performance critical
applications. In contrast, SAFEDISPATCH provides strong secu-
rity guarantees without any assumptions about memory safety
and incurs only minimal overhead.

There has also been extensive research on C compilers
which insert additional checks or modify language features
to ensure memory safety, for example CCured [33], [34],
Cyclone [35], Purify [36], and Deputy [37]. While these
techniques can help prevent vtable hijacking, they often require
some amount of user annotations, and even if they don’t, their
run-time overheads are bigger than SAFEDISPATCH, especially
on large-scale applications like Chrome.

Control Flow Integrity. Control flow integrity (CFI) is a
technique that inserts sufficient checks in a program to ensure
that every control flow transfer jumps to a valid program loca-
tion [13]. Recent advances have greatly reduced the overhead
of CFI, in some cases to as low as 5%, by adapting efficient
checks for indirect targets [14], using static analysis [15],
harnessing further compiler optimizations from a trustworthy
high-level inline-reference monitor representation [16], or in-
corporating low-level optimizations [17]. The main difference
between our work and these previous CFI approaches lies in
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the particular point in design space that we chose to explore.
Broadly speaking, previous CFI approaches are designed to
secure all indirect jumps whereas we focus specifically on
protecting C++ dynamic dispatch, which has become a popular
target for exploits. In this more specific setting, we provide
stronger guarantees than recent CFI approaches while incurring
very low performance overhead.

VTable Hijacking Prevention. The GCC compiler has
recently been extended with a promising new “vtable veri-
fication” feature developed by Google [27], [28], concurrently
and indenpendently from SAFEDISPATCH. The GCC approach
compiles each C++ source file to an object file extended with
local vtable checking data, and the local checking data is
combined at load-time into a program-wide checking table.
Each virtual method call site is then instrumented with a call
to a checking function which uses the program-wide table to
determine if the control-flow transfer should be allowed. In
many respects, the GCC approach is roughly equivalent to
our unoptimized vtable checking approach. In this light, our
work extends GCC’s approach in the following ways: (1) we
explore and empirically evaluate not only vtable checking, but
also method checking (2) through this evaluation, we discover
and propose a new optimization opportunity in the form of a
hybrid approach and (3) we inline common checks. In our
implementation, vtable checking without inlining (which is
roughly what GCC does) leads to an overhead of about 25%.
Through optimizations 2 and 3 above, we reduce the overhead
to only 2%. On the other hand, the GCC approach supports
separate compilation much more easily than our approach,
which requires whole program analysis and profiling.

Another technique for preventing vtable hijacking is VT-
Guard [38], a feature of the Visual Studio C++ compiler.
This approach inserts a secret cookie into each vtable and
checks the cookie before the vtable is used at runtime. While
this approach has very low performance overhead, it is less
secure than ours: the attacker can still overwrite a vtable
pointer to make it point to any vtable generated by the
compiler, something we prevent. Moreover, if the secret cookie
is revealed through an information disclosure attack, then the
VTGuard protection mechanism can be circumvented.

Memory Allocators and Dynamic Heap Monitoring.
Dynamic heap monitoring, like that used in Undangle [39]
and Valgrind [40], can help discover memory errors during
testing, but are not suitable for deployment as they can impose
up to 25x performance overhead, which is unacceptable for
the applications we aim to protect. The DieHard [3], [41]
custom memory manager has proven effective at providing
probabilistic guarantees against several classes of memory
errors, including heap-based buffer overflows and use-after-
free errors by randomizing and spreading out the heap. While
DieHard overhead is often as low at 8%, it demands a heap
at least 2x larger than what the protected application would
normally require, which is unacceptable for the applications we
aim to protect. Furthermore, large applications like a browser
often use multiple custom memory allocators for performance,
whereas DieHard requires the entire application to use a single
allocator.

Data Execution Prevention (DEP). After an adversary
has compromised program control flow, they must arrange for
their attack code to be executed. DEP [2] seeks to prevent an

attacker from writing malicious shellcode directly to memory
and then jumping to that code. Conceptually every memory
page is either writable or executable, but never both. DEP can
mitigate vtable hijacking after the attack has been mounted by
preventing the attacker from executing code they’ve allocated
somewhere in memory. However, attackers can still employ
techniques like Return Oriented Programming [42] (ROP) to
circumvent DEP after control flow has been compromised
from a vtable hijacking attack. DEP is also often disabled
for JIT. While DEP tries to mitigate the damage an attacker
can do after compromising control flow, SAFEDISPATCH seeks
to prevent a class of control flow compromises (those due to
vtable hijacking) from arising in the first place.

Address Space Layout Randomization (ASLR). Like
DEP, ASLR [43] seeks to severely limit an attackers ability
to execute their attack code after control flow has been
compromised. It does this by randomly laying out pages in
memory so that program and library code will not reside at
predictable addresses, making it difficult to mount ROP and
other attacks. Unfortunately, for compatibility, many prevalent,
complex applications are still forced to load key libraries
at predictable addresses, limiting the effectiveness for ASLR
in these applications. SAFEDISPATCH helps secure such ap-
plications by preventing vtable-hijacking-based control flow
compromises from arising in the first place.

IX. CONCLUSION

Robust vtable hijacking attacks are increasingly common,
as seen in sophisticated, high profile attacks like Pinkie Pie’s
recent exploits of the Chrome browser [12]. In this paper,
we addressed the growing threat of vtable hijacking with
SAFEDISPATCH, an enhanced C++ compiler to ensure that
control flow transfers at method invocations are valid according
to the static C++ semantics.

SAFEDISPATCH first performs class hierarchy analysis
(CHA) to determine, for each class c in the program, the
set of valid method implementations that may be invoked
by an object of static type c, according to C++ semantics.
SAFEDISPATCH then uses the information produced by CHA
to instrument the program with dynamic checks, ensuring
that, at runtime, all method calls invoke a valid method
implementation according to C++ dynamic dispatch rules.

To minimize performance overhead, SAFEDISPATCH per-
forms optimizations to inline and order checks based on
profiling data and adopts a hybrid approach which combines
method checking and vtable checking. We were able to reduce
runtime overhead to just 2.1% and memory overhead to just
7.5% in the first vtable-safe version of the Google Chromium
browser which we built with the SAFEDISPATCH compiler.

We believe that these results are a solid first step to-
wards hardening method dispatch against attack, and that
they provide a good foundation for future exploration in this
space, including ways of handling separate compilation, and
additionally protecting indirect control flow through arbitrary
functions pointers.
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