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ABSTRACT

Verification is a critical task in the development of correct
computing systems. Simulation remains the predominantly
used technique to identify design flaws, due to its scalability.
However, simulation intrinsically suffers from low functional
coverage, hence often fails to identify all design flaws. For-
mal verification (FV) is a promising approach to overcome
the coverage limitations of simulation, due to its ezhaustive-
ness — which enables it to identify intricate design flaws too
complex to practically find using simulation. However, auto-
mated F'V techniques have scalability drawbacks that limit
the size of design components that can be formally verified.
One of the key strengths of F'V techniques is their use of sym-
bolic reasoning, to efficiently explore a huge number of indi-
vidual scenarios that would be intractable using simulation.
When used in an incomplete manner, the scalability chal-
lenges of these algorithms are lessened, enabling efficient and
relatively scalable semi-formal bug hunting. Nonetheless, to
yield a robust industrial-strength solution, the individual
components of such a system — many being heuristic — must
be highly tuned, and integrated and orchestrated in an in-
tricate manner. In this paper, we overview the various com-
ponents useful in a scalable semi-formal search framework,
introducing several novel powerful techniques and providing
experimental data to illustrate the strengths, weaknesses,
and complementary nature of the various techniques.

1. INTRODUCTION

Functional verification is the process of establishing the
correct behavior of a computing system. This task is ob-
viously an essential one: deploying a flawed system entails
various risks, from the financial cost of repairing the system,
to financial and legal damages caused by incorrect compu-
tations, or even to the loss of human life or environmental
disaster. Security verification is a related concern, ensuring
that a system is not unknowingly malicious or vulnerable
to malicious control. The complexity of verification grows
super-linearly with respect to the complexity of the system
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being verified, and is widely acknowledged as dominating
contemporary semiconductor development costs. In a semi-
conductor setting, there are additional critical verification
tasks including equivalence checking: verifying that two ver-
sions of a system behave equivalently — e.g., pre- and post-
logic synthesis.

Due to its scalability, simulation remains the predomi-
nantly used technique to identify design flaws. However,
simulation intrinsically suffers from low functional cover-
age, hence often fails to identify all design flaws. Simula-
tion furthermore requires a significant manual investment to
achieve a reasonable amount of coverage — e.g., development
of coverage models and domain-specific testcase generators.
Formal verification (FV) is a promising alternative, offering
exhaustive analysis to not only expose the most intricate
design flaws, but ultimately to yield proofs of correctness.
However, automated FV techniques have scalability draw-
backs that limit the size of components that can be exhaus-
tively verified, hence F'V often becomes a manually-intensive
task itself. Nonetheless, F'V has become as indispensable to
the semiconductor industry as simulation, with key applica-
tion niches such as equivalence checking for which it is the
only practical solution. Contemporary verification method-
ology thus relies both upon simulation and FV techniques.

One of the key strengths of FV techniques is their use of
symbolic reasoning to efficiently explore a huge number of
individual scenarios that would be intractable using explicit
approaches such as simulation. When used in an incomplete
manner, the computational requirements of these algorithms
are lessened, enabling efficient and relatively scalable semi-
formal search for bug-hunting. Nonetheless, to yield a robust
industrial-strength semi-formal solution, its individual com-
ponents must be highly tuned for performance, integrated
and orchestrated in an intricate and adaptive manner. While
numerous components useful in a semi-formal bug hunting
framework have been proposed in prior literature, there is
relatively little work addressing the effective integration of
these various techniques in a state-of-the-art solution. In
this paper, we detail the various techniques essential to such
a system, including several novel techniques and powerful
extensions to existing methods. Experimental data demon-
strates the utility of these techniques, and in cases — the
lack thereof. We furthermore provide insight into the core
reasons for the witnessed performance.

In cases, the criticality of functional correctness of a sys-
tem is so great that it mandates a comprehensive purely-
formal approach. The utility of a semi-formal framework
may thus be questioned by purists. Regardless of the do-



main, in our experience, such a framework is of utmost value,
since: (1) if a verification task will ultimately fail, the sooner
the fail is identified the better. Sometimes a proof is diffi-
cult to obtain solely because of an error. Discovering the
flaw early will save effort on behalf of the verification team,
and will benefit the design team by knowing of and being
able to rectify the flaw as soon as possible. (2) Even given a
bug-free system, there are many useful semi-formal methods
to boost the scalability of a proof procedure. E.g., scalable
approaches for identifying functionally redundant logic first
identify inequivalences between pairs of gates using semi-
formal techniques before attempting to prove equivalences:
eliminating redundancy can significantly improve the scal-
ability of verification, and is the cornerstone of equivalence
checking. Invariant-learning techniques may benefit from ef-
ficient methods for eliminating invalid candidate invariants.
Reachable state information can make IC3 more effective in
its invariant generalization [10]. The proposed methods thus
have value in bug-hunting frameworks, proof frameworks,
and even synthesis frameworks.

2. PRELIMINARIES

We focus on the verification of hardware designs, which
may be viewed as Finite State Machines (FSMs) derived
in the standard way from synthesized netlists. Netlist con-
structs which define states include bit-level state variables
such as latches, and memory primitives such as RAM. We
assume a discrete-time logic view of a digital design, with
combinational gates having 0 propagation delay from their
inputs to outputs, and sequential gates taking next-state
values at the beginning of every timestep.

Definition 1 A FSM M is a 6-tuple A = (S,1,6,0, A, So),
where S = s1, ..., S is a finite set of states, I is a finite input
alphabet, § : S x I — S is the next-state function, O is a
finite output alphabet, A : S x I — O is the output function,
and So C S is the initial-state set.

Definition 2 A trace is an ordered sequence of (S,I,0)
tuples beginning with an element of Sp, and with successive
elements consistent with ¢.

Definition 3 A safety property is a FSM output represent-
ing a verification objective: to obtain a counterexample trace
illustrating the assertion of that output, or to prove that no
such trace exists.

Definition 4 A constraint is a FSM output which restricts
the set of legal traces: a trace is only valid if each constraint
remains asserted for the finite duration of the trace.

Depending on the context, properties may represent not
only primary verification objectives, but also secondary ob-
jectives such as candidate invariants of a netlist, or redun-
dancy elimination opportunities. In a semi-formal search
context, secondary properties referred to as lighthouses are
often useful to help guide the search into rare netlist behav-
iors, or states deemed near to a property failure.

Constraints are useful netlist constructs to eliminate ille-
gal input scenarios from a verification testbench. They also
enable assume-guarantee based proof frameworks. However,
constraints pose challenges to the efficiency of semi-formal

search frameworks: simulated states that violate constraints
must be discarded, and states that lead to a constraint viola-
tion may be fruitless in bug hunting. We refer to states that
violate a constraint under all input valuations as dead-end
states. For states that have at least one legal input valuation
satisfying the constraints, the technique of [16] to synthesize
logic natively satisfying such constraints is highly-effective
at boosting semi-formal search scalability.

Simulation is a technique for producing a trace relative to
a single sequence of valuations to inputs, often derived us-
ing a form of random generation [1]. Much literature exists
on ways to accelerate simulation, e.g., (1) event-simulation
techniques to avoid re-evaluating gates whose values have
not changed from the previous timestep; (2) exploiting al-
gorithmic parallelism which includes partitioning the netlist
and evaluating different partitions on different host machines;
and (3) exploiting data parallelism which evaluates different
independent simulation runs on different host machines. We
discuss our use of simulation in Section 8.

Bit-parallel simulation is a computationally efficient way
to exploit data parallelism, concurrently deriving a set of
traces using a single host machine instruction to atomically
simulate the behavior of a gate relative to multiple vectors.
Even with bit-parallel extensions, a significant drawback of
simulation is that the fraction of netlist behavior that can
explored explicitly is often very small.

Bounded model checking (BMC) is a technique to symboli-
cally reason about the behavior of a netlist under all possible
input valuations for a bounded number of timesteps, rela-
tive to a set of properties and constraints. BMC constitutes
a powerful bug-hunting framework itself, given its relative
scalability when using a state-of-the-art incremental SAT
solver. Nonetheless, BMC does have capacity limitations,
precluding it from exploring deep states of large netlists.

Both simulation and BMC are essential components of a
robust semi-formal search framework. The purpose of this
paper is to study effective techniques for falsifying properties
that are too improbable to solve using random simulation
alone, and too deep to expose using BMC alone. We fur-
thermore strive for an industrial-strength solution which can
scale to multi-million gate designs, rendering explicit-state
model checking techniques inadequate.

If the verification objective includes liveness properties,
practically we have found that a prior conversion to safety [3]
is highly desirable from a scalability perspective. The rea-
son is that establishing a state history record in bit-parallel
simulation is a significant computational overhead, whereas
otherwise the memory requirements of bit-parallel simula-
tion can be reduced to proportional to netlist size regardless
of search depth. For simplicity of exposition, we hereafter
assume that any RAM are bit-blasted to latches. However,
tailoring a semi-formal framework for native RAM support
is highly desirable to improve scalability.

Our experiments were performed on a combination of
benchmarks from [11], and proprietary benchmarks, which
were too difficult to solve using an aggressive simplifying se-
quence of reduction and abstraction techniques (including
combinational constraint synthesis [16]) followed by 1 hour
of BMC and 1M simulation vectors. These resulting simpli-
fied netlists are used in our semi-formal search experiments,
allowing the reductions to improve the scalability of semi-
formal search, as shadows the often most-effective strategy
for solving the hardest verification problems. All experi-



while (!solved && trial < max_trials)

iteration = 0;

set latches to initial states;

while (!solved && iteration < max_iters)
perform BMC;
perform simulation;
update coverage;
extract lighthouses and patterns;
choose and set states for next iteration;
iteration++;

trial++;

Figure 1: Generic Semi-Formal Search Framework
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Figure 2: Semi-Formal State Search

ments were performed on a 64-bit Linux machine, using a
single of 32 CPUs at 2.66 GHz with 32 GB main memory.

3. SEMI-FORMAL FRAMEWORK

Figure 1 illustrates a generic semi-formal search frame-
work, leveraging BMC and simulation under configurable re-
source limits, beginning from specifically chosen states. This
search is depicted in Figure 2, illustrating how iterations be-
ginning from different starting states have the opportunity
to explore a large sampling of the reachable state space, and
ideally will seed BMC near to a property failure.

An often-effective strategy for semi-formal search orches-
trates against trials and iterations. Each trial begins from
the original initial states of the netlist. Each iteration begins
from a set of states selected from prior search. The number
of distinct states seeded per iteration is a nontrivial heuristic
to balance: the more states chosen per iteration, the fewer
distinct bit-parallel simulations that begin from each state,
and the less scalable that BMC will generally be.! However,
selecting more than one starting state per iteration can often
yield greater coverage, since the degradation to bit-parallel
simulation and BMC coverage is often sub-linear.

It is advantageous to perform multiple searches from the
initial states, because (1) a netlist generally has multiple
initial states, and property failures may only be reachable
along a subset of these. (2) Generally, decisions made ear-
lier in a trace may preclude the reachability of states later
in that trace. (3) It is often desirable that counterexam-
ples be as short as possible, since the manual effort involved
in triaging counterexamples is often proportional to their
length. Additionally, computational requirements of coun-
terexample generation are proportional to trace length.

It is advantageous to perform multiple iterations per trial,
because (1) BMC requires exponentially growing resources

with search depth, so becomes prohibitive after a given depth.

By seeding later iterations into deeper states, the astronom-

"When constructing a BMC instance from multiple initial
states, the most effective modeling we have found uses para-
metric input variables to select among the starting states,
and constants for state variables in each starting state. This
allows states with small hamming distance to map to con-
stant state variables, reducing the size of the BMC problem
and thereby increasing the scalability of BMC.

ical coverage of BMC is leveraged from states that practi-
cally could not be reached using symbolic methods alone.
(2) While simulation is not similarly scalability-challenged,
it is advantageous to guide simulation to prevent it from
wasting resources exploring uninteresting states. A simple
motivating example is a netlist with a reset input: the prob-
ability of exploring a trace of length k without resetting the
netlist (entailing redundant analysis) is 27, as noted in [5].

The processes of measuring coverage, selecting states for
later search iterations, and generating lighthouses and input
patterns will be detailed in later sections. These techniques
must be highly-tuned and instrumented in a careful manner
to ensure that their computational overhead does not merely
degrade the search coverage achieved.

4. RARITY-GUIDED SEARCH

Rarity-guided simulation was proposed in [9], as a metric
by which to rank states to be used for later search iterations.
This technique proposes to partition the netlist into clusters
of state variables, and measure how often states (projected
onto these partitions) have been encountered during simu-
lation. For a partition size of k and a netlist with N state
variables, this is implemented using at least 2 x [&] coun-
ters, as partitions may generally be overlapping groups.

This approach is admittedly lacking in that: (1) reach-
ing a new state does not guarantee that any partition will
have a new sub-state identified; (2) a rare state does not
imply nearness to a property failure. However, in industrial
settings, the netlist is often far too large for explicit enu-
meration of most states anyway. A newly reached partition
state does imply a newly reached concrete state, satisfying
the goal of ensuring a better sampling of the state space
across iterations compared to unguided search.

The utility of rarity-guided simulation was noted in [5], in
the context of redundant gate identification. It was observed
that unguided random simulation would quickly saturate in
ability to expose incorrect candidate redundancies, leaving
many to be falsified using heavier-weight proof techniques.
Rarity guidance offers a scalable heuristic approach to in-
crease the coverage of simulation, helpful to falsify many
more incorrect redundancies. The approach of [5] selects
the rarest states only within the same bit-parallel simulation
timestep of prior iterations. We have found it significantly
superior to select the rarest states from arbitrary points in
the prior search history. This benefit is significantly greater
in testcases with dead-end constraints, since the percentage
of simulation vectors which do not violate constraints may
be very small, hence limiting selection granularity becomes
a severe restriction.

A partition size of 8 state variables was found effective
in [5], and also in our experience, since this coverage model
is small enough to be efficiently computed and offers use-
ful concrete state differentiation. We have found that us-
ing even smaller partitions does not significantly improve
scalability, though does significantly weaken rarity guidance
since the small partitioned state cubes saturate too quickly.
With careful tuning, this approach scales with little runtime
overhead up to 16-latch partitions, albeit with a significant
memory overhead. However, the utility of such larger par-
titions becomes questionable: the coverage space is so large
(2" x [H£] vs. 2% x [&]) that it takes too long to con-
verge in coverage, and using the uncovered partition states
as lighthouses creates too much overhead.



210

"PartitionSize 4 ——
PartitionSize 8 &

PartitionSize 16 -0+

200 SOTA 1

RCLEEELEEEEE LR EEER LT
a
190 ae® ]
8
-
@
a
a
e

180 - 2@ ]
5
g i 000000600060000066000
3 0t @ 0000060000000 |

el

A 4 Le®
'g a BO(
2 160 | oo ]
°
&

1 1 1 1 1 1 1 1 1
16 20 24 28 32 36 40 44 48 52
Design Instance

Figure 3: Sim Solves vs. Partition Size

260 - — T
PartitionSize 4 —+—
PartitionSize 8 &

PartitionSize 16 --o--:

oppefEET0EeEaERaaEG088E8888

Properties Solved

120 L L L L L L L L L L L L
0 4 8 12 16 20 24 28 32 36 40 44 48 52

Design Instance

Figure 4: Sim 4+ BMC Solves vs. Partition Size

Figure 3 vs. Figure 4 provides a set of experiments illus-
trating the ability to falsify properties using purely guided
simulation vs. the combination of guided simulation and
180 seconds of BMC per iteration, respectively, for parti-
tion size 4, 8, and 16, and “SOTA” reflecting running all
approaches concurrently on different host machines (a State-
Of-The-Art portfolio approach). These experiments use fifty
64-bit words of bit-parallel simulation, with each iteration
selecting fifty of the rarest states encountered from prior
search: one per 64-bit word. In Figure 3 we used 20 simula-
tion timesteps per iteration, with 100 iterations per trial. In
Figure 4 we used 1000 simulation timesteps and BMC per
iteration, with 10 iterations per trial. The number of tri-
als per benchmark is identical in the various modes, though
varies from 10 to 1000 depending on benchmark size to con-
tain overall runtime.

These plots clearly show 8 latch partitions as the winning
strategy, with relatively little cumulative benefit (exploiting
unique solves) for the portfolio approach. Practically, we
have found 16 latch partitions to be valuable to alternate
to after saturating 8 latch partitions formed using different
strategies, to offer some guidance into unexplored states once
the most fruitful ones have otherwise been exhausted.

Fig. 5 depicts the number of bit-parallel simulation time-
steps necessary to converge rarity coverage using different
partition sizes, i.e. at which no additional counter updates
occur within an iteration. We use a maximum count value of
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Figure 5: Simulated Timesteps until Saturation

65536, with 1000 simulation timesteps per iteration of fifty
64-bit words. This saturation criterion is useful for several
purposes, including adapting search depth to the inherent
depth of the netlist. Note that partition size 4 saturates
quickly in many cases, which is its major shortcoming. In
contrast, partition size 16 almost never saturates before 1M
bit-parallel simulation steps, and even 8 often requires more
than 1M simulation steps until convergence. On average,
after each trial 45.78% counters saturated for partition size
4, 13.97% for partition size 8, and 0.03% for partition size
16, before convergence.

Overall, a weakness of 16 latch partitions is that they dif-
ferentiate many more states than is practically useful, as
will be discussed in Section 5.1. For this reason, it may
seem desirable to assess saturation as too small of a percent-
age of counters updating. Though even with a very small
percentage such as 0.1% of counters updating per iteration,
this metric may misleadingly appear to saturate too early,
in cases causing the much larger coverage space of 16 latch
partitions to saturate before 4 or 8 latch partitions on the
same benchmark.

4.1 Partitioning Strategy

The next major criterion of rarity-guided simulation is
how to partition the netlist. In [9], it is proposed to group
latches which significant affinity, overlapping at least 25%
in next-state function support. The intuition is that this
will group highly-correlated state variables, e.g., implement-
ing the same state machine component. An improvement
that we have found effective is to always group the highest-
affinity pair of state elements first, in case there are too many
high-enough affinity latches to fit within a single partition.
Affinity-based partitioning will also leave a subset of latches
unassigned: 10% of latches in these benchmarks were below
25% affinity to any others. We thus have found it helpful to
use alternate criterion to group low-affinity latches. With
careful tuning, affinity-based partitioning is fairly scalable
even on large netlists, despite the inherent quadratic nature
of comparing the support of pairs of state variables. Though
its runtime is nontrivial: on average, affinity analysis con-
sumed 9% of overall runtime of the following experiments,
ranging from negligible to almost 50% on a 2.4M gate design.

Practically, we have found that the order obtained from
a depth-first search (DFS) backward from the properties is
usually comparable in quality and with negligible runtime.
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Figure 7: Sim + BMC Solves vs. Partitioning Type

We also use DFS ordering to group low-affinity latches. We
contrast with breadth-first search (BFS) and random parti-
tioning in Figure 6 and 7 for simulation alone vs. simulation
and BMC, respectively.

These figures show that all techniques perform fairly well,
with DFS and affinity-based being the consistent winners
offering 7% more solves than random partitioning. A port-
folio strategy of running each approach concurrently offers a
significant improvement in total properties solved. This jus-
tifies one of our findings: when coverage saturates and light-
house benefits are exhausted, it is beneficial to re-partition
the netlist using an alternate strategy. It is further valuable
to introduce randomness into every partitioning strategy, to
break ties, thereby offering cumulative re-partitioning bene-
fit across a large number of trials and iterations. To reduce
the random noise due to this observation, hereafter all ex-
periments are done using affinity-based partitioning.

One may be tempted to use even more precise state cover-
age in semi-formal search, e.g., state-hashing data structures
common in explicit-state model checking [8]. However, our
experience is that this is counter-productive. Aside from
the computational overhead of state hashing, the goal of ex-
plicitly analyzing (with simulation) most reachable states is
highly unrealistic for large netlists. BMC relative to seeded
states offers much greater state coverage, albeit in a manner
that cannot be enumerated. Furthermore, gaps in the cover-
age of state-hashing records do not lend themselves to useful
lighthouses: their support is too large, and their number is

too great to be meaningfully used as sub-properties (similar
to our observation with 16-latch partitions). Instead, it is
more fruitful to leverage rarity-guided simulation to focus
the huge coverage of BMC from interesting deep states.

5. LIGHTHOUSE GENERATION

In addition to the original properties being falsified, it is
often advantageous to generate secondary verification objec-
tives to guide the semi-formal search. When these secondary
objectives are encountered, the resulting state is qualita-
tively different from the prior search, hence is often useful
to guide later search as a seeded iteration state or an in-
put pattern (refer to Section 6). This can often increase the
probability of encountering other sub-properties [12], and
ideally be near enough to a failure of an original property to
enable BMC to expose it.

We have found numerous criteria as useful lighthouses:
(1) uncovered state partition values that were never (or
rarely) encountered during semi-formal search [9, 5, 12]; (2)
toggle-activity based lighthouses, i.e. gates that never or
only rarely toggled during the search [9]; (3) exclusive-ORs
or implications thereof between sets of gates that are equiv-
alent/antivalent in all encountered states [13, 5]; (4) can-
didate invariants which may hold over small-support subset
of the netlist (e.g., cut-based invariants or implication in-
variants [6]); or (5) abstract preimages of an original prop-
erty (refer to Section 7). Approach (3) was borrowed from
equivalent-gate identification frameworks [13, 5], though we
have found it to be a powerful bug-hunting framework in
itself due to its scalability in exposing rare behaviors of rel-
evance to the netlist. Approach (4) extends this reasoning
to groups of more than 2 gates, while still containing the
number of lighthouses to linear with respect to netlist size.

5.1 Exploring Relevant Behaviors vs. Arbi-
trary New States

The work of of [9] proposes that low-activity lighthouses
apply solely to state variables. In our experience, all gates
should be included in activity-based analysis, as this offers
exponentially more granular of state resolution with very
little overhead. Furthermore, gates inherently reflect the
manner in which the netlist reacts to symmetry groups of
states. This observation prompts a reflection on the nature
of semi-formal search.

Recall that the focus of this work is on techniques for
effective bug-hunting in netlists too large for direct applica-
tion of BMC or explicit-state model checking. The fraction
of reachable states which can be explicitly explored in such
netlists is vanishingly small. It is uncommon that a netlist
reacts qualitatively differently to every concrete state. For
example, a netlist with a counter could transition to a unique
next-state from each current-state, though there are likely a
smaller number of state symmetry groups wherein the netlist
behaves qualitatively differently — e.g., where the counter
saturates or overflows or resets, vs. performs “yet another
increment.” If the netlist reacts to a specific count value, it
will likely have a gate which (de)asserts only at that count
value. Perhaps the counter is too large to be contained in
a single rarity partition. Thus, by including gates as candi-
date lighthouses, we can readily discern such netlist-relevant
symmetry groups which otherwise would be impractical to
capture as “different rare states.”

Clearly, it is more essential to explore at least one state



per symmetry group relevant to the netlist, vs. many states
within the same symmetry group, to achieve highest cover-
age. This is why redundancy removal frameworks are often
useful to find intricate design flaws [13, 5]. This is also why
empirically it is more useful to form rarity partitions with
high-affinity latches vs. arbitrary partitioning: the proba-
bility that different partition states affect the netlist in a
qualitatively different way, vs. “merely reflect a different
state,” is much higher. However, a focus on toggling every
gate is not an adequate strategy in practice: even the prop-
erties are simple gates in the synthesized netlist. Barring a
scalable enough proof system to prove the untoggled gates
as constants — without a more meaningful notion of state
coverage, there is no indication of whether the properties
are likely unfalsifiable or whether the netlist is just too com-
plicated to sufficiently explore using semi-formal analysis.?
Guided simulation is thus a well-motivated approach to bet-
ter ensure the exploration of states representing qualitatively
different behaviors of the netlist first, before degrading to
merely searching from arbitrary different states. Our find-
ings of the limited utility of large-partition state coverage
justifies this observation.

The experimental value of lighthouse generation will be
discussed in the following section.

6. PATTERN-GUIDED SEARCH

In addition to using states which hit lighthouses as start-
ing points for later search iterations, it is also valuable to
learn input sequences along which the lighthouses were hit
(particularly via BMC) to guide later search. Granted, the
impact of replaying an input sequence will vary depending
on the starting state from which it is applied. Though ap-
plying an input sequence to simulation will guide it through
a specific sequence of states which may be too improbable
to expose otherwise. In fact, sometimes an input sequence
obtained from a lighthouse may be the key to exposing an
intricate bug when applied from an alternate state. Input
sequences should generally be minimally-assigned, offering
greater coverage through randomization of unassigned in-
puts, and greater compatibility for concurrent application of
multiple sequences with disjoint support, or with common
inputs assigned to common values. Such input patterns may
also be used to constrain BMC, as a form of concolic testing
combining symbolic with concrete values. Though practi-
cally, we have had little success on large netlists with con-
straining BMC vs. combining BMC with guided simulation.

As the number of lighthouses may be very large, lever-
aging them through pattern reuse vs. seeding as states
into semi-formal iterations has multiple benefits. (1) Sim-
ilar to resimulation of BMC traces in redundancy identifi-
cation frameworks [13, 5], the randomization of unassigned
input patterns often yields additional rare scenarios beyond
the lighthouse encountered with BMC, when applied to the
same starting state. (2) Replaying the BMC scenario in
simulation allows existing state prioritization to determine
which scenarios to seed into later iterations, useful if there
are multiple lighthouses hit (nearly) simultaneously. (3) Ex-
isting state prioritization can further determine where along
a lighthouse-hitting trace to seed a later iteration. In cases,

2The latter can be particularly challenging in a netlist with
dead-end states, precluding the ability to randomly simulate
a reasonable sampling of the reachable states.
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the optimal choice may actually be earlier than the hit; seed-
ing later may bypass too many scenarios of interest.

The benefit of pattern reuse is particularly pronounced
in a netlist with dead-end constraints, as the fraction of
randomly-generated inputs which satisfy the constraints may
be very small. It is furthermore advantageous to directly
generate input sequences that satisfy constraints for some
bounded window to guide random simulation, as noted in [2],
to avoid simulating a dead-end state. However, the over-
head of computing constraint-satisfying inputs for every bit-
parallel pattern is too great in practice. Instead, we have
found the following extensions to be useful: (1) Only use
constraint-satisfying patterns for a subset of parallel sim-
ulations, enabling this technique only if the percentage of
wasted simulation patterns becomes significant. (2) Instead
of generating constraint-satisfying patterns from every cur-
rent simulation state, to generate patterns only from a sub-
set of states and reuse them from other states. While this
may fail to avoid dead-end states from incompatible states,
it entails much less computational overhead.

Figure 8 illustrates the importance of constraint satisfy-
ing patterns in dead-end state avoidance, using a sequence of
1000 bit-parallel simulation timesteps per iteration. These
are all examples where oblivious random simulation encoun-
tered dead-end states within a few timesteps. To enable
simulation to reach deeper states, we add an extra prop-
erty to BMC (for every BMC timestep checked) to generate
constraint-satisfying input patterns for a single bit-parallel
simulation state at the beginning of each iteration. We reuse
each of these resulting input sequences for a percentage of
all starting states for the iteration. On average, 16% of the
50 x 64 simulation vectors per iteration were directed with
these input patterns. The y-axis indicates what percent-
age of the simulation patterns avoided dead-end states. The
percentage of constraint-satisfying patterns grows across it-
erations due to seeding constraint-satisfying rare states into
these later iterations, similar to the setup of Figure 3. Ef-
fectively, rarity-guided search benefits from learning diverse
constraint-satisfying states. Note that one of the examples
achieves 100% dead-end state avoidance after two iterations,
as all of its selected rare states preclude dead-end states.

Additional value of lighthouse-based pattern reuse will be
discussed in Figure 9.

7. ABSTRACTION-GUIDED SEARCH



Much recent research in semi-formal search has focused
upon abstraction guidance [4, 15, 7, 14], computing a se-
quence of abstract preimages of a property to use as an un-
derapproximate distance measure between a concrete state
and a failure. The proposed approaches generate the ab-
straction either manually [15, 7], or automatically using lo-
calization — replacing some internal logic by primary input
variables [4, 14]. The objective of abstraction-guided search
is to iteratively tunnel to shallower abstract preimage state
sets, using simulation [7], BMC [4], or both [15].

There are two fundamental challenges in abstraction-guid-
ed search: (1) States which are abstract-distance-1 from

each other may be arbitrarily far apart in the concrete netlist.

Though ideally, there will be significant temporal correla-
tion between abstract and concrete states: e.g., a concrete
counterexample may need to pass through iteratively shal-
lower abstract preimage states, even if the concrete coun-
terexample is much longer than the abstract sequence. (2)
The coarseness of abstract vs. concrete distance often un-
dermines the desired temporal correlation between the two:
there are often many misguided states in the abstract preim-
ages whose successors are all in equi-distant or even in fur-
ther abstract preimages.® Practically, it is difficult to dis-
tinguish between the two cases during semi-formal search
and decide when to truncate deeper analysis of a preimage-
based state. A poor abstraction will suffer from too many
misguided states to offer valuable guidance. Prior work has
addressed this challenge by either refining to overcome the
coarseness of an existing abstraction [4, 14], or by tailoring
the search process to avoid dead-end and misguided states
as they are explored and determined to be fruitless.

We use localization to automatically generate the abstrac-
tion, with no manual guidance whatsoever — as is often nec-
essary for practical adoption in an industrial setting. BDD-
based reachability provides the abstract preimages, used as
lighthouses to guide the search. Lighthouses representing
shallower abstract preimages are given higher priority than
deeper ones when encountered in semi-formal search.

As noted in [7], we also find that while this technique can
be very powerful, it is unreliable, and generally less useful
on large netlists where an accurate-enough abstraction will
be too large for preimage computation regardless of how the
abstraction is obtained. Of the 50 benchmarks studied in
detail, abstraction-guidance was able to solve 124 proper-
ties on 23, with 14 unique solves on two benchmarks. While
it is straight-forward to limit the size of the abstraction even
on large netlists, the core problem often arising is that the
temporal depth of an abstraction small enough for preimage
computation is too shallow, resulting in little opportunity
for useful temporal guidance and, in reality, an overall de-
graded search due to misguidance. For the successful bench-
marks, the maximum preimage depth was 1025 and average
maximum depth was 99. For the unsuccessful ones, the max-
imum depth was 36 and average maximum was 2. This ob-
servation offers insight into whether it is worth attempting
abstraction-guidance on a netlist whatsoever: if the maxi-
mum preimage depth of the best achievable abstraction is

3Prior work often referred to misguided states as dead-end
states. We prefer the term misguided, as such states are
not necessarily incapable of leading to failures along longer
paths not adhering to abstract distance guidance. We re-
serve dead-end to refer to states which can never transition
to a property failure, possibly due to violated constraints.
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Figure 9: Sim + BMC Solves vs. Search Strategy

shallow, the likelihood of degraded search is higher.

Figure 9 demonstrates the benefit of abstraction-guided
search and lighthouse-based pattern reuse across a bench-
mark suite. It is noteworthy that rarity-guided search of
coordinated bit-parallel simulation and BMC tends to signif-
icantly outperform any other individual technique presented
in this paper for large netlists. It is thus used as a baseline
comparison. However, there is significant cumulative port-
folio value in all of the techniques discussed in this paper; no
single technique subsumes the others across all benchmarks,
as illustrated by the SOTA portfolio solving 20% more prop-
erties than rarity-guided search alone.

Overall, abstraction-guidance is an essential component
of a robust semi-formal search portfolio. It can complement
and outperform the other presented techniques in cases.
Though, its utility degrades significantly as netlist size in-
creases. It is worth noting the synergy between abstraction-
guided search and the other techniques presented in this pa-
per: rarity analysis, lighthouse- and pattern-guided search,
and highly-tuned bit-parallel simulation all offer value in
conjunction with abstraction-guided search, to yield a di-
verse sampling of rare states to explore when attempting to
tunnel to shallower abstract preimages.

8. HIGH-THROUGHPUT SIMULATION

As bit-parallel simulation is a core element of semi-formal
search, it is essential to tune its performance for high through-
put. We have found the following techniques to be effective.

First: bit-parallel simulation is an effective way to exploit
data parallelism: there is no practical overhead to simulat-
ing the netlist for 64 bit-level patterns (one word) vs. a sin-
gle bit-level pattern on a 64-bit host machine. Practically,
a much higher throughput may be achieved using multiple
words: 50 were used in in [5]. We have found the optimal
width to be significantly higher, though varies depending on
the netlist being simulated as well as the host machine. We
thus propose adaptive bit-parallel simulation width, evaluat-
ing throughput for a several-second interval across a span of
widths to find the optimal. Our most effective semi-formal
solution slightly biases the chosen width narrowly (to mini-
mize memory requirements and simulation runtime per iter-
ation), and uses binary search for optimal width within the
best boundaries obtained from interval probing.

We illustrate throughput vs. width for a suite of netlists in
Figure 10. Optimal throughput is achieved between 58 and



250000

200000 |~ bl

78K Gates

e 288K GRtesc.— 267

150000

B e it St

100000

#Simulated States per Second

T
50000 [ 563K Gates B

3.2M Gates
ki

KK e e R e e o208 o e K
o ke
o 2 2 2 g 2 = 2 = 2
3 38 3 8 3 3 3 38 3
e By & < 3 3 < <
#64-Bit Words

Figure 10: Simulation Throughput vs. Width

1293 words: imposing a 1% penalty per word, this decreases
to a range of 39 to 172. Note the steep improvement in
throughput until around 50 words, which plateaus and, if
continued, eventually gradually decreases. An average of
20.4% higher throughput is achieved for optimal width vs.
50 words with average optimal width of 593.3, and 909.5%
higher for optimal vs. a single word — which is 5820.8%
higher than scalar simulation of a single pattern. The largest
netlist of 3.2M gates has a throughput of 46.1 states per
second for a single word, 483.1 at 50 words, plateauing at
1015.3 for 190 words.

Second: to minimize memory requirements, the simula-
tor can be tuned to require only a single timestep of bit-
parallel simulation data. This is achieved by performing all
desired coverage analysis for a completed bit-parallel sim-
ulation timestep before moving to the next timestep, then
mapping next-state functions to current-state values before
simulating the combinational gates. This approach requires
recording random number generation seeds so that when it
is necessary to produce a temporal trace, the desired pattern
can be recomputed independently of simulation width.

Third: for better memory locality and to minimize cache
misses, it is most efficient to simulate the gates in an order
that reflects netlist topology. The ordering of And/Inverter
Graph node indices is often sufficient.

Finally, we have not found practical value in event simu-
lation speedups to minimally propagate gate value changes.
This is because in bit-parallel simulation, especially under
rarity-guidance which maximizes diverse activity through-
out the netlist, the chance that none of the words for a
given gate requires an update is very small. Event simula-
tion techniques impose significant overhead which degrades
performance if even 1-2.5% of gates toggle [1]. We also have
not found compelling value of partitioned netlist simulation,
because rarity analysis is done for the entire netlist every
timestep anyway. Nor have we found value in compiled-
code simulation (translating the netlist itself into machine
instructions), since host machines offer significantly better
data-cache vs. instruction-cache performance. Instead, we
have found it most efficient to optimize a basic bit-parallel
netlist simulator, evaluating every gate at every timestep: a
so-called oblivious evaluation strategy [1].

9. CONCLUSION

In this paper we presented a suite of techniques effec-
tive for semi-formal bug-hunting on large industrial netlists
which are too complex for random simulation, BMC, or
explicit-state model checking alone. We overviewed a va-
riety of techniques proposed in prior literature, along with
experimental evidence of their utility (or lack thereof), and
offered insights into the reasons for this performance. We
additionally described novel approaches to increase the util-
ity of rarity-guided, lighthouse-guided, and pattern-guided
search, as well as a novel adaptive bit-parallel simulation
approach. The proposed techniques offer particular value in
testbenches with dead-end constraints, to learn constraint-
satisfying rare states and input sequences. Overall, a rarity-
guided combination of BMC and bit-parallel simulation is
consistently the winning strategy. Though each technique
offers significant value on different benchmarks, with notable
synergies between the techniques, contributing to a robust
semi-formal search portfolio.
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