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Abstract

In this paper we demonstrate how the secret material used to encrypt TLS sessions can be extracted
from the process memory of applications running on jailbroken and non-jailbroken iOS devices using
the Frida dynamic instrumentation toolkit. This is achieved by hooking the pseudorandom function
used to generate key material for TLS sessions in iOS.

We create a script to log the required material in a format ready for Wireshark to decrypt traffic.
Usage of this tool is described for both jailbroken and non-jailbroken devices. Tests indicate that
the tool is successful on all applications within our sample, though to varying degrees. The secret
material from TLS sessions started by other processes cannot be extracted.

This work focuses on Apple’s TLS implementation, CoreTLS, thus its usefulness is derived from
the use of CoreTLS. With the introduction of App Transport Security in iOS 9.0, mandatory usage
on the App Store due at the turn of 2017, and the relative ease with which it can be implemented in
comparison to alternative TLS implementations such as OpenSSL, we anticipate the use of CoreTLS
to only increase with time.
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1. Introduction

Mobile devices lie at the centre of our daily lives. Beyond calls and messaging, we rely on these devices
for services such as online banking, navigation, and health monitoring. As developers continue to
find novel uses for these devices and the many sensors contained within, we are likely to see further
integration in the future.

The unprecedented amount of information at risk - both personal and work-related — has heightened
the need for secure platforms and applications. In response to this need, we see greater deployment
of mobile encryption to protect this data, both at rest and in transit.

Apple’s 108 is considered one of the most secure mobile operating systems and its adoption in the
enterprise mobile device market, where security is a key concern, is testament to this [32]. In contrast
to Android, which is open-source and made available to hardware vendors adhering to Google’s
specification, Apple control both hardware and software aspects of their platforms and thus limit the
inherent weaknesses that arise from passing control of platform implementation to untrusted parties.

Network communications on mobile devices are predominantly secured using Transport Layer
Security (TLS), successor to the Secure Sockets Layer (SSL) protocol originally developed by the
Netscape Corporation in 1994. TLS provides authentication and encryption between clients and
servers using a combination of public-key and symmetric-key cryptography. Key-exchange algorithms
such as RSA and Elliptic Curve Diffie-Hellman (ECDHE) are used to authenticate the server — and
optionally the client - and establish shared symmetric keys to encrypt the data exchanged.

Whilst the use of TLS in securing communication between two parties is good from a user
perspective, it poses a necessary hurdle for security auditors to overcome when conducting black-box
analysis on mobile applications. Solutions exist for circumventing TLS encryption on iOS, however
they interfere with the logic of the application; either nullifying calls made to certificate validation
checks or forcefully downgrading connections. Current solutions for iOS require jailbroken devices
to function, potentially limiting their future use should applications deprecate support for jailbroken
iOS releases or incorporate sufficient jailbreak-detection mechanisms.

In contrast to current methods for bypassing TLS, this research investigates an alternative approach
by extracting the secret material used to derive the encryption keys from the memory of a process.



Problem Statement

The iOS security model focuses on providing three core elements; a secure platform, regular software
updates, and tools for secure application development [22]. The success of this model can be largely
attributed to its ease of use for developers and end-users. For example, the simplicity and frequency
of the iOS update mechanism ensures that the majority of users install the latest updates as they
are released by Apple; this is made possible by retaining control over the hardware upon which the
devices execute. Looking at the distribution of iOS versions observed on the App Store in Figure 1.1,
84% of devices are running the latest major iOS release (9.0).
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Figure 1.1: Distribution of iOS versions as measured on the App Store on May 9, 2016.

App Transport Security (ATS) is a transport security policy first introduced with i0S 9.0 designed
to force encrypted connections between applications and web services. ATS achieves this by providing
default connection requirements that apps and services must adhere to. ATS is automatically applied
to apps compiled for iOS 9.0 and connections that do not meet these requirements will fail [2].
Presently, developers can declare exceptions to ATS to avoid server compatibility issues, however ATS
support will be mandatory for all apps submitted to the App Store by the beginning of 2017 [33].

Note that ATS is not responsible for data encryption, rather promoting good security practices
by enforcing strong default configurations. The encryption itself is handled by Apple’s own TLS
implementation which developers access via a hierarchy of high-level APIs.

Alternative TLS implementations such as OpenSSL can also be used within i0S, though it is the
responsibility of the developer to compile them into their application. Apple encourage the use of
their implementation over OpenSSL as it has been specifically optimised for iOS devices, reduces the
size of applications, and relieves developers from having to alter their code as changes to TLS are
made [8].

Whether or not it is wise for developers to rely solely on Apple for TLS is beyond the scope of
this paper !, though it will undoubtedly improve the overall deployment of encryption for apps on
the App Store.

With TLS becoming a standard for apps listed on the App Store, black-box audits of iOS applica-
tions will need to bypass TLS to be able to view the traffic between client and server. Tools already
exist, though they require jailbroken devices, which could be detected and are not always guaranteed.
Furthermore, we anticipate the usage of Apple’s TLS implementation to rise due to its ease-of-use
and requirement for publishing. Taking all of the above into account, this motivates the case for a
method that reliably circumvents TLS on Apple devices, regardless of whether it is jailbroken or not.

LConsider for example, the "go-to-fail" bug in the Apple SSL/TLS library [23].



Research Questions

It is clear there is merit in finding a new solution for overcoming TLS encryption on iOS devices.
Therefore, our main research question is:

Is it possible to extract TLS session keys from the process memory on an iOS device?

To answer this, we will address the following sub-questions:

e How is the key material used by TLS generated?

e How is TLS implemented in the latest major i0S release (9.0+)7
e How are TLS keys held in memory?

e Can such a technique be used on both jailbroken and non-jailbroken devices?

Structure

The remainder of this paper is structured as follows. In Chapter 2 we discuss existing literature
relevant to our research. In Chapter 3 we review the TLS protocol and the iOS network stack. We
then proceed to the problem at hand, first determining the information that needs to be extracted in
Chapter 4, and then acquiring it in Chapter 5. In Chapter 6, we test this approach on a small sample
of applications and compare it with existing methods. This is followed by a discussion in Chapter 7
and concluding remarks in Chapter 8. Suggestions for future work are given in Chapter 9.



2. Related Work

Research on extracting TLS/SSL session keys has been successfully conducted in the past, though
similar results have yet to be realised on iOS devices. Nevertheless, as all implementations of the
protocol must adhere to the original specification [20], research on other platforms is still highly
relevant.

Dreijer et al. [11] successfully extracted the session ID and the master keys from the memory
space of an NGINX web server running on Linux when using the SessionTicket extension, despite
having enabled Perfect Forward Secrecy (PFS) [20]. Under PFS, it should be the case that session
keys are deleted from memory immediately. During the key generation phase, an object containing
the session ID and master key is allocated on the heap and is not removed until the data has been
freed or the process terminated. With a time window of several minutes, it was possible to scan the
process memory for the session ID and retrieve the unencrypted master key. Though possible, the
authors note that it would be difficult to achieve in practice as their crawler would need to read the
process’ memory continuously in order obtain the session ID and key before they are removed.

TLS sessions key extraction from the memory of Android devices was demonstrated in [24].
Maritsas et al. target the OpenSSL library, commonly used in Android applications, using the Frida
dynamic instrumentation toolkit [28]. Identifying the session object associated with a TLS session,
they were able to extract the session ID and master secret from the default Android web browser.
Their proof of concept illustrated the technique on a rooted device, though they note that it should
also be possible on non-rooted devices.

As mentioned in Chapter 1, there are existing solutions to overcoming TLS/SSL encryption on
jailbroken iOS devices. A prominent example is SSLKillSwitch by Diquet [9]. SSLKillSwitch is a
Mobile Substrate extension that patches several functions within the Secure Transport API responsible
for the certificate validation routine. Specifically, they disable Apple’s built-in certificate validation
routine in all SSL context objects, remove the ability to re-enable it, and then force the device to trust
all custom certificates. With the device inherently trusting all certificates presented, it is possible to
proxy its network traffic as it communicates to external servers. The code has changed its structure
over time in response to changes in the location of the certificate validation logic, as well as its runtime
behaviour with new i0S releases [10].

Another solution is to patch the binary of the application [15] so that it sends HTTP requests
rather than HTTPS. If the server will only accept secure connections, a proxy to redirect traffic to
and from the iOS device will be needed. In this case, the proxy will establish a secure connection to
the server and relay traffic to and from the device. As with SSLKillSwitch, this method also requires
a jailbroken device as modifying the application binary will invalidate its code signature (See Section
5.6.2). This technique can also fail if client validation is used on the application side or certificate
pinning has been enabled.



3. Background

In this section we review the TLS protocol and the handshake mechanism used to establish a session.
This is followed by an overview of the networking stack in iOS and how TLS is handled.

3.1 Transport Layer Security

Transport Layer Security (TLS) and Secure Sockets Layer (SSL) are cryptographic protocols designed
to provide privacy and data integrity between two parties communicating over insecure infrastructure
[20]. These protocols protect the data transferred at the transport layer in the OSI model; above
TCP but below high-level protocols like HTTP.

There is a distinction between TLS and SSL. The SSL protocol was initially developed by Netscape
in 1994 but never publicly released. It underwent two iterations, SSLv2.0 and SSLv3.0, the latter
of which took on a completely new design to address serious weaknesses in the former [30]. In 1996,
a TLS working group was formed to migrate SSL from Netscape to the Internet Engineering Task
Force (IETF). TLS 1.0 was released in 1999 (RFC 2246) [19], and held only minor differences from
SSLv3.0. TLS 1.1 was released in April 2006 and contained security fixes as well as introduced TLS
extensions. The latest version, TLS 1.2 was released in August 2008 and added support for authen-
ticated encryption and generally removed all hard-coded security primitives from the specification,
making the protocol fully flexible.

Protocol

TLS is implemented via the record protocol, which handles transporting and encrypting lower-level
messages exchanged over a connection. Several subprotocols are used on top of the record protocol
to handle various mechanisms used during a TLS session. A TLS record consists of a short header
containing information about its contents (e.g. subprotocol, protocol version, and length), followed
by the message data itself.

The TLS specification defines four core subprotocols:

e Handshake

e ChangeCipherSepc
e ApplicationData
o Alert

The subprotocol of most interest to us is the handshake protocol, as it is used to negotiate the
cipher suite, perform authentication, and establish a shared secret when initiating a new session
between two parties. A complete protocol reference is available in the TLS 1.2 RFC [20].

Handshake

Every TLS connection begins with a handshake message and generally follows one of three flows: a
full handshake with server authentication, a shortened handshake that resumes a previous session, or
a full handshake with both client and server authentication.

A client and server will execute a full handshake and establish a TLS session if one has not been
previously established. During this procedure, four main activities will take place:

1. Exchange capabilities and agree on best available cipher suite.
2. Validate the presented certificate(s) or authenticate using other means.

7



3. Agree on a shared master secret that will be used to protect the session.

4. Verify that the handshake messages haven’t been modified by a third party.

Client Server

1. ClientHello

| |

2. ServerHello

[

3. Certificate”

4. ServereyExchange®

5. ServerHelloDone”

6. ClienteyExchange

7. [ChangeCipherSpec]

8. Finished

9. [ChangeCipherSpec]

10. Finished

[}

Figure 3.1: A full handshake to establish a TLS session between client and server.

Figure 3.1 lists the steps that take place in a full handshake. The client begins a new handshake
by submitting its capabilities and preferences to the server with a ClientHello message (1). The
server then selects and communicates the connection parameters, based on the best version supported
by the client (2). If server authentication is required, the server will also send its X.509 certificate
chain (3). If the Diffie-Hellman key exchange is selected, the server will send a ServerKeyExchange
message containing its DH parameters. This is used in conjunction with the client’s DH parameters to
create a pre-master secret which is later used to generate the master secret from which key material is
derived (4). After this, the server indicates that it has completed its side of the negotiation (5). The
client sends its contribution of the key exchange (DH parameters or pre-master secret encrypted with
the server’s public key if using RSA) in a ClientKeyExchange message (6). The client now has the
all information required to generate the key material and switches to encryption, informing the server
using an encrypted ChangeCipherSpec message, a separate subprotocol from the handshake (7). The
client also sends a MAC of the handshake messages sent and received (8). The server switches to
encryption and informs the client (9), together with a MAC of the handshake messages it received
and sent (10).

3.2 The 10S network stack

In this section we provide a brief overview of the iOS architecture and describe its networking stack.

3.2.1 1i0S architecture

iOS follows a layered architecture and acts as an intermediary between applications and the under-
lying hardware upon which they execute. Apps communicate with the hardware via a set of defined
interfaces. The lower layers of iOS contain interfaces responsible for fundamental services on the
device. Higher layers build upon these lower layers to provide more sophisticated services. A graphical
representation of this is depicted in Figure 3.2.
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Figure 3.2: Overview of iOS architecture

Each layer of the operating system is comprised of a number of frameworks responsible for
implementing the interfaces to specific features. A framework is a directory containing a dynamic
shared library and its supporting resources such as header files, images, and helper apps [6].

The hierarchy of iOS layers is made up of four main layers: Cocoa Touch, Media, Core Services,
and Core OS. The highest level of abstraction is at the Cocoa Touch layer which is responsible for
implementing features such as the user interface, messaging, and map functionality and is built on
top of the layers below it.

Moving down the stack reduces abstraction and provides more control over the operations per-
formed, though at the necessary cost of greater complexity. Developers are encouraged to make
extensive use of the high-level APIs made available to them in order to save time and reduce the
amount of code needed to encapsulate potentially complex features such as sockets and threads [6].

The Core Services layer contains the fundamental system services for apps. Two of the most
important services are the Core Foundation and Foundation frameworks which define the basic types
that all apps use. This layer also contains individual technologies to support features such as location,
iCloud, social media, and networking.

3.2.2 Networking APIs

The Networking APIs in iOS span several of the layers previously mentioned and are fundamentally
built on top of BSD sockets, as displayed in Figure 3.3:

Foundation

CoreFoundation / CFNetwork

BSD Networking

Figure 3.3: iOS network stack

At the top of the network stack is the NSURLSession API that is located within the Foundation
framework. The NSURLSession API provides a method to load URL requests in order to interact
with web services e.g. fetching images or videos. The NSURLSession API itself is built on top of
the NSStream API which, in turn, is built on top of CFNetwork provided by the Core Foundation
framework.



The CFNetwork Framework is a set of high-performance C-based interfaces that use object-oriented
abstractions for working with network protocols. These abstractions provide detailed control over the
protocol stack and make it easy to use lower-level constructs such as BSD sockets. CFNetwork provides
more configuration options than the URL loading system offered by NSURLSession. For example,
when creating a request using CFNetwork, developers must manually add any HTTP headers and
cookies that must be transmitted with the request. With NSURLSession however, standard headers
and any cookies are added automatically.

The simple networking interface offered by CFNetwork is in itself built on top of the CFStream and
CFSocket classes. These are both lightweight wrappers around BSD sockets which sit on the lowest
level in the Core OS layer, closest to the antenna hardware.

3.2.3 Security

Security in iOS is also handled at the Core OS layer by the Security Framework. This provides
interfaces for security-related operations such as managing certificates, public and private keys, and
trust policies. Within the Security Framework is the Secure Transport API, which is responsible
for transparently setting up TLS sessions with remote services when invoked.

The stack of networking APIs in iOS and their dependence across different layers in iOS demon-
strates that Apple-provided network security, at their lowest-level, relies upon the Secure Transport
API. These relations are presented in Figure 3.4.

AFNetworking
HTTP
NSURLConnection NSURLSession UlWebView
HTTP HTTP (i0S 7+) Web View
\ CFNetworking /
Networking

pd

BSD Sockets

N

Secure Transport

Networking SSUTLS

Figure 3.4: Relationship between iOS networking APIs

3.2.4 App Transport Security

App Transport Security (ATS) is a new feature introduced with i0S 9.0 that enforces default connection
requirements to ensure that apps adhere to best practices for secure connections when using high-level
APIs such as NSURLConnection, NSURLSession, and CFURL. With ATS enabled, network connections
that do not meet the specified requirements will fail.

Servers must support a minimum of TLS 1.2, forward secrecy, and certificates must be valid and
signed using SHA-256 or better with a minimum of a 2048-bit RSA key or 256-bit elliptic curve key.
Apple specify a list of requirements including the supported cipher suites, which generally require the
use of Elliptic Curve Diffie-Helmann with Ephemeral keys (ECDHE) for the key exchange and either
Elliptic Curve Digital Signature Algorithm (ECDSA) or RSA for authentication [2].

ATS is enabled by default on applications built against the iOS 9 and OS X 10.11 SDKs, and will
be mandatory for all applications on the App Store by the beginning of 2017. It is currently possible
to define exceptions for ATS-enabled applications for servers that do not support the required ciphers,
though it is possible that Apple will start enforcing its use in the future.

With the introduction and enforcement of ATS on iOS applications, usage of Apple’s Secure
Transport API will undoubtedly increase in the future. Furthermore, for application developers whose

10



main concern is delivering core functionality within tight deadlines, it is likely that the majority of
TLS encryption on iOS devices going forward will be handled by Apple’s own TLS implementation.
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4. Approach

In this section we determine what must be retrieved in order to decrypt TLS traffic. We begin by
outlining how the key material is generated according to the TLS specification. We then identify
the information that will be extracted later in Chapter 5. After this, we turn our focus to Apple’s
TLS implementation where we analyse source code snippets to determine which objects and functions
contain the required information.

4.1 Generation of key material

TLS makes extensive use of an HMAC-based Pseudorandom function (PRF) in order to expand secrets
into blocks of data that can be used for key generation and validation. The PRF function takes as
input a secret, a seed, and an ASCII label to produce an output of arbitrary length. As the process is
deterministic, both client and server can start with the same seed values and PRF function to arrive
at the same final values.

The PRF is defined in the TLS RFC [20] as:

PRF (secret, label, seed) = P_<hash>(secret, label + seed)

where:

P_hash(secret, seed) = HMAC_hash(secret, A(1) + seed) +
HMAC_hash(secret, A(2) + seed) +
HMAC_hash(secret, A(3) + seed) + ...

and A() is defined as:

A(0)
A(i)

seed
HMAC_hash(secret, A(i-1))

The P_hash function can be iterated as many times as necessary in order to generate the required
amount of material and will depend on the hashing algorithm used. For example, using SHA-256 will
produce 256 bits (or 32 bytes) of output with each iteration. Thus in order to generate 48 bytes in
total, the function will be iterated twice, and the remaining 16 bytes discarded. Recall that by the
end of the handshake, both parties will possess a shared secret (pre_master_secret) and the random
values sent in the ClientHello and ServerHello messages, respectively. Both the client and server
random values act as a source of entropy in the generation of the 48-byte master secret as they are
unique to each TLS session. The master secret is generated using these values in conjunction with
the PRF function:

master_secret = PRF(pre_master_secret, "master secret” + client_random +
<, server_random)

Listing 1: Master secret generation

12



The master secret is then used to generate the key block which contains the MAC secrets,
symmetric encryption keys, and input vectors for blocking used with symmetric encryption. These
are, in order, the client write MAC secret, server write MAC secret, client write key, server write key,
client write IV, and server write IV.

key_block = PRF(SecurityParameters.master_secret,
"key expansion”,
SecurityParameters.server_random +
SecurityParameters.client_random) ;

Listing 2: Key material generation

Once enough output has been generated, the key_block is partitioned according to the respective
lengths for each of the keys like so:

client_write_MAC_key[SecurityParameters.mac_key_length]
server_write_MAC_key[SecurityParameters.mac_key_length]
client_write_key[SecurityParameters.enc_key_length]
server_write_key[SecurityParameters.enc_key_length]
client_write_IV[SecurityParameters.fixed_iv_length]
server_write_IV[SecurityParameters.fixed_iv_length]

Listing 3: Partitioning the key block

What is needed

Our goal is retrieve enough information such that we can derive the key material used to encrypt a
given TLS session. As discussed, the key material is generated using a PRF function in conjunction
with the random values exchanged at the start of a handshake and the shared secret computed at
each endpoint. The relationships between these values are displayed in Figure 4.1.

13
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Figure 4.1: Relationship between secret and key material.

In order to generate the key block, we need both random values as well as the master secret or
pre-master secret. At a minimum the random values and the pre-master secret are required as these
will be used to generate the master secret. Note that both the client and server random values are
sent in plaintext, and are thus available to anyone observing the handshake.

4.2 Taking a closer look at Secure Transport

As mentioned, the high-level networking APIs available in iOS rely on the Secure Transport API for
handling TLS sessions. Upon inspection of the source code of the Secure Transport API it became
apparent that this in itself wasn’t responsible for the low level cryptographic operations and was

actually a wrapper.
Articles concerning previously disclosed SSL vulnerabilities stated that Apple patched their own

SSL library, CoreTLS [25]. With knowledge of the library, we were able to find the source code, albeit
for an older version than what is currently in use [3]. Our next steps were to analyse the source to
locate objects containing the random values and master secret, followed by functions that handle

these objects so they could be later hooked.

Analysis of the CoreTLS Source

The structure definition of the _tls_handshake_s object contains all information related to the
session and is our main target. A snippet from this definition is shown in Listing 4.

14



struct _tls_handshake_s {

tls_protocol_version mnegProtocolVersion;
tls_protocol_version clientReqProtocol;
tls_protocol_version minProtocolVersion;
tls_protocol_version maxProtocolVersion;

uint8_t clientRandom[SSL_CLIENT_SRVR_RAND_SIZE];
uint8_t serverRandom [SSL_CLIENT_SRVR_RAND_SIZE];
tls_buffer preMasterSecret;

uint8_t masterSecret [SSL_MASTER_SECRET_SIZE] ;

Listing 4: Snippet of tls_handshake_s structure

The structure begins with four entries containing TLS protocol versions. These are used when
parties negotiate which cipher suite to use during a handshake. Later entries contain the client random,
server random, pre-master and master secrets which can be used to generate the key material.

Whenever a new session is to be established, an instance of an object that has a _tls_handshake_s
structure will be created, as shown in the snippet below (Listing 5):

typedef struct _tls_handshake_s *tls_handshake_

Listing 5: Creation of the instance

Our next step was to determine the function(s) that interact with this object and leads us to the
tls_handshake_internal_prf function. This is the PRF function used to generate the key material.
Listing 6 shows the function definition:

int tls_handshake_internal_prf (tls_handshake_t ctx,
const void *vsecret,
size_t secretlen,
const void *label,
size_t labellen,
const void *seed,
size_t seedLen,
void *vout,
size_t outlen);

Listing 6: tls_handshake_internal_prf function definition

The first argument is the object containing the session information, whilst the second argument is
a pointer to the master secret stored within that object. The third argument contains the length of
the master secret, which should be 48-bytes as defined in the RFC. The fourth and fifth arguments
contain a pointer to the static label and its length, respectively. This is followed by the seed values.

Additional Information

In addition to the secret material, more information about the session can be gleaned from other
functions contained within the CoreTLS library and Secure Transport API. For example, the cipher
suite being used for the connection can be extracted from the tls_record_init_pending_ciphers
function as well as the URLs corresponding to each TLS session by hooking the SecPolicyCreateSSL

15



function from the Secure Transport API. Whilst not crucial to decrypting the network traffic, these
metrics could still provide some use (e.g. metrics when analysing large quantities of applications).

With knowledge of the object containing the random values and master secret, as well as its

internal structure, combined with the function that handles this object, we can now retrieve them
using dynamic instrumentation tools as described in the next chapter.

16



5. Extracting the Secret Material

In the previous section we established that in order to generate the key material we need the master
secret and the two random values exchanged at the start of a TLS session. In this section we describe
how this information can be retrieved. First we provide an overview of the tools we used, followed by
the retrieval itself. The process is described for both jailbroken and non-jailbroken devices.

5.1 Test setup

The following test environment was used:
e MacBook Pro (OS X 10.11.5 “El Capitan”)
e iPad Mini 3 (i0S 9.0.2, Jailbroken)

iPhone 5C (i0S 9.0.2, Jailbroken)

iPhone 5 (10S 9.3.2, Non-Jailbroken)

Our test devices include both jailbroken and non-jailbroken devices, as well as different processor
architectures. The iPad Mini 3 uses Apple’s A7 64-bit system on a chip (SoC) which has an ARMv8-A
instruction set. Both the iPhone 5 and iPhone 5C use an A6 32-bit SoC with ARMv7-A instruction
set.

5.2 Tools

Wireshark

Wireshark was used to capture and decrypt the network traffic sent and received by the iOS devices
[12]. Tt includes an SSL/TLS dissector which is able to decrypt traffic if provided with the 32 byte
random value from the ClientHello message and the master secret. The random value is used to
map the master secret to its corresponding TLS session. In order to do this, it must be passed a text
file that holds the keys in the format shown in Listing 7:

CLIENT_RANDOM <32 byte client random value> <48 byte master secret>

Listing 7: File structure required by Wireshark SSL/TLS decryption.

Frida

Frida [28] is dynamic instrumentation toolkit that facilitates the live inspection of processes without
access to the source code and in a manner that leaves the process unaware. It achieves this by spawning
a dedicated thread for a Frida agent within the targeted process. A client is able to communicate
with this agent remotely. A JavaScript (JS) runtime is loaded into the process, allowing the client to
send custom scripts for instrumentation.

Once running, Frida has access to anything within the context of the process. For example, one
can inspect and modify memory, threads, and registers. It can also be used to enumerate threads,
hook arbitrary functions, and call native APIs. There is a lot of functionality built into Frida, a more
complete list of the JavaScript API is available on the project website [29].

It currently supports all versions of i0S, using the Duktape JS engine [27] and works on both
jailbroken and non-jailbroken devices. Frida scripts operate in the same manner on jailbroken and
non-jailbroken devices, they only differ in how the agent is loaded on the device.

17



To operate on jailbroken devices, a Frida package must be installed via Cydia [13]. This will install
the frida-server application that runs as a daemon on the device and is responsible for loading the
agent library (FridaGadget.dylib) into the targeted process.

The process for non-jailbroken device differs as the frida-server application is unavailable.
Instead, the agent must be manually injected into the target application, a process that is described
in Section 5.6.

On the client-side, the frida-trace is a command-line tool that can be used to trace arbitrary
functions. When tracing a function for the first time it generates a JS handler within which instru-
mentation code can be inserted. This code will be executed when hooking the function, either on
entry or exit.

5.3 Obtaining the Master Secret

Recall that in Chapter 4 we determined that the secret material could be extracted by hooking the
tls_handshake_internal_prf function. In order to do this, we first run the frida-trace tool on
the t1s_handshake_internal_prf and read the first 400 bytes of the session object passed as its
first parameter. The output is displayed in 9.

We can confirm that we have the correct object by observing the output from the first 16 bytes.
This corresponds to the hard-coded values for TLS 1.2, as displayed in t1s_types.h from the CoreTLS
source code (See Listing 8). We see 0303 repeated four times, stored in little-endian format. This
data corresponds to the protocol negotiation described in Listing 4

The master secret can be retrieved by reading the memory from the pointer passed as the second
argument to tls_handshake_internal_prf. As the master secret is stored within the main object,
this can also be seen in Listing 9 from offsets 0x00000148-0x00000177.

tls_protocol_version_SSL_3 = 0x0300,

tls_protocol_version_TLS_1_0 = 0x0301,
tls_protocol_version_TLS_1_1 = 0x0302,
tls_protocol_version_TLS_1_2 = 0x0303,

tls_protocol_version DTLS_1_0 = Oxfeff,

Listing 8: Hardcoded values for protocol versions in tls_types.h
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tls_handshake_internal_prf ()

- offset - 01 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF
0x00000000 03 03 00 00 03 03 00 00 03 03 00 00 03 03 00 00 ................
0x00000010 00 00 00 00 cO 31 b2 3b 00 00 00 00 00 00 00 00 ..... 1o,
0x00000020 00 00 00 00 00 OO OO 00 40 7d f£4 17 00 00 00 00 ........ @t......

0x00000030 00 04 00 00 00 OO OO 00 00 00 00 OO0 00 00 00 00 ........vvv....
0x00000040 00 00 00 00 4O de f4 17 03 00 00 00 00 00 00 OO0 ................
0x00000050 00 00 00 00 ff ff ff f£ff 00 00 00 00 00 00 OO0 OO0 ................
0x00000060 00 00 00 00 00 OO OO 00 00 00 00 00 00 00 00 00 ................
0x00000070 00 00 01 00 00 OO OO 00 00 00 00 00 00 00 00 00 ..........oo....

0x00000080 00 00 00 00 00 OO OO 00 00 00 OO0 OO0 47 00 00 00 ............ G...
0x00000090 a0 42 f1 17 31 10 00 00 00 4e dd 18 01 00 00 OO .B..1....N......
0x000000a0 0Oe 00 00 00 30 f6 f4 17 Oe 00 00 00 30 88 03 19 ....0....... 0...
0x000000b0 01 00 00 00 00 01 00 00 30 cO 00 00 30 cO 00 00 ........ 0...0...
0x000000cO0 11 00 00 00 20 Oc Oc 00 04 00 00 00 50 99 €9 17 .... ....... P...

0x000000d0 30 00 00 00 00 OO OO 00 00 00 00 OO0 Of 00 00 00 O...............
0x000000e0 00 00 00 00 1b 00 00 00 bO fa 00 19 00 00 00 00 ................
0x000000£0 02 00 00 00 00O 00 00 00 00 00 00 00 00 00 00 OO0 ................
0x00000100 57 72 87 62 1f ab 7f 15 cO 41 c8 41 dd 2e 52 18 Wr.b..... A.A..R.

0x00000110 51 fa 6d a4 7a ff fa 5¢c c¢8 cf 6a 16 25 d8 02 68 Q.m.z..\..j./..h
0x00000120 57 72 87 62 a8 07 3b 57 26 2c 50 99 7a 69 f7 7e Wr.b..;W&,P.zi.”
0x00000130 ea 2c bc 28 bd 18 9d 85 96 de 9b 65 14 0d aa 27 .,.(....... e...?
0x00000140 00 00 00 00 00 00 00 00 3f f4 37 1f 35 a5 9d d0 ........ ?.7.5..

0x00000150 70 04 98 £f6 e0 58 d4 2b 00 d3 74 d6 49 d1 a6 cf p....X.+..t.I...
0x00000160 6d ae 3f 96 b4 06 65 4e 09 9f 72 64 56 2c b3 27 m.7...eN..rdV,.’
0x00000170 d9 68 e0 5e 4b 36 04 £3 60 00 00 00 60 9¢c £3 17 .h."K6..‘...‘...
0x00000180 5c¢ 00 00 00 80 76 f4 17 6¢c 00 00 00 e0 25 f1 17 \....v..l....7..

Listing 9: tls_handshake_internal_prf function object dump

5.4 Obtaining the Client and Server Random Values

There are several options to retrieve the client and server random values. For example, the random
values are included in the session object, and thus they can be found in the dump displayed in Listing
9. All that must be determined is the specific offsets at which the data is stored and these can
be obtained by reading the object data and cross-referencing the structure with the corresponding
Wireshark traffic. A drawback to this approach however is that the offsets will change when using
devices with different architectures (e.g. 32-bit vs 64-bit).

A more pragmatic approach is to use the other arguments passed to tls_handshake_internal_-
prf. Recall that the PRF function defined in Chapter 4 is passed a static label concatenated with
a seed. The seed itself is a concatenation of both random values.We can read from the seed pointer
(6th parameter) for seedLen bytes (7th argument), which should be 64 bytes, and then split this
value into two 32-byte values, we will have both random values. This approach yields a more optimal
solution than the latter as it will correctly retrieve the values regardless of device architecture.

The results of the second operation is shown below in Figure 10:

tls_handshake_internal_prf ()
Client_random: 577287621fab7£15c041c841dd2e521851fab6dad7afffabcc8cf6a1625d80268
Server_random: 57728762a8073b57262c50997a69f77eea2cbc28bd189d8596de9b65140daa27

Listing 10: Client and server random values as extracted from seed argument
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5.5 Verification of secrets

To verify the extracted values, we first compare our values with Wireshark and then attempt to
decrypt traffic with the retrieved values. We can confirm that we have the correct random value even
without knowledge of the shared secret as the ClientHello and ServerHello packets are transmitted
in plaintext.

A visual comparison of the the client random value displayed in Wireshark with the retrieved
value from Listing 9 is shown in Figure 5.1 and confirms that we have the correct values. We next
check the master secret by creating a text file using the format described earlier in Listing 7.

v Handshake Protocol: Client Hello
Handshake Type: Client Hello (1)
Length: 588
Version: TLS 1.2 (@x@303)
¥ Random
GMT Unix Time: Jun 28, 2016 16:19:14.000000008 CEST
Random Bytes: 1fab7f15c®41cB841dd2e521851fa6dad7afffa5Scc8cfbalt...

Q020 2b e cB d4 01 bb @e 98 2b 19 2@ 92 @0 9@ do 82 Ferinnes Farwnaan
Boze ff ff b2 fb 09 9@ @2 24 @5 b4 @1 @3 @3 @5 81 81 casisans sasms
G040 @8 9a 23 13 3 03 00 60 0@ 00 84 02 22 da 4c BT cefiiane aael”
@858 77 61 9b cb6 8b c3 16 83 B3 82 8@ 91 8@ 91 fc @3 WBieanns sasmsnnn
ee68 @3 57 72 87 62 1f ab 7f 15 c® 41 c8 41 dd 2e 52 JWribees LAGAGGR
@p70 18 51 fa 6d a4 7a ff fa 5c cB cf 6a 16 25 d8 @2 Oemezes Nl je%..
@080 68 Pe 53 45 53 53 49 4f 4e 2d 54 49 43 4b 45 54 h.SESSI0 N-TICKET

Figure 5.1: Client random value as displayed in Wireshark

After passing this file to Wireshark’s SSL/TLS dissector, we are able to successfully view the
decrypted traffic for the TLS session (see Figure 5.2).

[ ] @ Wireshark - Follow SSL Stream (tcp.stream eq 15) - wireshark_pca...

POST /@.1/accounts/login?lang=en-GB HTTP/1.1

Host: api.9292.nl

Accept-Encoding: gzip, deflate

Content-Type: application/x-www-form-urlencoded
Content-Length: 5@

Accept-Language: en-us

Accept: /%

Connection: keep-alive

User-Agent: 9292/1.4.5 CFNetwork/758.8.2 Darwin/15.9.@

{"password":"testpassword","email":"test@test.nl" }HTTR/
1.1 500 Internal Server Error

Cache=Control: private

Content-Type: application/json; charset=utf-8
X-AspNet-Version: 4.8.308319

Date: Thu, @7 Jul 2016 14:53:89 GMT

Content-Length: 32

{
"error": "WrongPassword"
}

2 client pktis), T server pki{s), T turnis).

Entire conversation (562 bytes) E Show dataas ASCII a

Help Hide this stream Print Save as... Close

Figure 5.2: Decrypted TLS stream in Wireshark
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5.6 Non-Jailbroken devices

A significant benefit from extracting TLS key material on a non-jailbroken device is that an application
is unaware that it’s taking place. Developers often incorporate both certificate pinning and jailbreak-
detection mechanisms into their applications - applications could halt their execution or behave
differently according to the environment they believe to be running in. By extracting the keys on a
non-rooted device and allowing the TLS session to take place under normal conditions, we are able
to observe the application’s true behaviour.

The process of obtaining the secrets on non-jailbroken devices is similar to jailbroken devices, they
differ only in how the Frida agent (FridaGadget.dylib) is loaded into the target application. In
this section we describe how to insert the Frida agent and resign the application so it will launch
successfully on a non-jailbroken device.

5.6.1 Inserting the Frida gadget

Applications on i0S are packaged as IPA (.ipa) archives which contain the binaries and supporting
resources (e.g. frameworks, libraries, images). Despite the file extension, they are simply renamed
ZIP archives and can be treated as such.

They are structured as follows [34]:
e iTunesArtwork

e iTunesMetadata.plist

e Payload/

— {ApplicationName}.app/

* _ CodeSignature/
* Frameworks
x Various application files e.g. app binary, images, libraries.

To insert the Frida gadget, we simply copy the FridaGadget.dylib into the Payload/Applic-
ationName.app/Frameworks/ directory. We then insert a load instruction for the Frida library in the
application binary so that it’s loaded when the application is launched.

Application binaries on iOS are encrypted to prevent examination, but decrypted once loaded
into device memory (See Listing 11). To decrypt the binary the Clutch tool can be used [7]. This
tool will first inspect the binary, to determine the offset (cryptoff) and size of the encrypted data
(cryptsize) and then launch the application. Once launched, Clutch will dump the decrypted data
and use it to patch over the encrypted portion of the binary before removing the cryptid flag. To
run Clutch however requires a jailbroken device.

$ otool -arch all -V1 9292 | grep -A5 LC_ENCRYP
cmd LC_ENCRYPTION_INFO
cmdsize 20
cryptoff 16384
cryptsize 3194880
cryptid 1
Load command 13

Listing 11: Example of an encrypted iOS binary

Without access to the source code of the application, the binary cannot be rebuilt to include a
load instruction for the Frida gadget. Instead we can use optool to manually insert a load command
for the Frida library [35].
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5.6.2 Code-signing on iOS

To verify the authenticity of executable code running on the device, iOS requires native code to be
signed by a known and trusted certificate. This protection is referred to as Mandatory Code Signing
(MCS). There are several components to Apple’s code signing security model:

e Developer Certificates
e Provisioning Profiles
e Signed Applications

e Entitlements

Developer certificates can be obtained through Apple’s iOS Developer Program and are required
in order to run custom applications on an i0OS device and submit them to the App Store [1].

A Provisioning Profile is an XML plist file signed by Apple that configures the iOS device to permit
the execution of code signed by the embedded developer certificate. It also lists the entitlements that
the developer is permitted to grant to applications holding their signature. A Provisioning Profile can
be acquired through either the iOS Developer Program or Xcode (since version 6) [16].

All iOS executable binaries and applications must be signed by a trusted certificate. While Apple’s
certificates are inherently trusted, any other certificates must be installed via a properly signed
Provisioning Profile. The signature for a signed executable is embedded inside the Mach-O binary
file format, or in the extended file system attributes if it’s a non-Mach-O executable such as a shell
script. This way, any executable binary can be signed: dynamic libraries, command line tools, and
.app bundles [21].

Executables and can be signed and verified by the codesign tool and the developer’s certificates.
When an application bundle is signed, a CodeResources file will be created in the _CodeSignature
directory. This file is used to store the signatures of all signed files in the bundle.

In addition to verifying an application against its signing certificate, the Entitlements of an
application are checked against the certificate to determine its access to the system resources in the
iOS sandbox. In other words, code signing is used to ensure application integrity, whilst entitlements
restrict what the application actually has access to. Entitlements are specified as an XML file
generated by Xcode when configuring the capabilities of an application. This file is provided to the
codesign tool to embed them in the signature of the application.

The signatures of an application are checked when an application is installed, as well as at runtime.
An initial check is performed to prevent the installation of potentially malicious unsigned apps.
Dynamic code signing checks of all executable memory pages are made as they are loaded at runtime
to ensure that an app has not been modified since it was installed or last updated, this is known as
Code Signing Enforcement (CSE) [2]. CSE is built into the iOS kernel’s virtual memory system.

The code signing validity of a process is tracked with the CS_VALID flag in the csflags member
of the kernel’s proc structure for that process. If the executable’s code signing signature has been
validated prior to it being executed, the process begins execution with the CS_VALID flag set. If the
process becomes invalid, this flag will be cleared. The CS_KILL flag is set by default on iOS and will
forcibly kill a process once it becomes invalid [36].

5.6.3 Loading an re-signed application on a non-jailbroken device

The procedure for launching a resigned application also differs between jailbroken and non-jailbroken
devices. Resigning the application with a valid certificate meets one condition — allowing the instal-
lation of the application on a non-jailbroken device. However, the function hooking implemented by
Frida necessarily replaces part of the application code during runtime.

The jailbreak process applies several kernel patches on the device, one of which targets the Apple
Mobile File Integrity (AMFT) kernel module, preventing it from setting the CS_HARD and CS_KILL
flags inside the process’ code-signing flags. As these flags are set on non-jailbroken devices however,
resigned applications must be launched using a different method.

Currently there are a few methods available to launch resigned applications, though the simplest is
to launch the application with the 11db debugger attached — this is the approach taken in this paper.
When 11db is attached, the kernel disables CS_KILL and CS_HARD for the process, thereby disabling
code-signing.
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5.6.4 Summary

To summarise, the process of preparing and launching an application for instrumentation with Frida
on non-jailbroken devices are:

1. Download target app from the App Store on a jailbroken device.
2. Use Clutch to retrieve the decrypted IPA file.

Insert the Frida Gadget and use optool to add a load instruction on the binary.

> W

Acquire provisioning profile or developer certificate and install onto test device.
5. Re-sign the application.

6. Deploy and launch the application with a debugger attached (e.g. using ios-deploy).

5.7 Automation

To aid our research we created two scripts: one to automate the extraction with Frida, and another
to resign the application when preparing an app for non-jailbroken devices.

Key extraction was handled using Frida’s Python API and supports jailbroken and non-jailbroken
devices. After connecting the device via USB and starting a Wireshark capture on its network traffic,
one need only start the script together with the bundle identifier for the application to be tested. The
script will spawn the application on the device and automatically begin logging the client random
and master secret values to a text file. Upon finishing the packet capture, this file can be passed to
Wireshark to decrypt the traffic.

The script used to resign the applications was created by Grezia [17], which uses the codesign
tools that under code-signing in Xcode. It requires the use of a Mac device.

An example of the tools terminal output and the generated secrets file is presented in the Appendix
B.2.
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6. FEvaluation

In this section we review the performance of our method on a sample of applications from the App
Store. We then compare the advantages and disadvantages between this method and existing methods
to circumvent TLS encryption.

6.1 Decrypting application traffic

We ran the tool with five applications available on the App Store. We began capturing Wireshark
traffic before starting the application with the script and generating some arbitrary traffic. The results
of these tests are displayed in Table 6.1:

Application Version Category Developer Decryption
9292 1.4.4 Travel Reisinformatiegroep B.V. Full
Facebook 59.0 Social Networking Facebook, Inc. Partial
Instagram 8.4 Photo & Video Instagram, Inc. Partial
My UvA 1.0.8 Education University of Amsterdam Full
Snapchat 9.43.3.0 Photo & Video Snapchat, Inc. Partial

Table 6.1: Test results from key extraction using Frida

Secret material was successfully extracted from all applications, though to varying degrees. Specif-
ically, we possessed secrets to all sessions established in the My UvA and 9292 applications however
this wasn’t the case for the other three. We were unable to find the exact reason behind this, though
we offer two possible explanations.

Many of the sessions we do not have the material for are resumed TLS sessions. That is, they are
reusing secrets from previously established sessions with new random values. This is evident from
the fact that a session ID value is sent across in several of the ClientHello packets initially sent
when spawning the application. Session resumption allows for a shorter TLS handshake and is used to
reduce the overhead when establishing a session. The iOS networking APIs such as NSURLConnection
and NSURLSession do maintain TLS session caches, though presumably they are removed once a
process is terminated [4]. Oddly, when running our tool on non-jailbroken devices, we necessarily
install the application on the device before running it. Thus, when the application is running on the
device and its traffic captured, it is for the first time.

In addition to resumed sessions, there are also sessions established outside of the process we hook.
We know this from observing the GeolP information from the packets sent. Present in all applications,
we see connections to Apple servers based in Cupertino. As these sessions are established outside of
the process we are targeting, we are unable to extract the relevant secret material.

6.2 Comparison with existing solutions

We compare our method with two existing methods, SSLKillSwitch and manually patching the binary,
on the basis of four aspects:

1. Requirements
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2. Level of decryption
3. TLS session interaction

4. Shortcomings

Requirements

All three methods require the use of a jailbroken device at some point. SSLKillSwitch requires root
privileges in order to apply its patches to disable all certificate validation. Manually patching an
application binary will break code signatures and will thus fail to launch unless code signature checks
have been disabled. Using Frida, we require a jailbroken device insofar as to obtain a decrypted
application binary to prepare for instrumentation - a prepared binary will run on an unmodified
device.

Level of decryption

We define the level of decryption in terms of how much of the total traffic on the device is decrypted.
As SSLKillSwitch is used in conjunction with a proxy that intercepts all traffic and allows disables
certificate validation, all traffic on the device is decrypted. As one would expect, manually patching
a binary will yield unencrypted traffic for only the target application. The same is the case when
using Frida, and this is because we are only able to hook calls made to the TLS PRF function from
the context of the process we are instrumenting. As observed during our tests, the key material for
sessions established by other processes will not be obtained.

TLS session interaction

Interaction is defined as pro-actively influencing how a TLS session is established. Of the three methods,
the TLS session is left untouched only when using Frida, and this is due to the approach. When
binary patching or using SSLKillSwitch, the device connects to a proxy and not its intended endpoint.
In absence of the key material, this is a requirement in order to view unencrypted communications.
One of the key advantages to extracting the key material is the ability to observe an applications
behaviour under normal conditions.

Shortcomings

We evaluate shortcomings on the basis of environmental factors that could cause a given solution to
stop working. Influencing a TLS session creates two points of failure for SSLKillSwitch and binary
patching. Firstly, a jailbroken device is needed in order to load the modifications - this can be
thwarted with sufficient jailbreak-detection mechanisms deployed in applications. Secondly if client
authentication is used by the server, as is often the case with Mobile Device Management (MDM)
apps, both solutions will always fail as the device does not communicate directly with the external
server. The method described in this paper is unaffected by both of these problems as it can run on
an unmodified i0S device and passively extracts the required key material. Frida is currently able to
avoid anti-debugging measures, though this could change in the future.
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7. Discussion

We were able to decrypt traffic in the previous chapters by hooking calls made to the PRF function
used to generate the master secret. This approach is advantageous over alternatives that rely on
continuously scanning and parsing the memory as discussed in Chapter 2 as the master secret is
extracted as it is generated. Therefore it is unaffected by this factors such as PFS which significantly
reduce the window of time before the key is removed from memory. Of course by specifically targeting
the CoreTLS library we do however introduce dependencies, both on its implementation as well as
the TLS protocol specification itself.

A new version of TLS, version 1.3, is currently a working draft [18] however we do not anticipate
this will affect the efficacy of our method. For the most part, TLS 1.3 proposes reducing the number
of cipher suites in use to prevent the use of weak or broken ciphers such as MD5 and SHA-224
[26]. TLS 1.3 also introduces “the 1 round trip time” (1-RTT) handshake, which aims to reduce the
number of packets sent to establish a connection. This is achieved by requiring the client to send
the ClientKeyExchange message, containing the client’s cryptographic parameters, before a cipher
suite has been negotiated. In this way, the server is then able to calculate the keys for encryption
and authentication before the first packet is sent. As we target the PRF function used to generate
the secret material in TLS and thus should be unaffected by this change.

In addition to its implementation, our work also depends on the usage of Apple’s TLS library.
However, as mentioned in Chapter 1, the introduction of App Transport Security (ATS) and the relative
ease with which developers can incorporate the Secure Transport API into their applications is likely to
increase the use of CoreTLS over time. Though it is possible to use alternative TLS implementations
such as OpenSSL, Apple does not advise this. Notably in [8], developers are encouraged to use
the Secure Transport API, stating their encryption libraries have been optimised for i0OS hardware,
security patches will be implemented by Apple, and it will reduce the total size of the applications.
Ultimately, this promises developers switching to Secure Transport faster applications and a smaller
footprint without the time spent manually updating their application code to support updates to
TLS.

We used Frida to dynamically instrument the application and thus our solution is also dependent
on the success of this tool. However one of Frida’s aims is to avoid traditional anti-debugging measures.
Though one could invest time in isolating the functionality necessary to extract secret material and
removing this dependency, time may be better spent working on improving Frida given its applicability
to multiple platforms.

A jailbroken device is needed in order to acquire the decrypted application to instrument on the
non-jailbroken device. We also used a machine running OS X in order to perform the app resigning.
However, this could be resolved on non-Mac platforms using tools such as libmobiledevice [31] and
1did [14].
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8. Conclusion

In this paper we have demonstrated how the secret material used to encrypt TLS sessions can
be dynamically extracted from the process memory of applications running on jailbroken and non-
jailbroken iOS devices. This was achieved using the Frida dynamic instrumentation toolkit.

After reviewing the relationships between i0S networking APIs, we identified a central dependency
on the Secure Transport API when securing network connections. Analysis of the source code for the
CoreTLS library used by the Secure Transport API revealed the implementation of the PRF function
used to generate the key material and this was subsequently hooked to retrieve the secret material as
it was generated using Frida.

Using Frida’s Python bindings, we created a short script that will spawn an arbitrary application
and begin logging the required secret material to a file that can be passed to Wireshark to decrypt
traffic. The use of this tool was described for both jailbroken and non-jailbroken devices.

Tests indicate that the tool is successful on all applications within our sample, though to varying
degrees. Some applications, notably those from companies such as Facebook, Snapchat, Instagram,
contain multiple layers of encryption which prevent us from accessing everything that is sent over the
wire. On the other hand, the traffic from smaller applications such as My UvA and 9292 are fully
decrypted.

The tool has been specifically built for Apple’s TLS implementation, CoreTLS, thus its usefulness
is derived from the use of CoreTLS. With the introduction of ATS in iOS 9.0, mandatory usage due
at the turn of 2017, and the relative ease with which it can be implemented in comparison to third
party TLS implementations, we anticipate the use of CoreTLS to only increase with time.
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9. Future Work

Our tool is currently able to extract TLS secret material from applications that rely on Secure
Transport. Despite this, there are still several areas that warrant future research.

We believe it would be beneficial to investigate the traffic we could not obtain the key material
for. Firstly, by extending the tool to simultaneously handle multiple services on a non-jailbroken
device. This would expose the traffic generated in the case of subsidiary applications helping the
main. In addition we would like to look more closely into how TLS sessions are cached on the device.
In particular we noticed with the Facebook application that a TLS session was immediately resumed,
despite never having installed or launched the application on the device. This could of course be due
to human error, which we would like to verify.

Another area of future work would be to test this tool against future versions of iOS such as 10
which was just recently released. As mentioned in Chapter 7, our tool targets on the CoreTLS library
and is therefore sensitive to changes to it. As such, we expect the tool to work on future releases of
iOS, provided that the CoreTLS library remains unchanged.

In future we would like to also extend the tool to support third-party TLS implementations such
as OpenSSL. Over the course of our research we downloaded and tested over 50 applications from the
App Store in an attempt to hook functions used by OpenSSL however they were not in use. Indeed it
could be the case that developers have simply stopped using it !, perhaps a more focused effort can
find alternative implementations from which to extract secret material.

With access to the shared secrets established between a client and a server it may be possible
to incorporate this into a man-in-the-middle setup (MITM). For example, by resuming an existing
session between client and server and simultaneously connecting to them using the same key material.
The MITM would be able to decrypt incoming traffic from the client, inspect or modify it (and the
HMAC), and then pass it onto the server.

1Some developers have stopped maintaining OpenSSL frameworks for iOS on GitHub, encouraging users to switch
to using the Secure Transport API [5].
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A. Source Code

A.1 Frida script to retrieve client and server random values
and master secret

#!/usr/bin/python

import frida
import sys

def on_message(message, data):
try:
if message:
f = open("wireshark.tzt",’a’)
print("{0}" .format (messagel"payload”]))
f.write(messagel[ "payload”]+"\n")
except Exception as e:
print (message)
print(e)

hook = """
var f = Module. findEzportByName ("libsystem_coretls.dylidb",
— "tls_handshake_internal_prf");
var client_old;
var master_old;
var premaster_old;
var clientrandom="";
var serverrandom="";
var ctr = 0;
Interceptor.attach(f, {onEnter: function (args) {
var masterlength = parselnt(args(2],16);
console.log("masterlength: " + masterlength);
var seedlength = parselnt(args[6],16);
console.log("seedlength: " + seedlength);

if (seedlength == 64)
{
randoms = new NativePointer(args[5]);
readb = Memory.readBytedrray(randoms,seedlength)
uintreadb = new Uint84rray(readd)

array = [];
for (4=0;1<32;%++)
{

array[t] = ("0"+
— uintreadb[i].toString(16)).substr(-2);
clientrandom = clientrandom + arrayli];

}
for (1=32;4<64;%++)
{
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array[t] = ("0"+ uintreadb[i].toString(16)).substr(-2);
serverrandom = serverrandom + array[i];

}
}
if (masterlength ==48)
{
var masterstring = "";
var premasterstring ="";
masterarg=args/[1];
var master = Memory.readBytedrray (masterarg
— ,masterlength);
tempconvert = new Uint84rray(master);
arr = [];
for (¢ = 0; i < masterlength; © ++)
{

arr [ ¢ ] = ("0" + tempconvert [ 4 ]. toString (16)).
« substr ( -2);
masterstring = masterstring + arr[i];
}
if (masterstring != master_old)
{
master_old = masterstring;
client_old = clientrandom;
send ("CLIENT_RANDOM "+ clientrandom + " "+
— masterstring);
ctr++;
console.log("Current counter = " + ctr)
console.log("Client random: " +
— clientrandom)
console.log("Server random: " +
— serverrandom)

clientrandom = "";
serverrandom = "";
}
}
}
};
if __name__ == ’__main__"’:
try:
print("[*] Attaching ...")
print("[*] Hooking... \n")
if sys.argv[1l] == "-n":
session = frida.get_usb_device() .spawn(["re. frida.Gadget"])
else:

session = frida.get_usb_device() .spawn([sys.argv[1]])
sessionl = frida.get_usb_device().attach(session)
frida.get_usb_device() .resume(session)
script = sessionl.create_script(hook)
script.on(’message’, on_message)
script.load()
sys.stdin.read()
except KeyboardInterrupt:
sys.exit(0)
except IndexError:
print ("""
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Error: No process specified.
Usage: dumper.py [Bundleldentifier]
E.g. dumper.py com.apple.mobilesafars

If device ts jailbroken please use -n option
nn Il)

A.2 Frida script to retrieve session URL

onEnter: function (log, args, state) {
log("SecPolicyCreateSSL(" + "" + ")");
a=args[1].toInt32()+8;
var url = new NativePointer(a);
url = Memory.readByteArray (url ,1);
var urllength = new Uint8Array(url);
finallength = urllength[0].toString();
urllocation = a+1;
urllocation = new NativePointer(urllocation)
finallength = parseInt(finallength,16); //conver to hex
var urlv = Memory.readCString(urllocation, finallength);
log("URL: " + urlv);
log("URL length: " + finallength);

A.3 Frida script to retrieve hexadecimal value of the cipher
used

onEnter: function (log, args, state) {

log("tls_record_init_pending_ciphers(" + "" + ")");
var cipher = args[1];
log(cipher);

A.4 Frida script to retrieve hexadecimal value of the minimum
protocol version

onEnter: function (log, args, state) {
log("tls_handshake_set_min_protocol_version(" + "" + ")");

log(args[11);

A.5 Frida script to retrieve hexadecimal value of the max pro-
tocol version

onEnter: function (log, args, state) {
log("tls_handshake_set_mazr_protocol_version(" + "" + ")");

log(args[1]);
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B. Example output

B.1 Script

$ ./dump.py nl.9292.9292
[*] Attaching ...
[*] Hooking...

CLIENT_RANDOM 5788e98c4673d61dc4bf065bc36ee2ff5cc6917ab0a9464816a3049e3881b21c
— 502185b9e167£88f84ffcdbaecab0c54df2bbff6e56e51026430549dff363f3acdb851276. ..
Current counter =1

Client random: 5788e98c4673d61dc4bf065bc36ee2ff5cc6917ab0a9464816a3049e3881b21c
Server random: 5788e98dfd5be28540fe52e3f28be6e2829215c638ab8750fac8002bfde3df3aa
CLIENT_RANDOM 5788e98e438ea427fd3df55d29754639122586e8a375eb76e29d82d8b1646b37
— 606258ebe801922e808£820698b0ef83ac8e6a8e60f139ff8£2d045cdela9bcbc4ef450e8. . .
Current counter = 2

Client random: 5788e98e438ea427fd3df55d29754639122586e8a375eb76e29d82d8b1646b37
Server random: 5788e98eacdd48039c50ea3b9f8a97b66e565c57477fab2671fdce392f4b54bf
CLIENT_RANDOM 5788e98e53590c3a00fdd3bl1ef8de3b72fcc697b834dfd050be4440b5054cda
— £888ab70c18c06£9b11d23dc45a791583b51e4485e6b36ae82ee18dd0d8e185b6788e82a5. . .
Current counter = 3

Client random: 5788e98e53590c3a00fdd3b11ef8de3b72fcc697b834dfd050bed440b5054cda
Server random: 5788e98e00c7721586a832e26430fadeade06bb34ced1366bb9275b5f74ae3f5
CLIENT_RANDOM 5788e9b8ed3759739c4d1c7eb47d0708de931477281d603842a3d8aabd55687b
— 487d83713c89a2cb445691c87e8095e53a1af666ebe5d97b204e45026fcee28e131d731e0. ..
Current counter = 4

Client random: 5788e9b8ed3759739¢c4d1c7eb47d0708de931477281d603842a3d8aabd55687b
Server random: 5788e9b8el6fbcba0d2f09464e8bdd23cd81af4e26028e76b3f26e€044b9abdcO
CLIENT_RANDOM 5788e9b98b7e7£006a3385c1bf9f4a889638aed3be9229118fe81e87e9e£f5018
— e78e714254548fc9e8db40958441ee5ac722dd705ef1f0cd504d745aae0bacc96eabaleeO. . .
Current counter = 5

Client random: 5788e9b98b7e7f006a3385c1bf9f4a889638aed3be9229118fe81e87e9ef5018
Server random: 5788e9b9625£703e9c143b6£92b4471460bcdd90d35c7c1d8819918f6760d0f9

B.2 Secrets file

CLIENT_RANDOM 5788e98c4673d61dc4bf065bc36ee2ff5cc6917ab0a9464816a3049e3881b21c
— 502185b9e167£88f84ffcdbaeab0c54df2bbff6e56e51026430549dff363f3acd5851276. ..
CLIENT_RANDOM 5788e98e438ea427fd3df55d29754639122586e8a375eb76e29d82d8b1646b87
— 606258ebe8019a2e808£820698b0ef83ac8e6a8e60f139ff8£2d045cdela9bcbcdefdble. . .
CLIENT_RANDOM 5788e98e53590c3a00fdd3b11ef8de3b72fcc697b834dfd050be4440b5054cda
— £888ab70c18c06f9b11d23dc45a791583b51e4485e6b36ae82ee18dd0d8e185b6788e82a. . .
CLIENT_RANDOM 5788e9b8ed3759739c4d1c7eb47d0708de931477281d603842a3d8aabd55687b
— 487d83713c89a2cb445691c87e8095e53a1af666ebe5d97b204e45026fcee28e131d731e. ..
CLIENT_RANDOM 5788e9b98b7e7£006a3385c1bf9f4a889638aed3be9229118fe81e87e9ef5018
— eT78e714254548fc9e8db40958441eebac722dd705ef1£f0cd504d745aae0bacc96eabalee. ..
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