

RxSwift: Reactive Programming with Swift
Florent Pillet, Junior Bontognali, Marin Todorov & Scott Gardner

Copyright ©2017 Razeware LLC.

Notice of Rights
All rights reserved. No part of this book or corresponding materials (such as text,
images, or source code) may be reproduced or distributed by any means without
prior written permission of the copyright owner.

Notice of Liability
This book and all corresponding materials (such as source code) are provided on an
“as is” basis, without warranty of any kind, express of implied, including but not
limited to the warranties of merchantability, fitness for a particular purpose, and
noninfringement. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use of other dealing in
the software.

Trademarks
All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

RxSwift - Reactive Programming with Swift

raywenderlich.com 2

Dedications
"For my father."

— Marin Todorov

"For Fabienne and Alexandra"

— Florent Pillet

"For my grandfather."

— Junior Bontognali

"For Betty ! "

— Scott Gardner

RxSwift - Reactive Programming with Swift

raywenderlich.com 3

About the authors
Florent Pillet is an author of this book. Florent has been
developing for mobile platforms since the last century and moved
to iOS on day 1. He adopted reactive programming before Swift
was announced and has been using RxSwift in production since
2015. A freelance developer, Florent also uses Rx on Android and
likes working on tools for developers like the popular NSLogger
when he's not contracting for clients worldwide. Say hello to
Florent on Twitter at @fpillet.

Junior Bontognali is an author of this book. Junior has been
developing on iOS since the first iPhone and joined the RxSwift
team in the early development stage. Based in Switzerland, when
he's not eating cheese or chocolate, he's doing some cool stuff in
the mobile space, without denying to work on other technologies.
Other than that he organizes tech events, speaks and blogs. Say
hello to Junior on Twitter at @bontoJR.

Marin Todorov is an author of this book. Marin is one of the
founding members of the raywenderlich.com team and has worked
on seven of the team's books. Besides crafting code, Marin also
enjoys blogging, teaching, and speaking at conferences. He
happily open-sources code. You can find out more about Marin at
www.underplot.com.

Scott Gardner is an author of this book. Scott has been
developing iOS apps since 2010, Swift since the day it was
announced, and RxSwift since before version 1. He's authored
several video courses, tutorials, and articles on iOS app
development, presented at numerous conferences, meetups, and
online events, and this is his second book. Say hello to Scott on
Twitter at @scotteg.

RxSwift - Reactive Programming with Swift

raywenderlich.com 4

About the editors
Ash Furrow is the technical editor of this book. Ash is a Canadian
iOS developer and author, currently working at Artsy. He has
published a number of books, built many apps, and is a
contributor to the open source community. On his blog
ashfurrow.com, he writes about a range of topics, from interesting
programming to explorations of analogue film photography.

Chris Belanger is the editor of this book. Chris Belanger is the
Book Team Lead and Lead Editor for raywenderlich.com. If there
are words to wrangle or a paragraph to ponder, he‘s on the case.
When he kicks back, you can usually find Chris with guitar in hand,
looking for the nearest beach, or exploring the lakes and rivers in
his part of the world in a canoe.

Marin Todorov is the final pass editor of this book. Marin is one
of the founding members of the raywenderlich.com team and has
worked on seven of the team's books. Besides crafting code, Marin
also enjoys blogging, teaching, and speaking at conferences. He
happily open-sources code.

RxSwift - Reactive Programming with Swift

raywenderlich.com 5

Table of Contents: Overview
Introduction 15..
Section I: Getting Started with RxSwift 21........................

Chapter 1: Hello RxSwift! 22..
Chapter 2: Observables 43..
Chapter 3: Subjects 62...
Chapter 4: Observables and Subjects in Practice 76....

Section II: Operators and Best Practices 95.......................
Chapter 5: Filtering Operators 96.....................................
Chapter 6: Filtering Operators in Practice 114..............
Chapter 7: Transforming Operators 134.........................
Chapter 8: Transforming Operators in Practice 146......
Chapter 9: Combining Operators 168.............................
Chapter 10: Combining Operators in Practice 188.......
Chapter 11: Time Based Operators 208.........................

Section III: iOS Apps with RxCocoa 227...........................
Chapter 12: Beginning RxCocoa 228...............................
Chapter 13: Intermediate RxCocoa 247..........................

Section IV: Intermediate RxSwift/RxCocoa 267................
Chapter 14: Error Handling in Practice 268....................
Chapter 15: Intro To Schedulers 285................................
Chapter 16: Testing with RxTest 299.................................

RxSwift - Reactive Programming with Swift

raywenderlich.com 6

Chapter 17: Creating Custom Reactive Extensions 314.
Section V: RxSwift Community Cookbook 329.................

Chapter 18: Table and Collection Views 330.................
Chapter 19: Action 334...
Chapter 20: RxGesture 339...
Chapter 21: RxRealm 343...
Chapter 22: RxAlamofire 348..

Section VI: Putting it All Together 352..............................
Chapter 23: MVVM with RxSwift 353..............................
Chapter 24: Building a Complete RxSwift App 375......

Conclusion 398...

RxSwift - Reactive Programming with Swift

raywenderlich.com 7

Table of Contents: Extended
Introduction 15..

What you need 16..
Who this book is for 16..
How to use this book 17...
What’s in store 17...
Book source code and forums 18...
Book updates 18..
License 19..
About the cover 20..

Section I: Getting Started with RxSwift 21........................
Chapter 1: Hello RxSwift! 22..

Introduction to asynchronous programming 23..
Foundation of RxSwift 30...
App architecture 37..
RxCocoa 38..
Installing RxSwift 39..
Community 41...
Where to go from here? 42..

Chapter 2: Observables 43..
Getting started 44..
What is an observable? 45...
Lifecycle of an observable 46..
Creating observables 47...
Subscribing to observables 49..
Disposing and terminating 54...
Creating observable factories 59..
Challenges 60...

RxSwift - Reactive Programming with Swift

raywenderlich.com 8

Chapter 3: Subjects 62...
Getting started 63..
What are subjects? 64..
Working with PublishSubjects 64..
Working with BehaviorSubjects 67...
Working with ReplaySubjects 69..
Working with Variables 72..
Challenges 74...

Chapter 4: Observables and Subjects in Practice 76............
Getting started 77..
Using a variable in a view controller 78...
Talking to other view controllers via subjects 81...
Which dispose bag to use? 86..
Creating a custom observable 89..
Challenges 94...

Section II: Operators and Best Practices 95.......................
Chapter 5: Filtering Operators 96...

Getting started 97..
Ignoring operators 97...
Skipping operators 101...
Taking operators 105...
Distinct operators 109..
Challenges 111..

Chapter 6: Filtering Operators in Practice 114......................
Improving the Combinestagram project 115..
Sharing subscriptions 116..
Improving the photo selector 123...
Trying out time based filter operators 130..
Challenges 133..

RxSwift - Reactive Programming with Swift

raywenderlich.com 9

Chapter 7: Transforming Operators 134..................................
Getting started 135..
Transforming elements 135..
Transforming inner observables 138...
Challenges 143..

Chapter 8: Transforming Operators in Practice 146..............
Getting started with GitFeed 147...
Fetching data from the web 148..
Transforming the response 152...
Intermission: Handling erroneous input 157..
Persisting objects to disk 158..
Add a Last-Modified header to the request 159...
Challenges 163..

Chapter 9: Combining Operators 168......................................
Getting started 169..
Prefixing and concatenating 169...
Merging 172...
Combining elements 174..
Triggers 179...
Switches 181...
Combining elements within a sequence 184...
Challenges 187..

Chapter 10: Combining Operators in Practice 188...............
Getting started 189..
Preparing the web backend service 189...
Categories view controller 193..
Adding the event download service 194..
Getting events for categories 196...
Events view controller 200...
Wiring the days selector 202...
Splitting event downloads 204...
Challenges 207..

RxSwift - Reactive Programming with Swift

raywenderlich.com 10

Chapter 11: Time Based Operators 208..................................
Getting started 209..
Buffering operators 210..
Time-shifting operators 221..
Timer operators 223...
Challenges 226..

Section III: iOS Apps with RxCocoa 227...........................
Chapter 12: Beginning RxCocoa 228.......................................

Getting started 229..
Using RxCocoa with basic UIKit controls 230...
Binding observables 237...
Improving the code with Units 240...
Disposing with RxCocoa 244...
Where to go from here? 245..
Challenges 246..

Chapter 13: Intermediate RxCocoa 247..................................
Getting started 248..
Showing an activity while searching 248..
Extending CCLocationManager to get the current position 251....................................
How to extend a UIKit view 258..
Conclusions about RxCocoa 265...
Challenges 266..

Section IV: Intermediate RxSwift/RxCocoa 267................
Chapter 14: Error Handling in Practice 268............................

Getting started 269..
Managing errors 269...
Handle errors with catch 271..
Catching errors 272..
Retrying on error 274...
Custom errors 278...
Advanced error handling 281...
Where to go from here? 284..

RxSwift - Reactive Programming with Swift

raywenderlich.com 11

Challenges 284..

Chapter 15: Intro To Schedulers 285...
What is a Scheduler? 286...
Setting up the project 287...
Switching schedulers 287...
Pitfalls 291..
Best practices and built-in schedulers 295..
Where to go from here? 298..

Chapter 16: Testing with RxTest 299...
Getting started 300..
Testing operators with RxTest 301..
Testing RxSwift production code 307..

Chapter 17: Creating Custom Reactive Extensions 314.........
Getting started 315..
How to create extensions 315...
Use custom wrappers 320..
Testing custom wrappers 321..
Common available wrappers 324...
Where to go from here? 327..
Challenges 328..

Section V: RxSwift Community Cookbook 329.................
Chapter 18: Table and Collection Views 330..........................

Basic table view 330..
Multiple cell types 332...
Providing additional functionality 333..
RxDataSources 333...

Chapter 19: Action 334...
Creating an Action 335..
Connecting buttons 336..
Composing behavior 336...
Passing work items to cells 337...
Manual execution 338..

RxSwift - Reactive Programming with Swift

raywenderlich.com 12

Perfectly suited for MVVM 338..

Chapter 20: RxGesture 339...
Attaching gestures 339...
Supported gestures 340...
Advanced usage 342..

Chapter 21: RxRealm 343...
Auto-updating results 343...
Arrays 344..
Asynchronous first item 344...
Changesets 345...
Single objects 345...
Adding objects 346...
Deleting objects 347...

Chapter 22: RxAlamofire 348..
Basic requests 348...
Request customization 349...
Response validation 350..
Downloading files 350..
Upload tasks 351..
Tracking progress 351..

Section VI: Putting it All Together 352..............................
Chapter 23: MVVM with RxSwift 353......................................

Introducing MVVM 353..
Getting started with Tweetie 357..
Challenges 372..

Chapter 24: Building a Complete RxSwift App 375..............
Introducing QuickTodo 376..
Architecting the application 376..
Bindable view controllers 378...
Task model 379..
Tasks service 380...
Scenes 381..

RxSwift - Reactive Programming with Swift

raywenderlich.com 13

Coordinating scenes 383..
Binding the tasks list with RxDataSources 386...
Binding the Task cell 391..
Editing tasks 392..
Challenges 395..

Conclusion 398...

RxSwift - Reactive Programming with Swift

raywenderlich.com 14

IIntroduction

"If you've ever used an asynchronous callback based API, you've probably
dealt with handling the response data ad-hoc all across your codebase, and
have most likely decided there was no way to unit test it all... But, let me tell
you - there is a better way, and it's called Rx!"

— Krunoslav Zaher, creator of RxSwift

There’s no denying it: Rx is one of the hottest topics in mobile app development
these days!

If you visit international conferences, or even local meetups, it might feel like
everyone is talking about observables, side effects, and (gulp) schedulers.

And no wonder — Rx is a multi-platform standard, so no matter if it's a web
development conference, local Android meetup, or a Swift workshop, you might end
up joining a multi-platform discussion on Rx.

The RxSwift library (part of the larger family of Rx ports across platforms and
languages) allows you to use your favorite Swift programming language in a
completely new way. The somewhat difficult-to-handle asynchronous code in Swift
becomes much easier and a lot saner to write with RxSwift.

To create responsive and robust applications, you have to handle a multitude of
concurrent tasks like playing audio, handling user interface input, making
networking calls, and more. Sometimes, passing data from one process to another
or even just observing that tasks happen in the correct sequence one after another
asynchronously might cause the developer a lot of trouble.

In this book, you’ll learn how RxSwift solves the issues related to asynchronous
programming and master various reactive techniques, from observing simple data
sequences, to combining and transforming asynchronous value streams, to
designing the architecture and building production quality apps.

raywenderlich.com 15

By the end of this book, you’ll have worked through the chapter content and you’ll
have hands-on experience solving the challenges at the end of the chapters — and
you’ll be well on your way to coming up with your own Rx patterns and solutions!

What you need
To follow along with the tutorials in this book, you’ll need the following:

• A Mac running the latest point release of OS X El Capitan or later: You’ll
need this to be able to install the latest version of Xcode.

• Xcode 8 or later: Xcode is the main development tool for iOS. You can
download the latest version of Xcode for free on the Mac app store here: https://
itunes.apple.com/app/xcode/id497799835?mt=12

• An intermediate level knowledge of Swift and iOS development. This book is
about learning RxSwift specifically; to understand the rest of the project code
and how the accompanying demo projects work you will need at least an
intermediate understanding of Swift and UIKit.

If you want to try things out on a physical iOS device, you’ll need a developer
account with Apple, which you can obtain for free. However, all the sample projects
in this book will work just fine in the iOS Simulator bundled with Xcode, so the paid
developer account is completely optional.

Who this book is for
This book is for iOS developers who already feel comfortable with iOS and Swift,
and want to dive deep into development with RxSwift.

If you’re a complete beginner to iOS, we suggest you first read through the latest
edition of the iOS Apprentice. That will give you a solid foundation of building iOS
apps with Swift from the ground up but you might still need to learn more about
intermediate level iOS development before you can work through all chapters in this
book.

If you know the basics of iOS development but are new to Swift, we suggest you
read through Swift Apprentice first, which goes through the features of Swift using
playgrounds to teach the language.

You can find both of these books at our online store:

http://store.raywenderlich.com

RxSwift - Reactive Programming with Swift Introduction

raywenderlich.com 16

How to use this book
Generally, each chapter in this book includes a starter project and covers a small
number of programming techniques in detail. Some of the chapters deal mostly
with theory so you get to try isolated pieces of code, while learning the process in a
Swift playground.

Other chapters provide you with a starter project that includes some non-Rx logic
inside and lead you through Rx-ifying the project by adding code in key places. In
the process, you’ll see what difference RxSwift makes in the project code and how
to approach different common problems.

We do suggest that you work through the chapters in order, since the concepts
build upon each other. Remember you’ll get the most out of the book if you follow
along with the tutorials and perform the hands-on challenges.

For advanced developers, there’s still value in the early chapters since they cover
the basics. However if you’re comfortable with those concepts, feel free to jump
ahead to the topics that interest you the most.

What’s in store
This book is divided into six sections. You can find more details on each section in
its introduction. Here’s a brief overview.

Section I: Getting Started with RxSwift
The first section of the book covers RxSwift basics. Don’t skip this section, as you
will be required to have a good understanding of how and why things work in the
following sections.

Section II: Operators and Best Practices
In this section, once you've mastered the basics, you will move on to building more
complex Rx code by using operators. Operators allow you to chain and compose
little pieces of functionality to build up complex logic.

Section III: iOS Apps with RxCocoa
Once you've mastered RxSwift's basics and know how to use operators, you will
move on to iOS specific APIs, which will allow you to use and integrate your RxSwift
code with the existing iOS classes and UI controls.

RxSwift - Reactive Programming with Swift Introduction

raywenderlich.com 17

Section IV: Intermediate RxSwift/RxCocoa
In this section, you will look into more topics like building an error-handling
strategy for your app, handling your networking needs the reactive way, writing Rx
tests, and more.

Section V: RxSwift Community Cookbook
Many of the available RxSwift-based libraries are created and maintained by the
community – people just like you. In this section, we'll look into a few of these
projects and how you can use them in your own apps.

Section VI: Putting it All Together
This part of the book deals with app architecture and strategies for building
production-quality, full-blown iOS applications. You will learn how to structure your
project and explore a couple of different approaches to designing your data streams
and the project navigation.

Book source code and forums
This book comes with complete source code for each of the chapters — it’s shipped
with the PDF. Some of the chapters also include starter projects or other required
resources, and you’ll definitely want to have these on hand as you go through the
book.

We’ve also set up an official forum for the book at raywenderlich.com/forums. This
is a great place to ask questions about the book, discuss debugging strategies or to
submit any errors you may find.

Book updates
Great news: since you purchased the PDF version of this book, you’ll receive free
updates of the book’s content!

The best way to receive update notifications is to sign up for our weekly newsletter.
This includes a list of the tutorials published on raywenderlich.com in the past
week, important news items such as book updates or new books, and a few of our
favorite developer links. Sign up here:

• www.raywenderlich.com/newsletter

RxSwift - Reactive Programming with Swift Introduction

raywenderlich.com 18

License
By purchasing RxSwift: Reactive Programming in Swift, you have the following
license:

• You are allowed to use and/or modify the source code in RxSwift: Reactive
Programming in Swift in as many apps as you want, with no attribution required.

• You are allowed to use and/or modify all art, images and designs that are
included in RxSwift: Reactive Programming in Swift in as many apps as you
want, but must include this attribution line somewhere inside your app:
“Artwork/images/designs: from RxSwift: Reactive Programming in Swift book,
available at http://www.raywenderlich.com.”

• The source code included in RxSwift: Reactive Programming in Swift is for your
personal use only. You are NOT allowed to distribute or sell the source code in
RxSwift: Reactive Programming in Swift without prior authorization.

• This book is for your personal use only. You are NOT allowed to sell this book
without prior authorization, or distribute it to friends, co-workers or students;
they would need to purchase their own copy.

All materials provided with this book are provided on an “as is” basis, without
warranty of any kind, express or implied, including but not limited to the warranties
of merchantability, fitness for a particular purpose and non-infringement. In no
event shall the authors or copyright holders be liable for any claim, damages or
other liability, whether in an action of contract, tort or otherwise, arising from, out
of or in connection with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this book are the property of
their respective owners.

RxSwift - Reactive Programming with Swift Introduction

raywenderlich.com 19

About the cover
The electric eel is a unique kind of beast. In fact, it's been reclassified few times,
since it's not exactly like any other animal. It can grow to two meters in length and
twenty kilograms in weight.

Its size however, is not what should worry you, should you have the chance to meet
one in person. That little devil sports a natural taser gun that can discharge up to
860 volts and 1 ampere of current! (Yeah, I hear you. Where was that electric eel
when you were trying to jump-start your car that morning last February, right?)

The electric eel was chosen for the Rx project logo since it's pre-release code name
was Volta. :] Now you know!

RxSwift - Reactive Programming with Swift Introduction

raywenderlich.com 20

Section I: Getting Started with
RxSwift

In this part of the book, you’re going to learn about the basics of RxSwift. You are
going to have a look at what kinds of asynchronous programming problems RxSwift
addresses, and what kind of solutions it offers.

Further, you will learn about the few basic classes that allow you to create and
observe event sequences, which are the foundation of the Rx framework.

You are going to start slow by learning about the basics and a little bit of theory.
Please don't skip these chapters! This will allow you to make good progress in the
following sections when things get more complex.

Chapter 1: Hello RxSwift!

Chapter 2: Observables

Chapter 3: Subjects

Chapter 4: Observables and Subjects in Practice

raywenderlich.com 21

1Chapter 1: Hello RxSwift!
By Marin Todorov

This book aims to introduce you, the reader, to the RxSwift library and to writing
reactive iOS apps with Swift.

But what exactly is RxSwift? Here’s a good definition:

RxSwift is a library for composing asynchronous and event-based code by
using observable sequences and functional style operators, allowing for
parameterized execution via schedulers.

Sounds complicated? Don’t worry if it does. Writing reactive programs,
understanding the many concepts behind them, and navigating a lot of the
relevant, commonly used lingo might be intimidating — especially if you try to take
it all in at once, or when you haven’t been introduced to it in a structured way.

raywenderlich.com 22

That’s the goal of this book: to gradually introduce you to the various RxSwift APIs
and Rx concepts by explaining how to use each of the APIs, and then covering its
practical usage in iOS apps.

You’ll start with the basic features of RxSwift, and then gradually work through
intermediate and advanced topics. Taking the time to exercise new concepts
extensively as you progress will make it easier to master RxSwift by the end of the
book. Rx is too broad of a topic to cover completely in a single book; instead, we
aim to give you a solid understanding of the library so that you can continue
developing Rx skills on your own.

We still haven’t quite established what RxSwift is though, did we? Let’s start with a
simple, understandable definition and progress to a better, more expressive one as
we waltz through the topic of reactive programming later in this chapter.

RxSwift, in its essence, simplifies developing asynchronous programs by
allowing your code to react to new data and process it in sequential, isolated
manner.

As an iOS app developer, this should be much more clear and tell you more about
what RxSwift is, compared to the first definition you read earlier in this chapter.

Even if you’re still fuzzy on the details, it should be clear that RxSwift helps you
write asynchronous code. And you know that developing good, deterministic,
asynchronous code is hard, so any help is quite welcome!

Introduction to asynchronous programming
If you tried to explain asynchronous programming in a simple, down to earth
language, you might come up with something along the lines of the following.

An iOS app, at any moment, might be doing many different things:

• Reacting to button taps

• Animating the keyboard as a text field loses focus

• Downloading a large photo from the Internet

• Saving bits of data to disk

• Playing audio

• And much more...

All of these things seemingly happen at the same time. Whenever the keyboard
animates out of the screen, the audio in your app doesn’t pause until the animation
has finished, right?

RxSwift - Reactive Programming with Swift Chapter 1: Hello RxSwift!

raywenderlich.com 23

All the different bits of your program don’t block each other’s execution. iOS offers
you all kind of APIs that allow you to perform different pieces of work on different
threads and perform them across the different cores of the device’s CPU.

Writing code that truly runs in parallel, however, is rather complex, especially when
different bits of code need to work with the same pieces of data. It’s hard to argue
about which piece of code updates the data first, or which code read the latest
value.

Cocoa and UIKit Asynchronous APIs
Apple has provided lots of APIs in the iOS SDK that help you write asynchronous
code. You’ve used these in your projects, and probably haven’t given them a second
thought because they are so fundamental to writing mobile apps.

You’ve probably used most of the following:

• NotificationCenter: To execute a piece of code any time an event of interest
happens, such as the user changing the orientation of the device, or the software
keyboard showing or hiding on the screen.

• The delegate pattern: To define methods to be executed by another class or
API at arbitrary times. For example, in your application delegate you define what
should happen when a new remote notification arrives, but you have no idea
when this piece of code will be executed, or how many times it will execute.

RxSwift - Reactive Programming with Swift Chapter 1: Hello RxSwift!

raywenderlich.com 24

• Grand Central Dispatch: To help you abstract the execution of pieces of work.
You can schedule code to be executed sequentially in a serial queue, or run a
multitude of tasks concurrently on different queues with different priorities.

• Closures: To create detached pieces of code that you can pass between classes
so each class can decide whether to execute it or not, how many times, and in
what context.

Since most of your typical classes would do something asynchronously, and all UI
components are inherently asynchronous, it’s impossible to make assumptions in
what order the entirety of your app code will get executed.

After all, your app’s code runs differently depending on various external factors,
such as user input, network activity, or other OS events. Each time the user fires up
your app, the code may run in a completely different order depending on those
external factors. (Well, except for the case when you have an army of robots
testing your app, then you can expect all events to happen with precise, kill-bot
synchronization.)

We’re definitely not saying that writing good asynchronous code is impossible. After
all, the great APIs from Apple listed above are very advanced, very specialized for
the task, and to be fair, quite powerful compared to what other platforms offer.

The issue is that complex asynchronous code becomes very difficult to write in part
because of the variety of APIs that Apple’s SDK offers:

Using delegates requires you to adopt one pattern, another you'll use for closures,
yet another approach for subscribing to NotificationCenter, and so on. Since there
is no universal language across all the asynchronous APIs, reading and
understanding the code, and reasoning about its execution, becomes difficult.

To wrap up this section and put the discussion into a bit more context, you’ll
compare two pieces of code: one synchronous, and one asynchronous.

RxSwift - Reactive Programming with Swift Chapter 1: Hello RxSwift!

raywenderlich.com 25

Synchronous code
Performing an operation for each element of an array is something you’ve done
plenty of times. It’s a very simple but solid building block of app logic because it
guarantees two things: it executes synchronously, and the collection is immutable
while you iterate over it.

Take a moment to think about what this implies. When you iterate over a collection,
you don’t need to check that all elements are still there, and you don’t need to
rewind back in case another thread inserts an element at the start of the collection.
You assume you always iterate over the collection in its entirety at the beginning of
the loop.

If you want to play a bit more with these aspects of the for loop, try this in a
playground:

var array = [1, 2, 3]
for number in array {
 print(number)
 array = [4, 5, 6]
}
print(array)

Is array mutable inside the for body? Does the collection that the loop iterates over
ever change? What’s the sequence of execution of all commands? Can you modify
number if you need to?

Asynchronous code
Consider similar code, but assume each iteration happens as a reaction to a tap on
a button. As the user repeatedly taps on the button, the app prints out the next
element in an array:

var array = [1, 2, 3]
var currentIndex = 0

//this method is connected in IB to a button
@IBAction func printNext(_ sender: Any) {
 print(array[currentIndex])

 if currentIndex != array.count-1 {
 currentIndex += 1
 }
}

Think about this code in the same context as you did for the previous one. As the
user taps the button, will that print all of the array’s elements? You really can’t say.
Another piece of asynchronous code might remove the last element, before it’s
been printed.

Or another piece of code might insert a new element at the start of the collection
after you’ve moved on.

RxSwift - Reactive Programming with Swift Chapter 1: Hello RxSwift!

raywenderlich.com 26

Also, you assume only printNext(_:) will ever change currentIndex, but another
piece of code might modify currentIndex as well — perhaps some clever code you
added at some point after crafting the above function.

You’ve likely realized that some of the core issues with writing asynchronous code
are: a) the order in which pieces of work are performed and b) shared mutable
data.

Luckily, these are some of RxSwift’s strong suits!

Next, you need a good primer on the language that will help you start
understanding how RxSwift works, what problems it solves, and ultimately let you
move past this gentle introduction and into writing your first Rx code in the next
chapter.

Asynchronous programming glossary
Some of the language in RxSwift is so tightly bound to asynchronous, reactive, and/
or functional programming that it will be easier if you first understand the following
foundational terms.

In general, RxSwift tries to address the following issues:

1. State, and specifically, shared mutable state
State is somewhat difficult to define. To understand state, consider the following
practical example.

When you start your laptop it runs just fine, but after you use it for a few days or
even weeks, it might start behaving weirdly or abruptly hang and refuse to speak to
you. The hardware and software remains the same, but what’s changed is the
state. As soon as you restart, the same combination of hardware and software will
work just fine once more.

The data in memory, the one stored on disk, all the artifacts of reacting to user
input, all traces that remain after fetching data from cloud services — the sum of
these is the state of your laptop.

Managing the state of your app, especially when shared between multiple
asynchronous components, is one of the issues you’ll learn how to handle in this
book.

RxSwift - Reactive Programming with Swift Chapter 1: Hello RxSwift!

raywenderlich.com 27

2. Imperative programming
Imperative programming is a programming paradigm that uses statements to
change the program’s state. Much like you would use imperative language while
playing with your dog — “Fetch! Lay down! Play dead!” — you use imperative code
to tell the app exactly when and how to do things.

Imperative code is similar to the code that your computer understands. All the CPU
does is follow lengthy sequences of simple instructions. The issue is that it gets
challenging for humans to write imperative code for complex, asynchronous apps —
especially when shared mutable state is involved.

For example take this code, found in viewDidAppear(_:) of an iOS view controller:

override func viewDidAppear(_ animated: Bool) {
 super.viewDidAppear(animated)

 setupUI()
 connectUIControls()
 createDataSource()
 listenForChanges()
}

There’s no telling what all these methods do. Do they update some properties of the
view controller itself? And more disturbingly, are they called in the right order?
Maybe somebody inadvertently swapped the order of these method calls and
committed the change to source control. Now the app might behave differently
because of the swapped calls.

3. Side effects
Now that you know more about mutable state and imperative programming, you
can pin down most issues with those two things to side effects.

Side effects are any change to the state outside of the current scope. For example,
consider the last piece of code in the example above. connectUIControls() probably
attaches some kind of event handler to some UI components. This causes a side
effect, as it changes the state of the view: the app behaves one way before
executing connectUIControls(), and differently after that.

Any time you modify data stored on disk or update the text of a label on screen,
you cause side effects.

Side effects are not bad in themselves. After all, causing side effects is the ultimate
goal of any program! You need to change the state of the world somehow after your
program has finished executing. Running for a while and doing nothing makes for a
pretty useless app. :]

RxSwift - Reactive Programming with Swift Chapter 1: Hello RxSwift!

raywenderlich.com 28

The issue with producing side effects is doing it in a controlled way. You need to be
able to determine which pieces of code cause side effects, and which simply process
and output data.

RxSwift tries to address the issues (or problems) listed above by tackling the
following couple of concepts.

4. Declarative code
In imperative programming you change state at will. In functional code you don’t
cause any side effects. Since you don’t live in a perfect world, the balance lies
somewhere in the middle. RxSwift combines some of the best aspects of imperative
code and functional code.

Declarative code lets you define pieces of behavior, and RxSwift will run these
behaviors any time there’s a relevant event and provide them an immutable,
isolated data input to work with.

This way you can work with asynchronous code, but make the same assumptions as
in a simple for loop: that you’re working with immutable data and you can execute
code in sequential, deterministic way.

5. Reactive systems
Reactive systems is a rather abstract term and covers web or iOS apps that exhibit
most or all of the following qualities:

• Responsive: Always keep the UI up to date, representing the latest app state.

• Resilient: Each behavior is defined in isolation and provides for flexible error
recovery.

• Elastic: The code handles varied workload, often implementing features such as
lazy pull-driven data collections, event throttling, and resource sharing.

RxSwift - Reactive Programming with Swift Chapter 1: Hello RxSwift!

raywenderlich.com 29

• Message driven: Components use message-based communication for improved
reusability and isolation, decoupling the lifecycle and implementation of classes.

Now that you have a good understanding of the problems RxSwift helps solve and
how it approaches these issues, it’s time to talk about the building blocks of Rx and
how they play together.

Foundation of RxSwift
Reactive programming isn’t a new concept; it’s been around for a fairly long time,
but its core concepts have made a noticeable comeback over the last decade.

In that period, web applications have became more involved and are facing the
issue of managing complex asynchronous UIs. On the server side, reactive systems
(as described above) have become a necessity.

A team at Microsoft took on the challenge of solving the problems of asynchronous,
scalable, real time application development that we’ve discussed in this chapter.
They worked on a library, independently from the core teams in the company, and
sometime around 2009, offered a new client and server side framework called
Reactive Extensions for .NET (Rx).

It was an installable add-on for .NET 3.5, and later became a built-in core library
in .NET 4.0. It’s been an open source component since 2012. Open sourcing the
code permitted other languages and platforms to reimplement the same
functionality, which turned Rx into a cross-platform standard.

Today you have RxJS, RxKotlin, Rx.NET, RxScala, RxSwift, and more. All these
libraries strive to implement the same behavior and same expressive APIs.
Ultimately, a developer creating an iOS app with RxSwift can freely discuss app
logic with another programmer using RxJS on the web.

Like the original Rx, RxSwift also works with all the concepts you’ve covered so far:
it tackles mutable state, it allows you to compose event sequences and improves on
architectural concepts such as code isolation, reusability, and decouplings.

Let’s revisit that definition:

RxSwift finds the sweet spot between traditionally imperative Cocoa code and
purist functional code. It allows you to react to events by using immutable
code definitions to process asynchronously pieces of input in a deterministic,
composable way.

RxSwift - Reactive Programming with Swift Chapter 1: Hello RxSwift!

raywenderlich.com 30

You can read more about the family of Rx implementations at http://reactivex.io.
This is the central repository of documentation about Rx’s operators and core
classes. It’s also probably the first place you’ll notice the Rx logo, the electric eel (a
slightly more realistic image of which you'll find on the cover of this book):

Note: I personally thought for some time that it was a techno-shrimp, but
research shows that it is, in fact, an electric eel. (The Rx project used to be
called Volta.)

In this book, you are going to cover both the cornerstone concepts of developing
with RxSwift as well as real-world examples of how to use them in your apps.

The three building blocks of Rx code are observables, operators, and
schedulers. The sections below cover each of these in detail.

Observables
The Observable<T> class provides the foundation of Rx code: the ability to
asynchronously produce a sequence of events that can “carry” an immutable
snapshot of data T. In the simplest words, it allows classes to subscribe for values
emitted by another class over time.

The Observable<T> class allows one or more observers to react to any events in real
time and update the app UI, or otherwise process and utilize new and incoming
data.

The ObservableType protocol (to which the Observable<T> conforms) is extremely
simple. An Observable can emit (and observers can receive) only three types of
events:

• A next event: An event which “carries” the latest (or "next") data value. This is
the way observers “receive” values.

• A completed event: This event terminates the event sequence with success. It
means the Observable completed its life-cycle successfully and won’t emit any
other events.

• An error event: The Observable terminates with an error and it will not emit
other events.

RxSwift - Reactive Programming with Swift Chapter 1: Hello RxSwift!

raywenderlich.com 31

When talking about asynchronous events emitted over time, you can visualize an
observable sequence of integers on a timeline, like so:

This simple contract of three possible events an Observable can emit is anything
and everything in Rx. Because it is so universal, you can use it to create even the
most complex application logic.

Because the observable contract does not make any assumptions about the nature
of the Observable or the Observer, using event sequences is the ultimate decoupling
practice. You don’t ever need to use delegate protocols, or inject closures to allow
your classes to talk to each other.

To get an idea about some real-life situations, you’ll look at two different kinds of
observable sequences:

Finite observable sequences
Some observable sequences emit zero, one, or more values, and at a later point,
either terminate successfully or terminate with an error.

In an iOS app, consider code that downloads a file from the Internet:

• First, you start the download and start observing for incoming data.

• Then you repeatedly receive chunks of data as parts of the file come in.

• In the event the network connection goes down, the download will stop and the
connection will time out with an error.

• Alternatively, if the code downloads all the file’s data, it will complete with
success.

RxSwift - Reactive Programming with Swift Chapter 1: Hello RxSwift!

raywenderlich.com 32

This workflow accurately describes the lifecycle of a typical observable. Take a look
at the related code below:

API.download(file: "http://www...")
 .subscribe(onNext: { data in
 ... append data to temporary file
 },
 onError: { error in
 ... display error to user
 },
 onCompleted: {
 ... use downloaded file
 })

API.download(file:) returns an Observable<Data> instance, which emits Data values
as chunks of data come over the network.

You subscribe for next events by providing the onNext closure. In the downloading
example, you append the data to a temporary file stored on disk.

You subscribe for an error by providing the onError closure. In the closure you can
display the error.localizedDescription in an alert box or do something else.

Finally, to handle a completed event, you provide the onCompleted closure, where
you can push a new view controller to display the downloaded file or anything else
your app logic dictates.

Infinite observable sequences
Unlike file downloads or similar activities, which are supposed to naturally or
forcefully terminate, there are other sequences which are simply infinite. Often, UI
events are such infinite observable sequences.

For example, consider the code you need to react to device orientation changes in
your app:

• You add your class as an observer to UIDeviceOrientationDidChange notifications
from NotificationCenter.

• You then need to provide a method callback to handle orientation changes. It
needs to grab the current orientation from UIDevice and react accordingly to the
latest value.

This sequence of orientation changes does not have a natural end. As long as there
is device, there is a possible sequence of orientation changes. Further, since the
sequence is virtually infinite, you always do have an initial value at the time you
start observing it.

RxSwift - Reactive Programming with Swift Chapter 1: Hello RxSwift!

raywenderlich.com 33

It may happen that the user never rotates their device, but that doesn’t mean the
sequence of events is terminated. It just means there were no events emitted.

In RxSwift, you could write code like this to handle device orientation:

UIDevice.rx.orientation
 .subscribe(onNext: { current in
 switch current {
 case .landscape:
 ... re-arrange UI for landscape
 case .portrait:
 ... re-arrange UI for portrait
 }
 })

UIDevice.rx.orientation is a fictional control property that produces an
Observable<Orientation> (this is very easy to code yourself; you’ll learn how in the
next chapters). You subscribe to it and update the app UI according to the current
orientation. You skip the onError and onCompleted parameters, since these events
can never be emitted from that observable.

Operators
ObservableType and the implementation of Observable class include plenty of
methods that abstract discrete pieces of asynchronous work, which can be
composed together to implement more complex logic.

Because they are highly decoupled and composable, these methods are most often
referred to as operators. Since these operators mostly take in asynchronous input
and only produce output without causing side effects, they can easily fit together,
much like puzzle pieces, and work to build a bigger picture.

For example, take the mathematical expression (5 + 6) * 10 - 2.

In a clear, deterministic way, you can apply the operators *, (), + and - in their
predefined order to the pieces of data that are their input, take their output and
keep processing the expression until it’s resolved.

RxSwift - Reactive Programming with Swift Chapter 1: Hello RxSwift!

raywenderlich.com 34

In a somewhat similar manner, you can apply Rx operators to the pieces of input
emitted by an Observable to deterministically process inputs and outputs until the
expression has been resolved to a final value, which you can then use to cause side
effects.

Here’s the previous example about observing orientation changes, adjusted to use
some common Rx operators:

UIDevice.rx.orientation
 .filter { value in
 return value != .landscape
 }
 .map { _ in
 return "Portrait is the best!"
 }
 .subscribe(onNext: { string in
 showAlert(text: string)
 })

Each time UIDevice.rx.orientation produces either a .landscape or .portrait
value, Rx will apply couple of operators to that emitted piece of data.

First, filter will only let through values that are not .landscape. If the device is in
landscape mode, the subscription code will not get executed because filter will
suppress these events.

In case of .portrait values, the map operator will take the Orientation type input
and convert it to a String output — the text "Portrait is the best!".

RxSwift - Reactive Programming with Swift Chapter 1: Hello RxSwift!

raywenderlich.com 35

Finally, with subscribe you subscribe for the resulting next event, this time carrying
a String value, and you call a method to display an alert with that text onscreen.

The operators are also highly composable — they always take in data as input and
output their result, so you can easily chain them in many different ways achieving
so much more than what a single operator can do on its own!

As you work through the book, you will learn about more complex operators that
abstract more involved pieces of asynchronous work.

Schedulers
Schedulers are the Rx equivalent of dispatch queues — just on steroids and much
easier to use.

RxSwift comes with a number of predefined schedulers, which cover 99% of use
cases and hopefully means you will never have to go about creating your own
scheduler.

In fact, most of the examples in the first half of this book are quite simple and
generally deal with observing data and updating the UI, so you won’t look into
schedulers at all until you’ve covered the basics.

That being said, schedulers are very powerful.

For example, you can specify that you’d like to observe for next events on
SerialDispatchQueueScheduler, which uses Grand Central Dispatch to serialize
running your code on a given queue.

ConcurrentDispatchQueueScheduler will run your code concurrently.
OperationQueueScheduler will allow you to schedule your subscriptions on a given
NSOperationQueue.

Thanks to RxSwift, you can schedule the different pieces of work of the same
subscription on different schedulers to achieve the best performance.

RxSwift will act as a dispatcher between your subscriptions (on the left hand side
below) and the schedulers (on the right hand side), sending the pieces of work to
the correct context and seamlessly allowing them to work with each other’s output.

RxSwift - Reactive Programming with Swift Chapter 1: Hello RxSwift!

raywenderlich.com 36

To read this diagram, follow the colored pieces of work in the sequence they were
scheduled (1, 2, 3, ...) across the different schedulers. For example:

• The blue network subscription starts with a piece of code (1) that runs on a
custom NSOperation based scheduler.

• The data output by this block serves as the input of the next block (2), which
runs on a different scheduler, which is on a concurrent background GDC queue.

• Finally, the last piece of blue code (3) is scheduled on the Main thread scheduler
in order to update the UI with the new data.

Even if it looks very interesting and quite handy, don’t bother too much with
schedulers right now. You’ll return to them later in this book.

App architecture
It’s worth mentioning that RxSwift doesn’t alter your app’s architecture in any way;
it mostly deals with events, asynchronous data sequences, and a universal
communication contract.

You can create applications with Rx by implementing MVC architecture as defined in
the Apple developer documentation. You can also choose to implement MVP
architecture or MVVM if that’s what you prefer.

In case you’d like to go that way, RxSwift is also very useful for implementing your
own unidirectional data flow architecture.

It’s important to note that you definitely do not have to start a project from scratch
to make it a reactive app; you can iteratively refactor pieces of an exiting project,
or simply use RxSwift when appending new features to your app.

RxSwift - Reactive Programming with Swift Chapter 1: Hello RxSwift!

raywenderlich.com 37

Microsoft’s MVVM architecture was developed specifically for event-driven software
created on platforms which offers data bindings. RxSwift and MVVM definitely do
play nicely together, and towards the end of this book you’ll look into that pattern
and how to implement it with RxSwift.

The reason MVVM and RxSwift go great together is that a ViewModel allows you to
expose Observable<T> properties, which you can bind directly to UIKit controls in
your View Controller glue code. This makes binding model data to the UI very
simple to represent, and to code:

All other examples in the book use the MVC architecture in order to keep the
sample code simple and easy to understand.

RxCocoa
RxSwift is the implementation of the common Rx API. Therefore it doesn’t know
anything about any Cocoa or UIKit-specific classes.

RxCocoa is RxSwift’s companion library holding all classes that specifically aid
development for UIKit and Cocoa. Besides featuring some advanced classes,
RxCocoa adds reactive extensions to many UI components so that you can
subscribe for various UI events out of the box.

For example, it’s very easy to use RxCocoa to subscribe to the state changes of a
UISwitch, like so:

toggleSwitch.rx.isOn
 .subscribe(onNext: { enabled in
 print(enabled ? "it's ON" : "it's OFF")
 })

RxCocoa adds the rx.isOn property (among others) to the UISwitch class so you
can subscribe to generally useful event sequences.

RxSwift - Reactive Programming with Swift Chapter 1: Hello RxSwift!

raywenderlich.com 38

Further, RxCocoa adds rx namespaces to UITextField, URLSession,
UIViewController, and more.

Installing RxSwift
RxSwift is available for free at https://github.com/ReactiveX/RxSwift.

RxSwift is distributed under the MIT license, which in short allows you to include
the library in free or commercial software, on an as-is basis. As with all other MIT-
licensed software, the copyright notice should be included in all apps you distribute.

There is plenty to explore in the RxSwift repository. It includes the RxSwift and
RxCocoa libraries, but you will also find RxTest and RxBlocking in there, which
allow you to write Rx tests.

Besides all the great source code (definitely worth peeking into), you will find
Rx.playground, which interactively demonstrates many of the operators. Also
check out RxExample, which is a great showcase app that demonstrates many of
the concepts in practice.

The easiest way to include RxSwift/RxCocoa in your projects is via CocoaPods or
Carthage. You can also use the Swift Package Manager.

The projects in this book use CocoaPods. Even if you usually use a different
dependency manager, please make sure to use CocoaPods while you work
through the projects in this book.

Before starting on this book, the authors discussed several approaches, and they
decided using CocoaPods is a bit more useful when learning RxSwift, since you can
always Cmd-click on a method and jump straight to its source code. In your own
project, you are free to use CocoaPods, Carthage, or another manager — go with
the one that suits your own workflow best.

Note: If you’re a Carthage guru and want to go that route, feel free; be aware
the book only includes instructions for CocoaPods.

RxSwift - Reactive Programming with Swift Chapter 1: Hello RxSwift!

raywenderlich.com 39

RxSwift via CocoaPods
You can install RxSwift via CocoaPods like any other pod library. A typical Podfile
would look something like this:

use_frameworks!

target 'MyTargetName' do
 pod 'RxSwift', '~> 3.2'
 pod 'RxCocoa', '~> 3.2'
end

Of course, you can include just RxSwift, both RxSwift and RxCocoa, or even all the
libraries found in the GitHub repository.

Installing RxSwift in the book projects
As for the projects in this book, they all come with a completed Podfile, but without
the dependency files included. We looked into this option, but it didn’t make sense
to include all the files for RxSwift in every single project for each chapter in the
book download.

Before you start working on the book, make sure you have the latest version of
CocoaPods installed. You need to do that just once before starting to work on the
book's projects. Usually executing this in Terminal will suffice:

sudo gem install cocoapods

If you want to know more, visit the CocoaPods website: https://
guides.cocoapods.org/using/getting-started.html.

As the start of each chapter, you will be asked to open the starter project for that
chapter and install RxSwift in the starter project. This is an easy operation:

1. In the book folder, find the directory matching the name of the chapter you are
working on.

2. Copy the starter folder in a convenient location on your computer. A location in
your user folder is a good idea.

3. Open the built-in Terminal.app or another one you use on daily basis and
navigate to the starter folder. Type cd /users/yourname/path/to/starter,
replacing the example path with the actual path on your computer.

4. Type pod install to fetch RxSwift from GitHub and install it in the chapter
project.

5. Finally, inside the starter folder, find the newly created .xcworkspace file and
launch it. Build the workspace one time in Xcode, and you’re ready to work
through the chapter!

RxSwift - Reactive Programming with Swift Chapter 1: Hello RxSwift!

raywenderlich.com 40

RxSwift via Carthage
Installing RxSwift via Carthage is almost equally streamlined. First make sure
you’ve installed the latest version of Carthage from here: https://github.com/
Carthage/Carthage#installing-carthage.

In your project, create a new file named Cartfile and add the following line to it:

github "ReactiveX/RxSwift" ~> 3.0

Next, within the folder of your project execute carthage update.

This will download the source code of all libraries included in the RxSwift
repository and build them, which might take some time. Once the process finishes,
find the resulting framework files in the Carthage sub-folder created inside the
current folder and include them in your project.

Build once more to make sure Xcode indexes the newly added frameworks, and
you’re ready to go.

Community
The RxSwift project is alive and buzzing with activity, not only because Rx is
inspiring programmers to create cool software with it, but also due to the positive
nature of the community that formed around this project.

The RxSwift community is very friendly, open minded, and enthusiastic about
discussing patterns, common techniques, or just helping each other.

Besides the official RxSwift repository, you'll find plenty of projects created by Rx
enthusiasts here: http://community.rxswift.org.

RxSwift - Reactive Programming with Swift Chapter 1: Hello RxSwift!

raywenderlich.com 41

Even more Rx libraries and experiments, which spring up like mushrooms after the
rain, can be found here: https://github.com/RxSwiftCommunity

Probably the best way to meet many of the people interested in RxSwift is the Slack
channel dedicated to the library: http://rxswift-slack.herokuapp.com.

The Slack channel has over 2,500 members! Day-to-day topics are: helping each
other, discussing potential new features of RxSwift or its companion libraries, and
sharing RxSwift blog posts and conference talks.

Where to go from here?
This chapter introduced you to many of the problems that RxSwift addresses. You
learned about the complexities of asynchronous programming, sharing mutable
state, causing side effects, and more.

You haven’t written any RxSwift yet, but you now understand why RxSwift is a good
idea and you’re aware of the types of problems it solves. This should give you a
good start as you work through the rest of the book.

And there is plenty to work through. You’ll start by creating very simple observables
and work your way up to complete real-world apps using MVVM architecture.

Move right on to Chapter 2, “Observables”!

RxSwift - Reactive Programming with Swift Chapter 1: Hello RxSwift!

raywenderlich.com 42

2Chapter 2: Observables
By Scott Gardner

Now that you’re set up to use RxSwift and have learned some of the basic concepts,
it’s time to make the jump and play with some observables.

In this chapter, you’re going to go over several examples of creating and
subscribing to observables. The real-world use of some of the observables may
seem a bit obscure, but rest assured you’ll be acquiring important skills and
learning a lot about the types of observables available to you in RxSwift. You’ll use
those skills throughout the rest of this book, and beyond!

raywenderlich.com 43

Getting started
The starter project for this chapter is a playground named RxSwiftPlayground.
It’s already been set up for you with the RxSwift library using CocoaPods. Open up
the Xcode workspace, and, as the comment indicates, build the scheme first to
make RxSwift available and clear any errors. (You can build by pressing the default
keyboard shortcut Cmd + B.)

Twist down the playground page, through the Sources folder in the Project
navigator, and select SupportCode.swift. It contains the following helper
function example(of:):

public func example(of description: String, action: () -> Void) {
 print("\n--- Example of:", description, "---")
 action()
}

You’re going to use this function to encapsulate different examples as you work
your way through this chapter. You’ll see how to use this function shortly.

But before you get too deep into that, now would probably be a good time to
answer the question: what is an observable?

RxSwift - Reactive Programming with Swift Chapter 2: Observables

raywenderlich.com 44

What is an observable?
Observables are the heart of Rx. You’re going to spend some time discussing what
observables are, how to create them, and how to use them.

You’ll see “observable,” “observable sequence,” and “sequence” used
interchangeably in Rx. And really, they’re all the same thing. You may even see an
occasional “stream” thrown around from time to time, especially from developers
that come to RxSwift from a different reactive programming environment. “Stream”
also refers to the same thing, but in RxSwift, all the cool kids call it a sequence, not
a stream. :] In RxSwift...

...or something that works with a sequence. And an Observable is just a sequence,
with some special powers. One of them, in fact the most important one, is that it is
asynchronous. Observables produce events, the process of which is referred to as
emitting, over a period of time. Events can contain values, such as numbers or
instances of a custom type, or they can be recognized gestures, such as taps.

One of the best ways to conceptualize this is by using marble diagrams (which are
just values plotted on a timeline).

The left-to-right arrow represents time, and the numbered circles represent
elements of a sequence. Element 1 will be emitted, some time will pass, and then 2
and 3 will be emitted. How much time, you ask? It could be at any point throughout
the life of the observable. Which brings you to the lifecycle of an observable.

RxSwift - Reactive Programming with Swift Chapter 2: Observables

raywenderlich.com 45

Lifecycle of an observable
In the previous marble diagram, the observable emitted three elements. When an
observable emits an element, it does so in what’s known as a next event.

Here’s another marble diagram, this time including a vertical bar that represents
the end of the road for this observable.

This observable emits three tap events, and then it ends. This is called a
completed event, as it’s been terminated. For example, perhaps the taps were on
a view that had been dismissed. The important thing is that the observable has
terminated, and can no longer emit anything. This is normal termination. However,
sometimes things can go wrong.

An error has occurred in this marble diagram; it’s represented by the red X. The
observable emitted an error event containing the error. This is no different than
when an observable terminates normally with a completed event. If an observable
emits an error event, it is also terminated and can no longer emit anything else.

Here’s a quick recap:

• An observable emits next events that contain elements. It can continue to do
this until it either:

• ...emits an error event and is terminated, or

• ...emits a completed event and is terminated.

• Once an observable is terminated, it can no longer emit events.

Taking an example straight from the RxSwift source code, these events are
represented as enumeration cases:

/// Represents a sequence event.
///
/// Sequence grammar:
/// **next* (error | completed)**
public enum Event<Element> {
 /// Next element is produced.
 case next(Element)

 /// Sequence terminated with an error.
 case error(Swift.Error)

RxSwift - Reactive Programming with Swift Chapter 2: Observables

raywenderlich.com 46

 /// Sequence completed successfully.
 case completed
}

Here you can see that .next events contain an instance of some Element, .error
events contain an instance of Swift.Error and .completed events are simply stop
events that don’t contain any data.

Now that you understand what an observable is and what it does, you’ll create
some observables to see them in action.

Creating observables
Switch back from the current file to RxSwift.playground and add the code below:

example(of: "just, of, from") {

 // 1
 let one = 1
 let two = 2
 let three = 3

 // 2
 let observable: Observable<Int> = Observable<Int>.just(one)
}

Here’s what you do in the code above:

1. Define some integer constants you’ll use in the following examples.

2. Create an observable sequence of type Int using the just method with the one
integer.

just is aptly named, since all it does is create an observable sequence containing
just a single element. just is a type method on Observable. However, in Rx,
methods are referred to as “operators.” And the eagle-eyed among you can
probably guess which operator you’re going to check out next.

Add this code to the trailing closure of example(of:):

let observable2 = Observable.of(one, two, three)

This time you didn’t explicitly specify the type. You might think that because you
give it several integers, the type is Observable of [Int]. Option-click on
observable2 to show its inferred type and you’ll see that it’s an Observable of Int,
not an array.

RxSwift - Reactive Programming with Swift Chapter 2: Observables

raywenderlich.com 47

That’s because the of operator takes a variadic parameter of the type inferred by
the elements passed to it.

If you want to create an observable array, you can simply pass an array to of. Add
this code to the bottom of the example:

let observable3 = Observable.of([one, two, three])

RxSwift - Reactive Programming with Swift Chapter 2: Observables

raywenderlich.com 48

Option-click on observable3 and you’ll see that it is indeed an Observable of [Int].
The just operator can also take an array as its single element, which may seem a
little weird at first. However, it’s the array that is the single element, not its
contents.

Another operator you can use to create observables is from. Add this code to the
bottom of the example:

let observable4 = Observable.from([one, two, three])

The from operator creates an observable of individual type instances from a regular
array of elements. Option-click on observable4 and you’ll see that it is an
Observable of Int, not [Int]. The from operator only takes an array.

Your console is probably looking quite bare at the moment. That’s because you
haven’t printed anything except the example header. Time to change that by
subscribing to observables.

Subscribing to observables
As an iOS developer, you may be familiar with NotificationCenter; it broadcasts
notifications to observers, which are different than RxSwift Observables. Here’s an
example of an observer of the UIKeyboardDidChangeFrame notification, with a handler
as a trailing closure:

let observer = NotificationCenter.default.addObserver(
 forName: .UIKeyboardDidChangeFrame,
 object: nil,
 queue: nil
) { notification in
 // Handle receiving notification
}

Subscribing to an RxSwift observable is fairly similar; you call observing an
observable subscribing to it. So instead of addObserver(), you use subscribe().
Unlike NotificationCenter, where developers typically use only its .default
singleton instance, each observable in Rx is different.

More importantly, an observable won’t send events until it has a subscriber.
Remember that an observable is really a sequence definition; subscribing to an
observable is really more like calling next() on an Iterator in the Swift standard
library:

let sequence = 0..<3

var iterator = sequence.makeIterator()

while let n = iterator.next() {
 print(n)

RxSwift - Reactive Programming with Swift Chapter 2: Observables

raywenderlich.com 49

}

/* Prints:
 0
 1
 2
 */

Subscribing to observables is more streamlined than this, though. You can also add
handlers for each event type an observable can emit. Recall that an observable
emits .next, .error, and .completed events. A .next event passes the element
being emitted to the handler, and an .error event contains an error instance.

To see this in action, add this new example to the playground (insert the code
somewhere after the closing curly bracket of the previous example):

example(of: "subscribe") {

 let one = 1
 let two = 2
 let three = 3

 let observable = Observable.of(one, two, three)
}

This is similar to the previous example, except this time you’re simply using the of
operator. Now add this code at the bottom of this example's closure, to subscribe to
the observable:

observable.subscribe { event in
 print(event)
}

Remember to show the Debug Area in Xcode, found under the View and Debug
Area menus. This is where the print statements in the playground display their
output.

Option-click on the subscribe operator, and you’ll see that it takes an escaping
closure that takes an Event of type Int and doesn’t return anything, and subscribe
returns a Disposable. You’ll cover disposables shortly.

RxSwift - Reactive Programming with Swift Chapter 2: Observables

raywenderlich.com 50

The result of this subscription is that each event emitted by the observable prints
out.

--- Example of: subscribe ---
next(1)
next(2)
next(3)
completed

The observable emits a .next event for each element, then emits a .completed
event and finally is terminated. When working with observables, you’ll usually be
more interested in the elements emitted by .next events, than you will be with the
events themselves.

To see how you might access them; replace the subscribing code from above with
the following code:

observable.subscribe { event in

 if let element = event.element {
 print(element)
 }
}

Event has an element property. It’s an optional value, because only .next events
have an element. So you use optional binding to unwrap the element if it’s not nil.
Now, only the elements are printed, not the events containing the elements, and
not the .completed event.

RxSwift - Reactive Programming with Swift Chapter 2: Observables

raywenderlich.com 51

1
2
3

That’s a nice pattern, and it’s so frequently used that there’s a shortcut for it in
RxSwift. There’s a subscribe operator for each type of event an observable emits:
next, error, and completed. Replace the previous subscription code with this:

observable.subscribe(onNext: { element in
 print(element)
})

Note: If you have code completion suggestions turned on in Xcode
preferences, you may be asked for handlers for the other events. Ignore these
for now.

Now you’re only handling .next event elements and ignoring everything else. The
onNext closure receives the .next event’s element as an argument, so you don’t
have to manually retrieve it from the event like you did before.

You’ve seen how to create observable of one element and of many elements. But
what about an observable of zero elements? The empty operator creates an empty
observable sequence with zero elements; it will only emit a .completed event.

Add this new example to the playground:

example(of: "empty") {

 let observable = Observable<Void>.empty()
}

An observable must be defined as being of a specific type if it can’t be inferred. So,
since empty has nothing from which to infer the type, the type must be defined
explicitly. In this case, Void is as good as anything else. Add this code to the
example to subscribe to it:

observable
 .subscribe(

 // 1
 onNext: { element in
 print(element)
 },

 // 2
 onCompleted: {
 print("Completed")
 }
)

RxSwift - Reactive Programming with Swift Chapter 2: Observables

raywenderlich.com 52

Taking each numbered comment in turn:

1. Handle .next events, just like you did in the previous example.

2. A .completed event does not include an element, so simply print a message.

In the console, you’ll see that empty just emits a .completed event:

--- Example of: empty ---
Completed

But what use is an empty observable? Well, they’re handy when you want to return
an observable that immediately terminates, or intentionally has zero values.

As opposed to the empty operator, the never operator creates an observable that
doesn’t emit anything and never terminates. It can be use to represent an infinite
duration. Add this example to the playground:

example(of: "never") {

 let observable = Observable<Any>.never()

 observable
 .subscribe(
 onNext: { element in
 print(element)
 },
 onCompleted: {
 print("Completed")
 }
)
}

Nothing is printed, except for the example header. Not even "Completed". How do
you know if this is even working? Hang on to that inquisitive spirit until the
Challenges section. :]

So far, you’ve been working mostly with observables of explicit variables, but it’s
also possible to generate an observable from a range of values.

Add this example to the playground:

example(of: "range") {

 // 1
 let observable = Observable<Int>.range(start: 1, count: 10)

 observable
 .subscribe(onNext: { i in

 // 2
 let n = Double(i)
 let fibonacci = Int(((pow(1.61803, n) - pow(0.61803, n)) /
2.23606).rounded())

RxSwift - Reactive Programming with Swift Chapter 2: Observables

raywenderlich.com 53

 print(fibonacci)
 })
}

Taking it section-by-section:

1. Create an observable using the range operator, which takes a start integer
value and a count of sequential integers to generate.

2. Calculate and print the nth Fibonacci number for each emitted element.

There’s actually a better place, than in the onNext handler, to put code that
transforms the emitted element . You’ll learn about that in Chapter 7, “Transforming
Operators.”

Except for the never() example, up to this point you’ve been working with
observables that automatically emit a .completed event and naturally terminate.
This permitted you to focus on the mechanics of creating and subscribing to
observables, but that brushed an important aspect of subscribing to observables
under the carpet. It’s time to do some housekeeping and deal with that aspect
before moving on.

Disposing and terminating
Remember that an observable doesn’t do anything until it receives a subscription.
It’s the subscription that triggers an observable to begin emitting events, up until it
emits an .error or .completed event and is terminated. You can manually cause an
observable to terminate by canceling a subscription to it.

Add this new example to the playground:

example(of: "dispose") {

 // 1
 let observable = Observable.of("A", "B", "C")

 // 2
 let subscription = observable.subscribe { event in

 // 3
 print(event)
 }
}

Quite simply:

1. Create an observable of some strings.

2. Subscribe to the observable, this time saving the returned Disposable as a local
constant called subscription.

RxSwift - Reactive Programming with Swift Chapter 2: Observables

raywenderlich.com 54

3. Print each emitted event in the handler.

To explicitly cancel a subscription, call dispose() on it. After you cancel the
subscription, or dispose of it, the observable in the current example will stop
emitting events. Add this code to the bottom of the example:

subscription.dispose()

Managing each subscription individually would be tedious, so RxSwift includes a
DisposeBag type. A dispose bag holds disposables — typically added using
the .addDisposableTo() method — and will call dispose() on each one when the
dispose bag is about to be deallocated. Add this new example to the playground:

example(of: "DisposeBag") {

 // 1
 let disposeBag = DisposeBag()

 // 2
 Observable.of("A", "B", "C")
 .subscribe { // 3
 print($0)
 }
 .addDisposableTo(disposeBag) // 4
}

Here’s how this disposable code works:

1. Create a dispose bag.

2. Create an observable.

3. Subscribe to the observable and print out the emitted event using the default
argument name $0 rather than explicitly defining an argument name.

4. Add the return value from subscribe to the disposeBag.

This is the pattern you’ll use the most frequently; creating and subscribing to an
observable and immediately adding the subscription to a dispose bag.

Why bother with disposables at all? If you forget to add a subscription to a dispose
bag, or manually call dispose on it when you’re done with the subscription, or in
some other way cause the observable to terminate at some point, you will probably
leak memory. Don’t worry if you forget; the Swift compiler should warn you about
unused disposables.

In the previous examples, you’ve created observables with specific .next event
elements. Another way to specify all events that an observable will emit to
subscribers is by using the create operator.

RxSwift - Reactive Programming with Swift Chapter 2: Observables

raywenderlich.com 55

Add this new example to the playground:

example(of: "create") {

 let disposeBag = DisposeBag()

 Observable<String>.create { observer in

 }
}

The create operator takes a single parameter named subscribe. Its job is to
provide the implementation of calling subscribe on the observable. In other words,
it defines all the events that will be emitted to subscribers. Option-click on create.

The subscribe parameter is an escaping closure that takes an AnyObserver and
returns a Disposable. AnyObserver is a generic type that facilitates adding values
onto an observable sequence, which will then be emitted to subscribers. Change the
implementation of create to the following:

Observable<String>.create { observer in
 // 1
 observer.onNext("1")

 // 2
 observer.onCompleted()

 // 3
 observer.onNext("?")

 // 4
 return Disposables.create()
}

RxSwift - Reactive Programming with Swift Chapter 2: Observables

raywenderlich.com 56

Here’s the play-by-play:

1. Add a .next event onto the observer. onNext(_:) is a convenience method for
on(.next(_:)).

2. Add a .completed event onto the observer. Similarly, onCompleted is a
convenience method for on(.completed).

3. Add another .next event onto the observer.

4. Return a disposable.

Note The last step, returning a Disposable, may seem strange but remember
that the subscribe operators return a disposable representing the subscription.
Here, Disposables.create() is an empty disposable, but some disposables
have side-effects.

Do you think the second onNext element (?) could ever be emitted to subscribers?
Why or why not? To see if you guessed correctly, subscribe to the observable by
adding the following code on the next line after the create implementation:

.subscribe(
 onNext: { print($0) },
 onError: { print($0) },
 onCompleted: { print("Completed") },
 onDisposed: { print("Disposed") }
)
.addDisposableTo(disposeBag)

You’ve subscribed to the observable, and implemented all the handlers, using
default argument names for element and error arguments passed to the onNext and
onError handlers respectively. The result is that the first .next event element,
"Completed" and "Disposed" print out. The second .next event doesn’t print
because the observable emitted a .completed event and terminated before it.

--- Example of: create ---
1
Completed
Disposed

What would happen if you added an error to the observer? Add this code at the top
of the example:

enum MyError: Error {
 case anError
}

RxSwift - Reactive Programming with Swift Chapter 2: Observables

raywenderlich.com 57

You’ve created an Error type with a single case anError. Now add the following line
of code between the observer.onNext and observer.onCompleted calls:

observer.onError(MyError.anError)

The observable emits the error and then is terminated.

--- Example of: create ---
1
anError
Disposed

What would happen if you emitted neither a .completed nor a .error event, and
didn’t add the subscription to disposeBag? Comment out the observer.onError,
observer.onCompleted and addDisposableTo(disposeBag) lines of code to find out.
Here’s the complete implementation:

example(of: "create") {

 enum MyError: Error {
 case anError
 }

 let disposeBag = DisposeBag()

 Observable<String>.create { observer in
 // 1
 observer.onNext("1")

// observer.onError(MyError.anError)

 // 2
// observer.onCompleted()

 // 3
 observer.onNext("?")

 // 4
 return Disposables.create()
 }
 .subscribe(
 onNext: { print($0) },
 onError: { print($0) },
 onCompleted: { print("Completed") },
 onDisposed: { print("Disposed") }
)
// .addDisposableTo(disposeBag)
}

Congratulations, you’ve just leaked memory! The observable will never finish, and
the disposable will never be disposed of.

--- Example of: create ---
1
?

RxSwift - Reactive Programming with Swift Chapter 2: Observables

raywenderlich.com 58

Feel free to uncomment the line adding the .completed event or the ones adding
the subscription to the disposeBag if you just can’t stand to leave this example in a
leaky state.

Creating observable factories
Rather than creating an observable that waits around for subscribers, it is possible
to create observable factories that vend a new observable to each subscriber. Add
this new example to the playground:

example(of: "deferred") {

 let disposeBag = DisposeBag()

 // 1
 var flip = false

 // 2
 let factory: Observable<Int> = Observable.deferred {

 // 3
 flip = !flip

 // 4
 if flip {
 return Observable.of(1, 2, 3)
 } else {
 return Observable.of(4, 5, 6)
 }
 }
}

Here’s what you’re doing:

1. Create a Bool flag to flip which observable to return.

2. Create an observable of Int factory using the deferred operator.

3. Invert flip, which will be used each time factory is subscribed to.

4. Return different observables based on if flip is true or false

Externally, an observable factory is indistinguishable from a regular observable. Add
this code to the bottom of the example to subscribe to factory four times:

for _ in 0...3 {
 factory.subscribe(onNext: {
 print($0, terminator: "")
 })
 .addDisposableTo(disposeBag)

 print()
}

RxSwift - Reactive Programming with Swift Chapter 2: Observables

raywenderlich.com 59

Each time you subscribe to factory, you get the opposite observable. You get 123,
then 456, and the pattern repeats each time a new subscription is created.

--- Example of: deferred ---
123
456
123
456

Challenges
Practice makes permanent. By completing these challenges, you’ll practice what
you’ve learned in this chapter and pick up a few more tidbits of knowledge about
working with observables.

A starter playground workspace as well as the finished version of it are provided for
each challenge. Enjoy!

Challenge 1: Perform side effects
In the never operator example earlier, nothing printed out. That was before you
were adding your subscriptions to dispose bags, but if you had added it to one, you
would’ve been able to print out a message in subscribe’s onDisposed handler. There
is another useful operator for when you want to do some side work that doesn’t
affect the observable you’re working with.

The do operator allows you to insert side effects; that is, handlers to do things that
will not change the emitted event in any way. do will just pass the event through to
the next operator in the chain. And do also includes an onSubscribe handler,
something that subscribe does not.

The method for using the do operator is
do(onNext:onError:onCompleted:onSubscribe:onDispose) and you can provide
handlers for any or all of these events. Use Xode's autocompletion to get the right
closure parameters for each of the events.

To complete this challenge, insert use of the do operator in the never example using
the onSubscribe handler. Feel free to include any of the other handlers if you’d like;
they work just like subscribe’s handlers do.

And while you’re at it, create a dispose bag and add the subscription to it.

Don't forget you can always peek into the finished challenge playground for
"inspiration". :]

RxSwift - Reactive Programming with Swift Chapter 2: Observables

raywenderlich.com 60

Challenge 2: Print debug info
Performing side effects is one way to help debug your Rx code. But it turns out that
there’s even a better utility for that purpose: the debug operator. It will print
information about every event for an observable. It has several optional
parameters, perhaps the most useful being that you can include an identifier string
that will be printed on each line. In complex Rx chains, where you might add debug
calls in multiple places, this can really help differentiate the source of each printout.

Continuing to work in the playground from the previous challenge, complete this
challenge by replacing the use of the do operator with debug and provide a string
identifier to it as a parameter. Observe the debug output in Xcode's console.

RxSwift - Reactive Programming with Swift Chapter 2: Observables

raywenderlich.com 61

3Chapter 3: Subjects
By Scott Gardner

You’ve gotten a handle on what an observable is, how you create one, how to
subscribe to it, and how to dispose of things when you’re done. Observables are a
fundamental part of RxSwift, but a common need when developing apps is to
manually add new values onto an observable at runtime that will then be emitted to
subscribers. What you want is something that can act as both an observable and as
an observer. And that something is called a Subject.

In this chapter, you’re going to learn about the different types of subjects in
RxSwift, see how to work with each one and why you might choose one over
another based on some common use cases.

raywenderlich.com 62

Getting started
After running pod install, open the starter project for this chapter named
RxSwiftPlayground. It’s ready to go, just do a build. You’ll start out with a quick
example to prime the pump. Write the following code in your playground:

example(of: "PublishSubject") {

 let subject = PublishSubject<String>()
}

Here you create a PublishSubject. It’s aptly named, because, like a newspaper
publisher, it will receive information and then turn around and publish it to
subscribers, possibly after modifying that information in some way first. It’s of type
String, so it can only receive and publish strings. After being initialized, it’s ready
to receive some.

Add the following code to the example:

subject.onNext("Is anyone listening?")

This puts a new string onto the subject. But nothing is printed out yet, because
there are no observers. Create one by adding the following code to the example:

let subscriptionOne = subject
 .subscribe(onNext: { string in
 print(string)
 })

You created a subscription to subject just like in the last chapter, printing .next
events. But still, nuthin’ shows up in Xcode's output console. Ain’t this fun? You’re
going to learn about the different subjects shortly.

What’s happening here is that a PublishSubject only emits to current subscribers.
So if you weren’t subscribed when something was added to it previously, you don’t
get it when you do subscribe. Think of the tree falling analogy. If a tree falls and no
one’s there to hear it, does that make your illegal logging business a success?

To fix things, add this code to the end of the example:

subject.on(.next("1"))

Notice that, because you defined the publish subject to be of type String, only
strings may be put onto it. Now, because subject has a subscriber, it will emit that
text.

--- Example of: PublishSubject ---
1

RxSwift - Reactive Programming with Swift Chapter 3: Subjects

raywenderlich.com 63

In a similar fashion to the subscribe operators, on(.next(_:) is how you add a
new .next event onto a subject, passing the element as the parameter. And just
like subscribe, there’s shortcut syntax for subjects. Add the following code to the
example:

subject.onNext("2")

onNext(_:) does the same thing as on(.next(_)). It's just a bit easier on the eyes.
And now the 2 is printed as well.

--- Example of: PublishSubject ---
1
2

With that gentle intro, now it’s time to learn all about subjects.

What are subjects?
Subjects act as both an observable and an observer. You saw earlier how they can
receive events and also be subscribed to. The subject received .next events, and
each time it received an event, it turned around and emitted it to its subscriber.

There are four subject types in RxSwift:

• PublishSubject: Starts empty and only emits new elements to subscribers.

• BehaviorSubject: Starts with an initial value and replays it or the latest element
to new subscribers.

• ReplaySubject: Initialized with a buffer size and will maintain a buffer of
elements up to that size and replay it to new subscribers.

• Variable: Wraps a BehaviorSubject, preserves its current value as state, and
replays only the latest/initial value to new subscribers.

Taking on each of these in turn, you’re going to learn a lot more about subjects and
how to work with them next.

Working with PublishSubjects
Publish subjects come in handy when you simply want subscribers to be notified of
new events from the point at which they subscribed, until they either unsubscribe,
or the subject has terminated with a .completed or .error event.

In the following marble diagram, the top line is the publish subject and the second
and third lines are subscribers. The upward-pointing arrows indicate subscriptions,
and the downward-pointing arrows represent emitted events.

RxSwift - Reactive Programming with Swift Chapter 3: Subjects

raywenderlich.com 64

The first subscriber subscribes after 1), so it doesn’t get receive that event. It does
get 2) and 3), though. And because the second subscriber doesn’t join in on the fun
until after 2), it only gets 3).

Returning to the playground, add this code to the bottom of the same example:

let subscriptionTwo = subject
 .subscribe { event in
 print("2)", event.element ?? event)
 }

Events have an optional element property that will contain the emitted element
for .next events. You use the nil-coalescing operator here to print the element if
there is one, or else print the event.

As expected, subscriptionTwo doesn’t print anything out yet because it subscribed
after the 1 and 2 were emitted. Now enter this code:

subject.onNext("3")

The 3 is printed twice, once each for subscriptionOne and subscriptionTwo.

3
2) 3

Add this code to terminate subscriptionOne and then add another .next event onto
the subject:

subscriptionOne.dispose()

subject.onNext("4")

The value 4 is only printed for subscription 2), because subscriptionOne was
disposed.

2) 4

RxSwift - Reactive Programming with Swift Chapter 3: Subjects

raywenderlich.com 65

When a publish subject receives a .completed or .error event, aka a stop event, it
will emit that stop event to new subscribers and it will no longer emit .next events.
However, it will re-emit its stop event to future subscribers. Add this code to the
example:

// 1
subject.onCompleted()

// 2
subject.onNext("5")

// 3
subscriptionTwo.dispose()

let disposeBag = DisposeBag()

// 4
subject
 .subscribe {
 print("3)", $0.element ?? $0)
 }
 .addDisposableTo(disposeBag)

subject.onNext("?")

Here’s what you did:

1. Put the .completed event onto the subject, using the convenience operator for
on(.completed()). This effectively terminates the subject’s observable sequence.

2. Add another element onto the subject. This won't be emitted and printed,
though, because the subject has already terminated.

3. Don’t forget to dispose of subscriptions when you’re done!

4. Create a new subscription to the subject, this time adding it to a dispose bag.

Maybe the new subscriber 3) will kickstart the subject back into action? Nope, but
you do still get the .completed event.

2) completed
3) completed

Actually, every subject type, once terminated, will re-emit its stop event to future
subscribers. So it’s a good idea to include handlers for stop events in your code, not
just to be notified when it terminates, but also in case it is already terminated when
you subscribe to it.

You might use a publish subject when you’re modeling time-sensitive data, such as
in an online bidding app. It wouldn’t make sense to alert the user who joined at
10:01 am that at 9:59 am there was only 1 minute left in the auction. That is, of
course, unless you like 1-star reviews to your bidding app. :]

RxSwift - Reactive Programming with Swift Chapter 3: Subjects

raywenderlich.com 66

Sometimes you want to let new subscribers know what the latest element value is,
even though that element was emitted before the subscription. For that, you’ve got
some options.

Working with BehaviorSubjects
Behavior subjects work similarly to publish subjects, except they will replay the
latest .next event to new subscribers. Check out this marble diagram:

The first line from the top is the subject. The first subscriber on the second line
down subscribes after 1) but before 2), so it gets 1) immediately upon subscription,
and then 2) and 3) as they’re emitted by the subject. Similarly, the second
subscriber subscribes after 2) but before 3), so it gets 2) immediately and then 3)
when it’s emitted.

Add this new example to your playground:

// 1
enum MyError: Error {
 case anError
}

// 2
func print<T: CustomStringConvertible>(label: String, event: Event<T>) {
 print(label, event.element ?? event.error ?? event)
}

// 3
example(of: "BehaviorSubject") {

 // 4
 let subject = BehaviorSubject(value: "Initial value")

 let disposeBag = DisposeBag()

}

RxSwift - Reactive Programming with Swift Chapter 3: Subjects

raywenderlich.com 67

Here’s the play-by-play:

1. Define an error type to use in upcoming examples.

2. Expanding upon the use of the ternary operator in the previous example, here
you create a helper function that will print the element if there is one, or else an
error if there is one of those, or else the event itself. How convenient!

3. Start a new example.

4. Create a new BehaviorSubject instance. Its initializer takes an initial value.

Note: Since BehaviorSubject always emits the latest element, you can't create
one without providing a default initial value. If you can't provide a default
initial value at creation time, that probably means you need to use a
PublishSubject instead.

Now add the following code to the example:

subject
 .subscribe {
 print(label: "1)", event: $0)
 }
 .addDisposableTo(disposeBag)

This creates a subscription to the subject, but the subscription was created after the
subject was. No other elements have been added to the subject, so it replays the
initial value to the subscriber.

--- Example of: BehaviorSubject ---
1) Initial value

Now insert the following code right before the previous subscription code, but after
the definition of the subject:

subject.onNext("X")

The X is printed, because now it’s the latest element when the subscription is made.

--- Example of: BehaviorSubject ---
1) X

Add the following code to the end of the example. But first, look it over and see if
you can determine what will be printed:

// 1
subject.onError(MyError.anError)

// 2
subject
 .subscribe {

RxSwift - Reactive Programming with Swift Chapter 3: Subjects

raywenderlich.com 68

 print(label: "2)", event: $0)
 }
 .addDisposableTo(disposeBag)

Taking it section-by-section:

1. Add an error event onto the subject.

2. Create a new subscription to the subject.

Did you figure out that the error event will be printed twice, once for each
subscription? Right on if so!

1) anError
2) anError

Behavior subjects are useful when you want to pre-populate a view with the most
recent data. For example, you could bind controls in a user profile screen to a
behavior subject, so that the latest values can be used to pre-populate the display
while the app fetches fresh data.

But what if you wanted to show more than the latest value? For example, on a
search screen, you may want to show the most recent five search terms used. This
is where replay subjects come in.

Working with ReplaySubjects
Replay subjects will temporarily cache, or buffer, the latest elements it emits, up to
a specified size of your choosing. It will then replay that buffer to new subscribers.
The following marble diagram depicts a replay subject with a buffer size of two. The
first subscriber (middle line) is already subscribed to the replay subject (top line) so
it gets elements as they’re emitted. The second subscriber (bottom line) subscribes
after 2), so it gets 1) and 2) replayed to it.

RxSwift - Reactive Programming with Swift Chapter 3: Subjects

raywenderlich.com 69

Keep in mind when using a replay subject that this buffer is held in memory. You
can definitely shoot yourself in the foot here, such as if you set a large buffer size
for a replay subject of some type whose instances each take up a lot of memory,
like images. Another thing to watch out for is creating a replay subject of an array
of items. Each emitted element will be an array, so the buffer size will buffer that
many arrays. It would be easy to create memory pressure here if you’re not
careful.

Add this new example to your playground:

example(of: "ReplaySubject") {

 // 1
 let subject = ReplaySubject<String>.create(bufferSize: 2)

 let disposeBag = DisposeBag()

 // 2
 subject.onNext("1")

 subject.onNext("2")

 subject.onNext("3")

 // 3
 subject
 .subscribe {
 print(label: "1)", event: $0)
 }
 .addDisposableTo(disposeBag)

 subject
 .subscribe {
 print(label: "2)", event: $0)
 }
 .addDisposableTo(disposeBag)
}

From the top:

1. You create a new replay subject with a buffer size of 2. Replay subjects are
initialized using the type method create(bufferSize:).

2. Add two elements onto the subject.

3. Create two subscriptions to the subject.

The latest two elements are replayed to both subscribers. 1 never gets emitted,
because 2 and 3 were added onto the replay subject with a buffer size of 2 before
anything subscribed to it.

--- Example of: ReplaySubject ---
1) 2
1) 3

RxSwift - Reactive Programming with Swift Chapter 3: Subjects

raywenderlich.com 70

2) 2
2) 3

Now add the following code to the example:

subject.onNext("4")

subject
 .subscribe {
 print(label: "3)", event: $0)
 }
 .addDisposableTo(disposeBag)

With this code, you add another element onto the subject, and then create a new
subscription to it. The first two subscriptions will receive that element as normal
because they were already subscribed when the new element was added to the
subject, while the new third subscriber will get the last two buffered elements
replayed to it.

1) 4
2) 4
3) 3
3) 4

You’re getting pretty good at this stuff by now, so there should be no surprises
here. But, what would happen if you threw a wrench into the works here? Add this
line of code right after adding 4 onto the subject, before creating the 3rd
subscription:

subject.onError(MyError.anError)

This may surprise you. And if so, that’s OK. Life’s full of surprises. :]

1) 4
2) 4
1) anError
2) anError
3) 3
3) 4
3) anError

What’s going on here? The replay subject is terminated with an error, which it will
re-emit to new subscribers as you’ve already seen subjects do. But the buffer is
also still hanging around, so it gets replayed to new subscribers as well, before the
stop event is re-emitted. Now add this line of code immediately after adding the
error:

subject.dispose()

By explicitly calling dispose() on the replay subject beforehand, new subscribers
will only receive an error event indicating that the subject was already disposed.

RxSwift - Reactive Programming with Swift Chapter 3: Subjects

raywenderlich.com 71

3) Object `RxSwift.ReplayMany<Swift.String>` was already disposed.

Explicitly calling dispose() on a replay subject like this isn’t something you
generally need to do, because if you’ve added your subscriptions to a dispose bag
(and avoided creating any strong reference cycles), then everything will be
disposed of and deallocated when the owner (e.g., a view controller or view model)
is deallocated. It’s just good to be aware of this little gotcha for those edge cases.

Note: In case you’re wondering what is a ReplayMany, it is an internal type
that is used to create replay subjects.

By using a publish, behavior, or replay subject, you should be able to model most
any need. There may be times, though, when you simply want to go old-school and
ask an observable type, "Hey, what’s your current value?" Variables FTW here!

Working with Variables
As mentioned earlier, a Variable wraps a BehaviorSubject and stores its current
value as state. You can access that current value via its value property, and, unlike
other subjects and observables in general, you also use that value property to set a
new element onto a variable. In other words, you don’t use onNext(_:).

Because it wraps a behavior subject, a variable is created with an initial value, and
it will replay its latest or initial value to new subscribers. In order to access a
variable’s underlying behavior subject, you call asObservable() on it.

Also unique to Variable, as compared to other subjects, is that it is guaranteed not
to emit an error. So although you can listen for .error events in a subscription to a
variable, you cannot add an .error event onto a variable. A variable will also
automatically complete when it’s about to be deallocated, so you do not (and in
fact, can’t) manually add a .completed event to it.

Add this new example to your playground:

example(of: "Variable") {

 // 1
 var variable = Variable("Initial value")

 let disposeBag = DisposeBag()

 // 2
 variable.value = "New initial value"

 // 3
 variable.asObservable()
 .subscribe {
 print(label: "1)", event: $0)

RxSwift - Reactive Programming with Swift Chapter 3: Subjects

raywenderlich.com 72

 }
 .addDisposableTo(disposeBag)
}

Here’s what you’re doing this time:

1. Create a variable with an initial value. The variable’s type is inferred, but you
could have explicitly declared the type as Variable<String>("Initial value").

2. Add a new element onto the variable.

3. Subscribe to the variable, first by calling asObservable() to access its underlying
behavior subject.

The subscription gets the latest value.

--- Example of: Variable ---
1) New initial value

Now add this code to the example:

// 1
variable.value = "1"

// 2
variable.asObservable()
 .subscribe {
 print(label: "2)", event: $0)
 }
 .addDisposableTo(disposeBag)

// 3
variable.value = "2"

From the top:

1. Add a new element onto the variable.

2. Create a new subscription to the variable.

3. Add another new element onto the variable.

The existing subscription 1) receives the new value 1 added onto the variable. The
new subscription receives that same value when it subscribes, because it’s the
latest value. And both subscriptions receive the 2 when it’s added onto the variable.

1) 1
2) 1
1) 2
2) 2

There is no way to add an .error or .completed event onto a variable. Any attempts
to do so will generate compiler errors (no need to add this code to your playground,
it won’t work).

RxSwift - Reactive Programming with Swift Chapter 3: Subjects

raywenderlich.com 73

// These will all generate errors
variable.value.onError(MyError.anError)

variable.asObservable().onError(MyError.anError)

variable.value = MyError.anError

variable.value.onCompleted()

variable.asObservable().onCompleted()

Variables are versatile. You can subscribe to them as observables to be able to react
whenever a new .next event is emitted, just like any other subject. And they can
accommodate one-off needs, such as when you just need to check the current
value without subscribing to receive updates. You’ll implement an example of this in
the second challenge for this chapter.

Challenges
Put your new super subject skills to the test by completing these challenges. There
are starter and finished versions for each challenge in the exercise files download.

Challenge 1: Create a Blackjack card dealer using a
PublishSubject
In the starter project, twist down the playground page and Sources folder in the
Project navigator, and select the SupportCode.swift file. Review the helper
code for this challenge, including a cards array that contains 52 tuples representing
a standard deck of cards, cardString(for:) and point(for:) helper functions, and a
HandError enumeration.

In the main playground page, add code right below the comment // Add code to
update dealtHand here that will evaluate the result returned from calling
points(for:), passing the hand array. If the result is greater than 21, add the error
HandError.busted onto the dealtHand. Otherwise, add hand onto dealtHand as
a .next event.

Also in the main playground page, add code right after the comment // Add
subscription to dealtHand here to subscribe to dealtHand and handle .next
and .error events. For .next events, print a string containing the results returned
from calling cardString(for:) and points(for:). For an .error event, just print the
error.

The call to deal(_:) currently passes 3, so three cards will be dealt each time you
press the Execute Playground button in the bottom left corner of Xcode. See how
many times you go bust versus how many times you stay in the game. Are the
odds stacked up against you in Vegas or what?

RxSwift - Reactive Programming with Swift Chapter 3: Subjects

raywenderlich.com 74

The card emoji characters are pretty small when printed in the console. If you want
to be able to make out what cards you were dealt, you can temporarily increase the
font size of the Executable Console Output for this challenge. To do so, select
Xcode/Preferences.../Fonts & Colors/Console, select Executable Console
Output, and click the T button in the bottom right to change it to a larger font,
such as 48.

Challenge 2: Observe and check user session state using a
Variable
Most apps involve keeping track of a user session, and a variable can come in
handy for such a need. You can subscribe to react to changes to the user session
such as log in or log out, or just check the current value for one-off needs. In this
challenge, you’re going to implement examples of both.

Review the setup code in the starter project. There are a couple enumerations to
model UserSession and LoginError, and functions to
logInWith(username:password:completion:), logOut(), and
performActionRequiringLoggedInUser(_:). There is also a for-in loop that attempts
to log in and perform an action using invalid and then valid login credentials.

There are four comments indicating where you should add the necessary code in
order to complete this challenge.

RxSwift - Reactive Programming with Swift Chapter 3: Subjects

raywenderlich.com 75

4Chapter 4: Observables and
Subjects in Practice
By Marin Todorov

At this point in the book, you understand how observables and different types of
subjects work, and you’ve learned how to create and experiment with them in a
Swift playground.

It could be a bit challenging, however, to see the practical use of observables in
everyday development situations such as binding your UI to a data model, or
presenting a new controller and getting output back from it.

It’s okay to be a little unsure how to apply these newly acquired skills to the real
world. In this book, you’ll work through theoretical chapters such as Chapter 2,
“Observables” and Chapter 3, “Subjects”, as well as practical step-by-step chapters
— just like this one!

In the “... in practice” chapters, you’ll work on a complete app. The starter Xcode
project will include all the non-Rx code. Your task will be to add the RxSwift
framework and add other features using your newly-acquired reactive skills.

In this chapter, you’ll use RxSwift and your new observable super-powers to create
an app that lets users to create nice photo collages — the reactive way.

raywenderlich.com 76

Getting started
Open the starter project for this chapter: Combinestagram. It takes a couple of
tries to roll your tongue just right to say the name, doesn’t it? It’s probably not the
most marketable name, but it will do. :]

Install all pods and open Combinestagram.xcworkspace. Refer to Chapter 1,
“Hello RxSwift” for details on how to do that.

Select Main.storyboard and you’ll see the interface of the app you will bring to
life:

In the first screen, the user can see the current photo collage and has buttons to
either clear the current list of photos or to save the finished collage to disk.

Additionally, when the user taps on the + button at the top right, they will be taken
to the second view controller in the storyboard where they will see the list of photos
in their Camera Roll. The user can add photos to the collage by tapping on the
thumbnails.

The view controllers and the storyboard are already wired up, and you can also
peek at UIImage+Collage.swift to see how the actual collage is put together.

In this chapter, you are going to focus on putting your new skills to practice. Time
to get started!

RxSwift - Reactive Programming with Swift Chapter 4: Observables and Subjects in Practice

raywenderlich.com 77

Using a variable in a view controller
You’ll start by adding a Variable<UIImage> property to the controller class and store
the selected photos in its value. As you learned in Chapter 3, “Subjects”, the
Variable class works much like you’re used to with plain variables: you can
manually change the value property any time you want. You will start with this
simple example and later move on to subjects and custom observables.

Open MainViewController.swift and add the following inside the body of
MainViewController:

private let bag = DisposeBag()
private let images = Variable<[UIImage]>([])

Since no other class will use those two constants, you define them as private.
Privacy FTW!

Since the dispose bag is owned by the view controller, as soon as the view
controller is released all your observables will be disposed as well:

This makes Rx subscription memory management very easy: simply throw them in
the bag and they will be disposed alongside the view controller’s deallocation.

However, that won’t happen for this specific view controller, since it’s the root view
controller and it isn’t released before the app quits. You’ll see the clever dispose-
upon-deallocation mechanism at work later on in this chapter for the other
controller in the storyboard.

RxSwift - Reactive Programming with Swift Chapter 4: Observables and Subjects in Practice

raywenderlich.com 78

At first, your app will always build a collage based on the same photo. No worries;
it’s a nice photo from the Barcelona country side, which is already included in
Assets.xcassets. Each time the user taps + you will add that same photo, one
more time, to images.

Find actionAdd() and add the following to it:

images.value.append(UIImage(named: "IMG_1907.jpg")!)

Notice that you alter the current value of images as you’d do with any plain old
variable. The Variable class automatically produces an observable sequence of all
the discrete values you are assigning to its value property. The initial value of the
images Variable is an empty array, and every time the user hits the + button, the
observable sequence produced by images emits a new .next event with the new
array as an element.

To permit the user to clear the current selection, scroll up and add the following to
actionClear():

images.value = []

With these few lines of code, you neatly handled the user input. You can now move
on to observing images and displaying the result on screen.

Adding photos to the collage
Now that you have images wired up, you can observe for changes and update the
collage preview accordingly.

In viewDidLoad(), create the following subscription to images. Don’t forget that
since it’s a Variable you need to get its Observable in order to subscribe to it:

images.asObservable()
 .subscribe(onNext: { [weak self] photos in
 guard let preview = self?.imagePreview else { return }
 preview.image = UIImage.collage(images: photos,
 size: preview.frame.size)
 })
 .addDisposableTo(bag)

You subscribe for .next events emitted by images, and for each event you create a
collage with the starter project function UIImage.collage(images:size:). Finally, you
add this subscription to the view controller’s dispose bag.

In this chapter you are going to subscribe your observables in viewDidLoad(). Later
in the book, you will look into extracting these in separate classes and, in the last
chapter, into an MVVM architecture.

You now have your collage UI all together; the user can update images by tapping
the + bar item (or Clear) and you update the UI in turn.

RxSwift - Reactive Programming with Swift Chapter 4: Observables and Subjects in Practice

raywenderlich.com 79

Run the app and give it a try! If you add the photo four times, your collage would
look like this:

Wow, that was easy!

Of course, the app is a bit boring right now, but don’t worry — you will add the
ability to select photos from Camera Roll in just a bit.

Driving a complex view controller UI
As you play with the current app, you’ll notice the UI could be a bit smarter to
improve the user experience. For example:

• You could disable the Clear button if there aren’t any photos selected just yet, or
in the event the user has just cleared the selection.

• Similarly, there’s no need for the Save button to be enabled if there aren’t any
photos selected.

• You could also disable Save for an odd number of photos, as that would leave an
empty spot in the collage.

• It would be nice to limit the amount of photos in a single collage to six, since
more photos simply look a bit weird. :]

• Finally, it would be nice if the view controller title reflected the current selection.

If you take a moment to read through the list above one more time, you’ll certainly
see these modifications could be quite a hassle to implement the non-reactive way.

Thankfully, with RxSwift you simply subscribe to images one more time and update
the UI from a single place in your code.

RxSwift - Reactive Programming with Swift Chapter 4: Observables and Subjects in Practice

raywenderlich.com 80

Add this subscription inside viewDidLoad():

images.asObservable()
 .subscribe(onNext: { [weak self] photos in
 self?.updateUI(photos: photos)
 })
 .addDisposableTo(bag)

Each time there’s a change to the photo selection, you call updateUI(photos:). You
don’t have that method just yet, so add it anywhere inside the class body:

private func updateUI(photos: [UIImage]) {
 buttonSave.isEnabled = photos.count > 0 && photos.count % 2 == 0
 buttonClear.isEnabled = photos.count > 0
 itemAdd.isEnabled = photos.count < 6
 title = photos.count > 0 ? "\(photos.count) photos" : "Collage"
}

In the above code you update the complete UI according to the ruleset above. All of
the logic is in a single place and easy to read through. Run the app again, and you
will see all the rules kick in as you play with the UI:

By now you’re probably starting to see the real benefits of Rx when applied to your
iOS apps. If you look through all the code you’ve written in this chapter, you’ll see
there are only a few simple lines that drive the whole UI!

Talking to other view controllers via subjects
In this section of the chapter, you will connect the PhotosViewController class to
the main view controller in order to let the user select arbitrary photos from their
Camera Roll. That will result in far more interesting collages! :]

RxSwift - Reactive Programming with Swift Chapter 4: Observables and Subjects in Practice

raywenderlich.com 81

First of all, push PhotosViewController to the navigation stack. Open
MainViewController.swift and find actionAdd(). Comment out the line that
always uses the IMG_1907.jpg photo, and add this code in its place:

let photosViewController = storyboard!.instantiateViewController(
 withIdentifier: "PhotosViewController") as! PhotosViewController

navigationController!.pushViewController(photosViewController, animated:
true)

Above, you instantiate PhotosViewController from the project’s storyboard and
push it onto the navigation stack. Run the app and tap + to see the Camera Roll.
The very first time you do this, you’ll need to grant access to your Photo Library:

Once you tap OK you will see what the photos controller looks like. The actual
photos might differ on your device and you might need to go back and try again
after granting access (the second time around you should see the sample photos
included with the iPhone Simulator).

RxSwift - Reactive Programming with Swift Chapter 4: Observables and Subjects in Practice

raywenderlich.com 82

If you were building an app using the established Cocoa patterns, your next step
would be to add a delegate protocol so that the photos controller could talk back to
your main controller (aka: the non-reactive way):

With RxSwift, however, you have a universal way to talk between any two classes
— an Observable! There is no need to define a special protocol, because an
Observable can deliver any kind of message to any one or more interested parties
— the observers.

Creating an observable out of the selected photos
You’ll next add a subject to PhotosViewController that emits a .next event each
time the user taps a photo from the Camera Roll.

Open PhotosViewController.swift and add the following near the top:

import RxSwift

You’d like to add a PublishSubject to expose the photos being selected. However,
you don’t want to necessarily make the subject publicly accessible, as that would
allow other classes to call onNext(_) and make the subject emit values. You
sometimes might want to do that, but not in this case.

Add the following properties to PhotosViewController:

fileprivate let selectedPhotosSubject = PublishSubject<UIImage>()
var selectedPhotos: Observable<UIImage> {
 return selectedPhotosSubject.asObservable()
}

RxSwift - Reactive Programming with Swift Chapter 4: Observables and Subjects in Practice

raywenderlich.com 83

Here you define both a private PublishSubject that will emit the selected photos
and a public property named selectedPhotos that exposes the subject’s observable.
Subscribing to this property is how the main controller can observe the photo
sequence, without being able to interfere with it.

PhotosViewController already contains the code to read photos from your Camera
Roll and display them in a collection view. All you need to do is add the code to emit
the selected photo when the user taps on a collection view cell.

Scroll down to collectionView(_:didSelectItemAt:). The code inside fetches the
selected image and flashes the collection cell to give the user a bit of a visual
feedback.

Next, imageManager.requestImage(...) gets the selected photo and gives you image
and info parameters to work with in its completion closure. In that closure, you’d
like to emit a .next event from selectedPhotosSubject.

Inside the closure, just after the guard statement, add:

if let isThumbnail = info[PHImageResultIsDegradedKey as NSString] as?
Bool, !isThumbnail {
 self?.selectedPhotosSubject.onNext(image)
}

You use the info dictionary to check if the image is the thumbnail or the full version
of the asset. imageManager.requestImage(...) will call that closure once for each
size. In the event you received the full-size image, you call onNext(_) on your
subject and provide it with the full photo.

That’s all it takes to expose an observable sequence from one view controller to
another. There’s no need for delegate protocols or any other shenanigans of that
sort. As a bonus, once you remove the protocols, the controllers relationship
becomes very simple:

RxSwift - Reactive Programming with Swift Chapter 4: Observables and Subjects in Practice

raywenderlich.com 84

Observing the sequence of selected photos
Your next task is to return to MainViewController.swift and add the code to
complete the last part of the schema above; namely, observing the selected photos
sequence.

Find actionAdd() and add the following just before the line where you push the
controller onto the navigation stack:

photosViewController.selectedPhotos
 .subscribe(onNext: { [weak self] newImage in

 }, onDisposed: {
 print("completed photo selection")
 })
 .addDisposableTo(bag)

Before you push the controller, you subscribe for events on its selectedPhotos
observable. You are interested in two events: .next, which means the user has
tapped a photo, and also when the subscription is disposed. You’ll see why you
need that in a moment.

Insert the following code inside the onNext closure to get everything working. It’s
the same code you had before, but this time it adds the photo from Camera Roll:

guard let images = self?.images else { return }
images.value.append(newImage)

Run the app, select a few photos from your Camera Roll, and go back to see the
result. Cool!

RxSwift - Reactive Programming with Swift Chapter 4: Observables and Subjects in Practice

raywenderlich.com 85

Which dispose bag to use?
Now that you have more objects talking to each other, you also need more dispose
bags to memory manage your Observable subscriptions.

This introduces a new level of complexity in using observables. Dispose bags are
great for tying the lifetime of a subscription to the lifetime of another object, but as
you go forward you need to always ask yourself, “Which other object determines
the lifetime of this subscription?”

Let’s look at a problem in the current version of Combinestagram; you might not
have noticed it at all. Perform the following steps:

• Run the app.

• Create a collage.

• Inspect the console output.

Do you see a message saying “completed photo selection”? Most likely you won’t.
You added a print to your last subscription’s onDispose closure, but it never gets
called! That means the subscription is never disposed and never frees its memory!

How so? There’s an advanced debugging feature of RxSwift called Resources, which
gives you the number of current allocations of observables, observers, and
disposables.

To be more efficient, RxSwift disables resource counting by default, but in the next
section you’ll see how to enable it for Combinestagram.

RxSwift - Reactive Programming with Swift Chapter 4: Observables and Subjects in Practice

raywenderlich.com 86

How to enable resource counting
You enable resource counting by adding a custom Swift compiler flag to your build
scheme. The code inside RxSwift conditionally enables or disables resource counting
based on the value of that flag.

If you’re using RxSwift via CocoaPods, there is a simple way to do that by adding
the flag automatically from your Podfile. Open Combinestagram’s Podfile and add:

enable tracing resources

post_install do |installer|
 installer.pods_project.targets.each do |target|
 if target.name == 'RxSwift'
 target.build_configurations.each do |config|
 if config.name == 'Debug'
 config.build_settings['OTHER_SWIFT_FLAGS'] ||= ['-D',
'TRACE_RESOURCES']
 end
 end
 end
 end
end

This code loops over all the configurations for each target, finds the Debug schema
for RxSwift and adds the flag. So clever! Much simplicity!

After you do that, run pod install again from the command line to allow CocoaPods
to perform the required changes for you.

In case you’re using Carthage, you need to follow these steps. First create a new
file called resources.xcconfig and put inside:

OTHER_SWIFT_FLAGS = -DTRACE_RESOURCES

Then re-build RxSwift from the command line:

XCODE_XCCONFIG_FILE="<full path to>/resources.xcconfig" carthage update
--configuration Debug --platform iOS --no-use-binaries

Have patience — it might take quite some time for that command to complete.

Tracking down leaks
At this point your app is counting cards — er, I mean, Rx resources. Checking the
current resource count is pretty easy: just print or otherwise check the value of
RxSwift.Resources.total from anywhere in your app.

Give it a try. Open MainViewController.swift and add the following to
viewWillAppear(_:):

print("resources: \(RxSwift.Resources.total)")

RxSwift - Reactive Programming with Swift Chapter 4: Observables and Subjects in Practice

raywenderlich.com 87

Each time the view controller becomes visible, this code will print the allocated
resources. Run the app and go back and forth a few times between the main
controller and photos controller. Look at the console and you should see something
along these lines:

resources: 6
resources: 10
resources: 12
resources: 14
resources: 16

Every time you push and pop the photos controller, you allocate more resources
that hang around! Luckily, your current setup is quite simple. Upon pushing the
photos controller, you add a single subscription. Since this is the only subscription,
this must be the offender!

Take a look at the code to see how you memory manage that subscription (code
abbreviated):

photosViewController.selectedPhotos
 .subscribe(onNext: {...}, onDisposed: {...})
 .addDisposableTo(bag)

You say “keep the subscription alive until it completes or errors out, or until its bag
disposes of it.”

And when does bag dispose its contents? When either the bag constant is released
from memory, or you manually call its dispose() method.

I hope you see the issue by now! :]

MainViewController is never released (as the app’s root view controller), and
therefore never releases its dispose bag. You just keep adding more and more
subscriptions into that bag, but they’re never disposed of.

What you want to do instead is tie the lifecycle of that offending subscription to the
lifecycle of the photos view controller. You’ll investigate a few ways to do that.

The first approach would be to not throw the subscription into the the main
controller’s dispose bag, but into the photo controller’s bag instead. This way, as
soon as the user pops out the view controller, that would release its bag, and in
turn, the bag would dispose the subscription.

Open PhotosViewController.swift and add a dispose bag to the class:

let bag = DisposeBag()

Back in MainViewController.swift, find that last piece of code you worked on and
replace .addDisposableTo(bag) with:

.addDisposableTo(photosViewController.bag)

RxSwift - Reactive Programming with Swift Chapter 4: Observables and Subjects in Practice

raywenderlich.com 88

Run the app and you’ll see that the resource count remains stable as you push and
pop more photo controllers. Also you finally see the print out from your onDisposed
handler:

resources: 6
resources: 11
completed photo selection
resources: 11
completed photo selection
resources: 11
completed photo selection

This works, but you can create a slightly more elegant solution. Your observable
sequence of photos actually completes its purpose when the photo controller leaves
the navigation stack.

To give your observers some closure, you could emit a .completed event when that
controller disappears from the screen. This would notify all observers that the
subscription has completed to help with automatic disposal.

Open PhotosViewController.swift and add a call to your subject’s onComplete()
method in the controller’s viewWillDisappear(_:):

selectedPhotosSubject.onCompleted()

Perfect! Now you’re ready for the last part of this chapter: taking a plain old boring
function and converting it into a super-awesome and fantastical reactive class.

Creating a custom observable
So far, you’ve tried Variable, PublishSubject, and an Observable. To wrap up, you’ll
create your own custom Observable and turn a plain function into a reactive class.
You’ll use the built-in function UIImageWriteToSavedPhotosAlbum(_, _, _, _) to save
the photo collage — and since you’re already an RxSwift veteran, you are going to
do it the reactive way!

You’ll wrap this free function into a class, and then expose the output via an
Observable:

Creating an Observable for UIImageWriteToSavedPhotosAlbum(_, _, _, _) is quite
easy since the function expects a callback closure as its third parameter. This allows

RxSwift - Reactive Programming with Swift Chapter 4: Observables and Subjects in Practice

raywenderlich.com 89

you to emit either a .completed or an .error event from the callback to let the
observers know that the function has finished saving.

Wrapping a free function
Open PhotoWriter.swift, found in the Classes project folder. This file includes a
couple of definitions to get you started.

First, as always, import RxSwift:

import RxSwift

Then add a callback property and an init to set it:

private var callback: Callback
private init(callback: @escaping Callback) {
 self.callback = callback
}

This custom init will allow you to create an instance and set the required callback
property in one go.

Now add a new method that will serve as the callback closure for
UIImageWriteToSavedPhotosAlbum(_, _, _, _):

func image(_ image: UIImage, didFinishSavingWithError error: NSError?,
contextInfo: UnsafeRawPointer) {
 callback(error)
}

The new method features all the parameters UIImageWriteToSavedPhotosAlbum(_, _,
_, _) provides to its callback. Some of those you will use, others you will not, but
you still need to include them all to match the method signature.

In the case of an error, your method forwards the error object to the original
callback stored in the class property. If you don’t hit an error, you invoke the
callback with a nil parameter.

All that is left is to create an Observable that will use your new class and the
prepared callback. Add a new static method to PhotoWriter:

static func save(_ image: UIImage) -> Observable<Void> {
 return Observable.create({ observer in

 })
}

save(_:) will return an Observable<Void> because you will not emit any .next
events; just an .error or a .completed.

Observable.create(_) creates a new Observable, and you need to add all the meaty
logic inside that last closure.

RxSwift - Reactive Programming with Swift Chapter 4: Observables and Subjects in Practice

raywenderlich.com 90

Add the following to the Observable.create(_) parameter closure:

let writer = PhotoWriter(callback: { error in
 if let error = error {
 observer.onError(error)
 } else {
 observer.onCompleted()
 }
})

As planned, you create a new PhotoWriter object and set its callback to forward
.completed or .error events, depending on whether it receives an error
parameter or not.

Next, append (still inside the closure):

UIImageWriteToSavedPhotosAlbum(image, writer,
 #selector(PhotoWriter.image(_:didFinishSavingWithError:contextInfo:)),
 nil)

You call the function to save the collage and set its callback to your writer object’s
method. Finally, you need to return a Disposable out of that closure, so add one
final line:

return Disposables.create()

That wraps up the class nicely. Xcode should finally be happy and all compile errors
should disappear. The complete save() method should look like this:

static func save(_ image: UIImage) -> Observable<Void> {
 return Observable.create({ observer in
 let writer = PhotoWriter(callback: { error in
 if let error = error {
 observer.onError(error)
 } else {
 observer.onCompleted()
 }
 })
 UIImageWriteToSavedPhotosAlbum(image, writer,
 #selector(PhotoWriter.image(_:didFinishSavingWithError:contextInfo:)),
 nil)
 return Disposables.create()
 })
}

If you’ve been paying attention, you might be asking yourself “Why do we need an
Observable that never emits .next events? Isn’t that the whole point?”

Take a moment to reflect on what you’ve learned in the previous chapters. For
example, you can create an Observable by using any of the following:

• Observable.never(): Creates an observable sequences that never emits any
elements.

RxSwift - Reactive Programming with Swift Chapter 4: Observables and Subjects in Practice

raywenderlich.com 91

• Observable.just(_:): Emits one element and a .completed event.

• Observable.empty(): Emits no elements followed by a .completed event.

• Observable.error(_): Emits no elements and a single .error event.

As you see, observables can produce any combination of zero or more .next
events, possibly terminated by either a .completed or an .error.

In the particular case of PhotoWriter, you are only interested in the event when the
function finishes writing the photo to disk. You use .completed for successful writes,
and .error if a particular write failed. That’s as good a design as any.

Subscribing to the custom observable
Now for the sweetest part of all: making use of your custom designed Observable
and kicking serious butt along the way! :]

Open MainViewController.swift and add the following inside the actionSave()
action method for the Save button:

guard let image = imagePreview.image else { return }

PhotoWriter.save(image)
 .subscribe(onError: { [weak self] error in
 self?.showMessage("Error", description: error.localizedDescription)
 }, onCompleted: { [weak self] in
 self?.showMessage("Saved")
 self?.actionClear()
 })
 .addDisposableTo(bag)

Above you call PhotoWriter.save(image) to save the current collage. Then you
subscribe to the returned Observable and display a message when it completes or
errors out. Additionally, you clear the current collage if the write operation was a
success.

Give the app one last triumphant run, build up a nice photo collage, and save it to
the disk.

RxSwift - Reactive Programming with Swift Chapter 4: Observables and Subjects in Practice

raywenderlich.com 92

Don’t forget to check your Photos app for the result!

With that, you’ve completed Section 1 of this book – congratulations!

You are not a young Padawan anymore, but an experienced RxSwift Jedi. However,
don’t be tempted to take on the dark side just yet. You will get to battle
networking, thread switching, and error handling soon enough!

RxSwift - Reactive Programming with Swift Chapter 4: Observables and Subjects in Practice

raywenderlich.com 93

Before that, you must continue your training and learn about one of the most
powerful aspects of RxSwift. In Section 2, “Operators and Best Practices”, operators
will allow you to leverage your Observable super powers to a whole new level!

Challenges
Before you move on to the next section, there’s a challenge waiting for you. You will
once again create a custom Observable — but this time with a little twist.

Challenge 1: Add custom observable to present alerts
Open MainViewController.swift and scroll towards the bottom of the file. Find the
showMessage(_:description:) method that came with the starter project.

The method shows an alert onscreen and runs a callback when the user taps the
Close button to dismiss the alert. That does sound quite similar to what you’ve
already done for UIImageWriteToSavedPhotosAlbum(_, _, _, _), doesn’t it?

To complete this challenge, code the following:

• Add an extension method to UIViewController that presents an alert onscreen
with a given title and message and returns an Observable.

• Add a Close button to the alert and dismiss the alert when the user taps it.

• Further, dismiss the alert as well when the subscription is dismissed so that you
don’t have any dangling alerts.

In the end use the new observable to present the alert from within
showMessage(_:description:).

As always, if you run into trouble, or are curious to see the provided solution, you
can check the completed project and challenge code in the resources folder for
this chapter. But do give it your best shot first!

RxSwift - Reactive Programming with Swift Chapter 4: Observables and Subjects in Practice

raywenderlich.com 94

Section II: Operators and Best
Practices

Operators are the building blocks of Rx, which you can use to transform, process,
and react to events emitted by observables. Just as you can combine simple
arithmetic operators like +, -, and / to create complex math expressions, you can
chain and compose together Rx's simple operators to express complex app logic.

You are going to start by looking into filtering operators, which allow you to process
some events but ignore others. Then you will move onto transforming operators,
which allow you to create and express complex data transformations. You can for
example start with a button event, transform that into some kind of input, process
that and return some output to show in the app UI. You will also look into
combining operators, which allow for powerful composition of most other operators.

Finally, you'll look into operators that allow you to do time based processing:
delaying events, grouping events over periods of time, and more. Work though all
the chapters, and by the end of this section you'll be able to write simple RxSwift
apps!

Chapter 5: Filtering Operators

Chapter 6: Filtering Operators in Practice

Chapter 7: Transforming Operators

Chapter 8: Transforming Operators in Practice

Chapter 9: Combining Operators

Chapter 10: Combining Operators in Practice

Chapter 11: Time Based Operators

raywenderlich.com 95

5Chapter 5: Filtering Operators
By Scott Gardner

Learning a new technology stack is a bit like building a skyscraper. You’ve got to
build a solid foundation before you can kiss the sky. By now you’ve established a
solid RxSwift foundation, and it’s time to start building up your knowledge base and
skill set, one floor at a time.

This chapter will teach you about RxSwift’s filtering operators that you can use to
apply conditional constraints to .next events, so that the subscriber only receives
the elements it wants to deal with. If you’ve ever used the filter(_:) method in
the Swift standard library, you’re already half way there. But if not, no worries,
you’re going to be an expert at this filtering business by the end of this chapter.

raywenderlich.com 96

Getting started
The starter project for this chapter is named RxSwiftPlayground. Open it up,
install the project pod dependencies as explained in Chapter 1, and give it a build.

Ignoring operators
Without further ado, you’re going to jump right in and look at some useful filtering
operators in RxSwift, beginning with ignoreElements. As depicted in the following
marble diagram, ignoreElements will do that; ignore .next event elements. It will,
however, allow through stop events, i.e., .completed or .error events. Allowing
through stop events is usually implied in marble diagrams. It’s just explicitly called
out this time because that’s all ignoreElements will let through.

Note: Up until now you’ve seen marble diagrams used for types. This type of
marble diagram helps to visualize how operators work. The top line is the
observable that is being subscribed to. The box represents the operator and its
parameters, and the bottom line is the subscriber, or more specifically, what
the subscriber will receive after the operator does its thing.

See one, now do one, by adding this example to your playground:

example(of: "ignoreElements") {

 // 1
 let strikes = PublishSubject<String>()

 let disposeBag = DisposeBag()

 // 2
 strikes
 .ignoreElements()
 .subscribe { _ in

RxSwift - Reactive Programming with Swift Chapter 5: Filtering Operators

raywenderlich.com 97

 print("You're out!")
 }
 .addDisposableTo(disposeBag)
}

Here’s what you’re doing:

1. Create a strikes subject.

2. Subscribe to all strikes’ events, but ignore all .next events by using
ignoreElements.

ignoreElements is useful when you only want to be notified when an observable has
terminated, via a .completed or .error event. Add this code to the example:

strikes.onNext("X")
strikes.onNext("X")
strikes.onNext("X")

Even though this batter can’t seem to hit the broad side of a barn and has clearly
struck out, nothing is printed, because you’re ignoring all .next events. It’s up to
you to add a .completed event to this subject in order to let the subscriber be
notified. Add this code to do that:

strikes.onCompleted()

Now the subscriber will receive the .completed event, and print that catchphrase no
batter ever wants to hear.

--- Example of: ignoreElements ---
You're out!

Note: If you don't happen to know much about strikes, batters, and the game
of baseball in general you can read up on those when you decide to take a
little break from programming: https://simple.wikipedia.org/wiki/Baseball.

There may be times when you only want to handle the the nth (ordinal) element
emitted by an observable, such as the third strike. For that you can use elementAt,
which takes the index of the element you want to receive, and it ignores everything
else. In the marble diagram, elementAt is passed an index of 1, so it only allows
through the second element.

RxSwift - Reactive Programming with Swift Chapter 5: Filtering Operators

raywenderlich.com 98

Add this new example:

example(of: "elementAt") {

 // 1
 let strikes = PublishSubject<String>()

 let disposeBag = DisposeBag()

 // 2
 strikes
 .elementAt(2)
 .subscribe(onNext: { _ in
 print("You're out!")
 })
 .addDisposableTo(disposeBag)
}

Here’s the play-by-play:

1. You create a subject.

2. You subscribe to the .next events, ignoring all but the 3rd .next event (found at
index 2).

Now you can simply add new strikes onto the subject and your subscription will
take care of letting you know when the batter has struck out. Add this code:

strikes.onNext("X")
strikes.onNext("X")
strikes.onNext("X")

"Hey batta, batta, batta, swing batta!"

--- Example of: elementAt ---
You're out!

ignoreElements and elementAt are filtering elements emitted by an observable.
When your filtering needs go beyond all or one, there’s filter. filter takes a

RxSwift - Reactive Programming with Swift Chapter 5: Filtering Operators

raywenderlich.com 99

predicate closure, which it applies to each element, allowing through only those
elements for which the predicate resolves to true.

Check out this marble diagram, where only 1 and 2 are let through, because the
filter’s predicate only allows elements that are less than 3.

Add this example to your playground:

example(of: "filter") {

 let disposeBag = DisposeBag()

 // 1
 Observable.of(1, 2, 3, 4, 5, 6)
 // 2
 .filter { integer in
 integer % 2 == 0
 }
 // 3
 .subscribe(onNext: {
 print($0)
 })
 .addDisposableTo(disposeBag)
}

From the top:

1. You create an observable of some predefined integers.

2. You use the filter operator to apply a conditional constraint to prevent odd
numbers from getting through. filter takes a predicate that returns a Bool.
Return true to let the element through or false to prevent it. filter will filter
elements for the life of the subscription.

3. You subscribe and print out the elements that passed the filter predicate.

RxSwift - Reactive Programming with Swift Chapter 5: Filtering Operators

raywenderlich.com 100

The result of applying this filter is that only even numbers are printed.

--- Example of: filter ---
2
4
6

Skipping operators
It might be that you need to skip a certain number of elements. To continue with
the weather forecast example, maybe you don’t want to start receiving hourly
forecast data until later in the day, because you’re stuck in a cubicle until then
anyway. The skip operator allows you to ignore from the 1st to the number you
pass as its parameter. This marble diagram shows skip being passed 2, so it ignores
the first 2 elements.

Enter this new example in your playground:

example(of: "skip") {

 let disposeBag = DisposeBag()

 // 1
 Observable.of("A", "B", "C", "D", "E", "F")
 // 2
 .skip(3)
 .subscribe(onNext: {
 print($0)
 })
 .addDisposableTo(disposeBag)
}

With this code, you:

1. Create an observable of letters.

2. Use skip to skip the first 3 elements and subscribe to .next events.

RxSwift - Reactive Programming with Swift Chapter 5: Filtering Operators

raywenderlich.com 101

After skipping the first 3 elements, only D, E, and F are printed like so:

--- Example of: skip ---
D
E
F

There’s a small family of skip operators. Like filter, skipWhile lets you include a
predicate to determine what should be skipped. However, unlike filter, which will
filter elements for the life of the subscription, skipWhile will only skip up until
something is not skipped, and then it will let everything else through from that
point on.

And with skipWhile, returning true will cause the element to be skipped, and
returning false will let it through. It’s the opposite of filter. In this marble
diagram, 1 is prevented because 1 % 2 equals 1, but then 2 is allowed through
because it fails the predicate, and 3 (and everything else going forward) gets
through because skipWhile is no longer skipping.

Add this new example to your playground:

example(of: "skipWhile") {

 let disposeBag = DisposeBag()

 // 1
 Observable.of(2, 2, 3, 4, 4)
 // 2
 .skipWhile { integer in
 integer % 2 == 0
 }
 .subscribe(onNext: {
 print($0)
 })
 .addDisposableTo(disposeBag)
}

RxSwift - Reactive Programming with Swift Chapter 5: Filtering Operators

raywenderlich.com 102

Here’s what you did:

1. Create an observable of integers.

2. Use skipWhile with a predicate that skips elements until an odd integer is
emitted.

skip only skips elements up until the first element is let through, and then all
remaining elements are allowed through.

--- Example of: skipWhile ---
3
4
4

If you were developing an insurance claims app, you could use skipWhile to deny
coverage until the deductible is met. If only the insurance industry were that
straightforward here in the U.S.

So far, the filtering has been based on some static condition. What if you wanted to
dynamically filter elements based on some other observable? There are a couple of
operators that you’ll learn about here that can do this. The first is skipUntil, which
will keep skipping elements from the source observable (the one you’re subscribing
to) until some other trigger observable emits. In this marble diagram, skipUntil
ignores elements emitted by the source observable (the top line) until the trigger
observable (second line) emits a .next event. Then it stops skipping and lets
everything through from that point on.

RxSwift - Reactive Programming with Swift Chapter 5: Filtering Operators

raywenderlich.com 103

Add this example to see how skipUntil works in code:

example(of: "skipUntil") {

 let disposeBag = DisposeBag()

 // 1
 let subject = PublishSubject<String>()
 let trigger = PublishSubject<String>()

 // 2
 subject
 .skipUntil(trigger)
 .subscribe(onNext: {
 print($0)
 })
 .addDisposableTo(disposeBag)
}

In this code you:

1. Create a subject to model the data you want to work with, and another subject
to model a trigger to change how you handle things in the first subject.

2. Use skipUntil, passing the trigger subject. When trigger emits, skipUntil will
stop skipping.

Add a couple of .next events onto subject:

subject.onNext("A")
subject.onNext("B")

Nothing is printed out, because you’re skipping. Now add a new .next event onto
trigger:

trigger.onNext("X")

Doing so causes skipUntil to stop skipping. From this point onward, all elements
will be let through. Add another .next event onto subject:

subject.onNext("C")

Sure enough, it’s printed out.

--- Example of: skipUntil ---
C

RxSwift - Reactive Programming with Swift Chapter 5: Filtering Operators

raywenderlich.com 104

Taking operators
Taking is the opposite of skipping. When you want to take elements, RxSwift has
you covered. The first taking operator you’ll learn about is take, which as shown in
this marble diagram, will take the first of the number of elements you specified.

Add this example to your playground to explore the first of the take operators:

example(of: "take") {

 let disposeBag = DisposeBag()

 // 1
 Observable.of(1, 2, 3, 4, 5, 6)
 // 2
 .take(3)
 .subscribe(onNext: {
 print($0)
 })
 .addDisposableTo(disposeBag)
}

Here’s what you did:

1. Create an observable of integers.

2. Take the first 3 elements using take.

What you take is what you get. :] The output this time is:

--- Example of: take ---
1
2
3

There’s also a takeWhile operator that works similarly to skipWhile, except you’re
taking, not skipping. Sometimes you want to also reference the index of the
element being emitted, though, and there’s a variation of takeWhile that lets you do

RxSwift - Reactive Programming with Swift Chapter 5: Filtering Operators

raywenderlich.com 105

this: takeWhileWithIndex. It takes while the predicate resolves to true, but also
passes the index of the element so that you can reference or filter against that if
you want to.

In this marble diagram, the value is required to be greater than 1, and the index
greater than 1, so even though 2 passes the first requirement, its index is 1 so it
doesn’t pass the second.

Enter this new example in your playground:

example(of: "takeWhileWithIndex") {

 let disposeBag = DisposeBag()

 // 1
 Observable.of(2, 2, 4, 4, 6, 6)
 // 2
 .takeWhileWithIndex { integer, index in
 // 3
 integer % 2 == 0 && index < 3
 }
 // 4
 .subscribe(onNext: {
 print($0)
 })
 .addDisposableTo(disposeBag)
}

From the top:

1. You create an observable of integers.

2. You use the takeWhileWithIndex operator, which takes a closure that receives
the element and the element’s index.

RxSwift - Reactive Programming with Swift Chapter 5: Filtering Operators

raywenderlich.com 106

3. You only take elements while each emitted integer is even and its index is less
than 3.

4. You subscribe to and print out .next events.

As a result, you only receive elements as long as the integers are even and up to
when the element’s index is 3 or greater.

--- Example of: takeWhileWithIndex ---
2
2
4

There is also a skipWhileWithIndex operator that works just like this, except you’re
skipping, not taking. And like skipUntil, there is also a takeUntil operator, shown
in this marble diagram, taking from the source observable until the trigger
observable emits an element.

Add this new example, which is just like the skipUntil example you created earlier:

example(of: "takeUntil") {

 let disposeBag = DisposeBag()

 // 1
 let subject = PublishSubject<String>()
 let trigger = PublishSubject<String>()

 // 2
 subject
 .takeUntil(trigger)
 .subscribe(onNext: {
 print($0)
 })

RxSwift - Reactive Programming with Swift Chapter 5: Filtering Operators

raywenderlich.com 107

 .addDisposableTo(disposeBag)

 // 3
 subject.onNext("1")
 subject.onNext("2")
}

From the top:

1. Create a primary subject and a trigger subject.

2. Use takeUntil, passing the trigger that will cause takeUntil to stop taking once
it emits.

3. Add a couple of elements onto subject.

Those elements are printed out, but takeUntil is in taking mode.

--- Example of: takeUntil ---
1
2

Now add an element onto trigger, followed by another element onto subject:

trigger.onNext("X")

subject.onNext("3")

The X stops the taking, so 3 is not allowed through and nothing more is printed.

Used in concert with API from the RxCocoa library (which you’ll learn about later in
the book), takeUntil can also be used to dispose of a subscription, instead of
adding it to a dispose bag.

Playing if-then-but-what with observables and subscriptions is a sure-fire way to
leak memory, or at least overly complicate your code. Simply adding a subscription
to a dispose bag is a nice way to set it and forget it (for the most part).

For the sake of completeness, here’s an example of how you would use takeUntil
with RxCocoa (don’t enter this into your playground, because it won’t compile):

someObservable
 .takeUntil(self.rx.deallocated)
 .subscribe(onNext: {
 print($0)
 })

In the previous code, the trigger that will cause takeUntil to stop taking is the
deallocation of self, which is typically a view controller or view model.

RxSwift - Reactive Programming with Swift Chapter 5: Filtering Operators

raywenderlich.com 108

Distinct operators
Back to the regularly-scheduled show. The next couple of operators you’re going to
learn about let you prevent duplicate contiguous items from getting through. As
shown in this marble diagram, distinctUntilChanged only prevents duplicates that
are right next to each other, so the second 1 gets through.

Add this new example to your playground:

example(of: "distinctUntilChanged") {

 let disposeBag = DisposeBag()

 // 1
Observable.of("A", "A", "B", "B", "A")
 // 2
 .distinctUntilChanged()
 .subscribe(onNext: {
 print($0)
 })
 .addDisposableTo(disposeBag)
}

What you’re doing here:

1. Create an observable of letters.

2. Use distinctUntilChanged to prevent sequential duplicates from getting
through.

distinctUntilChanged only prevents contiguous duplicates. So the 2nd element is
prevented because it’s the same as the 1st, but the last item, also an A, is allowed
through, because it comes after a different letter (B). The resulting printout only
includes the 1st A, 1st B, and then the A at the end.

--- Example of: distinctUntilChanged ---
A
B
A

RxSwift - Reactive Programming with Swift Chapter 5: Filtering Operators

raywenderlich.com 109

These are strings, which conform to Equatable. So, these elements are compared
for equality based on their implementation conforming to Equatable. However, you
can provide your own custom comparing logic by using distinctUntilChanged(_:),
where the externally unnamed parameter is a comparer.

In the following marble diagram, objects with a property named value are being
compared for distinctness base on value.

Add this new example to your playground to use distinctUntilChanged(_:) in a
slightly more elaborate example:

example(of: "distinctUntilChanged(_:)") {

 let disposeBag = DisposeBag()

 // 1
 let formatter = NumberFormatter()
 formatter.numberStyle = .spellOut

 // 2
 Observable<NSNumber>.of(10, 110, 20, 200, 210, 310)
 // 3
 .distinctUntilChanged { a, b in
 // 4
 guard let aWords = formatter.string(from:
a)?.components(separatedBy: " "),
 let bWords = formatter.string(from: b)?.components(separatedBy: "
")
 else {
 return false
 }

 var containsMatch = false

 // 5

RxSwift - Reactive Programming with Swift Chapter 5: Filtering Operators

raywenderlich.com 110

 for aWord in aWords {
 for bWord in bWords {
 if aWord == bWord {
 containsMatch = true
 break
 }
 }
 }

 return containsMatch
 }
 // 4
 .subscribe(onNext: {
 print($0)
 })
 .addDisposableTo(disposeBag)
}

From the top, you:

1. Create a number formatter to spell out each number.

2. Create an observable of NSNumbers (so that you don't have to convert integers
when using the formatter next).

3. Use distinctUntilChanged(_:), which takes a closure that receives each
sequential pair of elements.

4. Use guard to conditionally bind the element’s components separated by an
empty space, or else return false.

5. Iterate over each pair of element’s words in nested for-in loops and return the
result of checking to see if the two elements contain any of the same words.

6. Subscribe and print out elements that are considered distinct based on the
comparing logic you provided.

As a result, only the distinct integers are printed, taking into account that in each
pair of integers, one does not contain any of the word components of the other.

--- Example of: distinctUntilChanged(_:) ---
10
20
200

distinctUntilChanged(_:) is also useful when you want to distinctly prevent
duplicates for types that do not conform to Equatable.

Challenges
Challenges help harden the wet cement around what you just learned. There are
starter and finished versions of the challenge in the exercise files download.

RxSwift - Reactive Programming with Swift Chapter 5: Filtering Operators

raywenderlich.com 111

Challenge 1: Create a phone number lookup
Open the challenge starter project, install dependencies, and let’s have a look at
what’s to be found inside!

Breaking down this challenge, you’ll need to use several filter operators. Here are
the requirements, along with a suggested operator to use:

1. Phone numbers can’t begin with 0 — use skipWhile.

2. Each input must be a single-digit number — use filter to only allow elements
that are less than 10.

3. Limiting this example to U.S. phone numbers, which are 10 digits, take only the
first 10 numbers input — use take and toArray.

Review the setup code in the starter project. There’s a simple contacts dictionary:

let contacts = [
 "603-555-1212": "Florent",
 "212-555-1212": "Junior",
 "408-555-1212": "Marin",
 "617-555-1212": "Scott"
]

There’s a utility function that will return a formatted phone number for the array of
10 values you pass to it:

func phoneNumber(from inputs: [Int]) -> String {
 var phone = inputs.map(String.init).joined()

 phone.insert("-", at: phone.index(
 phone.startIndex,
 offsetBy: 3)
)

 phone.insert("-", at: phone.index(
 phone.startIndex,
 offsetBy: 7)
)

 return phone
}

There’s a publish subject to start you off:

let input = PublishSubject<Int>()

And there’s a series of onNext calls to test that your solution works:

input.onNext(0)
input.onNext(603)

input.onNext(2)

RxSwift - Reactive Programming with Swift Chapter 5: Filtering Operators

raywenderlich.com 112

input.onNext(1)

// Confirm that 7 results in "Contact not found," and then change to 2
and confirm that Junior is found
input.onNext(7)

"5551212".characters.forEach {
 if let number = (Int("\($0)")) {
 input.onNext(number)
 }
}

input.onNext(9)

Because this challenge is focused on using the filter operators, here’s code you can
use in the subscription’s .next event handler to take the result from
phoneNumber(from:) and print out the contact if found or else "Contact not found":

if let contact = contacts[phone] {
 print("Dialing \(contact) (\(phone))...")
} else {
 print("Contact not found")
}

Add your code right below the comment // Add your code here.

Once you’ve implemented your solution, follow the instructions in the comment
beginning // Confirm that 7 results in... to test that your solution works.

RxSwift - Reactive Programming with Swift Chapter 5: Filtering Operators

raywenderlich.com 113

6Chapter 6: Filtering Operators
in Practice
By Marin Todorov

In the previous chapter, you began your introduction to the functional aspect of
RxSwift. The first batch of operators you learned about helped you filter the
elements of an observable sequence.

As explained previously, the operators are simply methods on the Observable<E>
class, and some of them are defined on the ObservableType protocol, to which
Observable<E> adheres.

The operators operate on the elements of their Observable class and produce a new
observable sequence as a result. This comes in handy because, as you saw
previously, this allows you to chain operators, one after another, and perform
several transformations in sequence:

The above definitely looks great in theory. In this chapter, you’re going to try using
the filtering operators in a real-life app. In fact, you are going to continue working
on the Combinestagram app that you already know and love from Chapter 4,
“Observables and Subjects in Practice”.

Note: In this chapter, you will need understand the theory behind the filtering
operators in RxSwift. If you haven’t worked through Chapter 5, “Filtering
Operators", do that first and then come back to the current chapter.

raywenderlich.com 114

Without further ado, let’s have a look at putting filter, take, and company to
work!

Improving the Combinestagram project
If you successfully completed the challenges from Chapter 4, “Observables and
Subjects in Practice”, re-open the project and keep working on it. Otherwise, you
can use the starter project provided for this chapter.

It’s important that you have a correct solution to the challenge in Chapter 4, since it
plays a role in one of the tasks in this chapter. If you’re in doubt, just consult
UIAlertViewController+Rx.swift in the provided starter project and compare it
to your own solution.

In this chapter, you are going to work through series of tasks, which (surprise!) will
require you to use different filter operators. You’ll use different ones and see how
you can use counterparts like skip and take. You’ll also learn how to achieve similar
effect by using different operators, and finally, you will take care of a few of the
issues in the current Combinestagram project.

Note: Since this book has only covered a few operators so far, you will not
write the “best possible” code. For this chapter, don’t worry about best
practices or proper architecture yet, but instead focus on truly understanding
how to use the filtering operators. In this book, you’re going to slowly build up
towards writing good RxSwift code. It’s a process! :]

Refining the photos sequence
Currently the main screen of the app looks like this:

RxSwift - Reactive Programming with Swift Chapter 6: Filtering Operators in Practice

raywenderlich.com 115

The app works for the most part, but if you play with it for a while, you will
certainly notice some shortcomings. And, honestly, it could do with some new and
fresh features as well.

For example, once the user has added a batch of photos to their collage, you might
want to do more than simply regenerate the preview each time. At the point when
the photos observable completes, the user will be coming back to the main screen;
there might be things to turn on or off, labels to update, or more. You’ll take a look
next at how to “do more things” by sharing a subscription to the same Observable
instance.

Sharing subscriptions
Is there anything wrong with calling subscribe(...) on the same observable
multiple times? Turns out there might be!

I’ve already mentioned that observables are lazy, pull-driven sequences. Simply
calling a bunch of operators on an Observable doesn’t involve any actual work. The
moment you call subscribe(...) directly on an observable or on one of the
operators applied to it, that’s when the Observable livens up and starts producing
elements.

To do that, the observable calls its create closure each time you subscribe to it. in
some situations, this might produce some bedazzling effects!

Take a look at the code below; you can type it in a Playground if you want:

let numbers = Observable<Int>.create { observer in
 let start = getStartNumber()
 observer.onNext(start)
 observer.onNext(start+1)
 observer.onNext(start+2)
 observer.onCompleted()
 return Disposables.create()
}

The code creates an Observable<Int>, which produces a sequence of three
numbers: start, start+1, start+2.

Now see what getStartNumber() looks like:

var start = 0
func getStartNumber() -> Int {
 start += 1
 return start
}

RxSwift - Reactive Programming with Swift Chapter 6: Filtering Operators in Practice

raywenderlich.com 116

The function increments a variable and returns it; nothing can go wrong there. Or
can it? Add a subscription to numbers and see for yourself:

numbers
 .subscribe(onNext: { el in
 print("element [\(el)]")
 }, onCompleted: {
 print("-------------")
 })

You will get the exact output you expected. Yay!

element [1]
element [2]
element [3]

Copy and paste the exact same subscription code one more time though, and this
time the output is different.

element [1]
element [2]
element [3]

element [2]
element [3]
element [4]

The problem is that each time you call subscribe(...), this creates a new
Observable for that subscription — and each copy is not guaranteed to be the same
as the previous. And even when the Observable does produce the same sequence of
elements, it’s overkill to produce those same duplicate elements for each
subscription. There’s no point in doing that.

To share a subscription, you can use the share() operator. A common pattern in Rx
code is to create several sequences from the same source Observable by filtering
out different elements in each of the results.

You’ll use share in a practical example in Combinestagram to understand its
purpose a bit better.

Open the project and select MainViewController.swift. Scroll to actionAdd() and
replace the line photosViewController.selectedPhotos with:

let newPhotos = photosViewController.selectedPhotos
 .share()

newPhotos
 [here the existing code continues: .subscribe(...)]

RxSwift - Reactive Programming with Swift Chapter 6: Filtering Operators in Practice

raywenderlich.com 117

Now, instead of each subscription creating a new Observable instance like so:

You allow for multiple subscriptions to consume the elements that a single
Observable produces for all of them, like so:

Now you can create a second subscription to newPhotos and filter out some of the
elements you don’t need.

Before moving on though, it's important to learn a bit more about how share and its
cousins shareReplay(_) and shareReplayLatestWhileConnected() work.

share (and its specializations mentioned above) create a subscription only when the
number of subscribers goes from 0 to 1 (e.g. when there isn't a shared subscription
already). When a second, third and so on subscribers start observing the sequence,
share uses the already created subscription to share with them. If all subscriptions
to the shared sequence get disposed (e.g. there are no more subscribers), share
will dispose the shared sequence as well. If another subscriber starts observing,
share will create a new subscription for it just like described above.

Note: share() does not provide any of the subscriptions with values emitted
before the subscription takes effect. shareReply(_), on the other hand, keeps a
buffer of the last few emitted values and can provide them to new observers
upon subscription.

The rule of thumb about sharing operators is that it's safe to use share() with
observables that do not complete, or if you guarantee no new subscriptions will be
made after completion. If you want a piece of mind use shareReply(1) - you'll learn
more about in Chapter 8, “Transforming Operators in Practice.”

RxSwift - Reactive Programming with Swift Chapter 6: Filtering Operators in Practice

raywenderlich.com 118

Ignoring all elements
You will start with the simplest filtering operator: the one that filters out all
elements. No matter your value or type, ignoreElements() says “You shall not
pass!”

Recall that newPhotos emits a UIImage element each time the user selects a photo.
In this section, you are going to add a small preview of the collage in the top-left
corner of the screen — a navigation icon, if you will.

Since you would like to update that icon only once, when the user returns to the
main view controller, you need to ignore all UIImage elements and act only on
a .completed event.

ignoreElements() is the operator that lets you do just that: it discards all elements
of the source sequence and lets through only .completed or .error.

Inside actionAdd(), just under the last piece of code you added, insert the
following:

newPhotos
 .ignoreElements()
 .subscribe(onCompleted: { [weak self] in
 self?.updateNavigationIcon()
 })
 .addDisposableTo(photosViewController.bag)

This subscription to newPhotos will ignore all images and will run the onCompleted
closure when the user returns to the main view controller. To silence the Xcode
error, add the missing method to the MainViewController class:

private func updateNavigationIcon() {
 let icon = imagePreview.image?
 .scaled(CGSize(width: 22, height: 22))
 .withRenderingMode(.alwaysOriginal)

 navigationItem.leftBarButtonItem = UIBarButtonItem(image: icon,
 style: .done, target: nil, action: nil)
}

Run the app, and make a new collage. Each time you come back from adding
photos, your new subscription updates the mini-preview in the top-left corner.

RxSwift - Reactive Programming with Swift Chapter 6: Filtering Operators in Practice

raywenderlich.com 119

Filtering elements you don’t need
Of course, as great as ignoreElements() is, sometimes you will need to ignore just
some of the elements — not all of them.

In those cases, you will use filter(_:) to let some elements through and discard
others.

For example, you might have noticed that photos in portrait orientation do not fit
very well in the collages in Combinestagram.

RxSwift - Reactive Programming with Swift Chapter 6: Filtering Operators in Practice

raywenderlich.com 120

Of course, you could write smarter collage-building code... but in this chapter
you’re going to discard portrait photos and only include landscapes instead. That’s
one way to solve the issue. Pretend it’s a feature, and not a bug! :]

Scroll to the top of actionAdd() and alter the first subscription to newPhotos. For the
first operator, insert a filter:

newPhotos
 .filter { newImage in
 return newImage.size.width > newImage.size.height
 }
 [existing code .subscribe(...)]

Now each photo that newPhotos emits will have to pass a test before it gets to
subscribe(...). Your filter operator will check if the width of the image is larger
than its height, and if so, it will let it through. Photos in portrait orientation will be
discarded.

Run the app and try adding some photos from your device’s Camera Roll. No matter
how many times you tap on any photo in portrait orientation, it will not be added to
the collage.

Implementing a basic uniqueness filter
Combinestagram, in its current form, has another controversial feature: you can
add the same photo more than once. That doesn’t make for very interesting
collages, so in this section you’ll add some advanced filtering to prevent the user
from adding the same photo multiple times.

Note: There are better ways to achieve the required result than what you are
going to implement below. It is, however, a great exercise to build a solution
with your current RxSwift skill set.

Observables don’t provide a current state or a value history. Therefore, to check if
emitted elements are unique, you need to somehow keep track of them yourself.

Keeping an index of emitted images is not going to help you, since two UIImage
objects representing the same image aren’t equal. The best method is to store a
hash of the image data or the asset URL, but in this simple exercise, you are going
to use the byte length of the image. This will not guarantee the uniqueness of the
image’s index, but it’ll help you build a working solution without going too deep into
the implementation details.

Add a new property to the MainViewController class:

private var imageCache = [Int]()

RxSwift - Reactive Programming with Swift Chapter 6: Filtering Operators in Practice

raywenderlich.com 121

You will store the length in bytes of each image in this array, and will look it up for
each incoming image. Scroll further down and insert another filter, just below the
filter you added last:

[existing .filter {newImage in ...]
.filter { [weak self] newImage in
 let len = UIImagePNGRepresentation(newImage)?.count ?? 0
 guard self?.imageCache.contains(len) == false else {
 return false
 }
 self?.imageCache.append(len)
 return true
}
[existing code .subscribe(...)]

Inside the filter’s closure you get the PNG data for the new image and store its
byte count as the constant len. If imageCache contains a number with the same
value, you assume the image is not unique and discard it by returning false.

If the image is unique for the collage, you store its byte length in imageCache and
return true.

Note: In this example, you introduce state (namely imageCache) in your
otherwise very neat and lean code. Don’t worry too much about it: in Chapter
9, “Combining Operators” you will learn about the scan operator, which helps
you solve this kind of situations.

To nicely wrap up this feature, add the following to actionClear():

imageCache = []

This will clear your image cache and ensure the user can re-use the photos for their
next collage.

Run the app and give your new feature a try by tapping few times on the same
photo. You will see that the photo is added to the collage just once.

Congratulations — that was quite a complex filtering you just did!

Keep taking elements while a condition is met
One of the “best” bugs in Combinestagram is that the + button is disabled if you
add six photos, which prevents you from adding any more images. But if you are in
the photos view controller, you can add as many as you wish. There ought to be a
way to limit those, right?

Well, believe it or not, you can easily filter all elements after a certain condition has
been met by using the takeWhile(_) operator. You provide a Boolean condition, and
takeWhile(_) discards all elements when this condition evaluates to false.

RxSwift - Reactive Programming with Swift Chapter 6: Filtering Operators in Practice

raywenderlich.com 122

Scroll again towards the top of actionAdd(), find the line newPhotos of the first
subscription and add the following code just below that line:

newPhotos
 .takeWhile { [weak self] image in
 return (self?.images.value.count ?? 0) < 6
 }
 [existing code: filter {...}]

takeWhile(...) will let photos through as long as the total number of images in the
collage is less than 6. You use the ?? coalescing operator to default to 0 if self is
nil. This is to satisfy the compiler and avoid force-unwrapping self.

Run the app and try to add lots photos to the collage. Once you add 6 photos, you
won’t be able to add any more. Mission accomplished! :]

Note: In the code above you access a property of your view controller directly,
which is a somewhat controversial practice in reactive programming. In
Chapter 9 “Combining Operators” you will learn how to combine multiple
observable sequences so that you don’t have to use the view controller to keep
state.

Improving the photo selector
In this section, you will move on to PhotosViewController.swift. First, you are
going to build a new custom Observable, and then (surprise!) filter it in different
ways to improve the user experience on that screen.

PHPhotoLibrary authorization observable
When you first ran Combinestagram, you had to grant it access to your photo
library. Do you remember if the user experience was flawless in that moment?
Probably not. You were probably overwhelmed at the time with operators,
observable sequences, and the like.

The very first time your app tries to access the device’s photo library, the OS will
asynchronously ask for the user’s permission. That happens just once: the very first
time you run the app. Therefore, for this section you will need to reset the contents
of your Simulator in order to recreate that first-run state for your app.

Note: Be sure you don’t need any of the contents of the Simulator before
resetting it! If you aren’t sure, work through the rest of the chapter without
resetting your Simulator.

RxSwift - Reactive Programming with Swift Chapter 6: Filtering Operators in Practice

raywenderlich.com 123

If you decide to follow the chapter exactly, do the following: bring the iPhone
Simulator to the front. From its main menu, choose Reset Content and
Settings..., then click Reset. This will restore your Simulator to its initial state. (In
other words it will delete all the apps you were working on and revert to the default
settings.)

Run Combinestagram and tap on +; the access alert box will pop up. When you tap
OK, you’ll see that the photos don’t show up automatically. If you go back to the
main view controller and tap + again, the photos appear. Hm...

Let’s see what the problem is and how can you solve it. In PhotosViewController,
you load all photos in a property named photos. There currently is no way to reload
photos once the access has been granted.

Create a new source file and name it PHPhotoLibrary+rx.swift. Add the following
inside:

import Foundation
import Photos
import RxSwift

extension PHPhotoLibrary {
 static var authorized: Observable<Bool> {
 return Observable.create { observer in

 return Disposables.create()
 }
 }
}

This adds a new Observable<Bool> property named authorized on PHPhotoLibrary.
Nothing you haven’t done before.

This observable can go two separate ways, depending on whether the user has
already granted access:

RxSwift - Reactive Programming with Swift Chapter 6: Filtering Operators in Practice

raywenderlich.com 124

Let’s recreate the logic from the flowchart above in code. Inside the create closure
in your code, insert the following just above the line: return Disposables.create():

DispatchQueue.main.async {
 if authorizationStatus() == .authorized {
 observer.onNext(true)
 observer.onCompleted()
 } else {
 observer.onNext(false)
 requestAuthorization { newStatus in
 observer.onNext(newStatus == .authorized)
 observer.onCompleted()
 }
 }
}

If the user has previously granted access, the code instantly emits a true value.
Otherwise, the code asks for user permission and emits the result: true if access
was granted, or false in any other case.

A note on the usage of DispatchQueue.main.async {...}: generally, your
observables should not block the current thread because that could block your UI,
prevent other subscriptions, or have other nasty consequences.

Now that you’ve built a fancy new observable sequence, it’s time to divide and
conquer... erm... I mean filter and observe.

Reload the photos collection when access is granted
You have two scenarios in which you end up having access to the photo library:

• On a first run of the app, the user taps OK in the alert box:

• On any subsequent run of the app if access has been previously granted:

The first thing you are going to do is subscribe to PHPhotoLibrary.authorized. true
can only be the last element in that particular sequence, so whenever you get a
true element that means you can reload the collection and display the Camera Roll
photos onscreen.

RxSwift - Reactive Programming with Swift Chapter 6: Filtering Operators in Practice

raywenderlich.com 125

Open PhotosViewController.swift and in viewDidLoad() add:

let authorized = PHPhotoLibrary.authorized
 .share()

Here you create a new shareable observable and name it authorized. You do this
because you will create two separate subscriptions to that Observable.

As this section’s task, you will wait for a true element. When you encounter one,
you will reload the photos and the collection view. Add this code to viewDidLoad():

authorized
 .skipWhile { $0 == false }
 .take(1)
 .subscribe(onNext: { [weak self] _ in
 self?.photos = PhotosViewController.loadPhotos()
 DispatchQueue.main.async {
 self?.collectionView?.reloadData()
 }
 })
 .addDisposableTo(bag)

In the code above, you use two filtering operators one after another. First you use
skipWhile(_:) to ignore all false elements. In case the user doesn’t grant access,
your subscription’s onNext code will never get executed.

Secondly, you chain another operator: take(1). Whenever a true comes through
the filter, you take that one element and ignore everything else after it.

In this particular sequence, true is always the last element so there is no screaming
need to use take(1). But using a take(1) clearly expresses your intention, and if
the permission mechanism changes later on, your subscription will still do exactly
what you wanted: on the first true element, it will reload the collection view and
ignore anything that comes afterwards.

Inside the subscribe(...) closure you switch to the main thread before reloading
the collection view. Why do you need to do that? If you look up the source code for
PHPhotoLibrary.authorized, here’s where you emit the true value after the user has
tapped OK to grant access:

requestAuthorization { newStatus in
 observer.onNext(newStatus == .authorized)
}

requestAuthorization(_:) doesn’t guarantee on which thread your completion
closure will be executed, so it might fall on a background thread. You call
onNext(_:), which invokes all the subscription code to the observable on the same
thread. Finally, in your subscription you call self?.collectionView?.reloadData(),
and if you’re still on the background thread, UIKit will crash. When you update the
UI, you need to be sure you’re on the main thread.

RxSwift - Reactive Programming with Swift Chapter 6: Filtering Operators in Practice

raywenderlich.com 126

Note: Threading is always important in asynchronous programming, and if
anything, RxSwift makes it easier to tame your threads. In RxSwift code you
aren't encouraged to use GCD to switch threads, you should use Schedulers
instead. You will learn more about this in Chapter 15, “Intro to Schedulers and
Threading in Practice”.

Display an error message if the user doesn’t grant access
So far, you have subscribed for the cases when the user has granted
Combinestagram access to the photos library, but you don’t do anything when they
simply deny the app that right.

Here are all the possible outcomes when the app doesn’t have access:

• On the first run of the app, the user taps on Don’t Grant in the access alert box:

• On any subsequent run if the user has previously denied access:

The sequence elements are the same in both cases because they fall in the same
code path. What you can see from the two sequences above is a pattern:

• You can always ignore the first element from the sequence, since it’s never the
final one.

• You then check if the last element in the sequence is false. In that case, show an
error message.

RxSwift - Reactive Programming with Swift Chapter 6: Filtering Operators in Practice

raywenderlich.com 127

It seems easy enough! Add the following code to viewDidLoad():

authorized
 .skip(1)
 .takeLast(1)
 .filter { $0 == false }
 .subscribe(onNext: { [weak self] _ in
 guard let errorMessage = self?.errorMessage else { return }
 DispatchQueue.main.async(execute: errorMessage)
 })
 .addDisposableTo(bag)

Note: There are different ways to write the same code. For example filter {
$0 == false } could be written more concisely as filter { !$0 }. Or simply
filter(!). All of these achieve the same effect, but in this book we will use
the easiest-to-read format to make it easier for beginners to parse the code.

Now you have a bit of an operator overkill! :] Using skip, takeLast and filter
together expresses best what you intend to do. However, it feels a bit too much,
given that in this particular situation you might not need all of them.

For example, if you are using takeLast(1), doesn’t that imply you are going to skip
the first element anyway? And if you are using filter to check for a false element,
is it really necessary to take the last one?

As with all big questions in life - the answer is "it depends" :trollface:

With the current implementation of PHPhotosLibrary.authorized, the code below
will suffice:

authorized
 .skip(1)
 .filter { $0 == false }

You always know there will be maximum of two elements, so you skip the first and
filter the following ones. But this code would also have been enough:

authorized
 .takeLast(1)
 .filter { $0 == false }

This way you ignore everything before the last element and check if that last one is
false. This is also a fine solution.

You can even involve some other filtering operators; you can replace skip and
takeLast with distinctUntilChanged(). For the given possible elements, you can do
the following:

authorized
 .distinctUntilChanged()
 .takeLast(1)

RxSwift - Reactive Programming with Swift Chapter 6: Filtering Operators in Practice

raywenderlich.com 128

 .filter { $0 == false }

With this, you will achieve exactly the same effect, given the order and possible
values of the current sequence. For other sequences, all of the code examples
above aren't guaranteed to produce the same result.

So in fact, you can shorten your subscription code quite a bit. But that’s if you are
sure the sequence logic will never change. What about when the next iOS version
comes out? Can you guarantee that the logic behind grant-acecss-alert-box will
not change? Probably you can’t (except if you’re on the UIKit team, and in that case
- hello, we have to talk!)

So, keeping skip, takeLast, and filter might be the best way to ensure that the
app logic isn’t going to break after the next iOS version is released. Or you can
keep it as-is, and make the logic of your authorized observable more deterministic
so that the subscription code can be simpler.

As I said, it depends! ¯_()_/¯

But for now, let’s focus on clearing that annoying error in Xcode that says
errorMessage is not found. You can add that method anywhere in
PhotosViewController:

private func errorMessage() {
 alert(title: "No access to Camera Roll",
 text: "You can grant access to Combinestagram from the Settings app")
 .subscribe(onDisposed: { [weak self] in
 self?.dismiss(animated: true, completion: nil)
 _ = self?.navigationController?.popViewController(animated: true)
 })
 .addDisposableTo(bag)
}

You use alert(title:description:) from Challenge 1 of Chapter 4 to show an alert
box. If you implemented alert(title:description:) as required, the resulting
Observable will complete once the user taps the alert button. This will dispose the
observable and hide the alert, and that ultimately will trigger your onDisposed code
from above and pop out the photos controller.

You can try that new feature by doing the following: open the Settings app in your
Simulator, scroll to the bottom, tap on Combinestagram, then turn off the Photos
access switch.

RxSwift - Reactive Programming with Swift Chapter 6: Filtering Operators in Practice

raywenderlich.com 129

Then run the app again, and tap on the + button to trigger the complete sequence
of checking for the current access authorization, invoking
requestAuthorization(_:), and ultimately popping that alert on screen:

Isn’t it fascinating that the complete logic of authorization checks and UI updates is
made so simple through the use of observables? I certainly find it fascinating!

Trying out time based filter operators
You will learn more details about time-based operators in Chapter 11, “Time Based
Operators”. However, some of those operators are also filtering operators. That’s
why you are going to try using a couple of them in this chapter.

Time-based operators use something called a Scheduler. Schedulers are an
important concept that you will learn about later in this book. For the examples
below, you will use MainScheduler.instance, which is a shared scheduler object that
will, alongside its other features, run your code on the main thread of your app.

Without going into more details, let’s have a look at two short examples of filtering
based on time.

Completing a subscription after given time interval
Right now if the user has denied access to their photo library they see the No
access alert box and they have to tap on Close to go back.

RxSwift - Reactive Programming with Swift Chapter 6: Filtering Operators in Practice

raywenderlich.com 130

It’s a common pattern for messages that don’t necessarily require user input to
disappear on their own after a while. In this section, you are going to alter your
code so that you show the alert box for a maximum of 5 seconds. If the user
doesn’t tap Close themselves within that time limit, you will automatically hide the
alert and dispose of the subscription.

Open PhotosViewController.swift and scroll to that last method you added in
there: errorMessage(). Directly after the line alert(title: ..., description: ...),
insert the following:

.take(5.0, scheduler: MainScheduler.instance)
[existing code: .subscribe(onDisposed: ...]

take(_:scheduler:) is a filtering operator much like take(1) or takeWhile(...).
take(_:scheduler:) takes elements from the source sequence for the given time
period. Once the time interval has passed, the resulting sequence completes.

Now your alert box observable is going to live, at most, for five seconds (if not less)
and then it will complete, thus disposing of the subscription, hiding the alert box,
and popping out the current controller as per your subscription code.

In the event the user taps Close, that will complete the sequence immediately
without waiting for 5 seconds and will have the same effect: hide the alert and pop
the current controller out.

Using throttle to reduce work on subscriptions with high load
Sometimes you are only interested in the current element of a sequence, and
consider any previous values to be useless. For a real-life example, switch to
MainViewController.swift and find viewDidLoad().

Consider this part of the existing code:

images.asObservable()
 .subscribe(onNext: { [unowned self] photos in
 self.imagePreview.image = UIImage.collage(images: photos,
 size: self.imagePreview.frame.size)
 })
 .addDisposableTo(bag)

Each time the user selects a photo, the subscription receives the new photo
collection and produces a collage. As soon as you receive the new photo collection,
the previous one is useless. However, if the user taps on multiple photos quickly in
succession, the subscriptions will produce a new collage for each incoming element
nonetheless. Producing all those intermediate collages is wasted effort; each
incoming element renders the work put into creating the preceding collage futile.

But how can you know if there will be a new element incoming shortly in the future
or not?

RxSwift - Reactive Programming with Swift Chapter 6: Filtering Operators in Practice

raywenderlich.com 131

You will be surprised how often you will find yourself in the situation where you
need to solve this exact problem: “if there are many incoming elements one after
the other, take only the last one.” Since it’s such a a common pattern of
asynchronous programming, there is a special Rx operator for it.

Directly after images.asObservable() in the first subscription in viewDidLoad() insert
the following:

.throttle(0.5, scheduler: MainScheduler.instance)
[existing code: .subscribe(onNext: ...]

throttle(_:scheduler:) filters any elements followed by another element within the
specified time interval.

So if the user selects a photo and taps another one after 0.2 seconds, throttle will
filter the first element out and only let the second one through. This will save you
the work to build the first intermediate collage, which will be immediately outdated
by the second one.

Of course, throttle also works for more than one element that comes in close
succession. If the user selects five photos, tapping them quickly one after the other,
throttle will filter the first four and let only the 5th element through, as long as
there isn’t another element following it in less than 0.5 seconds.

Here are just some of the many situations in which you can use throttle:

• You have a search text field subscription, which sends its current text to a server
API. By using throttle, you can let the user quickly type in words and only send
a request to your server after the user has finished typing.

• You present a modal view controller when the user taps a bar button. You can
prevent double taps, which present the modal controller two times, by throttling
the tap events by only accepting the last tap in double or triple tap sequences.

• The user is dragging their finger across the screen and you are interested only in
the spots where they stop for a moment. You can throttle the current touch

RxSwift - Reactive Programming with Swift Chapter 6: Filtering Operators in Practice

raywenderlich.com 132

location and only consider only the elements where the current location stops
changing.

throttle(_:scheduler:) is incredibly useful in situations when you are given too
much input. I would love to have a throttle operator in real life, but I can dream,
can’t I?

With this last exercise, you have wrapped up development on Combinestagram and
completed your introduction to filtering operators.

You also tapped a little bit into upcoming material in this book. You’ve seen that
taming threads is a common pattern, and I’m sure you are looking forward to the
operators that will allow you to switch threads as you work on your subscriptions.

Another topic you peeked into was time-based operators. No worries though; since
RxSwift is an asynchronous event-based framework, time is always on your side.
And you can do more with time operators than just filtering – but you will learn
more about that soon enough.

Before moving on, take time to reflect on all the code you wrote in
Combinestagram, and how it simplified some of the common asynchronous
programming patterns you had to deal with.

Challenges
Challenge 1: Combinestagram’s source code
Your challenge is to clean up the code in your project. For example, right in that last
spot where you added code in MainViewController.swift’s viewDidLoad(), there
are two subscriptions to the same observable. Clean that up by using a shared
sequence.

Additionally, look at all subscriptions and decide if you want to replace some
operators, or even remove some of them.

Generally, take it easy and don’t push yourself too hard. Operators can be
overwhelming if you try to take them all in at once. When you feel ready, move on
to the next chapter where you will be introduced to the poster-child of reactive
programming map and its weird cousin flatMap.

RxSwift - Reactive Programming with Swift Chapter 6: Filtering Operators in Practice

raywenderlich.com 133

7Chapter 7: Transforming
Operators
By Scott Gardner

Before you decided to buy this book and commit to learning RxSwift, you might
have felt that RxSwift was some esoteric library; elusive, yet strangely compelling
you to master it. And maybe that reminds you of when you first started learning
iOS or Swift. Now that you’re up to Chapter 7, you’ve come to realize that RxSwift
isn’t magic. It’s a carefully constructed API that does a lot of heavy lifting for you
and streamlines your code. You should be feeling good about what you’ve learned
so far.

In this chapter, you’re going to learn about one of the most important categories of
operators in RxSwift: transforming operators. You’ll use transforming operators all
the time, to prep data coming from an observable for use by your subscriber. Once
again, there are parallels between transforming operators in RxSwift and the Swift
standard library, such as map(_:) and flatMap(_:). By the end of this chapter, you’ll
be transforming all the things!

raywenderlich.com 134

Getting started
The starter project for this chapter is named RxSwiftPlayground. Once you’ve
opened it and done an initial build, you’re ready for action. The same
unicodeDescription(lowercased:) helper function exists in the SupportCode.swift
file in Sources, which you can review by twisting down the main playground page,
and refer back to Chapter 5 for a discussion.

Transforming elements
Observables emit elements individually, but you will frequently want to work with
collections, such as when you’re binding an observable to a table or collection view,
which you’ll learn how to do later in the book. A convenient way to transform an
observable of individual elements into an array of all those elements is by using
toArray. As depicted in this marble diagram, toArray will convert an observable
sequence of elements into an array of those elements, and emit a .next event
containing that array to subscribers.

Add this new example to your playground:

example(of: "toArray") {

 let disposeBag = DisposeBag()

 // 1
 Observable.of("A", "B", "C")
 // 2
 .toArray()
 .subscribe(onNext: {
 print($0)
 })
 .addDisposableTo(disposeBag)
}

RxSwift - Reactive Programming with Swift Chapter 7: Transforming Operators

raywenderlich.com 135

Here’s what you just did:

1. Create an observable of letters.

2. Use toArray to transform the elements in an array.

An array of the letters is printed.

--- Example of: toArray ---
["A", "B", "C"]

RxSwift’s map operator works just like Swift’s standard map, except it operates on
observables. In the marble diagram, map takes a closure that multiplies each
element by 2.

Add this new example to your playground:

example(of: "map") {

 let disposeBag = DisposeBag()

 // 1
 let formatter = NumberFormatter()
 formatter.numberStyle = .spellOut

 // 2
 Observable<NSNumber>.of(123, 4, 56)
 // 3
 .map {
 formatter.string(from: $0) ?? ""
 }
 .subscribe(onNext: {
 print($0)
 })
 .addDisposableTo(disposeBag)
}

Here’s the play-by-play:

1. You create a number formatter to spell out each number.

RxSwift - Reactive Programming with Swift Chapter 7: Transforming Operators

raywenderlich.com 136

2. You create an observable of NSNumbers (so that you don't have to convert
integers when using the formatter next).

3. You use map, passing a closure that gets and returns the result of using the
formatter to return the number's spelled out string or an empty string if that
operation returns nil.

In Chapter 5, you learned about filtering operators, some of them with withIndex
variations. The same holds true for transforming operators. mapWithIndex also
passes the element’s index to its closure. In this marble diagram, mapWithIndex will
transform the element by multiplying it by 2 if its index is greater than 1, otherwise
it will pass through the element as-is, so only the 3rd element is transformed.

Now add this new example to your playground to implement the example in the
marble diagram:

example(of: "mapWithIndex") {

 let disposeBag = DisposeBag()

 // 1
 Observable.of(1, 2, 3, 4, 5, 6)
 // 2
 .mapWithIndex { integer, index in
 index > 2 ? integer * 2 : integer
 }
 .subscribe(onNext: {
 print($0)
 })
 .addDisposableTo(disposeBag)
}

RxSwift - Reactive Programming with Swift Chapter 7: Transforming Operators

raywenderlich.com 137

Quite simply:

1. You create an observable of integers.

2. You use mapWithIndex, and if the element’s index is greater than 2, multiply it by
2 and return it, else return it as is.

Only the fourth element onward will be transformed and sent to the subscriber to
be printed.

--- Example of: mapWithIndex ---
1
2
3
8
10
12

You may have wondered at some point, “How do I work with observables that are
properties of observables?” Enter the matrix.

Transforming inner observables
Add the following code to your playground, which you’ll use in the upcoming
examples:

struct Student {

 var score: Variable<Int>
}

Student is structure that has a score property that is a Variable<Int>. RxSwift
includes a few operators in the flatMap family that allow you to reach into an
observable and work with its observable properties. You’re going to learn how to
use the two most common ones here.

Note: A heads up before you begin: these operators have elicited more than
their fair share of questions (and groans and moans) from newcomers to
RxSwift. They may seem complex at first, but you are going to walk through
detailed explanations of each, so by the end of section you’ll be ready to put
these operators into action with confidence.

The first one you’ll learn about is flatMap. The documentation for flatMap describes
that it “Projects each element of an observable sequence to an observable sequence
and merges the resulting observable sequences into one observable sequence.”
Whoa! That description, and the following marble diagram, may feel a bit
overwhelming at first. Read through the play-by-play explanation that follows,
referring back to the marble diagram.

RxSwift - Reactive Programming with Swift Chapter 7: Transforming Operators

raywenderlich.com 138

The easiest way to follow what’s happening in this marble diagram is to take each
path from the source observable (the top line) all the way through to the target
observable that will deliver elements to the subscriber (the bottom line). The source
observable is of an object type that has a value property that itself is an observable
of type Int. It’s value property’s initial value is the number of the object, that is,
O1’s initial value is 1, O2’s is 2, and O3’s is 3.

Starting with O1, flatMap receives the object and reaches in to access its value
property and multiply it by 10. It then projects the transformed elements from O1
onto a new observable (the 1st line below flatMap just for O1), and that observable
is flattened down to the target observable that will deliver elements to the
subscriber (the bottom line).

Later, O1’s value property changes to 4, which is not visually represented in the
marble diagram (otherwise the diagram would become even more congested). But
the evidence that O1’s value has changed is that it is transformed, projected onto
the existing observable for O1 as 40, and then flattened down to the target
observable. This all happens in a time-linear fashion.

The next value in the source observable, O2, is received by flatMap, its initial value
2 is transformed to 20, projected onto a new observable for O2, and then flattened
down to the target observable. Later, O2’s value is changed to 5. It is transformed to
50, projected, and flattened to the target observable.

Finally, O3 is received by flatMap, its initial value of 3 is transformed, projected, and
flattened.

RxSwift - Reactive Programming with Swift Chapter 7: Transforming Operators

raywenderlich.com 139

flatMap projects and transforms an observable value of an observable, and then
flattens it down to a target observable. Time to go hands-on with flatMap and really
see how to use it. Add this example to your playground:

example(of: "flatMap") {

 let disposeBag = DisposeBag()

 // 1
 let ryan = Student(score: Variable(80))
 let charlotte = Student(score: Variable(90))

 // 2
 let student = PublishSubject<Student>()

 // 3
 student.asObservable()
 .flatMap {
 $0.score.asObservable()
 }
 // 4
 .subscribe(onNext: {
 print($0)
 })
 .addDisposableTo(disposeBag)
}

Here’s the play-by-play:

1. You create two instances of Student, ryan and charlotte.

2. You create a source subject of type Student.

3. You use flatMap to reach into the student subject and access its score, which is
a Variable, so you call asObservable() on it. You don’t modify score in any way.
Just pass it through.

4. You print out .next event elements in the subscription.

Nothing is printed yet. Add this code to the example:

student.onNext(ryan)

As a result, ryan’s score is printed out.

--- Example of: flatMap ---
80

Now change ryan’s score by adding this code to the example:

ryan.score.value = 85

RxSwift - Reactive Programming with Swift Chapter 7: Transforming Operators

raywenderlich.com 140

ryan’s new score is printed.

85

Next, add a different Student instance (charlotte) onto the source subject by
adding this code:

student.onNext(charlotte)

flatMap does its thing and charlotte’s score is printed.

90

Here’s where it gets interesting. Change ryan’s score by adding this line of code:

ryan.score.value = 95

ryan’s new score is printed.

95

This is because flatMap keeps up with each and every observable it creates, one for
each element added onto the source observable. Now change charlotte’s score by
adding the following code, just to verify that both observables are being monitored
and changes projected:

charlotte.score.value = 100

Sure enough, her new score is printed out.

100

To recap, flatMap keeps projecting changes from each observable. There will be
times when you want this behavior. And there will be times when you only want to
keep up with the latest element in the source observable. So what do you think is
the name of the flatMap operator that only keeps up with the latest element?

flatMapLatest is actually a combination of two operators, map and switchLatest.
You’re going to learn about switchLatest later in the book in the “Combining
Operators” chapter, but you’re getting a sneak peek here. switchLatest will produce
values from the most recent observable, and unsubscribe from the previous
observable.

So, flatMapLatest “Projects each element of an observable sequence into a new
sequence of observable sequences and then transforms an observable sequence of
observable sequences into an observable sequence producing values only from the
most recent observable sequence.” Wowza! Take a look at the marble diagram of
flatMapLatest.

RxSwift - Reactive Programming with Swift Chapter 7: Transforming Operators

raywenderlich.com 141

flatMapLatest works just like flatMap to reach into an observable element to access
its observable property, it applies a transform and projects the transformed value
onto a new sequence for each element of the source observable. Those elements
are flattened down into a target observable that will provide elements to the
subscriber. What makes flatMapLatest different is that it will automatically switch to
the latest observable and unsubscribe from the the previous one.

In the above marble diagram, O1 is received by flatMapLatest, it transforms its
value to 10, projects it onto a new observable for O1, and flattens it down to the
target observable. Just like before. But then flatMapLatest receives O2 and it does
its thing, switching to O2’s observable because it’s now the latest.

When O1’s value changes, flatMapLatest actually still does the transform
(something to be mindful of if your transform is an expensive operation), but then it
ignores the result. The process repeats when O3 is received by flatMapLatest. It
then switches to its sequence and ignores the previous one (O2). The result is that
the target observable only receives elements from the latest observable.

Add the following example to your playground, which is a copy/paste of the
previous example except for changing flatMap to flatMapLatest:

example(of: "flatMapLatest") {

 let disposeBag = DisposeBag()

 let ryan = Student(score: Variable(80))
 let charlotte = Student(score: Variable(90))

 let student = PublishSubject<Student>()

 student.asObservable()
 .flatMapLatest {

RxSwift - Reactive Programming with Swift Chapter 7: Transforming Operators

raywenderlich.com 142

 $0.score.asObservable()
 }
 .subscribe(onNext: {
 print($0)
 })
 .addDisposableTo(disposeBag)

 student.onNext(ryan)

 ryan.score.value = 85

 student.onNext(charlotte)

 // 1
 ryan.score.value = 95

 charlotte.score.value = 100
}

Only one thing to point out here that’s different from the previous example of
flatMap:

1. Changing ryan’s score here will have no effect. It will not be printed out. This is
because flatMapLatest has already switched to the latest observable, for
charlotte.

--- Example of: flatMapLatest ---
80
85
90
100

So you may be wondering when would you use flatMap for flatMapLatest? Probably
the most common use case is using flatMapLatest with networking operations. You
will go through examples of this later in the book, but for a simple example,
imagine that you’re implementing a type-ahead search. As the user types each
letter, s, w, i, f, t, you’ll want to execute a new search and ignore results from the
previous one. flatMapLatest is how you do that.

Challenges
Completing challenges helps drive home what you learned in the chapter. There are
starter and finished versions of the challenge in the exercise files download.

Challenge 1: Modify the challenge from Chapter 5 to take
alpha-numeric characters
In Chapter 5’s challenge, you created a phone number lookup using filtering
operators. You added the code necessary to look up a contact based on a 10-digit
number entered by the user.

RxSwift - Reactive Programming with Swift Chapter 7: Transforming Operators

raywenderlich.com 143

input
 .skipWhile { $0 == 0 }
 .filter { $0 < 10 }
 .take(10)
 .toArray()
 .subscribe(onNext: {
 let phone = phoneNumber(from: $0)
 if let contact = contacts[phone] {
 print("Dialing \(contact) (\(phone))...")
 } else {
 print("Contact not found")
 }
 })
 .addDisposableTo(disposeBag)

Your goal for this challenge is to modify this implementation to be able to take
letters as well, and convert them to their corresponding number based on a
standard phone keypad (abc is 2, def is 3, and so on).

The starter project includes a helper closure to do the conversion:

let convert: (String) -> UInt? = { value in
 if let number = UInt(value),
 number < 10 {
 return number
 }

 let convert: [String: UInt] = [
 "abc": 2, "def": 3, "ghi": 4,
 "jkl": 5, "mno": 6, "pqrs": 7,
 "tuv": 8, "wxyz": 9
]

 var converted: UInt? = nil

 convert.keys.forEach {
 if $0.contains(value.lowercased()) {
 converted = convert[$0]
 }
 }

 return converted
}

And there are closures to format and “dial” the contact if found (really, just print it
out):

let format: ([UInt]) -> String = {
 var phone = $0.map(String.init).joined()

 phone.insert("-", at: phone.index(
 phone.startIndex,
 offsetBy: 3)
)

 phone.insert("-", at: phone.index(

RxSwift - Reactive Programming with Swift Chapter 7: Transforming Operators

raywenderlich.com 144

 phone.startIndex,
 offsetBy: 7)
)

 return phone
}

let dial: (String) -> String = {
 if let contact = contacts[$0] {
 return "Dialing \(contact) (\($0))..."
 } else {
 return "Contact not found"
 }
}

These closures allow you to move the logic out of the subscription, where it really
doesn’t belong. So what’s left to do then? You’ll use multiple maps to perform each
transformation along the way. You’ll use skipWhile just like you did in Chapter 5 to
skip 0s at the beginning.

You’ll also need to handle the optionals returned from convert. To do so, you can
use a handy operator from the RxSwiftExt repo created by fellow author Marin:
unwrap. RxSwiftExt includes useful operators that are not part of the core RxSwift
library. The unwrap operator replaces the need to do this:

Observable.of(1, 2, nil, 3)
 .flatMap { $0 == nil ? Observable.empty() : Observable.just($0!) }
 .subscribe(onNext: {
 print($0)
 })
 .addDisposableTo(disposeBag)

With unwrap, you can just do this:

Observable.of(1, 2, nil, 3)
 .unwrap()
 .subscribe(onNext: {
 print($0)
 })
 .addDisposableTo(disposeBag)

The starter project also includes code to test your solution. Just add your solution
right below the comment // Add your code here.

RxSwift - Reactive Programming with Swift Chapter 7: Transforming Operators

raywenderlich.com 145

8Chapter 8: Transforming
Operators in Practice
By Marin Todorov

In the previous chapter, you learned about the real workhorses behind reactive
programming with RxSwift: the map and flatMap dynamic duo. Of course, those
aren’t the only two operators you can use to transform observables, but a program
can rarely do without using those two at least few times. The more experience you
gain with these two, the better (and shorter) your code will be.

You already got to play around with transforming operators in the safety of a Swift
playground, so hopefully you’re ready to take on a real-life project. Like in other "...
in practice" chapters, you will get a starter project, which includes as much non-Rx
code as possible, and you will complete that project by working through a series of
tasks. In the process, you will learn more about map and flatMap, and in which
situations you should use them in your code.

Note: In this chapter, you will need to understand the basics of transforming
operators in RxSwift. If you haven’t worked through Chapter 7, “Transforming
Operators”, do that first and then come back to this chapter.

Without further ado, it’s time to get this show started!

raywenderlich.com 146

Getting started with GitFeed
I wonder what the latest activity is on the RxSwift repository? In this chapter, you’ll
build a project to tell you this exact thing.

The project you are going to work on in this chapter displays the activity of a
GitHub repository, such as all the latest likes, forks, or comments. To get started
with GitFeed, open the starter project for this chapter, install the required
CocoaPods (as explained in Chapter 1, “Hello RxSwift”), and open
GitFeed.xcworkspace.

The app is a simple navigation controller project and features a single table view
controller in which you will display the latest activity fetched from GitHub’s JSON
API.

Note: The starter project is set to display the activity of https://github.com/
ReactiveX/RxSwift, but if you’d like to change it to any other repository of your
choice, feel free.

Run the app and you will see the empty default screen:

There’s nothing too complex going on right now, but you’ll soon have this whole
setup ablaze! :]

The project will feature two distinct storylines:

• The main plot is about reaching out to GitHub’s JSON API, receiving the JSON
response, and ultimately converting it into a collection of objects.

RxSwift - Reactive Programming with Swift Chapter 8: Transforming Operators in Practice

raywenderlich.com 147

• The subplot is persisting the fetched objects to the disk and displaying them in
the table before the “fresh” list of activity events is fetched from the server.

You will see that these two complement each other perfectly — and there are plenty
of opportunities to use both map and flatMap to build what’s required.

Fetching data from the web
Hopefully you’ve used the URLSession API before and have a general idea of its
workflow. In summary: you create a URLRequest containing a web URL and
parameters, then send it off to the Internet. After a bit, you receive the server
response.

With your current knowledge of RxSwift, it won’t be difficult to add a reactive
extension to the URLSession class. Since you will specifically look as adding a proper
reactive extension to URLSession in Chapter 17, “Creating a Custom Reactive
Extension” ,in this chapter you will simply use a solution boxed with RxCocoa —
RxSwift’s companion library.

If you peek into GitFeed’s Podfile, you will notice that you import two different
CocoaPods: RxSwift and RxCocoa. What gives?

RxCocoa is a library based on RxSwift, which implements many helpful APIs to aid
with developing against RxSwift on Apple’s platforms. In an effort to keep RxSwift
itself as close as possible to the common Rx API shared between all
implementations such as RxJS, RxJava, and RxPython, all “extra functionality” is
separated into RxCocoa. You will learn about it in more detail in Chapters 12 and
13.

You will use the default RxCocoa URLSession extension to quickly fetch JSON from
GitHub’s API in this chapter.

RxSwift - Reactive Programming with Swift Chapter 8: Transforming Operators in Practice

raywenderlich.com 148

Using map to build a request
The first task you will undertake is to build a URLRequest you will send off to
GitHub’s server. You will follow a reactive approach that might not make sense
immediately, but don’t worry — when you re-visit that part of the project later on,
you will appreciate it!

Open ActivityController.swift and peek inside. You configure the view controller’s
UI in viewDidLoad(), and when you’re finished, you call refresh(). refresh() in turn
calls fetchEvents(repo:) and hands over to it the repo name "ReactiveX/RxSwift".

It is in fetchEvents(repo:) where you will add most of your code in this section. To
get started, add the following:

let response = Observable.from([repo])

To start building the web request, you begin with a simple string, which is the
repository’s full name. The idea to start with a string instead of directly building a
URLRequest is to be flexible with the observable’s input. This means you won’t have
a lot of issues if you decide to change which repo you work with — which is what
you will do in the Challenges section.

Next, take the address string and create the fully qualified URL of the activity API
endpoint:

.map { urlString -> URL in
 return URL(string: "https://api.github.com/repos/\(urlString)/events")!
}

You use a couple of shortcuts to create the full URL by using a hard-coded string
and force unwrapping the result. You end up with the URL to access the latest
events’ JSON.

Have you noticed that you specified the closure’s output type? Did you really have
to do that? The obvious answer is no; usually you don’t need to explicitly spell out
closure input and output types. You can usually leave it to the compiler to figure
those out.

However, especially in code where you have several map and/or flatMap operators
chained together, you might need to help the compiler out. It will sometimes get
lost in figuring out the proper types, but you can aid it by at least spelling out the
output types. If you see an error about mismatched or missing types, you can add
more type information to your closures and it’ll probably fix the problem.

But enough about compiler woes — back to coding!

RxSwift - Reactive Programming with Swift Chapter 8: Transforming Operators in Practice

raywenderlich.com 149

Now that you have a URL, you can move on to transforming it into a complete
request. Chain to the last operator:

.map { url -> URLRequest in
 return URLRequest(url: url)
}

Easy enough: you use map to transform a URL to a URLRequest by using the provided
web address.

Nice work! You’ve chained a couple of map operators to create a more complex
transformation:

Now it’s time to bring flatMap into play and fetch some JSON.

Using flatMap to wait for a web response
In the previous chapter, you learned that flatMap flattens out observable
sequences. One of the common applications of flatMap is to add some
asynchronicity to a transformation chain. Let’s see how that works.

When you chain several transformations, that work happens synchronously. That is
to say, all transformation operators immediately process each other’s output:

When you insert a flatMap in between, you can achieve different effects:

• You can flatten observables that instantly emit elements and complete, such as
the Observable instances you create out of arrays of strings or numbers.

• You can flatten observables that perform some asynchronous work and
effectively “wait” for the observable to complete, and only then let the rest of the
chain continue working.

RxSwift - Reactive Programming with Swift Chapter 8: Transforming Operators in Practice

raywenderlich.com 150

What you need to do in your GitFeed code is something like this:

To do that, append the following code to the operator chain that you have so far:

.flatMap { request -> Observable<(HTTPURLResponse, Data)> in
 return URLSession.shared.rx.response(request: request)
}

You use the RxCocoa response(request:) method on the shared URLSession object.
That method returns an Observable<(HTTPURLResponse, Data)>, which completes
whenever your app receives the full response from the web server. You will learn
more about the RxCocoa rx extensions and how to extend Foundation and UIKit
classes yourself later on in the book.

In the code you just wrote, flatMap allows you to send the web request and receive
a response without the need of protocols and delegates. How cool is that? Freely
mixing map and flatMap transformations (as above) enables the kind of linear yet
asynchronous code you hopefully are starting to appreciate more and more in this
book.

Finally, to allow more subscriptions to the result of the web request, chain one last
operator. You will use shareReply(1) to share the observable and keep in a buffer
the last emitted event:

.shareReply(1)

Unlike in Chapter 6, “Filtering Operators in Practice”, this time you use
shareReply(_). Let's shortly have a look why.

share vs. shareReply
URLSession.rx.response(request:) sends your request to the server and upon
receiving the response emits once a .next event with the returned data, and then
completes.

In this situation, if the observable completes and then you subscribe to it again,
that will create a new subscription and will fire another identical request to the
server.

RxSwift - Reactive Programming with Swift Chapter 8: Transforming Operators in Practice

raywenderlich.com 151

To prevent situations like this, you use shareReply(_). This operator keeps a buffer
of the last X emitted elements and feeds them to any newly subscribed observer.
Therefore if your request has completed and a new observer subscribes to the
shared sequence (via shareReply(_)) it will immediately receive the response from
the server that's being kept in the buffer.

The rule of thumb for using shareReply(_) is to use it on any sequences you expect
to complete - this way you prevent the observable from being re-created. You can
also use this if you'd like observers to automatically receive the last X emitted
events.

Transforming the response
It will probably not come as a surprise that along with all the map transforms you
did before sending the web request, you will need to do some more after you
receive its response.

If you think about it, the URLSession class gives you back a Data object, and this is
not an object you can work with right away. You need to transform it to JSON and
then to a native object you can safely use in your code.

You’ll now create a subscription to the response observable that converts the
response data into objects. Just after that last piece of code you wrote, add the
following code on a new line:

response
 .filter { response, _ in
 return 200..<300 ~= response.statusCode
 }

With the filter operator above, you easily discard all error response codes. Your
filter will only let through responses having a status code between 200 and 300,
which is all the success status codes.

Note 1: Interested in the HTTP response codes list? Check out this article on
Wikipedia: https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Note 2: What about this pesky, built-in ~= operator? It’s one of the lesser-
known Swift operators, and when used with a range on its left side, checks if
the range includes the value on its right side.

Note 3: You’re going to ignore the non-successful status codes, instead of
having your observable send an error event. This is a stylistic choice meant to
keep the code simple for now, but you’ll see in later chapters how easy error

RxSwift - Reactive Programming with Swift Chapter 8: Transforming Operators in Practice

raywenderlich.com 152

propagation with Rx can be.

The data you receive will generally be a JSON-encoded server response containing
a list of event objects. As your next task, you will try transforming the response
data to an array of dictionaries.

Append another map to the last operator chain:

.map { _, data -> [[String: Any]] in
 guard let jsonObject = try? JSONSerialization.jsonObject(with: data,
options: []),
 let result = jsonObject as? [[String: Any]] else {
 return []
 }
 return result
}

Let’s deconstruct this piece of code:

• Unlike what you’ve done previously, you discard the response object and take
only the response data.

• You aid the compiler by letting it know you will return an Array<[String: Any]>.
This is what an array of JSON objects looks like.

• You proceed to use JSONSerialization as usual to try to decode the response
data and return the result.

• In case JSONSerialization fails, you return an empty array.

It’s really cool how RxSwift forces you to encapsulate these discrete pieces of work
by using operators. And as an added benefit, you are always guaranteed to have
the input and output types checked at compile time.

You are almost finished processing the API response. There’s a couple of things left
to do before updating the UI. First, you need to filter out any responses that do not
contain any event objects. Append to the chain:

.filter { objects in
 return objects.count > 0
}

This will discard any error responses or any responses that do not contain new
events since you last checked. You’ll implement fetching only new events later in
the chapter, but you can account for this now and help out your future self. :]

As a final transformation, you will convert the list of JSON objects to a collection of
Event objects. Open Event.swift from the starter project and you will see that the
class already includes the following:

• A handy init that takes a JSON object as a parameter

RxSwift - Reactive Programming with Swift Chapter 8: Transforming Operators in Practice

raywenderlich.com 153

• A dynamic property named dictionary that exports the event as a JSON object

That’s about everything you need this data entity class to do.

Switch back to ActivityController.swift and append this to the last operator chain
inside fetchEvents(repo:):

.map { objects in
 return objects.map(Event.init)
}

This final map transformation takes in a [[String: Any]] parameter and outputs an
[Event] result. It does that by calling map on the array itself and transforming its
elements one-by-one.

Bam! map just went meta! You’re doing a map inside of a map. :]

I hope you noticed the difference between the two maps. One is a method on an
Observable<Array<[String: Any]>> instance and is acting asynchronously on each
emitted element. The second map is a method on an Array; this map synchronously
iterates over the array elements and converts them using Event.init.

Finally, it’s time to wrap up this seemingly endless chain of transformations and get
to updating the UI. To simplify the code, you will write the UI code in a separate
method. For now, simply append this code to the final operator chain:

.subscribe(onNext: { [weak self] newEvents in
 self?.processEvents(newEvents)
})
.addDisposableTo(bag)

Processing the response
Yes, it’s finally time to perform some side effects. You started with a simple string,
built a web request, sent it off to GitHub, and received an answer back. You
transformed the response to JSON and then to native Swift objects. Now it’s time to
show the user what you’ve been cooking up behind the scenes all this time.

Add this code anywhere in ActivityController’s body:

func processEvents(_ newEvents: [Event]) {

}

RxSwift - Reactive Programming with Swift Chapter 8: Transforming Operators in Practice

raywenderlich.com 154

In processEvents(_:), you grab the last 50 events from the repository’s event list
and store the list into the Variable property events on your view controller. You’ll do
that manually for now, since you haven’t yet learned how to directly bind sequences
to variables or subjects.

Insert into processEvents():

var updatedEvents = newEvents + events.value
if updatedEvents.count > 50 {
 updatedEvents = Array<Event>(updatedEvents.prefix(upTo: 50))
}

events.value = updatedEvents

You append the newly fetched events to the list in events.value. Additionally, you
cap the list to 50 objects. This way you will show only the latest activity in the table
view.

Finally, you set the value of events and are ready to update the UI. Since the data
source code is already included in ActivityController, you simply reload the table
view to display the new data. To the end of the processEvents function, add the
following line:

tableView.reloadData()

Run the app, and you should see the latest activity from GitHub. Yours will be
different, depending on the current state of the repo in GitHub.

RxSwift - Reactive Programming with Swift Chapter 8: Transforming Operators in Practice

raywenderlich.com 155

Note: Since you are currently not managing threads, it might take a while for
the results to show up in the table. That’s because you end up updating your
UI from a background thread. Although this is a bad practice, it still happens
to work on the current version of iOS. For now, ignore the delay and you will
fix your code later in the chapter. While waiting, click on the simulator to force
a refresh.

Since the code that came with the starter project in viewDidLoad() sets up a table
refresh control, you can try to pull down the table. As soon as you pull far enough,
the refresh control calls the refresh() method and reloads the events.

If someone forked or liked the repo since the last time you fetched the repo’s
events, you will see new cells appear on top.

There is a little issue when you pull down the table view: the refresh control never
disappears, even if your app has finished fetching data from the API. To hide it
when you’ve finished fetching events, add the following code just below
tableView.reloadData():

refreshControl?.endRefreshing()

endRefreshing() will hide the refresh control and reset the table view to its default
state.

So far, you should have a good grasp of how and when to use map and flatMap.
Throughout the rest of the chapter, you are going to tie off a few loose ends of the
GitFeed project to make it more complete. In the challenges, you will again work
through some tasks requiring smart observable sequence transformations.

RxSwift - Reactive Programming with Swift Chapter 8: Transforming Operators in Practice

raywenderlich.com 156

Intermission: Handling erroneous input
The project as-is is pretty solid, at least in the perfect safety of a Swift Playground
or in a step-by-step tutorial like this one. In this short intermission, you are going
to look into some real-life server woes that your app might experience.

Switch to Event.swift and have a look at its init. What would happen if one of
those objects coming from the server contained a key with a wrong name? Yes you
guessed it — your app would crash. The code of the Event class is written
somewhat lazily, and it assumes the server will always return valid JSON.

Fix this quickly before moving on. First of all, you need to change the init to a
failing initializer. Add a question mark right after the word init like so:

init?(dictionary: AnyDict)

This way, you can return nil from the initializer instead of crashing the app. Find
the line fatalError() and replace it with the following:

return nil

As soon as you do that, you will see a few errors pop up in Xcode. The compiler
complains that your subscription in ActivityController expects [Event], but
receives an [Event?] instead. Since some of the conversions from JSON to an Event
object might fail, the result has now changed type to [Event?].

Fear not! This is a perfect opportunity to exercise the difference between map and
flatMap one more time. In ActivityController, you are currently converting JSON
objects to events via map(Event.init). The shortcoming of this approach is that you
can’t filter out nil elements and change the result, so to say, in mid-flight.

What you want to do is filter out any calls to Event.init that returned nil. Luckily,
there’s a function that can do this for you: flatMap — specifically, the flatMap on
Array (not Observable).

Return to ActivityController.swift and scroll to fetchEvents(repo:).
Replace .map(Event.init) with:

objects.flatMap(Event.init)

To recap: any Event.init calls will return nil, and flatMap on those objects will
remove any nil values, so you end up with an Observable that returns an array of
Event objects (non-optional!). And since you removed the call to fatalError() in
the Event.init function, your code is now safer. :]

RxSwift - Reactive Programming with Swift Chapter 8: Transforming Operators in Practice

raywenderlich.com 157

Persisting objects to disk
In this section, you are going to work on the subplot as described in the
introduction, where you will persist objects to disk, so when the user opens the app
they will instantly see the events you last fetched.

In this example, you are about to persist the events to a .plist file. The amount of
objects you are about to store is small, so a .plist file will suffice for now. Later in
the book, you will learn about other methods to persist data; for example, using the
Realm Mobile Database in Chapter 21, “RxRealm”.

First, add a new property to the ActivityController class:

private let eventsFileURL = cachedFileURL("events.plist")

eventsFileURL is the file URL where you will store the events file on your device’s
disk. It’s time to implement the cachedFileURL function to grab a URL to where you
can read and write files. Add this outside the definition of the view controller class:

func cachedFileURL(_ fileName: String) -> URL {
 return FileManager.default
 .urls(for: .cachesDirectory, in: .allDomainsMask)
 .first!
 .appendingPathComponent(fileName)
}

Add that function anywhere in the controller file. Now, scroll down to
processEvents(_:) and append this to the bottom:

let eventsArray = updatedEvents.map{ $0.dictionary } as NSArray
eventsArray.write(to: eventsFileURL, atomically: true)

RxSwift - Reactive Programming with Swift Chapter 8: Transforming Operators in Practice

raywenderlich.com 158

In this code, you convert updatedEvents to JSON objects (a format also good for
saving in a .plist file) and store them in eventsArray, which is an instance of
NSArray. Unlike a native Swift array, NSArray features a very simple and straight-
forward method to save its contents straight to a file.

To save the array, you call write(to:atomically:) and give it the URL of the file
where you want to create the file (or overwrite an existing one).

Cool! processEvents(_:) is the place to perform side effects, so writing the events
to disk in that place feels right. But where can you add the code to read the saved
events from disk?

Since you need to read the objects back from the file just once, you can do that in
viewDidLoad(). This is where you will check if there’s a file with stored events, and
if so, load its contents into events.

Scroll up to viewDidLoad() and add this just above the call to refresh():

let eventsArray = (NSArray(contentsOf: eventsFileURL)
 as? [[String: Any]]) ?? []
events.value = eventsArray.flatMap(Event.init)

This code works similarly to the one you used to save the objects to disk — but in
reverse. You first create an NSArray by using init(contentsOf:), which tries to load
list of objects from a plist file and cast it as Array<[String: Any]>.

Then you do a little dance by using flatMap to convert the JSON to Event objects
and filter out any failing ones. Even though you persisted them to disk, they all
should be valid, but hey — safety first! :]

That should do it. Delete the app from the Simulator, or from your device if you’re
working there. Then run the app, wait until it displays the list of events, and then
stop it from Xcode. Run the project a second time, and observe how the table view
instantly displays the older data while the app fetches the latest events from the
web.

Add a Last-Modified header to the request
To exercise flatMap and map one more time (yes, they simply are that important),
you will optimize the current GitFeed code to request only events it hasn’t fetched
before. This way, if nobody has forked or liked the repo you’re tracking, you will
receive an empty response from the server and save on network traffic and
processing power.

First, add a new property to ActivityController to store the file name of the file in
question:

private let modifiedFileURL = cachedFileURL("modified.txt")

RxSwift - Reactive Programming with Swift Chapter 8: Transforming Operators in Practice

raywenderlich.com 159

This time you don’t need a .plist file, since you essentially need to store a single
string like Mon, 30 May 2017 04:30:00 GMT. This is the value of a header named
Last-Modified that the server sends alongside the JSON response. You need to
send the same header back to the server with your next request. This way, you
leave it to the server to figure out which events you last fetched and if there are
any new ones since then.

As you did previously for the events list, you will use a Variable to keep track of the
Last-Modified header. Add the following new property to ActivityController:

fileprivate let lastModified = Variable<NSString?>(nil)

You will work with an NSString object for the same reasons you used an NSArray
before — NSString can easily read and write to disk, thanks to a couple of handy
methods.

Scroll to viewDidLoad() and add this code above the call to refresh():

lastModified.value = try? NSString(contentsOf: modifiedFileURL,
usedEncoding: nil)

If you’ve previously stored the value of a Last-Modified header to a file,
NSString(contentsOf:usedEncoding:) will create an NSString with the text;
otherwise, it will return a nil value.

Start with filtering out the error responses. Move to fetchEvents() and create a
second subscription to the response observable by appending the following code to
the bottom of the method:

response
 .filter {response, _ in
 return 200..<400 ~= response.statusCode
 }

Next you need to:

• Filter all responses that do not include a Last-Modified header.

• Grab the value of the header.

• Convert it to an NSString value.

RxSwift - Reactive Programming with Swift Chapter 8: Transforming Operators in Practice

raywenderlich.com 160

• Finally, filter the sequence once more, taking the header value into consideration.

It does sound like a lot of work, and you might be planning on using a filter, map,
another filter, or more. In this section, you will use a single flatMap to easily filter
the sequence.

Consider the fact that flatMap only emits the values of an observable when the
observable completes. Therefore, if an observable does not complete, flatMap will
never emit any values. You’ll use that phenomenon to filter responses that don’t
feature a Last-Modified header.

Append this to the operator chain from above:

.flatMap { response, _ -> Observable<NSString> in
 guard let value = response.allHeaderFields["Last-Modified"] as?
NSString else {
 return Observable.never()
 }
 return Observable.just(value)
}

You use guard to check if the response contains an HTTP header by the name of
Last-Modified, whose value can be cast to an NSString. If you can make the cast,
you return an Observable<NSString> with a single element; otherwise, you return an
Observable, which never emits any elements:

Now that you have the final value of the desired header, you can proceed to update
the lastModified property and store the value to the disk. Add the following:

.subscribe(onNext: { [weak self] modifiedHeader in
 guard let strongSelf = self else { return }
 strongSelf.lastModified.value = modifiedHeader

RxSwift - Reactive Programming with Swift Chapter 8: Transforming Operators in Practice

raywenderlich.com 161

 try? modifiedHeader.write(to: strongSelf.modifiedFileURL, atomically:
true,
 encoding: String.Encoding.utf8.rawValue)
})
.addDisposableTo(bag)

In your subscription’s onNext closure, you update lastModified.value with the latest
date and then call NSString.write(to:atomically:encoding) to save to disk. In the
end, you add the subscription to the view controller’s dispose bag.

To finish working through this part of the app, you need to use the stored header
value in your request to GitHub’s API. Scroll toward the top of fetchEvents(repo:)
and find the particular map below where you create a URLRequest:

.map { url -> URLRequest in
 return URLRequest(url: url)
}

Replace the above code with this:

.map { [weak self] url -> URLRequest in
 var request = URLRequest(url: url)
 if let modifiedHeader = self?.lastModified.value {
 request.addValue(modifiedHeader as String,
 forHTTPHeaderField: "Last-Modified")
 }
 return request
}

In this new piece of code, you create a URLRequest just as you did before, but you
add an extra condition: if lastModified contains a value, no matter whether it’s
loaded from a file or stored after fetching JSON, add that value as a Last-Modified
header to the request.

RxSwift - Reactive Programming with Swift Chapter 8: Transforming Operators in Practice

raywenderlich.com 162

This extra header tells GitHub that you aren’t interested in any events older than
the header date. This will not only save you traffic, but responses which don’t
return any data won’t count towards your GitHub API usage limit. Everybody wins!

In this chapter, you learned about different real-life use cases for map and flatMap
— and built a cool project along the way (even though you still need to handle the
results on the main thread like the smart programmer you are).

But you can still do better! In the challenges section, you will work on adding
threading strategy to the project so that you can do transformations on a
background thread and switch to the main thread to do UI updates. This will keep
your app snappy and responsive.

In a further challenge, you will see how you can easily extend the project by
throwing even more maps and flatMaps into the mix. :]

Once you work through the challenges, you can move on to the next chapter, where
you will finally learn about combining operators to greatly simplify more complex
subscriptions.

Challenges
Challenge 1: Add threading
Currently, you don’t explicitly state on which thread your code should run. But in a
real project, you should keep tight control on your threading, as some of the code
will needlessly block your main thread, while other code will need to be on the main
thread to update the UI.

As mentioned before, you will learn more about RxSwift schedulers and multi-
threading in Chapter 15, “Intro to Schedulers / Threading in Practice.” For now,
you’ll work through a simple solution to the problem by using the DispatchQueue
type.

First of all, make sure you know what thread you’re running on by adding some test
print statements. Scroll to fetchEvents(repo:), and inside the first flatMap closure,
insert print("main: \(Thread.isMainThread)") so it looks like this:

.flatMap { request -> Observable<(HTTPURLResponse, Data)> in
 print("main: \(Thread.isMainThread)")
 return URLSession.shared.rx.response(request: request)
}

Then add the same print line in the filter immediately below that flatMap. Finally,
scroll down and insert the same debug print line anywhere inside
processEvents(_:).

RxSwift - Reactive Programming with Swift Chapter 8: Transforming Operators in Practice

raywenderlich.com 163

Run the app and have a look at Xcode’s console. You should be seeing something
like this:

main: true
main: false
main: false

UIKit calls viewDidLoad() on the main thread, so when you invoke
fetchEvents(repo:) all the code runs on the main thread too. This is also confirmed
by the first output line main: true.

But the second and third prints seem to have switched to a background thread. You
can skim the code and reassure yourself you never switch threads manually.

It’s the response(request:) reactive extension method on URLSession that switches
threads. Since that observable emits its .next event from a background thread, all
the operators you use from then on also run on that same thread. It looks like you
will need to manually switch threads to ensure that you do networking and data
transformation in the background, but you must update your UI from the main
thread.

Luckily, you only need to touch the current code in two places:

• In refresh(), switch to a background thread and call fetchEvents(repo:) from
there.

• In processEvents(), make sure you call tableView.reloadData() on the main app
thread.

That’s it! In case you need some assistance with writing the Grand Central Dispatch
code to manage threads, consult the completed project provided with this chapter.

RxSwift - Reactive Programming with Swift Chapter 8: Transforming Operators in Practice

raywenderlich.com 164

Challenge 2: Fetch top repos and spice up the feed
In this challenge, you will go through one more map/flatMap exercise. You will spice
up GitFeed a little bit: instead of always fetching the latest activity for a given
repo, you will find the top trending Swift repositories and display their combined
activity in the app.

At first sight, this might look like a lot of work, but in the end you’ll find it’s only
about a dozen lines of code.

To get started, replace let response = Observable.from([repo]) in
fetchEvents(repo:) with:

let response = Observable.from(["https://api.github.com/search/
repositories?q=language:swift&per_page=5"])

This API endpoint will return a list of the top five popular Swift repositories. Since
you don’t specify an order parameter in that API call, GitHub will order the returned
results by their “score”, which is a secret magic GitHub computed property that has
to do with each item’s relevance to the search terms.

Note: The GitHub JSON API is a great tool to play with. You can grab a bunch
of very interesting data such as trending repositories, public activity, and
more. If you are interested to learn more, visit the API homepage at https://
developer.github.com/v3/.

Now proceed in exactly the same manner as you did in the chapter to transform
that string into a URL and transform that in turn into a URLRequest. There’s no need
to include a Last-Modified header.

Since you don’t need the response headers, you can use
URLSession.shared.rx.json(request:), which is a method which directly returns the
transformed JSON instead of raw data.

As the last step, you will need to get the JSON response as a [String: Any]
dictionary and try grabbing its items key. items should contain a list of [String:
Any] dictionaries, which represent each of the trending repos. You need the
full_name of each of these.

This is the repo name that includes the user name and the repo name, such as
icanzilb/EasyAnimation, realm/realm-cocoa, ReactiveX/RxSwift, and so on.

RxSwift - Reactive Programming with Swift Chapter 8: Transforming Operators in Practice

raywenderlich.com 165

Use flatMap, and in case any of those assumptions fail, return Observable.never()
just as you did previously. If everything goes according to plan, return an
Observable<String> created out of the list of the trending repos’ full names.

Now you can chain the existing code to that flatMap like so:

let response = Observable.from(["https://api.github.com/search/
repositories?q=language:swift&per_page=5"])

[map to convert to to URLRequest]

[flatMap to fetch JSON back]

[flatMap to convert JSON to list of repo names,
 and create Observable from that list]

[existing code follows below]

.map { urlString -> URL in
 return URL(string: "https://api.github.com/repos/\(urlString)/events?
per_page=5")!
}
.map { [weak self] url -> URLRequest in
 var request = URLRequest(url: url)
 ...
}

Now each time you start the app or pull down the table to refresh, the app will get
the list of top five Swift repositories and then fire off five different requests to
GitHub to fetch the events for each repo. If you end up seeing too many events
from the same repository, you can cap the server response by adding a per_page=5
query parameter to the URL. Then it will store the events locally and update the
table with the latest data:

If you’d like to play around some more, you can sort the combined list of events by
date and other interesting ways. What other types of sorting or filtering can you
come up with?

RxSwift - Reactive Programming with Swift Chapter 8: Transforming Operators in Practice

raywenderlich.com 166

In case you encounter difficulties along the way, you can peek into the completed
project for this chapter and see one of the possible solutions.

If you wrapped up this challenge successfully, you can consider yourself a
transformation pro! Oh... if you could only use a map in real life to turn lead into
gold, that would really be something! But data transformation with RxSwift comes a
close second — and that’s great too. :]

RxSwift - Reactive Programming with Swift Chapter 8: Transforming Operators in Practice

raywenderlich.com 167

9Chapter 9: Combining
Operators
By Florent Pillet

In earlier chapters, you learned how to create, filter and transform observable
sequences. RxSwift filtering and transformation operators behave much like Swift’s
standard collection operators. You got a glimpse into the true power of RxSwift with
flatMap, the workhorse operator that lets you perform a lot of tasks with very little
code.

This chapter will show you several different ways to assemble sequences, and how
to combine the data within each sequence. Some operators you’ll work with are
very similar to Swift collection operators. They help combine elements from
asynchronous sequences, just as you do with Swift arrays.

raywenderlich.com 168

Getting started
This chapter comes with an empty RxSwiftPlayground. Open the workspace with
Xcode, then build the RxSwiftPlayground scheme. You will again use the
example(of:) construct to wrap your code in distinct blocks. Remember to show the
Debug Area in Xcode (under the View and Debug Area menus), as this is where
playground print(_:) statements display their output.

RxSwift is all about working with and mastering asynchronous sequences. But you’ll
often need to make order out of chaos! There is a lot you can accomplish by
combining observables.

Prefixing and concatenating
The first and most obvious need when working with observables is to guarantee
that an observer receives an initial value. There are situations where you’ll need the
“current state” first. Good use cases for this are “current location” and “network
connectivity status.” These are some observables you’ll want to prefix with the
current state.

The diagram below should make it clear what this operator does:

Add the following code to the playground:

example(of: "startWith") {
 // 1
 let numbers = Observable.of(2, 3, 4)

 // 2
 let observable = numbers.startWith(1)
 observable.subscribe(onNext: { value in
 print(value)
 })
}

RxSwift - Reactive Programming with Swift Chapter 9: Combining Operators

raywenderlich.com 169

The startWith(_:) operator prefixes an observable sequence with the given initial
value. This value must be of the same type as the observable elements.

Here’s what’s going on in the code above:

1. Create a sequence of numbers.

2. Create a sequence starting with the value 1, then continue with the original
sequence of numbers.

Don’t get fooled by the position of the startWith(_:) operator! Although you chain
it to the numbers sequence, the observable it creates emits the initial value,
followed by the values from the numbers sequence.

Look at the debug area in the playground to confirm this:

--- Example of: startWith ---
1
2
3
4

This is a handy tool you’ll use in many situations. It fits well in the deterministic
nature of RxSwift and guarantees observers they’ll get an initial value right away,
and any updates later.

As it turns out, startWith(_:) is the simple variant of the more general concat
family of operators. Your initial value is a sequence of one element, to which
RxSwift appends the sequence that startWith(_:) chains to. The
Observable.concat(_:) static function chains two sequences.

Have a look at your new operator:

RxSwift - Reactive Programming with Swift Chapter 9: Combining Operators

raywenderlich.com 170

Add this code to the playground:

example(of: "Observable.concat") {
 // 1
 let first = Observable.of(1, 2, 3)
 let second = Observable.of(4, 5, 6)

 // 2
 let observable = Observable.concat([first, second])

 observable.subscribe(onNext: { value in
 print(value)
 })
}

Written this way, the concatenation order is more obvious to the untrained reader
than when using startWith(_:). Run the example to see elements from the first
sequence: 1 2 3, followed by elements of the second sequence 4 5 6.

The Observable.concat(_:) static function takes an ordered collection of
observables (i.e. an array). The observable it creates subscribes to the first
sequence of the collection, relays its elements until it completes, then moves to the
next one. The process repeats until all the observables in the collection have been
used. If at any point an inner observable emits an error, the concatenated
observable in turns emits the error and terminates.

Another way to append sequences together is the concat(_:) operator (an instance
method of Observable, instead of a class method). Add this code to the playground:

example(of: "concat") {
 let germanCities = Observable.of("Berlin", "Münich", "Frankfurt")
 let spanishCities = Observable.of("Madrid", "Barcelona", "Valencia")

 let observable = germanCities.concat(spanishCities)
 observable.subscribe(onNext: { value in
 print(value)
 })
}

This variant applies to an existing observable. It waits for the source observable to
complete, then subscribes to the parameter observable. Aside from instantiation, it
works just like Observable.concat(_:). Check the playground output; you’ll see a
list of German cities followed by a list of Spanish cities.

Going back to the startWith(_:) example, you could write it in a visually more
explicit, albeit longer fashion:

example(of: "concat one element") {
 let numbers = Observable.of(2, 3, 4)

 let observable = Observable
 .just(1)
 .concat(numbers)

RxSwift - Reactive Programming with Swift Chapter 9: Combining Operators

raywenderlich.com 171

 observable.subscribe(onNext: { value in
 print(value)
 })
}

Note: Observable sequences are strongly typed. You can only concatenate
sequences whose elements are of the same type!

If you try to concatenate sequences of different types, brace yourself for
compiler errors. The Swift compiler knows when one sequence is an
Observable<String> and the other an Observable<Int> so it will not allow you
to mix them up.

Now that you know how to append sequences together, it’s time to move on to
combining elements from multiple sequences.

Merging
RxSwift offers several ways to combine sequences. The easiest to start with is
merge. Can you picture what it does from the diagram below?

Move to the playground; your task is to add a new example(of:) block, and prepare
two subjects to which you can push values. You learned about Subject in Chapter 3,
“Subjects”.

example(of: "merge") {
 // 1
 let left = PublishSubject<String>()
 let right = PublishSubject<String>()

RxSwift - Reactive Programming with Swift Chapter 9: Combining Operators

raywenderlich.com 172

Now create a source observable of observables — it’s like Inception! To keep things
simple, make it a fixed list of your two subjects:

 // 2
 let source = Observable.of(left.asObservable(), right.asObservable())

Next, create a merge observable from the two subjects, as well as a subscription to
print the values it emits:

 // 3
 let observable = source.merge()
 let disposable = observable.subscribe(onNext: { value in
 print(value)
 })

Then you need to randomly pick and push values to either observable. The loop
uses up all values from leftValues and rightValues arrays then exits:

 // 4
 var leftValues = ["Berlin", "Munich", "Frankfurt"]
 var rightValues = ["Madrid", "Barcelona", "Valencia"]
 repeat {
 if arc4random_uniform(2) == 0 {
 if !leftValues.isEmpty {
 left.onNext("Left: " + leftValues.removeFirst())
 }
 } else if !rightValues.isEmpty {
 right.onNext("Right: " + rightValues.removeFirst())
 }
 } while !leftValues.isEmpty || !rightValues.isEmpty

One last bit before you’re done. Since Subject never completes, remember to call
dispose() on the subscription so as not to create a memory leak!

 // 5
 disposable.dispose()
}

Whoa, that was a lot of code, so if you don't see any warnings, pat yourself on the
shoulder — good job!

Run the code (it might have run automatically after you saved your work) and look
at the debug output. Results will be different each time you run this code, but they
should look similar to this:

--- Example of: merge ---
Right: Madrid
Left: Berlin
Right: Barcelona
Right: Valencia
Left: Munich
Left: Frankfürt

RxSwift - Reactive Programming with Swift Chapter 9: Combining Operators

raywenderlich.com 173

A merge() observable subscribes to each of the sequences it receives and emits the
elements as soon as they arrive — there’s no predefined order.

You may be wondering when and how merge() completes. Good question! As with
everything in RxSwift, the rules are well-defined:

• merge() completes after its source sequence completes and all inner sequences
have completed.

• The order in which the inner sequences complete is irrelevant.

• If any of the sequences emit an error, the merge() observable immediately relays
the error, then terminates.

Take a second to look at the code. Notice that merge() takes a source observable,
which itself emits observables sequences of the element type. This means that you
could send a lot of sequences for merge() to subscribe to!

To limit the number of sequences subscribed to at once, you can use
merge(maxConcurrent:). This variant keeps subscribing to incoming sequences until
it reaches the maxConcurrent limit. After that, it puts incoming observables in a
queue. It will subscribe to them in order, as soon as one of current sequences
completes.

Note: You might end up using this limiting variant less often than merge()
itself. Keep it in mind, though, as it can be handy in resource-intensive
situations. You could use it in scenarios such as making a lot of network
requests to limit the number of concurrent outgoing connections.

Combining elements
An essential group of operators in RxSwift is the combineLatest family. They
combine values from several sequences:

RxSwift - Reactive Programming with Swift Chapter 9: Combining Operators

raywenderlich.com 174

Every time one of the inner (combined) sequences emits a value, it calls a closure
you provide. You receive the last value from each of the inner sequences. This has
many concrete applications, such as observing several text fields at once and
combining their value, watching the status of multiple sources, and so on.

Does this sound complicated? It’s actually quite simple! You’ll break it down by
working through a few examples.

First, create two subjects to push values to:

example(of: "combineLatest") {
 let left = PublishSubject<String>()
 let right = PublishSubject<String>()

Next, create an observable that combines the latest value from both sources. Don’t
worry; you’ll understand how the code exactly works once you’ve finished adding
everything together.

 // 1
 let observable = Observable.combineLatest(left, right, resultSelector:
{
 lastLeft, lastRight in
 "\(lastLeft) \(lastRight)"
 })
 let disposable = observable.subscribe(onNext: { value in
 print(value)
 })

Now add the following code to start pushing values to the observables:

 // 2
 print("> Sending a value to Left")
 left.onNext("Hello,")
 print("> Sending a value to Right")
 right.onNext("world")
 print("> Sending another value to Right")
 right.onNext("RxSwift")
 print("> Sending another value to Left")
 left.onNext("Have a good day,")

Finally, don’t forget to dispose your observable and close the example(of:) trailing
closure. Remember that you’re working with infinite sequences:

 disposable.dispose()
}

Run the complete example from above. You’ll see three sentences show up in the
debug output of the Playground, plus information about when you send values to
the combined observable. These help make it clear as to when your closure receives
values.

RxSwift - Reactive Programming with Swift Chapter 9: Combining Operators

raywenderlich.com 175

A few notable points about this example:

1. You combine observables using a closure receiving the latest value of each
sequence as arguments. In this example, the combination is the concatenated
string of both left and right values. It could be anything else that you need, as
the type of the elements emitted by the combined observable is the return type
of the closure. In practice, this means you can combine sequences of
heterogeneous types. It is the only core operator that permits this.

2. Nothing happens happen until each of the combined observables emits one
value. After that, each time one emits a new value, the closure receives the
latest value of each of the observable and produces its element.

Note: Remember that combineLatest(_:_:resultSelector:) waits for all its
observables to emit one element before starting to call your closure. It’s a
frequent source of confusion and a good opportunity to use the startWith(_:)
operator to provide an initial value for the sequences, which could take time to
update.

Like the map(_:) operator covered in Chapter 7, “Transforming Operators”,
combineLatest(_:_:resultSelector:) creates an observable whose type is the
closure return type. This is a great opportunity to switch to a new type alongside a
chain of operators!

A common pattern is to combine values to a tuple then pass them down the chain.
For example, you’ll often want to combine values and then call filter(_:) on them
like so:

let observable = Observable.combineLatest(left, right) { ($0, $1) }
 .filter { !$0.0.isEmpty }

Or if you want that code to be a bit more readable (but also just a tad longer to
write):

let observable1 = Observable.combineLatest(left, right) { (greeting: $0,
noun: $1) }
.filter { !$0.greeting.isEmpty }

Note: Both examples above use the trailing closure Swift syntax, which really
makes the code look nice and polished.

There are several variants in the combineLatest family of operators. They take
between 2 and 8 observable sequences as parameters. As mentioned above,
sequences don’t need to have the same element type.

RxSwift - Reactive Programming with Swift Chapter 9: Combining Operators

raywenderlich.com 176

Let’s look at another example. Add this code to the playground:

example(of: "combine user choice and value") {
 let choice : Observable<DateFormatter.Style> =
Observable.of(.short, .long)
 let dates = Observable.of(Date())

 let observable = Observable.combineLatest(choice, dates) {
 (format, when) -> String in
 let formatter = DateFormatter()
 formatter.dateStyle = format
 return formatter.string(from: when)
 }

 observable.subscribe(onNext: { value in
 print(value)
 })
}

This example demonstrates automatic updates of on-screen values when the user
settings change. Think about all the manual updates you’ll remove with such
patterns!

A final variant of the combineLatest family takes a collection of observables and a
combining closure, which receives latest values in an array. Since it’s a collection,
all observables carry elements of the same type. Although less flexible than the
multiple parameter variants, it is seldom-used but still handy to know about.

The string observable in your first combineLatest(_:_:resultSelector:) example
could be rewritten as:

 // 1
 let observable = Observable.combineLatest([left, right]) {
 strings in strings.joined(separator: " ")
 }

Note: Last but not least, combineLatest completes only when the last of its
inner sequences completes. Before that, it keeps sending combined values. If
some sequences terminate, it uses the last value emitted to combine with new
values from other sequences.

RxSwift - Reactive Programming with Swift Chapter 9: Combining Operators

raywenderlich.com 177

Another combination operator is the zip family of operators. Like the combineLatest
family, it comes in several variants:

To get started, create a Weather enum and a couple of observables:

example(of: "zip") {
 enum Weather {
 case cloudy
 case sunny
 }
 let left: Observable<Weather> = Observable.of(.sunny, .cloudy, .cloudy,
.sunny)
 let right = Observable.of("Lisbon", "Copenhagen", "London", "Madrid",
"Vienna")

Then create a zipped observable of both sources. Note that you’re using the
zip(_:_:resultSelector:) variant. Use the shorter form as shown below, with the
closure after the last parenthesis, for improved readability.

 let observable = Observable.zip(left, right) { weather, city in
 return "It's \(weather) in \(city)"
 }
 observable.subscribe(onNext: { value in
 print(value)
 })
}

Run the code and check the output:

--- Example of: zip ---
It's sunny in Lisbon
It's cloudy in Copenhagen
It's cloudy in London
It's sunny in Madrid

RxSwift - Reactive Programming with Swift Chapter 9: Combining Operators

raywenderlich.com 178

Here’s what zip(_:_:resultSelector:) did for you:

• Subscribed to the observables you provided.

• Waited for each to emit a new value.

• Called your closure with both new values.

Did you notice how Vienna didn’t show up in the output? Why is that?

The explanation lies in the way zip operators work. They wait until each of the
inner observables emits a new value. If one of them completes, zip completes as
well. It doesn’t wait until all of the inner observables are done! This is called
indexed sequencing, which is a way to walk though sequences in lockstep.

Note: Swift also has a zip(_:_:) collection operator. It creates a new
collection of tuples with items from both collections. But this is its only
implementation. RxSwift offers variants for 2 to 8 observables, plus a variant
for collections, like combineLatest does.

Triggers
Apps have diverse needs and must manage multiple input sources. You’ll often need
to accept input from several observables at once. Some will simply trigger actions
in your code, while others will provide data. RxSwift has you covered with powerful
operators that will make your life easier. Well, your coding life at least! :]

You’ll first look at withLatestFrom(_:). Often overlooked by beginners, it’s a useful
companion tool when dealing with user interfaces, among other things.

RxSwift - Reactive Programming with Swift Chapter 9: Combining Operators

raywenderlich.com 179

Add this code to the playground:

example(of: "withLatestFrom") {
 // 1
 let button = PublishSubject<Void>()
 let textField = PublishSubject<String>()

 // 2
 let observable = button.withLatestFrom(textField)
 let disposable = observable.subscribe(onNext: { value in
 print(value)
 })

 // 3
 textField.onNext("Par")
 textField.onNext("Pari")
 textField.onNext("Paris")
 button.onNext()
 button.onNext()
}

This example simulates a text field and a button. In Chapter 12, “Beginning
RxCocoa”, you’ll learn about RxCocoa, a framework that helps bind your UI with
RxSwift. The last two lines are duplicated on purpose!

Run this example and you’ll see this output in the debug area:

Paris
Paris

Let’s go through what you just did:

1. Create two subjects simulating button presses and text field input. Since the
button carries no real data, you can use Void as an element type.

2. When button emits a value, ignore it but instead emit the latest value received
from the simulated text field.

3. Simulate successive inputs to the text field, which is done by the two successive
button presses.

Simple and straightforward! withLatestFrom(_:) is useful in all situations where you
want the current (latest) value emitted from an observable, but only when a
particular trigger occurs.

RxSwift - Reactive Programming with Swift Chapter 9: Combining Operators

raywenderlich.com 180

A close relative to withLatestFrom(_:) is the sample(_:) operator.

It does nearly the same thing with just one variation: each time the trigger
observable emits a value, sample(_:) emits the latest value from the “other”
observable, but only if it arrived since the last “tick”. If no new data arrived,
sample(_:) won’t emit anything.

Try it in the playground. Replace withLatestFrom(_:) with sample(_:):

 // 2
 let observable = textField.sample(button)

Notice that "Paris" now prints only once! This is because no new value was emitted
by the text field between your two fake button presses. You could have achieved
the same behavior by adding a distinctUntilChanged() to the withLatestFrom(_:)
observable, but smallest possible operator chains are the Zen of Rx™. :]

Note: Don’t forget that withLatestFrom(_:) takes the data observable as a
parameter, while sample(_:) takes the trigger observable as a parameter. This
can easily be a source of mistakes — so be careful!

Waiting for triggers is a great help when doing UI work. In some cases your
“trigger” may come in the form of a sequence of observables (I know, it’s Inception
once again). Or maybe you want to wait on a pair of observables and only keep
one. No matter — RxSwift has operators for this!

Switches
RxSwift comes with two main so-called “switching” operators: amb(_:) and
switchLatest(). They both allow you to produce an observable sequence by

RxSwift - Reactive Programming with Swift Chapter 9: Combining Operators

raywenderlich.com 181

switching between the events of the combined or source sequences. This allows you
to decide which sequence's events will the subscriber receive at runtime.

Let’s look at amb(_:) first. Think of “amb” as in “ambiguous”. :]

Add this code to the playground:

example(of: "amb") {
 let left = PublishSubject<String>()
 let right = PublishSubject<String>()

 // 1
 let observable = left.amb(right)
 let disposable = observable.subscribe(onNext: { value in
 print(value)
 })

 // 2
 left.onNext("Lisbon")
 right.onNext("Copenhagen")
 left.onNext("London")
 left.onNext("Madrid")
 right.onNext("Vienna")

 disposable.dispose()
}

You’ll notice that the debug output only shows items from the left subject. Here’s
what you did:

1. Create an observable which resolves ambiguity between left and right.

2. Have both observables send data.

The amb(_:) operator subscribes to left and right observables. It waits for any of
them to emit an element, then unsubscribes from the other one. After that, it only
relays elements from the first active observable. It really does draw its name from
the term ambiguous: at first, you don’t know which sequence you’re interested in,
and want to decide only when one fires.

RxSwift - Reactive Programming with Swift Chapter 9: Combining Operators

raywenderlich.com 182

This operator is often overlooked. It has a few select practical applications, like
connecting to redundant servers and sticking with the one that responds first.

A more popular option is the switchLatest() operator:

To try it out, first create three subjects and a source subject. You’ll push observable
sequences to this one.

example(of: "switchLatest") {
 // 1
 let one = PublishSubject<String>()
 let two = PublishSubject<String>()
 let three = PublishSubject<String>()

 let source = PublishSubject<Observable<String>>()

Next, create an observable with the switchLatest() operator and print its output.

 // 2
 let observable = source.switchLatest()
 let disposable = observable.subscribe(onNext: { value in
 print(value)
 })

Start feeding the source with observables, and feed observables with values.

 // 3
 source.onNext(one)
 one.onNext("Some text from sequence one")
 two.onNext("Some text from sequence two")

 source.onNext(two)
 two.onNext("More text from sequence two")

RxSwift - Reactive Programming with Swift Chapter 9: Combining Operators

raywenderlich.com 183

 one.onNext("and also from sequence one")

 source.onNext(three)
 two.onNext("Why don't you seem me?")
 one.onNext("I'm alone, help me")
 three.onNext("Hey it's three. I win.")

 source.onNext(one)
 one.onNext("Nope. It's me, one!")

Finally dispose of the subscription when you're done.

 disposable.dispose()
}

Note: It can be difficult to form a mental model of an observable of
observables. Don’t worry; you’ll get used to it. Practice is key to a fluid
understanding of sequences. Don’t hesitate to review the examples as your
experience grows! You’ll learn more about putting this to good use in the next
chapter.

The previous code produces this output:

--- Example of: switchLatest ---
Some text from sequence one
More text from sequence two
Hey it's three. I win.
Nope. It's me, one!

Notice the few output lines. Your subscription only prints items from the latest
sequence pushed to the source observable. This is the purpose of switchLatest().

Note: Did you notice any similarity between switchLatest() and another
operator? You learned about its cousin flatMapLatest(_:) in Chapter 7,
“Transforming Operators”. They do pretty much the same thing: flatMapLatest
maps the latest value to an observable, then subscribes to it. It keeps only the
latest subscription active, just like switchLatest.

Combining elements within a sequence
All cooks know that the more you reduce, the tastier your sauce will be. Although
not aimed at chefs, RxSwift has the tools to reduce your sauce to its most flavorful
components.

Through your coding adventures in Swift, you may already know about its
reduce(_:_:) collection operator. If you don’t, here’s a great opportunity, as this
knowledge applies to pure Swift collections as well.

RxSwift - Reactive Programming with Swift Chapter 9: Combining Operators

raywenderlich.com 184

To get started, add this code to the playground:

example(of: "reduce") {
 let source = Observable.of(1, 3, 5, 7, 9)

 // 1
 let observable = source.reduce(0, accumulator: +)
 observable.subscribe(onNext: { value in
 print(value)
 })
}

This is much like what you’d do with Swift collections, but with observable
sequences. The code above uses a shortcut form (using the + operator) to
accumulate values. This by itself is not terribly self-explanatory. To get a grasp on
how it works, replace the observable creation above with the following code:

 // 1
 let observable = source.reduce(0, accumulator: { summary, newValue in
 return summary + newValue
 })

The operator “accumulates” a summary value. It starts with the initial value you
provide (in this example, you start with 0). Each time the source observable emits
an item, reduce(_:_:) calls your closure to produce a new summary. When the
source observable completes, reduce(_:_:) emits the summary value, then
completes.

Note: reduce(_:_:) produces its summary (accumulated) value only when the
source observable completes. Applying this operator to sequences that never
complete won’t emit anything. This is a frequent source of confusion and
hidden problems.

A close relative to reduce(_:_:) is the scan(_:accumulator:) operator. Can you spot
the difference in the schema below, comparing to the last one above?

RxSwift - Reactive Programming with Swift Chapter 9: Combining Operators

raywenderlich.com 185

Add some code to the playground to experiment:

example(of: "scan") {
 let source = Observable.of(1, 3, 5, 7, 9)

 let observable = source.scan(0, accumulator: +)
 observable.subscribe(onNext: { value in
 print(value)
 })
}

Now look at the output:

--- Example of: scan ---
1
4
9
16
25

You get one output value per input value. As you may have guessed, this value is
the running total accumulated by the closure. Each time the source observable
emits an element, scan(_:accumulator:) invokes your closure. It passes the running
value along with the new element, and the closure returns the new accumulated
value. Like reduce(_:_:), the resulting observable type is the closure return type.

The range of use cases for scan(_:accumulator:) is quite large; you can use it to
compute running totals, statistics, states and so on. Encapsulating state information
within a scan(_:accumulator:) observable is a good idea; you won’t need to use
local variables, and it goes away when the source observable completes. You’ll see
a couple of neat examples of scan in action in Chapter 20, “RxGesture”.

RxSwift - Reactive Programming with Swift Chapter 9: Combining Operators

raywenderlich.com 186

Challenges
You learned a lot about many operators in this chapter. But there is so much more
to learn (and more fun to be had) about sequence combination!

Challenge 1: The zip case
You’ve learned about the zip family of operators that lets you go through sequences
in lockstep — it’s time to start using it.

Take the code from the scan(_:accumulator:) example above and improve it so as
to display both the current value and the running total at the same time.

There are several ways to do this — and not necessarily with zip. Bonus points if
you can find more than one method.

The solutions to this challenge, found in the project files for this show two possible
implementations. Can you find them both?

RxSwift - Reactive Programming with Swift Chapter 9: Combining Operators

raywenderlich.com 187

10Chapter 10: Combining
Operators in Practice
By Florent Pillet

In the previous chapter, you learned about combining operators and worked
through increasingly more detailed exercises on some rather mind-bending
concepts. Some operators may have left you wondering about the real-world
application of these reactive concepts.

In this “... in Practice” chapter, you'll have the opportunity to try some of the most
powerful operators. You'll learn to solve problems similar to those you'll face in your
own applications.

Note: This chapter assumes you’ve already worked your way through Chapter
9, “Combining Operators”. You should also be familiar with Variables (covered
in Chapter 3), filtering (Chapter 5) and transforming operators (Chapter 7). At
this point in the book, it is important that you are familiar with these concepts,
so make sure to review these chapters if necessary!

You’ll start with a new project for this chapter and build a small application with an
ambitious name: Our Planet.

raywenderlich.com 188

Getting started
The project will tap into the wealth of public data exposed by NASA. You'll target
EONET, NASA’s Earth Observatory Natural Event Tracker. It is a live (near real-
time), curated repository of natural events of all types occurring on the planet.
Check out https://eonet.sci.gsfc.nasa.gov/ to learn more!

To get started with Our Planet, open the starter project for this chapter. Install the
required CocoaPods (as explained in Chapter 1, “Hello RxSwift”), and open
OurPlanet.xcworkspace.

Build and run the starter application; the default screen is an empty table view.

Your tasks with this application are as follows:

• Gather the event categories from the EONET public API https://
eonet.sci.gsfc.nasa.gov/docs/v2.1 and display them on the first screen.

• Download events and show a count for each category.

• When user taps a category, display a list of events for this category.

You’ll learn how useful combineLatest can be in several situations, but you’ll also
exercise startWith, concat, merge, reduce and scan. Of course, you’ll also rely on
operators you are already familiar with, like map(_:) and flatMap(_:).

Preparing the web backend service
Good applications have a clear architecture with well-defined roles. The code that
talks with the EONET API shouldn’t live in any of the view controllers. And since it
carries no particular state, you can get away with simply using static functions. For
clarity, you’ll put the static functions in a class.

Let’s call this the EONET service. It abstracts access to the data exposed by the
EONET servers, providing them as a service to your application. You’ll see that,
combined with Rx, this pattern will find many applications. It lets you cleanly
separate data production from consumption inside your application. You can easily
replace or mock the production part, without any impact on the consumption side.

Expand the Model group in the OurPlanet project; the service data structures are
ready for you to use. You’ll find EOCategory and EOEvent structures that map to the
content delivered by the API.

Note: In Chapter 8, “Transforming Operators in Practice”, you used a
technique to deal with invalid JSON. You’ll reuse this safe object initialization
technique here. Did you spot it? It’s the init?(json:) initializer you’ll use with

RxSwift - Reactive Programming with Swift Chapter 10: Combining Operators in Practice

raywenderlich.com 189

Swift’s flatMap to drop invalid JSON objects. There shouldn’t be any in this
feed, but it’s always better to be careful when dealing with network data.

This will also shield your code against crashes in case the format changes in
the back-end service.

Open Model/EONET.swift; it’s already been fleshed out with the basic structure of
the class, as well as API URLs and endpoints. It also provides a couple of helper
functions you’ll use later.

All EONET service APIs use a similar structure. You’ll set up a general request
mechanism to get data from EONET and reuse it to read both categories and
events.

Generic request technique
You’ll start by coding request(endpoint:query:). Your goals with this crucial
component of your EONET service are:

• Request data from the EONET API.

• Decode the response to a generic dictionary.

• Make sure all errors are taken care of.

It’s always important to cover error cases. Don’t let errors go silent, unless they’re
truly harmless! You want to handle programmer errors (yes, you’ll make some),
network errors and content errors.

Let’s get started. Create a new request(_:_:) function:

static func request(endpoint: String, query: [String: Any] = [:]) ->
Observable<[String: Any]> {
 do {
 guard let url = URL(string: API)?.appendingPathComponent(endpoint),
 var components = URLComponents(url: url,
resolvingAgainstBaseURL: true) else {
 throw EOError.invalidURL(endpoint)
 }

Your parameters here are the endpoint name and optional query parameters. If the
URL can’t be constructed (i.e. you changed the service URL and mistyped it), it will
throw an error. You’ll catch all future errors in this function.

Once you have the URL, add the query parameters. You will use them later for
event requests:

components.queryItems = try query.flatMap { (key, value) in
 guard let v = value as? CustomStringConvertible else {
 throw EOError.invalidParameter(key, value)
 }

RxSwift - Reactive Programming with Swift Chapter 10: Combining Operators in Practice

raywenderlich.com 190

 return URLQueryItem(name: key, value: v.description)
}
guard let finalURL = components.url else {
 throw EOError.invalidURL(endpoint)
}

The core processing part of this function uses an RxCocoa extension to URLSession.
You learned about rx.response in Chapter 8, and will learn more about RxCocoa in
Chapters 12 and 13.

Next, add the following code:

let request = URLRequest(url: finalURL)

return URLSession.shared.rx.response(request: request)
 .map { _, data -> [String: Any] in
 guard let jsonObject = try? JSONSerialization.jsonObject(with: data,
options: []),
 let result = jsonObject as? [String: Any] else {
 throw EOError.invalidJSON(finalURL.absoluteString)
 }
 return result
 }

This is a structure you should now be familiar with. URLSession’s rx.response
creates an observable from the result of a request. When the data comes back, the
code deserializes it to an object, then casts to a [String: Any] dictionary.

Finally, close the function with a catch statement that simply ignores errors:

 } catch {
 return Observable.empty()
 }
}

Don’t focus on the details of this right now; you’ll learn the details of handling your
errors in Chapter 14, “Error Handling in Practice”.

You now have a solid mechanism to perform requests. Now you need to fetch the
event categories.

Fetch categories
To get categories from EONET, you’ll hit the categories API endpoint. Since these
categories seldom change, you can make them a singleton. But you are fetching
them asynchronously, so the best way to expose them is with an
Observable<[EOCategory]>.

Add this code to the EONET class:

static var categories: Observable<[EOCategory]> = {
 return EONET.request(endpoint: categoriesEndpoint)
 .map { data in

RxSwift - Reactive Programming with Swift Chapter 10: Combining Operators in Practice

raywenderlich.com 191

 let categories = data["categories"] as? [[String: Any]] ?? []
 return categories
 .flatMap(EOCategory.init)
 .sorted { $0.name < $1.name }
 }
 .shareReplay(1)
}()

Here you apply techniques covered in previous chapters:

• Request data from the categories endpoint.

• Extract the categories array from the response.

• Map it to an array of EOCategory objects and sort them by name.

Note: You may have noticed the use of the coalescing operator ?? above. It
deals with potential errors in the JSON feed. A more appropriate behavior
would be a guard statement that throws an error. You’ll improve this pattern
soon when working on the Events download code.

The interesting bit is the shareReplay(1) at the end. Why would you do this here?

The categories observable you created is a singleton (static var). All subscribers
will get the same one. Therefore:

• The first subscriber triggers the subscription to the request observable.

• The response maps to an array of categories.

RxSwift - Reactive Programming with Swift Chapter 10: Combining Operators in Practice

raywenderlich.com 192

• shareReplay(1) relays all elements to the first subscriber.

• It then replays the last received element to any new subscriber, without re-
requesting the data. It acts much like a cache.

You’re now ready to wire up the categories view controller!

Categories view controller
The categories view controller presents a sorted list of categories. Later on, you will
spice things up by displaying the number of events in each category, as soon as
events have been fetched. For now, let’s keep it simple.

Open CategoriesViewController.swift.

You’re displaying a UITableViewController, so you need to store the categories
locally for display purposes. Start by adding a Variable to hold them, with the initial
value as an empty array. Subscribing to it will trigger an update of the table view
every time new data arrives.

Add the variable and a DisposeBag to hold your subscription disposables:

let categories = Variable<[EOCategory]>([])
let disposeBag = DisposeBag()

To get the number of table view items, pull the current contents from the
categories variable. Update the code in tableView(_:numberOfRowsInSection):

return categories.value.count

Note that you read the current value straight from the categories variable. Later on
in the book, you’ll learn about some better techniques using RxCocoa. For now,
you’ll keep things simple. Since Variable implements locking internally, you’re safe
even if updates come from a background thread.

Use the simple default cell to display categories. Insert the following inside
tableView(_:cellForRowAt:), just above the return statement:

let category = categories.value[indexPath.row]
cell.textLabel?.text = category.name
cell.detailTextLabel?.text = category.description

You’re done with the basic setup. If you run the application, you won’t see any
categories yet as you first need to subscribe to the observable from the EONET
service.

In the empty startDownload() function, add this code:

let eoCategories = EONET.categories

RxSwift - Reactive Programming with Swift Chapter 10: Combining Operators in Practice

raywenderlich.com 193

eoCategories
 .bindTo(categories)
 .addDisposableTo(disposeBag)

Nothing fancy here, since the EONET service is doing all the hard work. bindTo(_:)
connects a source observable (EONET.categories) to an observer (the categories
variable).

Finally, subscribe to the Variable to update the table view. Add this to
viewDidLoad() before the line where you call startDownload():

categories
 .asObservable()
 .subscribe(onNext: { [weak self] _ in
 DispatchQueue.main.async {
 self?.tableView?.reloadData()
 }
 })
 .addDisposableTo(disposeBag)

Note: You’re using a classic DispatchQueue technique to ensure the table view
update occurs on the main thread. You’ll learn to use schedulers and the
observeOn(_:) operator in Chapter 15, “Intro to Schedulers/Threading in
Practice”.

Build and run the application and you’ll see the categories show up.

Now you can move on to downloading the events, where the real Rx fun will
happen!

Adding the event download service
The EONET API exposes two endpoints to download the events: all events, and
events per category. Each also differentiates between open and closed events.

Open events are ongoing; for example, an ongoing flood or thunderstorm. Closed
events have finished and are in the past. The actual EONET request parameters
you’re interested in are:

• The number of days to go back in time to find events.

• The open or closed status of the events.

The API requires that you download open and closed events separately. Still, you
want to make them appear as one flow to subscribers. The initial plan involves
making two requests and concatenating their result.

RxSwift - Reactive Programming with Swift Chapter 10: Combining Operators in Practice

raywenderlich.com 194

Add a private function to EONET.swift for requesting events with the appropriate
parameters:

fileprivate static func events(forLast days: Int, closed: Bool) ->
Observable<[EOEvent]> {
 return request(endpoint: eventsEndpoint, query: [
 "days": NSNumber(value: days),
 "status": (closed ? "closed" : "open")
])
 .map { json in
 guard let raw = json["events"] as? [[String: Any]] else {
 throw EOError.invalidJSON(eventsEndpoint)
 }
 return raw.flatMap(EOEvent.init)
 }
 }

You’re now familiar with JSON processing. The request(_:_:) function already
decoded the JSON, so you just need to map the events array to an array of EOEvent
objects.

Be careful when reading the code! You’re using the RxSwift map(_:) to make an
[EOEvent] observable out of a [String: Any] observable. But in the closure you’re
using a Swift flatMap(_:) to turn dictionaries into an array of events. This is a
subtle distinction that may confuse you a few times before you get used to reading
Rx code.

Note: This time, you added proper error handling for invalid JSON. This guard
statement that throws an error will propagate to an Observable error. You'll
learn more about error handling in Chapter 14, “Error Handling in Practice”.
Now you can go back to the categories observable and fix it in the same way.

Finally, expose a new function in the EONET service to provide an [EOEvent]
observable:

static func events(forLast days: Int = 360) -> Observable<[EOEvent]> {
 let openEvents = events(forLast: days, closed: false)
 let closedEvents = events(forLast: days, closed: true)

 return openEvents.concat(closedEvents)
}

RxSwift - Reactive Programming with Swift Chapter 10: Combining Operators in Practice

raywenderlich.com 195

This is the function you’ll call from view controllers to get events. Notice the
concat(_:) operator? Here’s what’s going on:

This is sequential processing. concat creates an observable that first runs its source
observable (openEvents) to completion. It then subscribes to closedEvents and will
complete along with it. It relays all events emitted by the first, and then the second
observable. If either of those errors out, it immediately relays the error and
terminates.

This is a good starter solution, but you’ll improve on it later in this chapter.

You’re now ready to add the events download feature to the categories view
controller.

Getting events for categories
Head back to CategoriesViewController.swift. In startDownload(), you’ll need a
more elaborate categories download mechanism to download the events. You want
to fill up each category with events, but downloading takes time. To provide the
best user experience possible, you’ll tackle this as follows:

• Download categories and display them first.

• Download all events for the past year.

• Update the category list to include a count of events in each category.

• Add a disclosure indicator.

• Push the events list view controller on selection.

RxSwift - Reactive Programming with Swift Chapter 10: Combining Operators in Practice

raywenderlich.com 196

Updating Categories with Events
You first need to replace the code in startDownload() with something more
elaborate:

func startDownload() {
 let eoCategories = EONET.categories
 let downloadedEvents = EONET
 .events(forLast: 360)

}

You start by preparing two observables. eoCategories downloads the array of all
categories. The new downloadedEvents calls into the events function you added to
the EONET class, and downloads events for the past year.

Now what we need for this table view is a list of categories. Peek into the
EOCategory model, and you’ll see it has an events property. It’s a var so you can
add downloaded events to each category. How are you going to do this?

Add this code at the end of startDownload():

 let updatedCategories = Observable
 .combineLatest(eoCategories, downloadedEvents) {
 (categories, events) -> [EOCategory] in

There you go! You use combineLatest(_:_:resultSelector:) to combine the
downloaded categories with the downloaded events and build an updated category
list with events added. Your closure gets called with the latest categories array,
from the eoCategories observable, and the latest events array, from the
downloadedEvents observable. Its role is to combine them and produce an array of
categories with their events.

RxSwift - Reactive Programming with Swift Chapter 10: Combining Operators in Practice

raywenderlich.com 197

You can now add the guts of the combination closure:

 return categories.map { category in
 var cat = category
 cat.events = events.filter {
 $0.categories.contains(category.id)
 }
 return cat
 }
 }

The updatedCategories observable will be of type Observable<[EOCategory]>. This is
because the return type of the closure is [EOCategory]. It works with the map
operator and lets you create a new Observable type.

The rest of the code above is regular Swift code. Events can belong to several
categories, so it walks the category list and adds up all events matching the id.

Finally, bind to the categories Variable like so:

eoCategories
 .concat(updatedCategories)
 .bindTo(categories)
 .addDisposableTo(disposeBag)

This time you use the concat(_:) operator to bind items from the eoCategories
observable and items from the updatedCategories observable. This will work just
fine because eoCategories emits one element (an array of categories) then
completes. This allows the concat(_:) operator to subscribe to the next observable,
updatedCategories.

To recap, you’ve rewritten startDownload() to download the events and categories
and combine the categories in one observable, with the events in another in order
to add the events to the proper category. Now that you have the events for each
category, you’ll need to update your user interface to display that information.

Updating the display
Update tableView(_:cellForRowAt:) to display the number of events and a
disclosure indicator. Change the cell’s textLabel setup and add the disclosure
indicator:

cell.textLabel?.text = "\(category.name) (\(category.events.count))"
cell.accessoryType = (category.events.count > 0) ? .disclosureIndicator
 : .none

RxSwift - Reactive Programming with Swift Chapter 10: Combining Operators in Practice

raywenderlich.com 198

Build and run the application. You should see categories show up with a (0) event
counter. After a while (have some patience here), you’ll see them update with
actual events count for the past year, as shown in the example below:

You’ll notice quite a long delay between the time categories appear, and the time
they get filled up with events. This is because updates from the EONET API can take
some time. After all, you’re requesting a full year of events! What can you do to
improve this?

Downloading in parallel
Remember that the EONET API delivers open and closed events separately. Until
now, you’ve been using concat(_:) to get them sequentially. It would be a good
idea to download them in parallel instead. The cool thing with RxSwift is that you
can make this change without any impact on UI code! Since your EONET service
class exposes an observable of [EOEvent], it doesn’t matter how many requests
your code makes — it’s transparent to the code consuming this observable.

Open the EONET.swift file again, then navigate to events(forLast:). Replace the
return statement with the following:

return Observable.of(openEvents, closedEvents)
 .merge()
 .reduce([]) { running, new in
 running + new
 }

RxSwift - Reactive Programming with Swift Chapter 10: Combining Operators in Practice

raywenderlich.com 199

What’s happening here?

• First, you created an observable of observables.

• Next, you merged them, just as you learned in the previous chapter. Remember,
merge() takes an observable of observables. It subscribes to each observable
emitted by the source observable and relays all emitted elements.

• Finally, you reduce the result to an array. You start with an empty array, and
each time one of the observables delivers an array of events, your closure gets
called. There you add the new array to the existing array and return it. This is
your ongoing state that grows until all the observables complete. Once complete,
reduce emits a single value (its current state) and completes.

Build and run the application. You may notice a slight improvement in download
time, although you’ll soon learn that you can do even better.

Isn’t it cool that you can change processing in your EONET service, without having
to touch any of the UI code? This is one of the great benefits of Rx. A clean
separation between producer and consumer gives you lots of flexibility.

Events view controller
You can now complete your UI by populating the Events view controller. Not only
are you going to display events, but you’ll also wire up a slider to control how much
of the past year appears in the list. This is a good occasion to exercise some
operators a bit more.

Open EventsViewController.swift and add the following variable to hold the
events, as well as the always-useful DisposeBag:

let events = Variable<[EOEvent]>([])
let disposeBag = DisposeBag()

Note: Tired of adding a DisposeBag everywhere? If your object is a subclass of
NSObject (such as your view controllers) there’s hope on the horizon! Look up
the NSObject+Rx library on the RxSwiftCommunity GitHub organization. It
provides a DisposeBag on demand for any NSObject!

RxSwift - Reactive Programming with Swift Chapter 10: Combining Operators in Practice

raywenderlich.com 200

In viewDidLoad(), add the following code to update the table view every time
events gets a new value:

events.asObservable()
 .subscribe(onNext: { [weak self] _ in
 self?.tableView.reloadData()
 })
 .addDisposableTo(disposeBag)

It would also be wise to ensure the update happens on the main queue, since
events may be emitted from a background queue. Unless otherwise specified,
subscriptions receive elements on the thread which emitted them. You’ve seen this
earlier in this chapter, and you’ll apply the same technique here.

You can now update tableView(_:numberOfRowsInSection:):

return events.value.count

In tableView(_:cellForRowAt:), configure the cell as follows (above the return line
at the bottom):

let event = events.value[indexPath.row]
cell.configure(event: event)

Finally you need to add selection handling to CategoriesViewController. This will
push your events view controller:

func tableView(_ tableView: UITableView, didSelectRowAt indexPath:
IndexPath) {
 let category = categories.value[indexPath.row]
 if !category.events.isEmpty {
 let eventsController =
storyboard!.instantiateViewController(withIdentifier: "events") as!
EventsViewController
 eventsController.title = category.name
 eventsController.events.value = category.events
 navigationController!.pushViewController(eventsController, animated:
true)
 }
 tableView.deselectRow(at: indexPath, animated: true)
}

Easy enough; the Variable<[EOEvent]> in your Events view controller will hold the
events. Setting this variable’s value automatically triggers an update of the table
view. Whether the view is already loaded or not is of no consequence, thanks to
observables!

RxSwift - Reactive Programming with Swift Chapter 10: Combining Operators in Practice

raywenderlich.com 201

Build and run the application. You can now navigate to the events list of a category:

You’re not done yet! The days selector is not wired up yet — but you’ll see it’s fairly
easy to do.

Wiring the days selector
Here’s the general approach you’ll use to wire this one up:

• Bind the current slider value to a Variable<Int>.

• Combine the slider value with events to make a list of filtered events.

• Bind the table view to filtered events.

To get started, add the days and filteredEvents variables to EventsViewController:

let days = Variable<Int>(360)
let filteredEvents = Variable<[EOEvent]>([])

To filter the events, you need to take the latest value of days plus the events and
filter them. You want to keep only the last N days you're interested in. Have you
guessed which operator will come to the rescue?

RxSwift - Reactive Programming with Swift Chapter 10: Combining Operators in Practice

raywenderlich.com 202

Add this to viewDidLoad():

Observable.combineLatest(days.asObservable(), events.asObservable())
{ (days, events) -> [EOEvent] in
 let maxInterval = TimeInterval(days * 24 * 3600)
 return events.filter { event in
 if let date = event.closeDate {
 return abs(date.timeIntervalSinceNow) < maxInterval
 }
 return true
 }
}

It’s your friend combineLatest! You should now recognize the structure of the
operator call. You combine the days and events variables. The closure filters out
events, keeping only those in the requested days range. Now that you have this
observable, you can bind it to the filteredEvents variable:

.bindTo(filteredEvents)

.addDisposableTo(disposeBag)

Now you need to do two things:

• Bind the tableView to filteredEvents.

• Bind the slider to the days value.

The first step is easy. Change events to filteredEvents when subscribing in
viewDidLoad() for table view updates:

filteredEvents.asObservable()
 .subscribe(onNext: { [weak self] _ in
 self?.tableView.reloadData()
 })
 .addDisposableTo(disposeBag)

Scroll down to sliderAction(_:) — the days slider in the storyboard is already
wired to that action method. Insert the following code to update days any time the
user moves the slider knob:

days.value = Int(slider.value)

Finally, update tableView(_:numberOfRowsInSection:) as well to return the number
of filtered events instead of counting all of them:

return filteredEvents.value.count

Obviously, you'll have to also reflect that change in the other data source method
as well. Find the line where you fetch the current event in
tableView(_:cellForRowAt:) and replace it with:

let event = filteredEvents.value[indexPath.row]

RxSwift - Reactive Programming with Swift Chapter 10: Combining Operators in Practice

raywenderlich.com 203

Build and run the application, pick a category with lots of events, then play with the
slider. You'll see the list shorten or lengthen as you drive the slider.

Oh — the label isn’t updating. Add this to viewDidLoad() to fix that:

days.asObservable()
 .subscribe(onNext: { [weak self] days in
 self?.daysLabel.text = "Last \(days) days"
 })
 .addDisposableTo(disposeBag)

Now your application is complete. Congratulations!

But downloading is still rather slow, and you don’t see much progress while it’s
working. You’ll take care of that next!

Splitting event downloads
Your last assignment in this chapter is to split downloads per category. The EONET
API lets you either download all events at once, or by category. You’ll download
events by category, which will be a bit more complicated due to the simultaneous
downloads — but you’re quickly becoming an RxSwift pro and you know you can
handle it.

Here’s the strategy you’ll use:

• First get the categories.

• Then request the events for each category.

• Each time a new event block arrives, update the categories and refresh the table
view.

• Continue until you’ve obtained events for all categories.

You’ll have to make some changes to CategoriesViewController and to the EONET
service. Move to EONET.swift first.

Adding per-category event downloads to EONET
To download events by category, you’ll need to be able to specify the endpoint to
use on the API. Update the private events(forLast:closed:) method signature and
the first line of code to take the endpoint as a parameter:

fileprivate static func events(forLast days: Int, closed: Bool, endpoint:
String) -> Observable<[EOEvent]> {
 return request(endpoint: endpoint, query: [

RxSwift - Reactive Programming with Swift Chapter 10: Combining Operators in Practice

raywenderlich.com 204

To reflect the parameter name change, a little further down in that same method
replace throw EOError.invalidJSON(eventsEndpoint) with:

throw EOError.invalidJSON(endpoint)

Now update the signature of the public events(forLast:) method. Change it to take
a second parameter to set the category to fetch:

static func events(forLast days: Int = 360, category: EOCategory) ->
Observable<[EOEvent]> {

You also need to update calls to build the open and close observables using the
endpoint provided by the category. If you didn’t notice it before, a category object
initializes with an endpoint string. You can use that string to fetch events in this
category from the API. Replace the first two method lines with:

let openEvents = events(forLast: days, closed: false, endpoint:
category.endpoint)
let closedEvents = events(forLast: days, closed: true, endpoint:
category.endpoint)

With that last change you’re done updating the service! Move to
CategoriesViewController to add some interesting Rx action.

Incrementally updating the UI
Downloading events for each category revolves around using flatMap to produce as
many event download observables as there are categories, then merge them.
You’ve probably guessed where this is all going.

In CategoriesViewController.swift inside startDownload() you should spot a line
where Xcode complains about a missing parameter; replace the code that creates
the downloadedEvents observable with the following:

let downloadedEvents = eoCategories.flatMap { categories in
 return Observable.from(categories.map { category in
 EONET.events(forLast: 360, category: category)
 })
}
.merge()

First, you get all the categories. You then call flatMap to transform them into an
observable emitting one observable of events for each category. You then merge all
these observables into a single stream of event arrays.

You need to replace the code that crates updatedCategories to make use of all the
changes you’re doing. Replace the whole piece of code inside viewDidLoad() that
sets updatedCategories with:

let updatedCategories = eoCategories.flatMap { categories in
 downloadedEvents.scan(categories) { updated, events in

RxSwift - Reactive Programming with Swift Chapter 10: Combining Operators in Practice

raywenderlich.com 205

 return updated.map { category in
 let eventsForCategory = EONET.filteredEvents(events: events,
forCategory: category)
 if !eventsForCategory.isEmpty {
 var cat = category
 cat.events = cat.events + eventsForCategory
 return cat
 }
 return category
 }
 }
}

Remember the scan(_:accumulator:) operator from the previous chapter? For every
element emitted by its source observable, it calls your closure and emits the
accumulated value. In your case, this accumulated value is the updated list of
categories.

So every time a new group of events arrives, scan emits a category update. Since
the updatedCategories observable is bound to the categories variable, the table
view updates.

You have, in just a few lines of code, performed an elaborate sequence of API
requests to produce timely updates.

But wait, there’s...

Just one more thing
Say you have 25 categories, which trigger 2 API requests each. That’s 50 API
requests going out simultaneously to the EONET server. You want to limit the
number of concurrent outgoing requests so you don’t hit the free-use threshold of
the APIs.

There’s a simple but powerful change that completely turns your chain of operators
into a threshold queue.

RxSwift - Reactive Programming with Swift Chapter 10: Combining Operators in Practice

raywenderlich.com 206

Replace the merge() call used when creating the downloadedEvents variable with:

.merge(maxConcurrent: 2)

This very simple change means that regardless of the number of event download
observables flatMap(_:) pushes to its observable, only two will be subscribed to at
the same time. Since each event download makes two outgoing requests (for open
events and closed events), no more than four requests will fire at once. Others will
be on hold until a slot is free.

Build and run the project and play around a bit — isn't reactive UI simply the best?

Hopefully you’ve seen the depth and power of RxSwift! It takes your code to a new
level of abstraction, where you rely on powerful tools to express complex tasks with
clarity.

Challenges
Challenge 1
Start from the final project in this chapter. Place an activity indicator in the
navigation bar and start its spinning animation when you start fetching the events
and hide the spinner once you've finished fetching all data from the network.

Challenge 2
The first challenge was cool, but you can go even better. Add a download progress
indicator showing during the events download. You’ll have to find the right spot to
insert this in your code.

You can complete this challenge in different ways so in the challenge folder for this
chapter you will find two separate solutions. Did you come up with one of those on
your own?

RxSwift - Reactive Programming with Swift Chapter 10: Combining Operators in Practice

raywenderlich.com 207

11Chapter 11: Time Based
Operators
By Florent Pillet

Timing is everything. The core idea behind reactive programming is to model
asynchronous data flow over time. In this respect, RxSwift provides a range of
operators that allow you to deal with time and the way that sequences react and
transform over time. As you'll see throughout this chapter, managing the time
dimension of your sequences is easy and straightforward.

To learn about time-based operators, you'll practice with an animated playground
that demonstrates visually how data flows over time. This chapter comes with an
empty RxSwiftPlayground, divided in several pages. You'll use each page to
exercise one or more related operators. The playground also includes a number of
ready-made classes that'll come in handy to build the examples.

raywenderlich.com 208

Getting started
First prepare the workspace. Open Terminal, navigate to the root of the project and
perform the classic pod install command. Once complete, open the
RxSwiftPlayground.xcworkwpace file that was just created and build the
RxSwiftPlayground scheme.

You can keep the Debug Area visible, but what is most important is that you show
the Assistant Editor. This will display a live view of the sequences you build in code.
This is where the real action will happen! To display the Assistant Editor, click the
middle button with two circles at top-right of the Xcode window, as shown below:

The Assistant Editor usually shows a “counterpart file”. Make sure that you show the
“timeline” for your current playground page, in case it is not visible:

Also make sure that anything you type automatically executes in the Assistant
Editor's preview area. Long-click the blue arrow at the bottom of the editor (if it is
currently set to run, it will be a square) and make sure Automatically Run is
selected, as in the screenshot below:

RxSwift - Reactive Programming with Swift Chapter 11: Time Based Operators

raywenderlich.com 209

In the left Navigator pane, pick the first page named replay. You can then close the
Navigator pane using its visibility control, which is the leftmost button at the top-
right of the Xcode window.

Your layout should now look like this:

You're now all set! It's time to learn about the first group of time-based operators:
buffering operators.

Note: This playground uses advanced features of Xcode playgrounds. Xcode
does not fully support importing linked frameworks from within files in the
common Sources subfolder. Therefore, each playground page has to include a
small bit of code (the part of TimelineView that depends on RxSwift) to
function properly. Just ignore this code and leave it at bottom of the page.

Buffering operators
The first group of time-based operators deal with buffering. They will either replay
past elements to new subscribers, or buffer them and deliver them in bursts. They
allow you to control how and when past and new elements get delivered.

RxSwift - Reactive Programming with Swift Chapter 11: Time Based Operators

raywenderlich.com 210

Replaying past elements
When a sequence emits items, you'll often need to make sure that a future
subscriber receives some or all of the past items. This is the purpose of the
replay(_:) and replayAll() operators.

To learn how to use them, you’ll start coding in the replay page of the playground.
To visualize what replay(_:) does, you'll display elements on a timeline. The
playground contains custom classes to make it easy to display animated timelines.

Start by adding some definitions:

let elementsPerSecond = 1
let maxElements = 5
let replayedElements = 1
let replayDelay: TimeInterval = 3

You'll create an observable that emits elements at a frequency of
elementsPerSecond. You'll also cap the total number of elements emitted, and
control how many elements are “played back” to new subscribers. To build this
emitting observable, use the Observable<T>.create function and some dispatch
magic:

let sourceObservable = Observable<Int>.create { observer in
 var value = 1
 let timer = DispatchSource.timer(interval: 1.0 /
Double(elementsPerSecond), queue: .main) {

The DispatchSource.timer function is an extension to DispatchSource defined in the
playground Sources folder. It simplifies the creation of repeating timers. Add the
code to emit elements:

 if value <= maxElements {
 observer.onNext(value)
 value = value + 1
 }
 }
 return Disposables.create {
 timer.suspend()
 }
}

Note that for the purpose of this example, you don't care about completing the
observable. It simply emits as many elements as instructed and never completes.

Now add the replay functionality to the observable:

.replay(replayedElements)

RxSwift - Reactive Programming with Swift Chapter 11: Time Based Operators

raywenderlich.com 211

This operator creates a new sequence which records the last replayedElements
emitted by the source observable. Every time a new observer subscribes, it
immediately receives the buffered elements (if any) and keeps receiving any new
element like a normal subscription does.

To visualize the actual effect of replay(_:), create a couple of TimelineView views.
This class is defined at bottom of the playground page and relies on the
TimelineViewBase class in the Sources group of the playground. It provides a live
visualization of events emitted by an observable. Append, below the code you wrote
previously:

let sourceTimeline = TimelineView<Int>.make()
let replayedTimeline = TimelineView<Int>.make()

You're going to use a UIStackView for convenience. It'll display the source (live)
observable as viewed by an immediate subscriber, as well as another representation
as viewed by a subscriber coming later. Create the stack view:

let stack = UIStackView.makeVertical([
 UILabel.makeTitle("replay"),
 UILabel.make("Emit \(elementsPerSecond) per second:"),
 sourceTimeline,
 UILabel.make("Replay \(replayedElements) after \(replayDelay) sec:"),
 replayedTimeline])

This looks complicated, but it's actually fairly straightforward. It simply creates a
few vertically stacked views. The UIStackView.makeVertical(_:) and
UILabel.make(_:) functions are convenience extensions local to this playground.

Now prepare an immediate subscriber and display what it receives in the top
timeline:

_ = sourceObservable.subscribe(sourceTimeline)

The TimelineView class implements the ObserverType RxSwift protocol. Therefore,
you can subscribe it to an observable sequence and it will receive the sequence’s
events. Every time a new event occurs (element emitted, sequence completed or
errored out), TimelineView displays it on the timeline. Emitted elements are shown
in green, completion in black and errors in red.

Note: Did you notice that the code is ignoring the Disposable returned by the
subscription? Good! This example code is not keeping them on purpose, as the
playground page drops everything when refreshing. In your applications,
remember to always keep long-running subscriptions in a DisposeBag!

RxSwift - Reactive Programming with Swift Chapter 11: Time Based Operators

raywenderlich.com 212

Next, you want to subscribe again to the source observable, but with a slight delay:

DispatchQueue.main.asyncAfter(deadline: .now() + replayDelay) {
 _ = sourceObservable.subscribe(replayedTimeline)
}

This displays elements received by the second subscription in another timeline view.
You'll see the timeline view shortly, I promise!

Now since replay(_:) creates a connectable observable, you need to connect it
to its underlying source to start receiving items. If you forget this, subscribers will
never receive anything.

Note: Connectable observables are a special class of observables. Regardless
of their number of subscribers, they won't start emitting items until you call
their connect() method. While this is beyond the scope of this chapter,
remember that a few operators return ConnectableObservable<E>, not
Observable<E>. These operators are:

replay(_:)

replayAll()

multicast(_:)

publish()

Replay operators are covered in this chapter. The last two operators are
advanced, and only touched on briefly in this book. They allow sharing a single
subscription to an observable, regardless of the number of observers.

So add this code to connect:

_ = sourceObservable.connect()

Finally, set up the host view in which the stack view will display. The playground has
a utility function to keep your code simple:

let hostView = setupHostView()
hostView.addSubview(stack)
hostView

Once you save these source changes, Xcode will recompile the playground code and
... look at the Assistant Editor pane! Finally! :]

You'll see two timelines. The top timeline reflects an observer named connect() that
subscribes before you. The bottom timeline is the one where subscription occurs
after a delay. The source observable emits numbers for convenience. This way you
can see the progress of emitted elements.

RxSwift - Reactive Programming with Swift Chapter 11: Time Based Operators

raywenderlich.com 213

You may need to wait a little bit after making changes to the playground to have
the timeline view show up, especially on slower computers. Such is life with
Xcode :]

Note: As exciting it is to see a live observable diagram it might confuse at
first. Static timelines usually have their elements aligned to the left, but if you
think twice about it they also have the most recent ones on the right side just
as the animated diagrams you observe right now.

In the settings you used, replayedElements is equal to 1. It configures the
replay(_:) operator to only buffer the last element from the source observable. The
animated timeline shows that the second subscriber receives elements 3 and 4 in
the same time frame. By the time it subscribes, it gets both the latest buffer
element (3) and the one that happens to be emitted just right when subscription
occurs. The timeline view shows them stacked up since the time they arrive is
about the same (although not exactly the same).

Note: You can now play with the replayDelay and replayedElements constants.
Observe the effect of tweaking the number of replayed (buffered) elements.
You can also tweak the total number of elements emitted by the source
observable using maxElements. Set it to a very large value for continuous
emission.

Unlimited replay
The second replay operator you can use is replayAll(). This one should be used
with caution: only use it in scenarios where you know the total number of buffered
elements will stay reasonable. For example, it’s appropriate to use replayAll() in
the context of HTTP requests. You know the approximate memory impact of
retaining the data returned by a query. On the other hand, using replayAll() on a

RxSwift - Reactive Programming with Swift Chapter 11: Time Based Operators

raywenderlich.com 214

sequence that may not terminate and may produce a lot of data will quickly clog
your memory. This could grow to the point where the OS jettisons your application!

To experiment with replayAll(), replace:

.replay(replayedElements)

with:

.replayAll()

Watch the effect on the timeline. You will see all buffered elements emitted
instantly upon the second subscription.

Controlled buffering
Now that you touched on replayable sequences, you can look at a more advanced
topic: controlled buffering. You’ll first look at the
buffer(timeSpan:count:scheduler:) operator. Switch to the second page in the
playground called buffer. As in the previous example, you'll begin with some
constants:

let bufferTimeSpan: RxTimeInterval = 4
let bufferMaxCount = 2

These constants define the behavior for the buffer operator you'll soon add to the
code. For this example, you'll manually feed a subject with values. Add:

let sourceObservable = PublishSubject<String>()

You will push short strings (a single emoji) to this observable. Create the timeline
visualizations and the stack to contain them (just like before).

let sourceTimeline = TimelineView<String>.make()
let bufferedTimeline = TimelineView<Int>.make()

let stack = UIStackView.makeVertical([
 UILabel.makeTitle("buffer"),
 UILabel.make("Emitted elements:"),
 sourceTimeline,
 UILabel.make("Buffered elements (at most \(bufferMaxCount) every \
(bufferTimeSpan) seconds):"),
 bufferedTimeline])

Subscribe to fill the top timeline with events, like you did in the replay playground
page:

_ = sourceObservable.subscribe(sourceTimeline)

RxSwift - Reactive Programming with Swift Chapter 11: Time Based Operators

raywenderlich.com 215

The buffered timeline will display the number of elements contained in each
buffered array:

sourceObservable
 .buffer(timeSpan: bufferTimeSpan, count: bufferMaxCount, scheduler:
MainScheduler.instance)
 .map { $0.count }
 .subscribe(bufferedTimeline)

What's happening here? Breaking it down:

• You want to receive arrays of elements from the source observable.

• Each array can hold at most bufferMaxCount elements.

• If that many elements are received before bufferTimeSpan expires, the operator
will emit buffered elements and reset its timer.

• In a delay of bufferTimeSpan after the last emitted group, buffer will emit an
array. If no element has been received during this timeframe, the array will be
empty.

To activate your timeline views, set up the host view:

let hostView = setupHostView()
hostView.addSubview(stack)
hostView

Even though there is no activity on the source observable, you can witness empty
buffers on the buffered timeline. The buffer(_:scheduler:) operators emits empty
arrays at regular intervals if nothing has been received from its source observable.
The 0s mean that zero elements have been emitted from the source sequence.

You can start feeding the raw observable with data and observe the impact on the
buffered observable. First, try pushing three elements over five seconds. Append:

DispatchQueue.main.asyncAfter(deadline: .now() + 5) {
 sourceObservable.onNext("" ")
 sourceObservable.onNext("" ")
 sourceObservable.onNext("" ")
}

RxSwift - Reactive Programming with Swift Chapter 11: Time Based Operators

raywenderlich.com 216

Can you guess what the effect will be? Look how the timeline moves:

Each box shows the number of elements in each emitted array:

• At first the buffered timeline emits an empty array (no element in the source
observable yet).

• Then you push three elements on the source observable.

• The buffered timeline immediately gets an array of two elements because it's the
maximum count you specified (due to the bufferMaxCount constant).

• Four seconds elapse, and an array with just one element is emitted. This is the
last of the three elements that have been pushed to the source observable.

As you can see, the buffer immediately emits an array of elements when it reaches
full capacity, then waits for the specified delay (or until it's full again) before it
emits a new array.

You can play a bit more with different buffering scenarios. Remove the
DispatchQueue that emits elements, and add this instead:

let elementsPerSecond = 0.7
let timer = DispatchSource.timer(interval: 1.0 /
Double(elementsPerSecond), queue: .main) {
 sourceObservable.onNext("" ")
}

The timeline is very different! As before, you can tweak the constants (buffering
time, buffering limit, elements per second) to see how grouping works.

RxSwift - Reactive Programming with Swift Chapter 11: Time Based Operators

raywenderlich.com 217

Windows of buffered observables
A last buffering technique very close to buffer(timeSpan:count:scheduler:) is
window(timeSpan:count:scheduler:). It has roughly the same signature and nearly
does the same thing. The only difference is that it emits an Observable of the
buffered items, instead of emitting an array.

You're going to build a slightly more elaborate timeline view. Since windowed
sequences emit multiple observables, it will be beneficial to visualize them
separately. Get started in the window playground page:

let elementsPerSecond = 3
let windowTimeSpan: RxTimeInterval = 4
let windowMaxCount = 10
let sourceObservable = PublishSubject<String>()

You're going to look at how timed output is grouped in windowed observables by
pushing strings to a subject. As usual, first add the stack view code:

let sourceTimeline = TimelineView<String>.make()

let stack = UIStackView.makeVertical([
 UILabel.makeTitle("window"),
 UILabel.make("Emitted elements (\(elementsPerSecond) per sec.):"),
 sourceTimeline,
 UILabel.make("Windowed observables (at most \(windowMaxCount) every \
(windowTimeSpan) sec):")])

And this time add a timer to push elements to the source observable:

let timer = DispatchSource.timer(interval: 1.0 /
Double(elementsPerSecond), queue: .main) {
 sourceObservable.onNext("" ")
}

Then fill up the source timeline:

_ = sourceObservable.subscribe(sourceTimeline)

You're now at a point where you want to see each emitted observable separately. To
this end, you'll insert a new timeline every time window(timeSpan:count:scheduler:)
emits a new observable. Previous observables will move downwards. Append:

_ = sourceObservable
 .window(timeSpan: windowTimeSpan, count: windowMaxCount, scheduler:
MainScheduler.instance)

This is your windowed observable. How can you handle emitted observables? Using
your trusted flatMap(_:) operator of course! Chain this under the window operator:

.flatMap { windowedObservable -> Observable<(TimelineView<Int>, String?)>
in

RxSwift - Reactive Programming with Swift Chapter 11: Time Based Operators

raywenderlich.com 218

 let timeline = TimelineView<Int>.make()
 stack.insert(timeline, at: 4)
 stack.keep(atMost: 8)
 return windowedObservable
 .map { value in (timeline, value) }
 .concat(Observable.just((timeline, nil)))
}

Obviously this is the tricky part. Try to figure out the code yourself first, and then
fall back on the following:

• Every time flatMap gets a new observable, you insert a new timeline view.

• You then map the observable of items to an observable of tuple. The goal is to
transport both the value and the timeline in which to display it.

• Once this inner observable completes, you concat(_:) a single tuple so you can
mark the timeline as complete.

• You flatMap(_:) the sequence of resulting observables of tuple to a single
sequence of tuples.

• You subscribe to the resulting observable and fill up timelines as you receive
tuples.

Note: In trying to keep the code short, you're doing something that is
generally not advisable in Rx code: you're adding side effects to an operator
that's supposed to just be transforming data. The right solution would be to
perform side effects using a do(onNext:) operator. This is left as an exercise in
this chapter's challenges!

Finally, you need to subscribe and display elements in each timeline. Since you
mapped the elements to the actual timeline they belong to, this becomes easy.
Chain this code to the previous:

.subscribe(onNext: { tuple in
 let (timeline, value) = tuple
 if let value = value {
 timeline.add(.Next(value))
 } else {
 timeline.add(.Completed(true))
 }
})

The value in the tuple is a String?: the convention here is that if it is nil, it means
the sequence completed. The code pushes either a next or a completed event to the
timeline.

RxSwift - Reactive Programming with Swift Chapter 11: Time Based Operators

raywenderlich.com 219

Finally, instantiate the host view as usual:

let hostView = setupHostView()
hostView.addSubview(stack)
hostView

Let the playground run. Things quickly get interesting, as
window(timeSpan:count:scheduler:) emits new sequences:

Starting from the second timeline, all the timelines you see are “most recent first”.
This screenshot was taken with a setting of five elements maximum per windowed
observable, and a four second window. This means that a new observable is
produced at least every four seconds. It will emit at most five elements before
completing.

If the source observable emits more than four elements during the window time, a
new observable is produced, and the cycle starts again.

RxSwift - Reactive Programming with Swift Chapter 11: Time Based Operators

raywenderlich.com 220

Time-shifting operators
Every now and again you need time traveling. While RxSwift can't help with fixing
your past relationship mistakes, it has the ability to freeze time for a little while to
let you wait until self-cloning is available.

Next, you'll look into two time related operators. Open the delay playground page
to get started.

Delayed subscriptions
You'll start with delaySubscription(_:scheduler:). Since you are now used to
creating animated timelines, this page comes with most of the setup code ready.
Find the comment Setup the delayed subscription in the source and insert this
code after it:

_ = sourceObservable
 .delaySubscription(RxTimeInterval(delayInSeconds), scheduler:
MainScheduler.instance)
 .subscribe(delayedTimeline)

The idea behind the delaySubscription(_:scheduler:) is, as the name implies, to
delay the time a subscriber starts receiving elements from its subscription. Run the
example if it's not already running. In the right timeline view, you can observe that
the second timeline starts picking up elements after the delay specified by
delayInSeconds.

Note: In Rx, some observables are called “cold” while others are “hot”. Cold
observables start emitting elements when you subscribe to them. Hot
observables are more like permanent sources you happen to look at at some

RxSwift - Reactive Programming with Swift Chapter 11: Time Based Operators

raywenderlich.com 221

point (think of Notifications). When delaying a subscription, it won't make a
difference if the observable is cold. If it's hot, you may skip elements (like in
this example).

Hot and cold observables are a tricky topic that can take some time getting
your head around. Remember that cold observables emit events only when
subscribed to, but hot observables emit events independent of being
subscribed to.

Delayed elements
The other kind of delay in RxSwift lets you time-shift the whole sequence. Instead
of subscribing late, the operator subscribes immediately to the source observable,
but delays every emitted element by the specified amount of time. The net result is
a concrete time-shift.

To try this out, stay in the delay playground page you just used. Replace the
delayed subscription (that you just added) with:

_ = sourceObservable
 .delay(RxTimeInterval(delayInSeconds), scheduler:
MainScheduler.instance)
 .subscribe(delayedTimeline)

As you can see the code is similar. You just replaced
delaySubscription(_:scheduler:) with delay(_:scheduler:). Look at the timelines.
Can you spot the difference?

In the previous example, delaying the subscription (with the default settings) made
you miss the first two elements from the source observable. When using the
delay(_:scheduler:) operator, you time-shift the elements and won't miss any.
Again, the subscription occurs immediately. You simply “see” the items with a delay.

RxSwift - Reactive Programming with Swift Chapter 11: Time Based Operators

raywenderlich.com 222

Timer operators
A common need in any kind of application is a timer. iOS and macOS come with
several timing solutions. Historically, NSTimer did the job but has a confusing
ownership model that makes it tricky to get right. More recently, the dispatch
framework offered timers through the use of dispatch sources. It's a better solution
than NSTimer, but the API is still somewhat complicated unless you wrap it, like we
did in this playground.

RxSwift provides a simple and efficient solution for both one-shot and repeating
timers. It perfectly integrates with sequences and offers both cancellation and
composability with other sequences.

Intervals
This chapter used DispatchSource several times to create interval timers through a
handy custom function. You could replace these instances with RxSwift's
Observable.interval(_:scheduler:) function. It produces an infinite observable
sequence on Int values (effectively a counter) sent at the selected interval on the
specified scheduler.

Go back to the replay playground page. Towards the beginning of the code, you
created a source observable. You used DispatchSource.timer(_:queue:) to create a
timer and feed observers with values.

Delete this code, starting at let sourceObservable = Observable<Int>.create {...
and up to (and including) replayAll(); and then insert instead:

let sourceObservable = Observable<Int>
 .interval(RxTimeInterval(elementsPerSecond), scheduler:
MainScheduler.instance)
 .replay(replayedElements)

And. That's. All.

Interval timers are incredibly easy to create with RxSwift. Not only that, but they
are also easy to cancel: since Observable.interval(_:scheduler:) generates an
observable sequence, subscriptions can simply dispose() the returned disposable to
cancel the subscription and stop the timer. Very cool!

In the example above, you cast elementsPerSecond to the RxTimeInterval type
which happens to be a Double. This simply is the number of seconds to wait
between emitted elements. If you used a number directly, the compiler would
automatically have inferred the literal value to be of the appropriate type.

It is notable that the first value is emitted at the specified duration after a
subscriber starts observing the sequence. Also, the timer won't start before this
point. The subscription is the trigger that kicks it off.

RxSwift - Reactive Programming with Swift Chapter 11: Time Based Operators

raywenderlich.com 223

Note: As you can see in the timeline view, values emitted by
Observable.interval(_:scheduler:) are signed integers starting from 0.
Should you need different values, you can simply map(_:) them. In most real
life cases, the value emitted by the timer is simply ignored. But it can make a
convenient index.

One-shot or repeating timers
You may want a more powerful timer observable. You can use the
Observable.timer(_:period:scheduler:) operator which is very much like
Observable.interval(_:scheduler:) but adds the following features:

• You can specify a “due date” as the time that elapsed between the point of
subscription and the first emitted value.

• The repeat period is optional. If you don't specify one, the timer observable will
emit once, then complete.

Can you see how handy this can be? Give it a go. In the playground, open the
delay page. Locate the place where you used the delay(_:scheduler:) operator.
Replace the whole block of code with:

_ = Observable<Int>
 .timer(3, scheduler: MainScheduler.instance)
 .flatMap { _ in
 sourceObservable.delay(RxTimeInterval(delayInSeconds), scheduler:
MainScheduler.instance)
 }
 .subscribe(delayedTimeline)

A timer triggering another timer? This is Inception! There are several benefits to
using this over Dispatch:

• The whole chain is more readable (more “Rx-y”).

• Since the subscription returns a disposable, you can cancel at any point before
the first or second timer triggers with a single observable.

• Using the flatMap(_:) operator, you can produce timer sequences without having
to jump through hoops with Dispatch asynchronous closures.

Timeouts
You'll complete this roundup of time-based operators with a special one: timeout.
Its primary purpose is to semantically distinguish an actual timer from a timeout
(error) condition. Therefore, when a timeout operator fires, it emits an
RxError.TimeoutError error event; if not caught, it terminates the sequence.

RxSwift - Reactive Programming with Swift Chapter 11: Time Based Operators

raywenderlich.com 224

Open the timeout playground page. Create a simple button:

let button = UIButton(type: .system)
button.setTitle("Press me now!", for: .normal)
button.sizeToFit()

You're going to use an extension from RxCocoa that turns button taps into an
observable sequence. You'll learn more about RxCocoa in the following chapters.
For now, the goal is to:

• Capture button taps.

• If the button is pressed within fives seconds, print something then terminate the
sequence.

• If the button is not pressed, print the error condition,

Prepare the timeline view and stack it up with the button:

let tapsTimeline = TimelineView<String>.make()

let stack = UIStackView.makeVertical([
 button,
 UILabel.make("Taps on button above"),
 tapsTimeline])

Setup the observable and connect it to the timeline view:

let _ = button
 .rx.tap
 .map { _ in "•" }
 .timeout(5, scheduler: MainScheduler.instance)
 .subscribe(tapsTimeline)

And as usual, add the stack to the host view to kick off the animation:

let hostView = setupHostView()
hostView.addSubview(stack)
hostView

If you click the button within five seconds (and within five seconds of subsequent
presses), you'll see your taps on the timeline. Stop clicking, and five seconds after
that, as the timeout fires, the timeline will stop with an Error.

An alternate version of timeout(_:scheduler:) takes an observable and, when the
timeout fires, switches the subscription to this observable instead of emitting an
error. There are many uses for this form of timeout, one of which is to emit a value
(instead of an error) then complete normally.

To try this, change the timeout(_:scheduler:) call in the playground to:

.timeout(5, other: Observable.just("X"), scheduler:
MainScheduler.instance)

RxSwift - Reactive Programming with Swift Chapter 11: Time Based Operators

raywenderlich.com 225

Now instead of the error indicator, you see the X element and a regular completion.
Mission accomplished!

Challenges
Challenge 1: Circumscribe side effects
In the discussion of the window(_:scheduler:) operator, you created timelines on
the fly inside the closure of a flatMap(_:) operator. While this was done to keep the
code short, one of the guidelines of reactive programming is to “not leave the
monad”. In other words, avoid side effects except for specific areas created to apply
side effects. Here, the “side effect” is the creation of a new timeline in a spot where
only a transformation should occur.

Your task is to find an alternate way to do this. You can consider several
approaches; try and pick the one that seems the most elegant to you. When
finished, compare it with the proposed solution!

There are several possible approaches to tackle this challenge. The most effective
will be to split the work into multiple observables then join them later.

Make the windowed observable a separate one that you use to produce two
separate sequences: one that prepares the timeline views (remember that side
effects can be performed with the do(onNext:) operator), and one that takes both
the produced timeline view and the source sequence element (hint: use a
combination of zip and flatMap) to generate a contextual value (timeline view and
sequence) every time window emits a new sequence.

RxSwift - Reactive Programming with Swift Chapter 11: Time Based Operators

raywenderlich.com 226

Section III: iOS Apps with RxCocoa

Since Rx is a multi-platform framework, it doesn't make any assumptions on which
device your Rx powered app is running. RxSwift closely follows the general API
design that RxPython, RxRuby, RxJS, and all other platforms conform to, so it does
not include any specific features or integrations with UIKit or Cocoa to aid you in
developing for iOS or macOS.

RxCocoa is a standalone library (though it's bundled with RxSwift) that allows you
to use many prebuilt features to integrate better with UIKit and Cocoa.

RxCocoa will provide you with out-of-the-box classes to do reactive networking,
react to user interactions, bind data models to UI controls, and more.

Chapter 12: Beginning RxCocoa

Chapter 13: Intermediate RxCocoa

raywenderlich.com 227

12Chapter 12: Beginning
RxCocoa
By Junior Bontognali

In previous chapters, you were introduced to the basics of RxSwift, its functional
parts and how to create, subscribe and dispose observables. All this knowledge is
important to be able to properly leverage RxSwift in your applications and to avoid
annoying, unexpected side effects and unwanted results.

From this point forward, it’s important that you have a good understanding of how
to create observables, how to subscribe to them, how disposing works and a good
overview of the most important operators provided by RxSwift.

In this chapter you’ll be introduced to another framework, which is part of the
original RxSwift repository: RxCocoa.

RxCocoa works on all platforms, targeting the need of each one: iOS (iPhone, iPad,
Apple Watch), Apple TV and macOS. Every platform has a set of custom wrappers
which provide a set of built-in extension to many UI controls and other SDK classes.
In this chapter you will use the ones provided for iOS on the iPhone and iPad.

Note: At present, the RxCocoa support in iOS is the most complete, followed
by Apple Watch and macOS. The macOS implementation still lacks a few more
advanced wrappers, but it includes all the basics to create a cross-platform
solution sharing the logic underneath. You’ll see how to do this in some of the
later chapters in this book.

raywenderlich.com 228

Getting started
The starter project for this chapter is an iOS application named Wundercast. As
suggested by the name, it’s a weather application using the current weather
information provided by OpenWeatherMap http://openweathermap.org. The project
has already been set up for you using CocoaPods and includes RxSwift, RxCocoa
and SwiftyJSON for a better handling of the JSON data returned by the
OpenWeatherMap API.

Before starting, open Podfile and check the project’s dependencies to better
understand what you will be using in this chapter. To install RxCocoa, you have an
extra line to include the relevant CocoaPod:

 `pod 'RxCocoa', '~> 3.0'`.

RxCocoa is released alongside RxSwift. Both frameworks share the same release
schedule, so usually the latest RxSwift release has the same version number as
RxCocoa.

Now, open Terminal and navigate to the root of the project. Perform the classic pod
install command to pull in all dependencies so you’re ready to compile and run the
project.

At this point, RxCocoa is part of the project and the workspace has been correctly
created. I recommend that you open the workspace, navigate the pod project and
inspect what comes with RxCocoa. In this project, you’ll use the two wrappers for
UITextField and UILabel quite a bit, so it’s a good idea to inspect these two files to
understand how they work.

Open UITextField+Rx.swift and check the contents. You will immediately notice
that the file is really short — less than 50 lines of code — and that the only
property is a ControlProperty<String?> named text.

What’s a ControlProperty, you say? Don’t worry — you’ll learn about this a bit later.
What you need to know is that this type is a special kind of Subject that can be

RxSwift - Reactive Programming with Swift Chapter 12: Beginning RxCocoa

raywenderlich.com 229

subscribed to and can have new values injected. The name of the property gives
you a good idea about what can be observed: text means that the property is
directly related to the text inside the UITextField.

Now open UILabel+Rx.swift. Here you can see two new properties: text and
attributedText. As before, both names are related to the original UILabel
implementation, so there are no name conflicts, and their purpose is clear. There’s a
new type used in both called UIBindingObserver.

This observer, similar to ControlProperty, is special and is dedicated to working
with UI. UIBindingObserver is used to bind the UI with the underlying logic — and
importantly, it can’t bind errors. If an error is sent to an UIBindingObserver, this
would call fatalError() when running a Debug schema in development, but will be
be added to the error log when running the app in production.

This short introduction to RxCocoa gave you a glimpse into what is it all about, but
now it’s time to get to work.

Configure the API key
OpenWeatherMap requires an API key to work, so sign up by following the
instructions at https://home.openweathermap.org/users/sign_up.

Once you’ve signed up, navigate to the API key dedicated page https://
home.openweathermap.org/api_keys and generate a new key to use in this project.

Copy the API key and paste it in ApiController.swift at the following spot:

private let apiKey = "[YOUR KEY]"

At this point, you’re ready to proceed and receive data from the API.

Using RxCocoa with basic UIKit controls
First make sure you've completed the setup by building the project; you’re now
ready to input some data and ask the API to return the weather of a given city
along with the temperature, humidity and the city name. The city name will give
you some confirmation the data displayed actually belongs to the city you queried.

Displaying the data using RxCocoa
If you already ran the project, you’re probably asking why the app displays data
before actually retrieving any from the API. The reason is simple: you can be sure
that the manually injected data is correct, so if something fails you know it’s
somewhere in the API handling code — and not in your Rx logic and UI-related
code.

RxSwift - Reactive Programming with Swift Chapter 12: Beginning RxCocoa

raywenderlich.com 230

In ApiController.swift you’ll see a struct which will be used as a data model to
correctly map the JSON data structure to something more easily digested by Swift:

struct Weather {
 let cityName: String
 let temperature: Int
 let humidity: Int
 let icon: String
 ...
}

Note: Using a struct here aids in creating cleaner code, since it requires all its
properties to have a value at creation time. In case a value isn’t available, you
could always use "N/A" or a similar string.

Still in ApiController.swift, take a look at the following function:

func currentWeather(city: String) -> Observable<Weather> {
 // Placeholder call
 return Observable.just(
 Weather(
 cityName: city,
 temperature: 20,
 humidity: 90,
 icon: iconNameToChar(icon: "01d"))
)
}

This function returns a fake city named RxCity and displays some dummy data,
which you can use instead of real data until you retrieve real weather information
from the server.

Having dummy data helps simplify the development process and gives you the
chance to work with an actual data structure, even without a working internet
connection.

Open ViewController.swift; this is the one single view controller present in this
project. The main goal of this project is to connect this single view controller to
ApiController, which is going to provide the data.

The result is a uni-directional data flow:

As explained in previous chapters, RxSwift (and more precisely, observables), are
entities capable of receiving data and letting all subscribers know that some data
has arrived, pushing values to be processed. For this reason, the correct place to
subscribe to an observable while working in view controllers is inside viewDidLoad.

RxSwift - Reactive Programming with Swift Chapter 12: Beginning RxCocoa

raywenderlich.com 231

This is because you need to subscribe as early as possible, but only after the view
has been loaded. Subscribing later might lead to missed events or parts of UI might
be visible before you bind data to them.

Therefore you have to create all subscriptions before the application creates or
requests data that needs to be processed and displayed to the user.

To retrieve the data, add the following code to the end of viewDidLoad:

ApiController.shared.currentWeather(city: "RxSwift")
 .observeOn(MainScheduler.instance)
 .subscribe(onNext: { data in
 self.tempLabel.text = "\(data.temperature)° C"
 self.iconLabel.text = data.icon
 self.humidityLabel.text = "\(data.humidity)%"
 self.cityNameLabel.text = data.cityName
 })

Build and run your app, and you should have the following result:

The application is correctly displaying the dummy data, but there are two problems:

1. There’s a compiler warning

2. You still don't make use of the input text field.

The first problem is pointed out by the following warning displayed by Xcode:

As in previous chapters, a subscription returns a disposable object which will cancel
the subscription when necessary. In this case, the subscription must be canceled

RxSwift - Reactive Programming with Swift Chapter 12: Beginning RxCocoa

raywenderlich.com 232

when the view controller is dismissed. To achieve this, add the following property to
the view controller class:

let bag = DisposeBag()

Next, add an extra line of code to add this subscription to the newly created dispose
bag (the line to be added is the last one below):

ApiController.shared.currentWeather(city: "RxSwift")
 .observeOn(MainScheduler.instance)
 .subscribe(onNext: { data in
 self.tempLabel.text = "\(data.temperature)° C"
 self.iconLabel.text = data.icon
 self.humidityLabel.text = "\(data.humidity)%"
 self.cityNameLabel.text = data.cityName
 })
 .addDisposableTo(bag)

This will cancel and dispose the subscription whenever the view controller is
released. This prevents wasting resources, but also avoids unexpected events or
other side effects that can happen when a subscription isn’t disposed.

You’ve solved the first issue, so you can turn your attention to the text field. As
previously mentioned, RxCocoa adds a lot on top of Cocoa, so you can start using
this functionality to achieve your ultimate goal. The framework uses the power of
protocol extensions and adds the rx space to many of the UIKit components. This
means you can type searchCityName.rx. to see the available properties and
methods:

There’s one you’ve already explored before: text. This function returns an
observable that is a ControlProperty<String?>, which conforms to both
ObservableType and ObserverType so you can subscribe to it and also emit new
values (thus setting the field text).

Knowing the basics behind ControlProperty, you can improve the code to take
advantage of the text field to display the city name in the dummy data. Add to
viewDidLoad():

searchCityName.rx.text
 .filter { ($0 ?? "").characters.count > 0 }
 .flatMap { text in

RxSwift - Reactive Programming with Swift Chapter 12: Beginning RxCocoa

raywenderlich.com 233

 return ApiController.shared.currentWeather(city: text ?? "Error")
 .catchErrorJustReturn(ApiController.Weather.empty)
 }

The above code will return a new observable with the data to display.
currentWeather does not accept nil or empty values so you filter those out. Then
you fetch the weather data by using the provided ApiController class. You've
already completed similar tasks involving networking in the previous chapters so
you won't go into more detail about that here.

Continue your previous block of code by switching to the correct thread and
displaying the data:

.observeOn(MainScheduler.instance)

.subscribe(onNext: { data in
 self.tempLabel.text = "\(data.temperature)° C"
 self.iconLabel.text = data.icon
 self.humidityLabel.text = "\(data.humidity)%"
 self.cityNameLabel.text = data.cityName
})
.addDisposableTo(bag)

Once you have switched to MainScheduler and the main thread, you update all UI
controls with the current weather data. The diagram below should help you
visualize the flow of the code:

At this point, whenever you change the input, the label will update with the name of
the city — but right now it will always return your dummy data. You know the the
application displays the dummy data correctly, so it’s time to get the real data from
the API.

Note: The catchErrorJustReturn operator will be explained later in this book.
It’s required to prevent the observable from being disposed when you receive
an error from the API. For instance, an invalid city name returns a 404 as an
error for NSURLSession. In this case you want to return an empty value so the
app won’t stop working if it encounters an error.

Retrieving data from the OpenWeather API
To retrieve live weather data from the API, you’ll need an active internet
connection. The API returns a structured JSON response, and the following are the
useful bits:

{
 "weather": [
 {

RxSwift - Reactive Programming with Swift Chapter 12: Beginning RxCocoa

raywenderlich.com 234

 "id": 741,
 "main": "Fog",
 "description": "fog",
 "icon": "50d"
 }
],
}

The above data is related to the current weather; the icon elements is used to
display the correct icon for the current conditions. The section below deals with the
temperature and humidity data:

 "main": {
 "temp": 271.55,
 "pressure": 1043,
 "humidity": 96,
 "temp_min": 268.15,
 "temp_max": 273.15
 }
}

Don’t freak out — those temperatures are in Kelvin, not Celsius or Fahrenheit! :]

Inside ApiController.swift, there’s a function named iconNameToChar that takes a
String (more precisely, the icon data from the JSON) and returns another String,
which is the UTF-8 code of the weather icon that visually represents the current
weather in your application. In the same file, there’s a convenience function
buildRequest to create network requests; this uses RxCocoa’s wrapper for
NSURLSession to perform network requests. This function is responsible for:

• Getting the base URL and appending the components to correctly build the GET
(or POST) request

• Using the API key you generated at the beginning of this chapter

• Setting the content type of the request to application/json

• Asking for metrics as units (in th is case, degrees Kelvin)

• Returning the data mapped as JSON objects

The last part is collapsed in a single return line:

//[...]
return session.rx.data(request: request).map { JSON(data: $0) }

This uses the rx extension of RxCocoa around NSURLSession, which uses the data
function. This in turn returns an Observable<Data>. This data is used as the input to
a map function used to transform the raw data into a SwiftyJSON data structure of
type JSON.

RxSwift - Reactive Programming with Swift Chapter 12: Beginning RxCocoa

raywenderlich.com 235

It’s always good to have a visualization when working with Rx in general, and an
updated diagram with a bit more detail will probably help you understand what’s
happing inside the ApiController:

Switching from the dummy data to the actual data request is simple. You need to
replace the Observable.just([...]) call with a real data network request. The
OpenWeatherMap API documentation http://openweathermap.org/current explains
how to request the current weather for a given city name via
api.openweathermap.org/data/2.5/weather?q={city name}.

In ApiController.swift, replace the dummy currentWeather(city:) method with:

func currentWeather(city: String) -> Observable<Weather> {
 return buildRequest(pathComponent: "weather", params: [("q", city)])
 .map { json in
 return Weather(
 cityName: json["name"].string ?? "Unknown",
 temperature: json["main"]["temp"].int ?? -1000,
 humidity: json["main"]["humidity"].int ?? 0,
 icon: iconNameToChar(icon: json["weather"][0]["icon"].string ??
"e")
)
 }
}

The request returns a JSON object, which can be converted with some fallback
values to the Weather data structure expected by your user interface.

Build and run, and enter London for the city. You should receive the following
result:

RxSwift - Reactive Programming with Swift Chapter 12: Beginning RxCocoa

raywenderlich.com 236

Your app now correctly displays the data retrieved from the server. You've used a
couple of RxCocoa features so far but you're going to see the real benefits when
you move on to RxCocoa's more advanced features in the next section.

Note: If you like going the extra mile, remove the catchErrorJustReturn
operator inside flatmap. As soon as you receive a 404 due to an invalid city
name, (you’ll see this in the logs), the application will stop working correctly
because your observable has errored out and is then disposed.

Binding observables
Binding is somewhat controversial — for example, Apple never released their
binding system, named Cocoa Bindings, on iOS (even if it has been an important
part of macOS for a long time). The mac bindings are very advanced and somewhat
too coupled with the specific Apple-provided class in the macOS SDK.

RxCocoa offers somewhat simpler solution, which depends only on few types
included with the framework. Since you're already feeling comfortable with RxSwift
code, you'll figure bindings out very quickly.

An important thing to know here is that in RxCocoa, a binding is a unidirectional
stream of data. This greatly simplifies data flow in the app so you won't cover bi-
directional bindings in this book.

What are binding observables?
The easiest way to understand binding is to think of the relationship as a connection
between two entities:

• A producer, which produces the value

• A receiver, which processes the values from the producer

A receiver cannot return a value. this is a general rule when using bindings of
RxSwift.

RxSwift - Reactive Programming with Swift Chapter 12: Beginning RxCocoa

raywenderlich.com 237

Note: If you, at a later moment, want to experiment with bidirectional
bindings (for example between a data model property and a text field), this
could be modeled by using four of these entities: two producers, and two
receivers. This, as you can imagine, increases the code complexity
considerably — still, if you're in the mood to play, it can be fun.

The fundamental function of binding is bindTo(_:). To bind an observable to another
entity, the receiver must conform to ObserverType. This entity has been explained in
previous chapters: it’s a Subject which can process values, but can also be written
to manually. Subjects are extremely important when working with the imperative
nature of Cocoa, considering that the fundamental components such as UILabel,
UITextField, and UIImageView have mutable data that can be set or retrieved.

It’s important to remember that bindTo(_:) can also be used for other purposes —
not just to bind user interfaces to the underlaying data. For example, you could use
bindTo(_:) to create dependent processes, so that a certain observable would
trigger a subject to perform some background tasks without displaying anything on
the screen.

To summarize, bindTo(_:) is a special and tailored version of subscribe(_:): there
are no side effects or special cases when calling bindTo(_:).

Using binding observables to display data
Now that you know what bindings are, you can start to integrate them into your
app. In the process, you’ll make the whole code a little more elegant and turn the
search result into a reusable data source.

The first change to apply is to refactor the long observable that assigns the data to
the correct UILabel with subscribe(onNext:). Open ViewController.swift and in
viewDidLoad() replace the complete subscription code to searchCityName with:

let search = searchCityName.rx.text
 .filter { ($0 ?? "").characters.count > 0 }
 .flatMapLatest { text in
 return ApiController.shared.currentWeather(city: text ?? "Error")
 .catchErrorJustReturn(ApiController.Weather.empty)
 }
 .observeOn(MainScheduler.instance)

This change, specifically flatMapLatest, makes the search result reusable and
transforms a single-use data source into a multi-use Observable. The power of this
change will be covered later in the chapter dedicated to MVVM, but for now simply
realize that observables can be heavily reusable entities in Rx, and the correct
modeling can make a long, difficult-to-read, single-use observer into a multi-use
and easy to understand observer instead.

RxSwift - Reactive Programming with Swift Chapter 12: Beginning RxCocoa

raywenderlich.com 238

With this small change, it’s possible to process every single parameter from a
different subscription, mapping the value required to be displayed. For example,
here is how to get the temperature as a string out of the shared data source
observable:

search.map { "\($0.temperature)° C" }

This will create an observable which returns the required string to be displayed as
temperature. To try creating your first binding, use bindTo to connect the original
data source to the temperature label. Add to viewDidLoad():

search.map { "\($0.temperature)° C" }
 .bindTo(tempLabel.rx.text)
 .addDisposableTo(bag)

Build and run to display the temperature using this new and shiny RxCocoa
powered binding:

Now the application only displays the temperature, but you can restore the previous
functionality by simply applying the same pattern to the rest of the labels:

search.map { $0.icon }
 .bindTo(iconLabel.rx.text)
 .addDisposableTo(bag)

RxSwift - Reactive Programming with Swift Chapter 12: Beginning RxCocoa

raywenderlich.com 239

search.map { "\($0.humidity)%" }
 .bindTo(humidityLabel.rx.text)
 .addDisposableTo(bag)

search.map { $0.cityName }
 .bindTo(cityNameLabel.rx.text)
 .addDisposableTo(bag)

Now the application displays the data you request from the server, using a single
source observable named search, and binds different pieces of the data to each
label on screen:

Another nice, clean addition is the check made by the compiler to ensure the usage
of the correct kind of types. It’s basically impossible to have completely disparate
types that crash the app.

Note: When binding to UI components, RxCocoa will check that the
observation is performed on the main thread. If not, it will call a fatalError()
and the application will crash with the following message: fatal error:
Element can be bound to user interface only on MainThread.

Improving the code with Units
RxCocoa offers even more advanced features to make working with Cocoa and UIKit
a breeze. Beyond bindTo, it offers also a special implementation of observables,
which have been exclusively created to be used with UI: Units. Units are a group of
classes, which are specialized observables, that allow for easier to write and simpler
code especially when working with UI. Let's have a look!

RxSwift - Reactive Programming with Swift Chapter 12: Beginning RxCocoa

raywenderlich.com 240

What are ControlProperty and Driver?
Units are described in the official documentation as follows:

Units also help communicate and ensure observable sequence properties
across interface boundaries.

This sounds rather abstract out of context so let's consider some of the common
aspects when binding observables to user interface controls. You obviously need to
always subscribe on the main thread to be able to update the UI, you often need to
share subscriptions to bind to multiple UI components, and you don't want errors to
break the UI.

With the above in mind, here's the actual list of Units' features:

• Units can’t error out

• Units are observed on main scheduler

• Units subscribe on main scheduler

• Units share side effects

These entities exist to ensure the user interface always displays something, and
that the displayed data is always treated in the correct way so the UI can handle it.
The two main components part of the Units framework are as follows:

• ControlProperty and ControlEvent

• Driver

ControlProperty is not new; you used it just a little while ago to bind the data to
the correct user interface component using the dedicated rx extension.

ControlEvent is used to listen to a certain event of the UI component, like the press
of the “Return” button on the keyboard while editing a text field. A control event is
available if the component uses UIControlEvents to keep track of its current status.

Driver is a special observable with the same constraints as explained before, so it
can’t error out. All processes are ensured to execute on the main thread, which
avoids making UI changes on background threads.

Units in general are an optional part of the framework that you don't need to
necessarily use. Feel free to stick to observables and subjects to make sure you’re
doing the right task in the right scheduler — but if you want some nice compiler
checks and sensible UI restrictions, Units can be powerful and time-saving
components. Without using Units it’s too easy to forget to
call .observeOn(MainScheduler.instance) and end up trying to update your UI on a
background thread...oops!

RxSwift - Reactive Programming with Swift Chapter 12: Beginning RxCocoa

raywenderlich.com 241

Don’t worry if Driver and ControlProperty seem confusing right now. Like a lot of
Rx, things will make more sense once you dive into the code.

Improving the project with Driver and ControlProperty
After some theory, it’s time to apply all those nice concepts to your the application,
make sure all the tasks are performed in the right thread, and that nothing will
error out and stop subscriptions from delivering results.

The first step is to transform the weather data observable into a driver. Find where
you define the search constant in viewDidLoad(), and replace the code with:

let search = searchCityName.rx.text
 .filter { ($0 ?? "").characters.count > 0 }
 .flatMapLatest { text in
 return ApiController.shared.currentWeather(city: text ?? "Error")
 .catchErrorJustReturn(ApiController.Weather.empty)
 }
 .asDriver(onErrorJustReturn: ApiController.Weather.empty)

The key line of code here is the one at the bottom: .asDriver(...). This is the
method that converts your observable into a Driver. the onErrorJustReturn
parameter specifies a default value to be used in case the observable errors out —
this eliminating the possibility for the driver itself to emit an error.

You might have also noticed that auto completion offers also other variants to
asDriver(onErrorJustReturn:):

• asDriver(onErrorDriveWith:) with this function, it’s possible to manually handle
the error, returning a new sequence generated for this purpose only.

• asDriver(onErrorRecover:) this one (onErrorRecover instead of onErrorDrive) is
used alongside another existing Driver. This will come in play to recover the
current Driver that just had an error.

Neat! But, wait! The application doesn’t build anymore because bindTo doesn’t exist
for Driver. What to do?

Well, there’s a similar function named drive, so you can replace all the bindTo with
drive. You literally need to just replace the name bindTo with drive in all four
subscriptions.

search.map { "\($0.temperature)° C" }
 .drive(tempLabel.rx.text)
 .addDisposableTo(bag)

search.map { $0.icon }
 .drive(iconLabel.rx.text)
 .addDisposableTo(bag)

search.map { "\($0.humidity)%" }
 .drive(humidityLabel.rx.text)

RxSwift - Reactive Programming with Swift Chapter 12: Beginning RxCocoa

raywenderlich.com 242

 .addDisposableTo(bag)

search.map { $0.cityName }
 .drive(cityNameLabel.rx.text)
 .addDisposableTo(bag)

This will restore the correct UI behavior of the application, while taking advantage
of the power of Driver. drive works quite similarly to bindTo; the difference in the
name better expresses the intent while using Units.

At this point, the application takes advantage of a lot of the shiny parts of RxCocoa,
but there’s still something you can improve. The application uses way too many
resources and makes too many API requests — because it fires a request each time
you type a character. A bit of overkill, don’t you think?

throttle would be a good option, but this would still result in some unnecessary
requests. Another good option would be to use the ControlProperty of UITextField
and fire a request only when the user hits the Search button on the keyboard.

Find this line:

let search = searchCityName.rx.text

and replace it with:

let search =
searchCityName.rx.controlEvent(.editingDidEndOnExit).asObservable()
 .map { self.searchCityName.text }

It’s a good idea to make sure the input is valid, so you need to skip empty strings
and filter the search observable. Then the chained code continues as usual:

 .flatMap { text in
 return ApiController.shared.currentWeather(city: text ?? "Error")
 }
 .asDriver(onErrorJustReturn: ApiController.Weather.empty)

Amazing! Now the application retrieves the weather only when the user hits the
Search button. There are no wasted network requests, and the code is controlled at
compile time by Units. You also removed the catchErrorJustReturn(_:) call to the
observable returned by currentWeather(city:).

The original schema used a single observable that updated the entire UI; through a
breakdown of multiple blocks, you’ve switched from subscribe to bindTo and reused
the same observables across the view controller. This approach makes the code
quite reusable and easy to work with.

RxSwift - Reactive Programming with Swift Chapter 12: Beginning RxCocoa

raywenderlich.com 243

For example, if you wanted to add the current barometric pressure to the user
interface, all you have to do is to add the property to the structure, map the JSON
value, then add another UILabel and map that property to the new label. Easy!

Disposing with RxCocoa
The last topic of this chapter goes beyond the project and is pure theory. As
explained at the beginning of the chapter, there’s a bag inside the main view
controller that takes care of disposing all the subscriptions when the view controller
is released. But in this example, there’s no usage of weak or unowned in all closures.
Why?

The answer is simple: this application is a single view controller and the main view
controller is always on screen while the application is running — so there’s no need
to guard against retain cycles or wasted memory.

unowned vs weak with RxCocoa
When dealing with RxCocoa or RxSwift with Cocoa, it might be hard to understand
when to use weak or unowned. You’d use weak when a closure can be called at some
point in the future when the current self object has already been released. For this
reason, self becomes an Optional. unowned is used to avoid the Optional self. But
the code has to be sure the object will never be released before the closure gets
called — otherwise, the app will crash.

In RxSwift – and especially with RxCocoa – there are some good guidelines to
follow when choosing to use weak, unowned or nothing at all:

• nothing: Inside singletons or a view controller which are never released (e.g.
the root view controller).

• unowned: Inside all view controllers which are released after the closure task is
performed.

• weak: Any other case.

These rules prevent against the classic EXC_BAD_ACCESS error. If you always respect
these rules, it’s unlikely you will have any trouble with memory management. And if
you want to be extra safe, the raywenderlich.com Swift Guidelines https://
github.com/raywenderlich/swift-style-guide#extending-object-lifetime recommend
against using unowned at all.

RxSwift - Reactive Programming with Swift Chapter 12: Beginning RxCocoa

raywenderlich.com 244

Where to go from here?
In this chapter, you received a gentle introduction to RxCocoa, which is a really big
framework. You saw only a small part of RxCocoa, but this should serve as a good
foundation for you.

In the next chapter, you will see how to improve this application, adding dedicated
functionalities to extend RxCocoa and how to add more advanced features using
RxSwift and RxCocoa.

Before proceeding, take some time to play with RxCocoa and the .rx extension.
Considering this framework has 32 extensions available, it’s a good idea to see a
couple of examples:

UIActivityIndicatorView
UIActivityIndicatorView is definitely one of the most used UIKit components. This
extension has the following property available:

public var isAnimating: UIBindingObserver<Base, Bool>

Again, the name is self explanatory and is related to the original isAnimating
property. As you can see, just like with UILabel, the property is of type
UIBindingObserver and the result is that it can be bound to an observable to notify
a background activity. You saw this used in the challenges of Chapter 10.

UIProgressView
UIProgressView is a less common component, but it also covered in RxCocoa and
uses the following property:

public var progress: UIBindingObserver<Base, Float>

As for all the other similar components, the UIProgressBar can be bound to an
observable. For example let's assume an uploadFile() function is producing an
observable of a task uploading a file to a server, providing intermediate events with
bytes sent and total bytes. This code could look much like this:

let progressBar = UIProgressBar()
let uploadFileObs = uploadFile(data: fileData)
uploadFileObs.map { sent, totalToSend in
 return sent / totalToSend
 }
 .bindTo(progressBar.rx.progress)
 .addDisposableTo(bag)

The result is that the progress bar is updated every single time an intermediate
value is provided, and the user has some visual indication of the task progress.

RxSwift - Reactive Programming with Swift Chapter 12: Beginning RxCocoa

raywenderlich.com 245

At this point, it’s your turn. The more time you spend playing with these extensions,
the more you will be comfortable using them in the next chapter — and in future
applications.

Note: RxCocoa is a constantly improving framework. If you think any controls
or extensions are missing, you can create them and submit a pull request to
the official repository. Contributions are welcomed (and encouraged!) by the
growing community.

Challenges
Challenge 1: Switch from Celsius to Fahrenheit
Your challenge in this chapter is to add a switch to change from Celsius to
Fahrenheit. This task can be achieved in different ways:

• Change the API request from Metric to Imperial

• Map the Celsius value with the mathematical conversion: temperature * 1.8 + 32

Technically, each solution has its own obstacles to overcome. The first approach
requires a change in ApiController.swift with an addition of a Subject to process
the change right away and request the new data.

The second approach is shorter and probably easier. You can achieve this by
combining the search observable with the control property of UISwitch. This
solution is the recommended one for this chapter, especially when you consider that
more advanced usages and architectures will be explained later in this book.

Generally, try to be as pragmatic as possible and don’t over-engineer this solution.
In the next chapter, you will see more advanced usages of RxCocoa, so take some
time to play with the basics of this framework first.

RxSwift - Reactive Programming with Swift Chapter 12: Beginning RxCocoa

raywenderlich.com 246

13Chapter 13: Intermediate
RxCocoa
By Junior Bontognali

In the previous chapter, you were gently introduced to RxCocoa, the official RxSwift
Cocoa extension. If you haven’t gone through that chapter, it would be a good idea
to read through it so you’re ready to tackle this one.

In this chapter, you’ll learn about some advanced RxCocoa integrations and how to
create custom wrappers around existing UIKit components.

Note: This chapter won’t discuss RxSwift architecture, nor will it cover the
best way to structure a RxSwift/RxCocoa project. This will be covered in
Chapter 23, “MVVM with RxSwift”.

raywenderlich.com 247

Getting started
This chapter continues on from the previous project. To set up the project, you will
need a valid OpenWeatherMap http://openweathermap.org key. If you already have
one, simply skip ahead to the Installing project dependencies section below.

If you don’t have a key, you can create one at https://home.openweathermap.org/
users/sign_up.

Once you’ve completed the signup process, visit the dedicated page for API keys at
https://home.openweathermap.org/api_keys and generate a new key.

Open the file ApiController.swift and copy the newly generated key into the
correct place:

private let apiKey = "[YOUR KEY]"

Installing project dependencies
Open Terminal, navigate to the root of the project and perform the requisite pod
install command. Once that’s completed, you can build and run the application.
Make sure the application compiles and that you get valid readings back from the
OpenWeatherMap API when you enter a valid city in the search field.

Showing an activity while searching
The application currently displays the weather information of a given city, but the
app gives no feedback once the user presses the Search button. It's a good practice
to display an activity indicator while the app is busy making network requests.

When you're finished with this task, the app logic will look like this:

To achieve this, you’ll have to make some changes in the current code to
decomposing the original events stream into smaller ones, so that you’re notified
when a user presses the button, and when the data has arrived from the server.

RxSwift - Reactive Programming with Swift Chapter 13: Intermediate RxCocoa

raywenderlich.com 248

Open ViewController.swift. Go to viewDidLoad() and add the following code to
the top of the function, below the call to style():

let searchInput =
searchCityName.rx.controlEvent(.editingDidEndOnExit).asObservable()
 .map { self.searchCityName.text }
 .filter { ($0 ?? "").characters.count > 0 }

The searchInput observable will provide the text for a search when the input string
is not empty and the user presses the Search button.

Now you can modify the search observable to use the searchInput observable
instead of creating things from scratch. Modify search as follows:

let search = searchInput.flatMap { text in
 return ApiController.shared.currentWeather(city: text ?? "Error")
 .catchErrorJustReturn(ApiController.Weather.dummy)
 }
 .asDriver(onErrorJustReturn: ApiController.Weather.dummy)

Now you have two observables that indicate when the application is busy making
requests to the API. One option is to bind both observables, correctly mapped, to
the isAnimating property of UIActivityIndicatorView and do the same for all the
labels with the isHidden property. This solution seems convenient enough, but in Rx
there’s a far more elegant way to accomplish this.

The two observables searchInput and search can be merged into a single
observable having the value of either true or false depending on whether or not
they are receiving events. The result is an observable describing whether the
application is currently requesting data from the server or not.

Below the code block you just added, append this:

let running = Observable.from([
 searchInput.map { _ in true },
 search.map { _ in false }.asObservable()
])
 .merge()
 .startWith(true)
 .asDriver(onErrorJustReturn: false)

The combination of these two observables has this result:

RxSwift - Reactive Programming with Swift Chapter 13: Intermediate RxCocoa

raywenderlich.com 249

The .asObservable() call is necessary on one of the array elements to help out
Swift’s type inferrer. You then merge the two observables. .startWith(true) is an
extremely convenient call to avoid having to manually hide all the labels at
application start.

At this point, the bindings will be very straightforward to create. You can place them
before or after the bindings to the labels as it makes no difference which way you
do it:

running
 .skip(1)
 .drive(activityIndicator.rx.isAnimating)
 .addDisposableTo(bag)

You have to remember that the first value is injected manually, so you have to skip
the first value or else the activity indicator will display immediately once the
application has been opened.

Then add the following to hide and show the labels accordingly to the status:

running
 .drive(tempLabel.rx.isHidden)
 .addDisposableTo(bag)

running
 .drive(iconLabel.rx.isHidden)
 .addDisposableTo(bag)

running
 .drive(humidityLabel.rx.isHidden)
 .addDisposableTo(bag)

running
 .drive(cityNameLabel.rx.isHidden)
 .addDisposableTo(bag)

After applying this change, the application now should look like the following when
it’s making an API request:

RxSwift - Reactive Programming with Swift Chapter 13: Intermediate RxCocoa

raywenderlich.com 250

Here is what things should look like immediately after it opens. All labels should be
hidden, but the activity indicator should not display:

Nice job! Now you can add some new features to the app.

Extending CCLocationManager to get the
current position
RxCocoa is not only about UI components; it comes with some convenient classes
to wrap the official Apple frameworks in a simple, customizable and powerful way.

A weather application that doesn’t know its current location is a bit odd, to say the
least. You can fix this by using some of the components provided in RxCocoa.

Creating the extension
The first step to integrate the CoreLocation framework is to create the necessary
wrapper around it. Open the file under Extensions named
CLLocationManager+Rx.swift. This is the file where the extension will be created.

All the other extensions are behind the .rx namespace. For CLLocationManager, the
goal is to follow the same pattern. This smart behavior is achieved by using the
Ractive proxy provided by RxSwift.

Navigate to the RxSwift library inside the Pod project and find a file named
Reactive.swift. Open the file and you’ll find a struct named Reactive<Base>, a
protocol ReactiveCompatible and an extension ReactiveCompatible, which has the
variable to create the namespace rx.

RxSwift - Reactive Programming with Swift Chapter 13: Intermediate RxCocoa

raywenderlich.com 251

The last line is:

/// Extend NSObject with `rx` proxy.
extension NSObject: ReactiveCompatible { }

This is how every class inheriting from NSObject gets an rx namespace. Your job is
to create the dedicated rx extensions for the class CLLocationManager and expose
them for other classes to use.

Navigate into the RxCocoa folder inside the dedicated Pod project and you’ll find
some Objective-C files named _RxDelegateProxy.h and _RxDelegateProxy.m as well
as DelegateProxy.swift and DelegateProxyType.swift. These files contain the
implementation of a rather clever solution to bridge RxSwift with any framework
that uses delegates (data sources) as the main resource for providing data.

The DelegateProxy object creates a fake delegate object, which will proxy all the
data received into dedicated observables.

The combination of DelegateProxy and the right usage of Reactive will make your
CLLocationManager extensions look just like all the other RxCocoa extensions
already available. Neat!

CLLocationManager requires a delegate, and for this reason you need to create the
necessary proxy to drive all the data from the necessary location manager
delegates to the dedicated observables. The mapping is a simple one-to-one
relationship, so a single protocol function will correspond to a single observable that
returns the given data.

Navigate to CLLocationManager+Rx.swift and add the following code:

class RxCLLocationManagerDelegateProxy: DelegateProxy,
CLLocationManagerDelegate, DelegateProxyType {

}

RxSwift - Reactive Programming with Swift Chapter 13: Intermediate RxCocoa

raywenderlich.com 252

RxCLLocationManagerDelegateProxy is going to be your proxy that attaches to the
CLLocationManager instance right after an observable is created and has a
subscription.

At this point, you need to add a setter and a getter for the proxy delegate. First add
the following setter to the class:

class func setCurrentDelegate(_ delegate: AnyObject?, toObject object:
AnyObject) {
 let locationManager: CLLocationManager = object as! CLLocationManager
 locationManager.delegate = delegate as? CLLocationManagerDelegate
}

And then a getter:

class func currentDelegateFor(_ object: AnyObject) -> AnyObject? {
 let locationManager: CLLocationManager = object as! CLLocationManager
 return locationManager.delegate
}

By using these two functions, you can get and set the delegate, which will be the
proxy used to drive the data from the CLLocationManager instance to the connected
observables. This is how you expand a class to use the delegate proxy pattern from
RxCocoa.

Now create the observables to observe the change of location, using the proxy
delegate you just created. Add in the same file:

extension Reactive where Base: CLLocationManager {
 var delegate: DelegateProxy {
 return RxCLLocationManagerDelegateProxy.proxyForObject(base)
 }
}

Using the Reactive extension will expose the methods within that extension in the
rx namespace for an instance of CLLocationManager. You now have an exposed
extension rx available for every CLLocationManager instance, but unfortunately you
have no real observables to get the real data.

Fix this by adding the following to the extension you just created:

var didUpdateLocations: Observable<[CLLocation]> {
 return
delegate.methodInvoked(#selector(CLLocationManagerDelegate.locationManage
r(_:didUpdateLocations:)))
 .map { parameters in
 return parameters[1] as! [CLLocation]
 }
}

RxSwift - Reactive Programming with Swift Chapter 13: Intermediate RxCocoa

raywenderlich.com 253

With this function, the delegate used as the proxy will listen to all the calls of
didUpdateLocations, getting the data and casting it to an array of CLLocation.
methodInvoked(_:) is part of the Objective-C code present in RxCocoa and is
basically a low-level observer for delegates.

methodInvoked(_:) returns an observable that sends next events whenever the
specified method is invoked. The elements included in those events are an array of
the parameters the method was invoked with. You access this array with
parameters[1] and cast it to an array of CLLocation.

Now you are ready to integrate this extension in the application.

Using the button to get the current position
Now that you've created the extension, you’ll be able to use the location button on
the bottom left corner:

Switch to ViewController.swift to work on the app UI. Before proceeding with the
button logic, there are a few things to take care of. First, import the CoreLocation
framework at the top of the file (but still after all other imports):

import CoreLocation

Next, add a location manager to the view controller:

let locationManager = CLLocationManager()

Perfect — your project is now ready to handle the location manager and retrieve
the user’s location.

Note: Declaring a location manager instance inside viewDidLoad() would cause
a release of the object and the subsequent weird behavior of the alert being
displayed and immediately removed once requestWhenInUseAuthorization()
was called.

Now you need to make sure the application has sufficient rights to access the user’s
location. Since iOS 8, the operating system must ask for the user’s permission
before making geolocation data available to the application. Therefore, the first

RxSwift - Reactive Programming with Swift Chapter 13: Intermediate RxCocoa

raywenderlich.com 254

thing you need to do when the user taps the current position button is to ask for
permission to use the current location data and then update the data.

To achieve this, add the following code inside viewDidLoad():

geoLocationButton.rx.tap
 .subscribe(onNext: { _ in
 self.locationManager.requestWhenInUseAuthorization()
 self.locationManager.startUpdatingLocation()
 })
 .addDisposableTo(bag)

To test that the application is actually receiving the user’s location, add this
temporary snippet:

locationManager.rx.didUpdateLocations
 .subscribe(onNext: { locations in
 print(locations)
 })
 .addDisposableTo(bag)

When you build and run the project you should see output in the console similar to
this:

Note: When using the simulator, you can fake the location under
Debug\Location and select one of the simulated locations.

At this point, assuming the user gave permission for the app to access their
location, the app can use that location data to retrieve the local weather.

There’s a dedicated function inside ApiController.swift to retrieve the data from
the server based on the user’s latitude and longitude:

func currentWeather(lat: Float, lon: Float) -> Observable<Weather>

This function will return a Weather instance from geographical coordinates. You can
use this to get the necessary data form the server.

Inside viewDidLoad(), create an observable that returns the last valid location:

let currentLocation = locationManager.rx.didUpdateLocations
 .map { locations in
 return locations[0]
 }
 .filter { location in
 return location.horizontalAccuracy < kCLLocationAccuracyHundredMeters
 }

RxSwift - Reactive Programming with Swift Chapter 13: Intermediate RxCocoa

raywenderlich.com 255

didUpdateLocations emits an array of fetched locations but you need only one to
work with, that's why you use map to get only the first location. Then you use filter
to prevent working with completely disparate data and to make sure the location is
accurate to within a hundred meters.

Update the weather with the current data
You have an observable returning the user’s location, and you have a mechanism to
get the weather based on latitude and longitude. A natural combination of this in
RxSwift would be this:

To model the required observables, replace the existing geoLocationButton.rx.tap
code with the following:

let geoInput = geoLocationButton.rx.tap.asObservable()
 .do(onNext: {
 self.locationManager.requestWhenInUseAuthorization()
 self.locationManager.startUpdatingLocation()
 })

let geoLocation = geoInput.flatMap {
 return currentLocation.take(1)
}

This makes sure the location manager is updating and providing information about
the current location, and that only a single value is forwarded. This prevents the
application from updating every single time a new value arrives from the location
manager.

Next create a new observable to retrieve the weather data:

let geoSearch = geoLocation.flatMap { location in
 return ApiController.shared.currentWeather(lat:
location.coordinate.latitude, lon: location.coordinate.longitude)
 .catchErrorJustReturn(ApiController.Weather.dummy)
}

This makes geoSearch an observable of type Weather, which is the same result of
the call made by using the city name as input. Two observables, returning the same
Weather type, performing the same task... it sounds this code needs a bit of
refactoring!

Yes, this functionality can be merged with the observable which takes the city name
as input. This gives you the same result, without having to refactor the entire
application for this new feature.

The goal is to keep search as a Driver of Weather, and running as observable of the
current state of the application. To achieve the first goal, delete the current search

RxSwift - Reactive Programming with Swift Chapter 13: Intermediate RxCocoa

raywenderlich.com 256

observable and create an intermediate one, right after the spot where you declare
searchInput:

let textSearch = searchInput.flatMap { text in
 return ApiController.shared.currentWeather(city: text ?? "Error")
 .catchErrorJustReturn(ApiController.Weather.dummy)
}

Now you can combine textSearch with geoSearch to create a new search
observable. Append after the previous block:

let search = Observable.from([
 geoSearch, textSearch
])
 .merge()
 .asDriver(onErrorJustReturn: ApiController.Weather.dummy)

This will deliver a Weather object to the UI regardless of the source, which can be
either the city name or the user’s current location. The last step is to provide
feedback and make sure the search displays the activity indicator correctly, hiding it
after the request has been completed.

Now jump to the definition of the running observable. Change first line of the code
so that it includes geoInput as one of the sources, like so:

let running = Observable.from([
 searchInput.map { _ in true },
 geoInput.map { _ in true },
 search.map { _ in false }.asObservable()
])

Now, whether the user searches for the city or taps on the location button, the
behavior of the application will be exactly the same.

You expanded the capability of the application adding a single extra source using
the merge operator, which transformed your flat, single-flow stream, into a multi-
source one:

RxSwift - Reactive Programming with Swift Chapter 13: Intermediate RxCocoa

raywenderlich.com 257

There are also some changes for the running status:

You’ve created a fairly advanced app: you started with a single text source, and you
now have two data sources using the very same logic as you coded in the previous
chapter.

How to extend a UIKit view
Now it’s time to explore how to extend a UIKit component and go beyond what
RxCocoa offers.

The application currently displays the weather of the user’s location, but it would be
nice to explore the surrounding weather on a map, while scrolling and navigating
around.

This sounds like you will be creating new reactive extension, this time to the
MKMapView class.

Extend UIKit views using MKMapView
To start extending MKMapView, you will start with exact same pattern you used to
extend CLLocationManager: create a delegate proxy RxMKMapViewDelegateProxy and
extend Reactive for the MKMapView base class.

Open MKMapView+Rx.swift, found in the Extensions directory, and create the base
of the extension:

class RxMKMapViewDelegateProxy: DelegateProxy, MKMapViewDelegate,
DelegateProxyType {

}

extension Reactive where Base: MKMapView {

}

RxSwift - Reactive Programming with Swift Chapter 13: Intermediate RxCocoa

raywenderlich.com 258

Inside RxMKMapViewDelegateProxy, create the delegate setter and getter in order to
have the proxy in place:

class func currentDelegateFor(_ object: AnyObject) -> AnyObject? {
 let mapView: MKMapView = (object as? MKMapView)!
 return mapView.delegate
}

class func setCurrentDelegate(_ delegate: AnyObject?, toObject object:
AnyObject) {
 let mapView: MKMapView = (object as? MKMapView)!
 mapView.delegate = delegate as? MKMapViewDelegate
}

Next, create the proxy by adding the following to the Reactive extension:

public var delegate: DelegateProxy {
 return RxMKMapViewDelegateProxy.proxyForObject(base)
}

You’ve created the proxy. Now you can extend MKMapView to proxy the delegate
methods to observables.

Before extending MKMapView, it’s a good idea to make sure the current project is
showing the map view correctly.

There’s already a button for this in the bottom right corner of the view controller:

Now add the code to viewDidLoad() to display or hide the map view when the
button is pressed:

mapButton.rx.tap
 .subscribe(onNext: {
 self.mapView.isHidden = !self.mapView.isHidden
 })
 .addDisposableTo(bag)

RxSwift - Reactive Programming with Swift Chapter 13: Intermediate RxCocoa

raywenderlich.com 259

Build and run the project and tap repeatedly the map button to see the map show
and hide:

Display overlays in the map
The map is now ready to receive and display data, but you’ll need to do a bit of
work first to add the weather overlays. To add overlays to the map, you’ll
implement one of the delegate methods:

func mapView(_ mapView: MKMapView, rendererFor overlay: MKOverlay) ->
MKOverlayRenderer

Wrapping a delegate that has a return type in Rx is a very hard task, for two
reasons:

• Delegate methods with a return type are not meant for observation, but for
customization of the behavior.

• Defining an automatic default value which would work in any case is a non-trivial
taskIdentifier.

You could observe the value using a Subject, but in this case it would provide very
little value.

Considering all these points, the best solution is to forward this call to a classic
implementation of the delegate.

RxSwift - Reactive Programming with Swift Chapter 13: Intermediate RxCocoa

raywenderlich.com 260

You’re basically getting the best of both worlds: you want the practicality of
conforming to delegate methods with return values as you do with normal UIKit
development, but you also want the ability to use observables from delegate
functions. This time, for once, you can have it both ways :]

MKMapViewDelegate is not the only protocol that has delegate functions requiring a
return type, so there’s already a method which will help you out:

public static func installForwardDelegate(_ forwardDelegate: AnyObject,
retainDelegate: Bool, onProxyForObject object: AnyObject) -> Disposable

If you want to check the implementation of the function, look for
DelegateProxyType.swift in RxCocoa.

You want to forward the delegate methods that don’t have a wrapper in the Rx
proxy. Add the following to the Reactive extension for MKMapView:

public func setDelegate(_ delegate: MKMapViewDelegate) -> Disposable {
 return RxMKMapViewDelegateProxy.installForwardDelegate(
 delegate,
 retainDelegate: false,
 onProxyForObject: self.base
)
}

With this function, you can now install a forwarding delegate which will forward the
calls and also provide the return value if necessary.

Add the following to the end of viewDidLoad() to set the view controller as the
delegate that will receive all the non-handled calls from your RxProxy:

mapView.rx.setDelegate(self)
 .addDisposableTo(bag)

With this change, the compiler will raise the familiar error about the protocol not
being implemented. To fix this, scroll to the end of the file and add the following:

extension ViewController: MKMapViewDelegate {
 func mapView(_ mapView: MKMapView, rendererFor overlay: MKOverlay) ->
MKOverlayRenderer {
 if let overlay = overlay as? ApiController.Weather.Overlay {
 let overlayView = ApiController.Weather.OverlayView(overlay:
overlay, overlayIcon: overlay.icon)
 return overlayView
 }
 return MKOverlayRenderer()
 }
}

OverlayView is the type required by the MKMapView instance to render the
information over the map. The goal here is to simply display the weather icon over
the map — without providing any extra information. Later in this section, you’ll
revisit OverlayView in detail.

RxSwift - Reactive Programming with Swift Chapter 13: Intermediate RxCocoa

raywenderlich.com 261

You’re almost done here: you solved the problem of the returning type of the
delegate, created a forwarding proxy, and set up the overlay to display. Now it’s
time to process those overlays with RxSwift.

Navigate back to MKMapView+Rx.swift and add the following binding observer to the
Reactive extension, which will take all the instances of MKOverlay and inject them
into the current map:

var overlays: UIBindingObserver<Base, [MKOverlay]> {
 return UIBindingObserver(UIElement: self.base) { mapView, overlays in
 mapView.removeOverlays(mapView.overlays)
 mapView.addOverlays(overlays)
 }
}

Using UIBindingObserver gives you the opportunity to use the bindTo or drive
functions — very convenient!

Inside the overlays binding observable, the previous overlays will be removed and
re-created every single time an array is sent to the Subject.

Considering the scope of the application, there’s no need of any optimization here.
It’s unlikely there will be more than 10 overlays at a time, so removing everything
and adding new ones is a fair compromise. If there’s a need to process more, you
could use a diff algorithm to improve performance and reduce overhead.

Use the created binding
It's now time to use the new binding property you've created, I can't wait to see it
in action!

Open ApiController.swift and check the content of the Weather structure. There
are two nested classes: Overlay and OverlayView.

Overlay is a subclass of NSObject and implements the MKOverlay protocol. This is the
information object you will pass to OverlayView to render the actual data over the
map. You only need to know that Overlay holds just the information necessary to
display the icons in the map: the coordinates, the rectangle in which to display the
data, and the actual icon to use.

OverlayView is responsible to render the overlay. To avoid importing images,
imageFromText will convert text into an image, so the icon can be displayed easily as
an overlay on the map. OverlayView simply requires the original overlay instance
and the icon string to create a new instance.

Inside the Weather structure, you’ll see a convenience function that converts the
structure into a valid Overlay:

func overlay() -> Overlay { ... }

RxSwift - Reactive Programming with Swift Chapter 13: Intermediate RxCocoa

raywenderlich.com 262

Switch back to ViewController.swift and add the following code to viewDidLoad():

search.map { [$0.overlay()] }
 .drive(mapView.rx.overlays)
 .addDisposableTo(bag)

This binds the newly-arrived data to the overlays subject you created previously,
and maps the Weather structure to the correct overlay.

Build and run, search for a city, then open the map and scroll to the city. You should
see something like the following:

The result looks great, and the icon is displayed at the location of the city you
searched for.

Observing for map scroll events
After extending MKMapView with a binding property, it’s time to see how to
implement the more conventional notification mechanism for delegates. There’s
nothing different than what you did for CLLocationManager, so you can simply follow
the same pattern.

In this occasion, the goal is to listen for user drag events and other navigation
events from the map view. Once the user stops navigating around, you’ll update the
weather condition for the middle of the map and display it.

RxSwift - Reactive Programming with Swift Chapter 13: Intermediate RxCocoa

raywenderlich.com 263

To observe this change, MKMapViewDelegate provides the following method:

func mapView(_ mapView: MKMapView, regionDidChangeAnimated animated:
Bool)

When you implement this delegate method, it is called each time the user drags the
map to a new region. This is a perfect opportunity to create a reactive extension. In
MKMapView+Rx.swift add inside the extension:

public var regionDidChangeAnimated: ControlEvent<Bool> {
 let source = delegate
 .methodInvoked(#selector(MKMapViewDelegate.mapView(_:regionDidChangeA
nimated:)))
 .map { parameters in
 return (parameters[1] as? Bool) ?? false
 }
 return ControlEvent(events: source)
}

In case the cast fails, the method will fall back to false, just to be safe.

React to regionDidChangeAnimated events
The information about the dragging is provided, and an observation mechanism
using RxSwift is in place. The only missing part is to actually use the previously
created ControlEvent.

Switch to ViewController.swift, where you will make the following changes:

• Create a mapInput, which will use the previously created observable.

• Create a mapSearch, which will fire the search for the location.

• Update the search observable to handle the result of the mapSearch.

• Update the running observable to correctly handle the map events and weather
result.

The first change is pretty straightforward and has to be done right after the let
textSearch = ... line.

let mapInput = mapView.rx.regionDidChangeAnimated
 .skip(1)
 .map { _ in self.mapView.centerCoordinate }

skip(1) prevents the application from firing a search right after the mapView has
initialized.

Next use mapInput to create a mapSearch observable that fetches the map weather
data:

let mapSearch = mapInput.flatMap { coordinate in
 return ApiController.shared.currentWeather(lat: coordinate.latitude,

RxSwift - Reactive Programming with Swift Chapter 13: Intermediate RxCocoa

raywenderlich.com 264

lon: coordinate.longitude)
 .catchErrorJustReturn(ApiController.Weather.dummy)
}

You’ve created two new observables, and the only thing left to do is update the
search result observable and the running status observable.

Proceed with the first change, refactoring search as follows:

let search = Observable.from([geoSearch, textSearch, mapSearch])

You don’t need to change any of the code; the only addition is adding mapSearch at
the end of the array. The final change is to modify the observable called running in
the following way:

let running = Observable.from([searchInput.map { _ in true },
 geoInput.map { _ in true },
 mapInput.map { _ in true},
 search.map { _ in false }.asObservable()])

As before, simply add mapInput.map { _ in true} to the array without changing the
chained code.

Build and run your app; navigate around the map to see a weather icon displaying
the local weather conditions after each scroll!

Conclusions about RxCocoa
In these two chapters on RxCocoa, you got a glimpse of some of the most
interesting parts of this amazing extension on top of RxSwift. RxCocoa isn’t
mandatory, and you still can write your applications without using it at all — but I
suspect you already have seen how it can be useful in your own apps.

Here’s a quick list of the big advantages of RxCocoa:

• It already integrates a lot of extensions for the most frequently-used
components.

• It goes beyond basic UI components.

• It makes your code safer using Units.

• It’s easy to use with bindTo or drive

• It provides all the mechanisms to create your own custom extensions.

Before moving on to the next chapter, play around with RxCocoa a bit to gain some
confidence in using the more common extensions, as later chapters will use them
fairly extensively.

RxSwift - Reactive Programming with Swift Chapter 13: Intermediate RxCocoa

raywenderlich.com 265

Challenges
Challenge 1: Add a binding property to focus the map on a
given point
Your first challenge is to modify the behavior of the application when the user uses
the text field or the localization button. In its current state, the application doesn’t
move the map correctly.

Take this challenge in two steps:

• Create a binding property which will take a coordinate object and update the map
to move to the given position.

• Then bind the result of geoSearch and textSearch to the new binding property.

Be sure to not create any loops that will cause the application to update infinitely!

When you’ve finished this challenge, each time you receive a text or geolocation
input, the map will correctly focus on the given position.

Challenge 2: Use the MKMapView to navigate a location and
display the surrounding weather conditions
Your second challenge is a little bit harder. Navigating the map while scrolling
returns only a single location and a single overlay in the map.

The goal for this challenge is to change this behavior and display the weather
condition of the surroundings once the user has completed their interaction with the
map.

Take this challenge in three steps:

• Create a new currentWeatherAround that takes a coordinate and returns an array
of observables of requests for surrounding locations.

• Merge these requests using the correct operator, making sure the application is
still responsive when the merge is taking place, and that the running status is
still updated.

• Bind the result of the observables to the .rx.overlays.

Once done, the results will be shown in multiple overlays on the map, displaying the
current weather condition of the various map regions.

RxSwift - Reactive Programming with Swift Chapter 13: Intermediate RxCocoa

raywenderlich.com 266

Section IV: Intermediate RxSwift/
RxCocoa

Once you start writing complete apps with RxSwift and RxCocoa, you will also need
to take care of more intermediate topics than simply observing for events and
processing them with Rx.

In a full production-quality app, you will need to build an error handling strategy, do
more advanced multi-threading processing, create a solid test suite, and more.

In this part of the book, you will work through four challenging chapters, which will
lift your Rx status from a rookie level to a battle-tested warrior.

Chapter 14: Error Handling in Practice

Chapter 15: Intro To Schedulers

Chapter 16: Testing with RxTest

Chapter 17: Creating Custom Reactive Extensions

raywenderlich.com 267

14Chapter 14: Error Handling in
Practice
By Junior Bontognali

Life would be great if we lived in a perfect world, but unfortunately things
frequently don’t go as expected. Even the best RxSwift developers can’t avoid
encountering errors, so they need to know how to deal with them gracefully and
efficiently. In this chapter, you’ll learn how to deal with errors, how to manage error
recovery through retries, or just surrender yourself to the universe and let the
errors go.

raywenderlich.com 268

Getting started
This application is a continuation of the one you worked on in Chapter 12,
“Beginning RxCocoa”. In this version of the application, you can retrieve the user’s
current position and look up weather for that position, but also request a city name
and see the weather in that locaiton. The app also has an activity indicator to give
the user some visual feedback.

Before continuing, make sure you have a valid OpenWeatherMap API Key http://
openweathermap.org. If you don’t already have a key, you can sign up for one at
https://home.openweathermap.org/users/sign_up.

Once you’ve completed the signup process, visit the dedicated page for API keys at
https://home.openweathermap.org/api_keys and generate a new one.

Open ApiController.swift, take the key you generated above and replace the
placeholder in the following location:

let apiKey = BehaviorSubject(value: "[YOUR KEY]")

Once that’s done, use Terminal to navigate to the root of the project and perform
the necessary pod install. Once the pods have been installed, make sure that the
application compiles and that you can retrieve the weather when you search for a
city.

If that all looks good, then you can proceed right into the next section!

Managing errors
Errors are an inevitable part of any application. Unfortunately, no one can
guarantee an application will never error out, so you will always need some type of
error-handling mechanism.

Some of the most common errors in applications are:

• No internet connection: This is quite common. If the application needs an
internet connection to retrieve and process the data, but the device is offline, you
need to be able to detect this and respond appropriately.

• Invalid input: Sometimes you require a certain form of input, but the user
might enter something entirely different. Perhaps you have a phone number field
in your app, but the user ignores that requirement and enters letters instead of
digits.

• API error or HTTP error: Errors from an API can vary widely. They can arrive
as a standard HTTP error (response code from 400 to 500), or as errors in the
response, such as using the status field in a JSON response.

RxSwift - Reactive Programming with Swift Chapter 14: Error Handling in Practice

raywenderlich.com 269

In RxSwift, error handling is part of the framework and can be handled in two
ways:

• Catch: Recover from the error with a default value.

• Retry: Retry for a limited (or unlimited!) number of times.

The starter version of this chapter's project doesn’t have any real error handling.
All the errors are caught with a single catchErrorJustReturn that returns a dummy
version. This might sound like a handy solution, but there are better ways to handle
this in RxSwift, and a consistent and informative error-handling approach is
expected in any top-notch application.

Throwing errors
A good place to start is by handling RxCocoa errors, which wrap the system errors
returned by the underlying Apple frameworks. RxCocoa errors provide more details
on the kind of error you’ve encountered, and also make your error handling code
easier to write.

To see how the RxCocoa wrapper works under the hood, drill down the Project
Navigator in Pods project and then Pods/RxCocoa/URLSession+Rx.swift.
Search for the following method:

public func data(request: URLRequest) -> Observable<Data> {...}

This method returns an observable of type Data, created by a given NSURLRequest.
The important part to look at is the bit of code that returns the error:

if 200 ..< 300 ~= response.statusCode {
 return data
} else {
 throw RxCocoaURLError.httpRequestFailed(response: response, data: data)
}

These five lines are a perfect example of how an observable can emit an error —
specifically, a custom-tailored error, which you’ll cover later in this chapter.

Note there’s no return for the error in this closure. When you want to error out
inside a flatMap operator you should use throw as in regular Swift code. This is a
great example of how RxSwift lets you write idiomatic Swift code where necessary,
and RxSwift-style error handling where appropriate.

RxSwift - Reactive Programming with Swift Chapter 14: Error Handling in Practice

raywenderlich.com 270

Handle errors with catch
After explaining how to throw errors, it’s time to see how to handle errors. The
most basic way is to use catch. The catch operator works much like the do-try-
catch flow in plain Swift. An observable is performed, and if something goes wrong,
you return an event that wraps an error.

In RxSwift there are two main operators to catch errors. The first:

func catchError(_ handler:) -> RxSwift.Observable<Self.E>

This is a general operator; it takes a closure as parameter and gives the
opportunity to return a completely different observable. If you can’t quite see
where you’d use this option, think about a caching strategy that returns a
previously cached value if the observable errors out. With this operator you can
then achieve the following flow:

The catchError in this case returns values which were previously available and that,
for some reason, aren’t available anymore.

The second operator is:

func catchErrorJustReturn(_ element:) -> RxSwift.Observable<Self.E>

You saw this one used in the two earlier chapters covering RxCocoa — it ignores
errors and just returns a pre-defined value. This operator is much more limited than
the previous one as it’s not possible to return a value for a given type of error —
the same value is returned for any error, no matter what the error is.

A common pitfall
Errors are propagated through the observables chain, so an error that happens at
the beginning of an observable chain will be forwarded to the final subscription if
there aren’t any handling operators sin place.

What does this mean exactly? When an observable errors out, error subscriptions
are notified and all subscriptions are then disposed. So when an observable errors
out, the observable is essentially terminated and any event following the error will
be ignored. This is a rule of the observable contract.

RxSwift - Reactive Programming with Swift Chapter 14: Error Handling in Practice

raywenderlich.com 271

You can see this plotted below on a timeline. Once the network produces an error
and the observable sequences errors out, the subscription updating the UI will stop
working, effectively preventing future updates:

To translate this into the actual application, remove
the .catchErrorJustReturn(ApiController.Weather.empty) line inside textSearch
observable, fire up the application and type random characters in the city search
field until the API replies with a 404 error code. You should see something similar to
this in the console:

"http://api.openweathermap.org/data/2.5/weather?
q=goierjgioerjgioej&appid=[API-KEY]&units=metric" -i -v
Failure (207ms): Status 404

After that response (which means it’s a non-valid city name), the application stops
working, and searching will not work after that point. Not exactly the best user
experience, is it?

Catching errors
Now that you’ve covered some theory, you can move on to writing code and
updating the current project. Once you're finished, the application will recover from
an error by returning an empty type of Weather so the application flow won’t be
interrupted.

RxSwift - Reactive Programming with Swift Chapter 14: Error Handling in Practice

raywenderlich.com 272

The workflow this time, with included error handling, will look like this:

This is a good thing, but it would be nice if the app could return cached data if
available.

To start open ViewController.swift in the main project and create a simple
dictionary to cache weather data, adding it as property of the view controller:

var cache = [String: Weather]()

This will temporarily store the cached data. Scroll down within the viewDidLoad()
method and search for the line where you create the textSearch observable. Now
populate the cache by changing the textSearch observable via adding do(onNext:)
to the code chain:

let textSearch = searchInput.flatMap { text in
 return ApiController.shared.currentWeather(city: text ?? "Error")
 .do(onNext: { data in
 if let text = text {
 self.cache[text] = data
 }
 })
 .catchErrorJustReturn(ApiController.Weather.empty)
}

With this change, every valid weather response will be stored in the dictionary. Now
— how to reuse the cached results?

To return a cached value in the event of an error,
replace .catchErrorJustReturn(ApiController.Weather.empty) with:

.catchError { error in
 if let text = text, let cachedData = self.cache[text] {
 return Observable.just(cachedData)
 } else {
 return Observable.just(ApiController.Weather.empty)
 }
}

RxSwift - Reactive Programming with Swift Chapter 14: Error Handling in Practice

raywenderlich.com 273

To test this, input three or four various cities such as “London”, “New York”,
“Amsterdam” and load the weather of these cities. After that, disable your internet
connection and perform a search for a different city, such as “Barcelona”; you
should receive an error. Leave your internet connection disabled and search for one
of the cities you just retrieved data for, and the application should return the
cached version.

This is a very common usage of catch. You can definitely extend this to make it a
general and powerful caching solution.

Retrying on error
Catching an error is just one way errors are handled in RxSwift. You can also handle
errors with retry.

When a retry operator is used and an observable errors out, the observable will
repeat itself. It’s important to remember that retry means repeating the entire task
inside the observable.

This is one of the main reasons it’s recommended to avoid side effects that change
the user interface inside an observable, as you can’t control who will retry it!

Retry operators
There are three types of retry operators. The first one is the most basic:

func retry() -> RxSwift.Observable<Self.E>

This operator will repeat the observable an unlimited number of times until it
successfully returns. For example, if there’s no internet connection, this would
continuously retry until the connection was available. This might sound like a robust
idea, but it’s resource-heavy, and it’s seldom recommended to retry for an
unlimited number of times if there’s no valid reason for doing it.

RxSwift - Reactive Programming with Swift Chapter 14: Error Handling in Practice

raywenderlich.com 274

To test this operator, comment the complete catchError block:

//.catchError { error in
// if let text = text, let cachedData = self.cache[text] {
// return Observable.just(cachedData)
// } else {
// return Observable.just(ApiController.Weather.empty)
// }
//}

In its place insert a simple retry(). Next run the app, disable the internet
connection and try to perform a search. You’ll see a lot of output in the console,
showing the app is trying to make the requests. After a few seconds, re-enable the
internet connection and you’ll see the result displayed once the application has
successfully processed the request.

The second operator lets you vary the number of retries:

func retry(_ maxAttemptCount:) -> Observable<E>

With this variation, the observable is repeated for a specified number of times. To
give it a try do the following:

• remove the retry() operator you just added

• uncomment the previously commented code block

• just before catchError, insert a retry(3)

The complete code block should now look like this:

return ApiController.shared.currentWeather(city: text ?? "Error")
 .do(onNext: { data in
 if let text = text {
 self.cache[text] = data
 }
 })
 .retry(3)
 .catchError { error in
 if let text = text, let cachedData = self.cache[text] {
 return Observable.just(cachedData)
 } else {
 return Observable.just(ApiController.Weather.empty)
 }
 }

If the observable is producing errors, it will be retried three times in succession and
in case it errors a fourth time, that error will not be handled and the execution will
move on to the catchError operator.

RxSwift - Reactive Programming with Swift Chapter 14: Error Handling in Practice

raywenderlich.com 275

Advanced retries
The last operator, retryWhen, is suited for advanced retry situations. This error
handling operator is considered one of the most powerful:

func retryWhen(_ notificationHandler:) -> Observable<E>

The important thing to understand is that notificationHandler is of type
TriggerObservable. The trigger observable can be either a plain Observable or a
Subject and is used to trigger the retry at arbitrary times.

This is the operator you will include in the current application, using a smart trick to
retry if the internet connection is not available, or if there’s an error from the API.
The goal is to implement an incremental back-off strategy if the original search
errors out. The desired result is as follows:

subscription -> error
delay and retry after 1 second

subscription -> error
delay and retry after 3 seconds

subscription -> error
delay and retry after 5 seconds

subscription -> error
delay and retry after 10 seconds

It’s a smart yet complex solution. In regular imperative code, this would imply the
creating of some abstractions, perhaps wrapping the task in NSOperation, or
creating a tailored wrapper around Grand Central Dispatch — but with RxSwift, the
solution is a short block of code.

Before creating the final result, consider what the inner observable (the trigger)
should return, taking in consideration that the type can be ignored, and that the
trigger can be of any type.

The goal is to retry four times with a given sequence of delays. First, inside
ViewController.swift, just before the subscription to
ApiController.shared.currentWeather sequence, define the maximum number of
attempts before the retryWhen operator, this would be used in the inner sequence:

let maxAttempts = 4

After this many retries, the error should be forwarded on. Then replace .retry(3),
with:

.retryWhen { e in
 // flatMap source errors
}

RxSwift - Reactive Programming with Swift Chapter 14: Error Handling in Practice

raywenderlich.com 276

This observable has to be combined with the one that returns errors from the
original observable. So when an error arrives as event, the combination of these
observables will also receive the current index of the event.

You can achieve this with your friend, the flatMapWithIndex operator. Replace the
comment // flatMap source errors with:

e.flatMapWithIndex { (error, attempt) -> Observable<Int> in
 // attempt few times
}

Now the original error observable, and the one defining how long the delay should
be before retrying, are combined.

Now combine that code with a timer, taking only the first delayed event. Adjust the
code from above to look like this:

e.flatMapWithIndex { (error, attempt) -> Observable<Int> in
 if attempt >= maxAttempts - 1 {
 return Observable.error(error)
 }
 return Observable<Int>.timer(Double(attempt + 1), scheduler:
MainScheduler.instance).take(1)
}

The completed block of code, including retryWhen looks now like this:

.retryWhen { e in
 return e.flatMapWithIndex { (error, attempt) -> Observable<Int> in
 if attempt >= maxAttempts - 1 {
 return Observable.error(error)
 }
 return Observable<Int>.timer(Double(attempt + 1), scheduler:
MainScheduler.instance).take(1)
 }
}

To log when the new retry is fired, add the following code before the second return
in flatMapWithIndex operator:

print("== retrying after \(attempt + 1) seconds ==")

Now build and run, disable your internet connection and perform a search. You
should see the following result in the log:

== retrying after 1 seconds ==
... network ...
== retrying after 2 seconds ==
... network ...
== retrying after 3 seconds ==
... network ...

RxSwift - Reactive Programming with Swift Chapter 14: Error Handling in Practice

raywenderlich.com 277

Here’s a good visualization of what’s going on:

The trigger can take the original error observable into consideration to achieve quite
complex back-off strategies. This shows how you can create complex error-handling
strategies using only a few lines of RxSwift code.

Custom errors
Creating custom errors follows the general Swift principle, so there’s nothing here
that a good Swift programmer wouldn’t know already, but it’s still good to see how
to handle errors and create tailored operators.

Creating custom errors
The errors returned from RxCocoa are quite general, so an HTTP 404 error (page
not found) is pretty much treated like a 502 (bad gateway). These are two
completely different errors, so it would be good to be able to handle them
differently.

If you dig into ApiController.swift, you'll see there are two error cases already
included that you can use to error handle different HTTP responses:

enum ApiError: Error {
 case cityNotFound
 case serverFailure
}

RxSwift - Reactive Programming with Swift Chapter 14: Error Handling in Practice

raywenderlich.com 278

You’ll use this error type inside buildRequest(...). The last line of that method
returns an observable of data, which is then mapped to a JSON object structure.
This is where you have to inject the check and return the custom error you created.
The .data convenience of RxCocoa already takes care of creating the custom error
object.

Replace the code found inside the block of the last flatMap in the buildRequest(...)
method:

return session.rx.response(request: request).map() { response, data in
 if 200 ..< 300 ~= response.statusCode {
 return JSON(data: data)
 } else if 400 ..< 500 ~= response.statusCode {
 throw ApiError.cityNotFound
 } else {
 throw ApiError.serverFailure
 }
}

Using this method, you can create custom errors and even add more advanced
logic, such as when the API provides a response message inside the JSON. You
could get the JSON data, process the message field and encapsulate it into the error
to throw. Errors are extremely powerful in Swift, and can be made even more
powerful in RxSwift.

Using the custom errors
Now that you’re returning your custom error, you can do something constructive
with it.

Before proceeding, back in ViewController.swift comment out the retryWhen {
... } operator. You want the error to go through the chain and be threaded by
the observable.

There’s a convenience view named InfoView that flashes a small view on the
bottom of the application with the given error message. The usage is pretty simple,
and is done with a single line of code like this one (you don't need to enter this
right now):

InfoView.showIn(viewController: self, message: "An error occurred")

Errors are usually handled with retry or catch operators, but what if you want to
perform a side effect and display the message on the user interface? To achieve
this, there’s the do operator. In the same subscription where you commented
retryWhen, you've used a do to implement caching:

.do(onNext: { data in
 if let text = text {
 self.cache[text] = data
 }
})

RxSwift - Reactive Programming with Swift Chapter 14: Error Handling in Practice

raywenderlich.com 279

Add a second parameter to that same method call so that you perform side effects
in case of an error event. The complete block should look like so:

.do(onNext: { data in
 if let text = text {
 self.cache[text] = data
 }
}, onError: { [weak self] e in
 guard let strongSelf = self else { return }
 DispatchQueue.main.async {
 InfoView.showIn(viewController: strongSelf, message: "An error
occurred")
 }
})

The dispatch is necessary because the sequence is observed in a background
thread; otherwise, UIKit will complain about the UI being modified by a background
thread. Build and run, try to search on a random string and the error will show up.

Well, the error is rather general. But you can easily inject some more information in
there. RxSwift handles this just as Swift would, so you can check for the error case
and display different messages. To make the code a bit tidier, add this new method
to the view controller class:

func showError(error e: Error) {
 if let e = e as? ApiController.ApiError {
 switch (e) {
 case .cityNotFound:
 InfoView.showIn(viewController: self, message: "City Name is
invalid")
 case .serverFailure:
 InfoView.showIn(viewController: self, message: "Server error")

RxSwift - Reactive Programming with Swift Chapter 14: Error Handling in Practice

raywenderlich.com 280

 }
 } else {
 InfoView.showIn(viewController: self, message: "An error occurred")
 }
}

Then go back to the do(onNext:onError:) and replace the line InfoView.showIn(...)
with:

strongSelf.showError(error: e)

This should provide more context about the error to the user.

Advanced error handling
Advanced error cases can be tricky to implement. There’s no general rule about
what to do when the API returns an error, besides show a message to the user.

Let’s assume you want to add authentication to the current application. The user
has to be authenticated and authorized to request a weather condition. This would
imply the creation of a session, which will make sure the user is logged in and
authorized correctly. But what do you do if the session has expired? Return an error,
or return an empty value alongside a message string?

There’s no silver bullet in this case. Both solutions apply here, but it’s always useful
to know more about the error, so you’ll go that route.

In this case, the recommended method is to perform a side effect and retry right
after the session has been correctly created.

You can use the subject called apiKey and containing your API key to simulate this
behavior.

This API key subject can be used to trigger a retry in the retryWhen closure. A
missing API key is definitely an error, so add the following extra error case in the
ApiError enum:

case invalidKey

This error must be thrown when the server returns a 401 code. Throw that error in
the builderRequest(...) function, right after the first if if 200 ..< 300:

else if response.statusCode == 401 {
 throw ApiError.invalidKey
}

RxSwift - Reactive Programming with Swift Chapter 14: Error Handling in Practice

raywenderlich.com 281

That new error requires also a new handler. Update the switch inside
showError(error:) method back in ViewController.swift, to include that new case:

case .invalidKey:
 InfoView.showIn(viewController: self, message: "Key is invalid")

Now you can go back to viewDidLoad() and re-implement the error handling code.
Since you've commented out the current retryWhen {...} code, you can start
building your error handling anew.

Above the subscription to searchInput create a dedicated closure, outside the
observer chain, that will serve as an error handler:

let retryHandler: (Observable<Error>) -> Observable<Int> = { e in
 return e.flatMapWithIndex { (error, attempt) -> Observable<Int> in
 //error handling
 }
}

You'll copy some of that code you used to have before in that new error handling
closure. Replace the //error handling comment with:

if attempt >= maxAttempts - 1 {
 return Observable.error(error)
} else if let casted = error as? ApiController.ApiError, casted
== .invalidKey {
 return ApiController.shared.apiKey
 .filter {$0 != ""}
 .map { _ in return 1 }
}
print("== retrying after \(attempt + 1) seconds ==")
return Observable<Int>.timer(Double(attempt + 1), scheduler:
MainScheduler.instance)
 .take(1)

The return type in the invalidKey case isn’t important, but you have to be
consistent. Before, it was an Observable<Int> so you should stick with that return
type. For this reason, you’ve used { _ in return 1 }.

Now scroll to the commented retryWhen {...} and replace it with:
retryWhen(retryHandler).

The final step is to use the subject of the API key. There’s already a method in
ViewController.swift named requestKey(), which opens an alert view with a text
field. The user then could type in the key (or paste it inside) to emulate a login
functionality. (You do that for testing purposes here; in a real-life app the user will
enter their credentials to get a key from your server.)

RxSwift - Reactive Programming with Swift Chapter 14: Error Handling in Practice

raywenderlich.com 282

Switch to ApiController.swift. Remove the API key in the apiKey subject and set it
to an empty string (you might want to copy the key somewhere handy as you will
need it again in a second), like so:

let apiKey = BehaviorSubject(value: "")

Build and run the application, try to perform a search and you’ll receive an error:

Tap the key button in the bottom-right corner:

The application will then open the alert asking for the API key:

Paste the API key in the field and tap OK. The application will repeat the whole
observable sequence, returning the correct information if the input is valid. If the
the input isn’t valid, you’ll end up on a different error path.

RxSwift - Reactive Programming with Swift Chapter 14: Error Handling in Practice

raywenderlich.com 283

Where to go from here?
In this chapter you were introduced to error handling using retry and catch. The
way you handle errors in your app really depends on what kind of project you’re
building. When handling errors, design and architecture come in play, and creating
the wrong handling strategy might compromise your project and result in re-writing
portions of your code.

I’d also recommend spending some time playing with retryWhen. It’s a non-trivial
operator, so the more you play with it, the more you’ll feel comfortable using it in
your applications.

Challenges
Challenge 1: Use retryWhen on restored connectivity
In this challenge you need to handle the condition of an unavailable internet
connection.

To start, take a look at the reachability service inside RxReachability.swift. Modify
the code so it correctly delivers the notifications when the internet connection
returns.

As a start you can start monitoring the device connectivity by adding in the view
controller's viewDidLoad() method:

_ = RxReachability.shared.startMonitor("openweathermap.org")

Once that’s done, extend the retryWhen handler to handle the “no internet
connection available” error. Remember that when the internet connection is up, you
have to fire a retry.

To achieve this, add another if in your flatMapWithIndex operator where you check
what kind of error has been returned. Try casting error as NSError and if its code
equals -1009 that means the network connection is out. In that case, return
RxReachability.shared.status and filter it to let through only .online values, and
just as you did in the other if statement, map to 1.

The final goal is to have the system automatically retry once the internet is back, if
the previous error was due to the device being offline.

As always you can peek into the challenges folder and see the solution provided.

RxSwift - Reactive Programming with Swift Chapter 14: Error Handling in Practice

raywenderlich.com 284

15Chapter 15: Intro To Schedulers
By Junior Bontognali

Until now, you’ve managed to work with schedulers while avoiding any explanation
about how they handle threading or concurrency. In earlier chapters, you used
methods which implicitly used some sort of concurrency/threading level, such as
buffer, delaySubscription or interval operators.

You probably have a feeling that schedulers have some sort of magic under the
hood, but before you understand schedulers, you’ll also need to understand what
those observeOn functions are all about.

This chapter is going to cover the beauty behind schedulers, where you’ll learn why
the Rx abstraction is so powerful and why working with asynchronous programming
is far less less painful than using locks or queues.

Note: Creating custom schedulers is beyond of the scope of this book. Keep in
mind that the schedulers and initializers provided by RxSwift, RxCocoa and
RxBlocking generally cover 99% of cases. Always try to use the built-in
schedulers.

raywenderlich.com 285

What is a Scheduler?
Before getting your hands dirty with schedulers, it’s important to understand what
they are — and what they are not. To summarize, a scheduler is a context where a
process takes place. This context can be a thread, a dispatch queue or similar
entities, or even an NSOperation which is used inside the OperationQueueScheduler.

Here’s a good example as to how schedulers can be used:

In this diagram, you have the concept of a cache operator. An observable makes a
request to a server and retrieves some data. This data is processed by a custom
operator named cache, which stores the data somewhere. After this, the data is
passed to all subscribers in a different scheduler, most likely the MainScheduler
which sits on top of the main thread, making the update of the UI possible.

Demystifying the scheduler
One common misconception about schedulers is that they are equally related to
threads. And that might seem logical at first — after all, schedulers do work
similarly to the GCD dispatch queues.

But this isn’t the case at all. If you were writing a custom scheduler, which again is
not a recommended approach, you could create multiple schedulers using the very
same thread, or a single scheduler on top of multiple threads. That would be weird
— but it would work!

RxSwift - Reactive Programming with Swift Chapter 15: Intro To Schedulers

raywenderlich.com 286

The important thing to remember is that schedulers are not threads, and they don’t
have a one-to-one relationship with threads. Always check the context in which the
scheduler is performing an operation — not the thread. Later in this chapter, you’ll
encounter some good examples to help you understand this.

Setting up the project
Time to write some code! In this project, you are going to create a simple
command-line tool for macOS. Why a command-line tool? Since you are playing
with threads and concurrency, plain-text output will be easier to understand than
any visual elements you could create in an app.

Install the CocoaPods dependencies for this chapter's project, as described in
Chapter 1, “Hello RxSwift.” (By now you definitely know how to do it by heart, but
one never knows how much chapters you skipped through.)

Once finished, open the workspace, build and run, and the debugger console should
show the following:

===== Schedulers =====

00s | [D] [dog] received on Main Thread
00s | [S] [dog] received on Main Thread
Program ended with exit code: 0

Before proceeding, open Utils.swift and take a look at the implementation of
dump() and dumpingSubscription().

The first method dumps the element and the current thread information inside a
do(onNext:) operator using the [D] prefix. The second does the same using the [S]
prefix, but calls subscribe(onNext:). Both methods indicate the elapsed time, so the
00s above stand for “0 seconds elapsed”.

You have two different ways to inject the side-effect of printing info to the console,
so you can chain them with do(onNext:) and eventually cap the chain by
subscribing to it with subscribe(onNext:). In the next section you’ll see how easy it
is for a chain of observables to switch between schedulers.

Switching schedulers
One of the most important things in Rx is the ability to switch schedulers at any
time, without any restrictions except for ones imposed by the inner process
generating events.

RxSwift - Reactive Programming with Swift Chapter 15: Intro To Schedulers

raywenderlich.com 287

Note: A example of that type of restriction is if the observable emits non-
thread safe objects, which cannot be sent across threads. In that case, RxSwift
will allow you to switch schedulers but you would be violating the logic of the
underlying code.

To understand how schedulers behave, you’ll create a simple observable to play
with that provides some fruit.

Add the following code to the bottom of main.swift:

let fruit = Observable<String>.create { observer in
 observer.onNext("[apple]")
 sleep(2)
 observer.onNext("[pineapple]")
 sleep(2)
 observer.onNext("[strawberry]")
 return Disposables.create()
}

This observable features a sleep function. While this is not something you’d usually
see in real applications, in this case it will help you understand how subscriptions
and observations work.

Add the following code to subscribe to the observable you created:

fruit
 .dump()
 .dumpingSubscription()
 .addDisposableTo(bag)

Build and run, and check out the logging in the console:

00s | [D] [dog] received on Main Thread
00s | [S] [dog] received on Main Thread
00s | [D] [apple] received on Main Thread
00s | [S] [apple] received on Main Thread
02s | [D] [pineapple] received on Main Thread
02s | [S] [pineapple] received on Main Thread
04s | [D] [strawberry] received on Main Thread
04s | [S] [strawberry] received on Main Thread

Here you have the original subject, followed by a fruit every two seconds after that.

The fruit is generated on the main thread, but it would be nice to move it to a
background thread. To create the fruit in a background thread, you’ll have to use
subscribeOn.

RxSwift - Reactive Programming with Swift Chapter 15: Intro To Schedulers

raywenderlich.com 288

Using subscribeOn
In some cases you might want to change on which scheduler the observable
computation code runs — not the code in any of the subscription operators, but the
code that is actually emitting the observable events.

Note: For a custom observable, that you have created, the code that emits
events is the one you supply as the trailing closure for Observable.create
{ ... }.

The way to set the scheduler for that computation code is to use subscribeOn. It
might sound like a counterintuitive name at first glance, but after thinking about it
for a while, it starts to make sense. When you want to actually observe an
observable, you subscribe to it. This determines where the original processing will
happen. If subscribeOn is not called, then RxSwift automatically uses the current
thread:

This process is creating events on the main thread using the main scheduler. The
MainScheduler you’ve used sits on top of the main thread. All the tasks you want to
perform on the main thread have to use this scheduler, which is why you used it in
previous examples when working with the UI. To switch schedulers, you’ll use
subscribeOn.

In main.swift there’s a pre-defined scheduler called globalScheduler that uses a
background queue. This scheduler is created using the global dispatch queue, which
is a concurrent queue:

let globalScheduler = ConcurrentDispatchQueueScheduler(queue:
DispatchQueue.global())

So, as the name of the class suggests, all tasks to be computed by this scheduler
will be dispatched and handled by the global dispatch queue.

To use this scheduler, replace the previous subscription to fruits you created with
this new one:

fruit
 .subscribeOn(globalScheduler)
 .dump()
 .dumpingSubscription()
 .addDisposableTo(bag)

RxSwift - Reactive Programming with Swift Chapter 15: Intro To Schedulers

raywenderlich.com 289

Now add the following line to the end of the file:

RunLoop.main.run(until: Date(timeIntervalSinceNow: 13))

This is, admittedly, a hack; it prevents Terminal from terminating once all
operations have completed on the main thread, which would kill your global
scheduler and observable. In this case, Terminal will remain alive for 13 seconds.

Note: 13 seconds might be overkill for this example, but as you move through
the chapter your app will need this length of time to finish. So feel free to stop
the application once all the observables have completed.

Now that your new scheduler is in place, build and run and check the result:

00s | [D] [dog] received on Main Thread
00s | [S] [dog] received on Main Thread
00s | [D] [apple] received on Anonymous Thread
00s | [S] [apple] received on Anonymous Thread
02s | [D] [pineapple] received on Anonymous Thread
02s | [S] [pineapple] received on Anonymous Thread
04s | [D] [strawberry] received on Anonymous Thread
04s | [S] [strawberry] received on Anonymous Thread

The global queue uses a thread that doesn’t have a name, so in this case Anonymous
Thread is the global thread.

Now both the observable and the subscribed observer are processing data in the
same thread.

That's cool, but what can you do if you want to change where the observer
performs the code of your operators? You have to use observeOn.

Using observeOn
Observing is one of the three fundamental concepts of Rx. It involves an entity
producing events, and an observer for those events. In this case, and in opposition
to subscribeOn, the operator observeOn changes the scheduler where the
observation happens.

So once a result is precessed and an event is pushed by an Observable to all the
subscribed observers, this operator will ensure that the event is correctly handled in
the correct scheduler.

RxSwift - Reactive Programming with Swift Chapter 15: Intro To Schedulers

raywenderlich.com 290

To switch from the current global scheduler to the main thread, you need to call
observeOn before subscribing. One more time, replace your fruits subscription
code:

fruit
 .subscribeOn(globalScheduler)
 .dump()
 .observeOn(MainScheduler.instance)
 .dumpingSubscription()
 .addDisposableTo(bag)

Build and run, and check the console output once more (you will need to wait a few
seconds until the program stops printing in the console):

00s | [D] [dog] received on Main Thread
00s | [S] [dog] received on Main Thread
00s | [D] [apple] received on Anonymous Thread
00s | [S] [apple] received on Main Thread
02s | [D] [pineapple] received on Anonymous Thread
02s | [S] [pineapple] received on Main Thread
04s | [D] [strawberry] received on Anonymous Thread
04s | [S] [strawberry] received on Main Thread

You’ve achieved the result you wanted: All the events are now processed on the
correct thread. The main observable is processing and generating events on the
background thread, and the subscribing observer is doing its job on the main
thread.

This is a very common pattern. You’ve used a background process to retrieve data
from a server and process the data received, only switching to the MainScheduler to
process the final event and display the data in the user interface.

Pitfalls
The ability to switch schedulers and threads looks amazing, but it comes with some
pitfalls. To see why, you’ll push some events to the subject using a new thread.
Since you need to track on which thread the computation takes place, a good
solution is to use Thread (or NSThread in Objective-C).

Right after the fruit observable, add the following code to generate some animals:

let animalsThread = Thread() {
 sleep(3)
 animal.onNext("[cat]")
 sleep(3)

RxSwift - Reactive Programming with Swift Chapter 15: Intro To Schedulers

raywenderlich.com 291

 animal.onNext("[tiger]")
 sleep(3)
 animal.onNext("[fox]")
 sleep(3)
 animal.onNext("[leopard]")
}

Then name the thread so you will be able to recognize it, and start it up:

animalsThread.name = "Animals Thread"
animalsThread.start()

Build and run; you should see your new thread in action:

...
03s | [D] [cat] received on Animals Thread
03s | [S] [cat] received on Animals Thread
04s | [D] [strawberry] received on Anonymous Thread
04s | [S] [strawberry] received on Main Thread
06s | [D] [tiger] received on Animals Thread
06s | [S] [tiger] received on Animals Thread
09s | [D] [fox] received on Animals Thread
09s | [S] [fox] received on Animals Thread
12s | [D] [leopard] received on Animals Thread
12s | [S] [leopard] received on Animals Thread

Perfect — you have animals created on the dedicated thread. Now to process the
result on the global thread.

Note: It might seem repetitive to keep adding code and then replacing it with
something else but the goal here is to see and compare how using different
schedulers looks like and what the difference is.

Replace the original subscription to the animal subject with the following code:

animal
 .dump()
 .observeOn(globalScheduler)
 .dumpingSubscription()
 .addDisposableTo(bag)

Build and run and the new result is as follows:

...
03s | [D] [cat] received on Animals Thread
03s | [S] [cat] received on Anonymous Thread
04s | [D] [strawberry] received on Anonymous Thread
04s | [S] [strawberry] received on Main Thread
06s | [D] [tiger] received on Animals Thread
06s | [S] [tiger] received on Anonymous Thread
09s | [D] [fox] received on Animals Thread
09s | [S] [fox] received on Anonymous Thread
12s | [D] [leopard] received on Animals Thread

RxSwift - Reactive Programming with Swift Chapter 15: Intro To Schedulers

raywenderlich.com 292

12s | [S] [leopard] received on Anonymous Thread

Now you’re switching threads and nearly running into that 13-second limit!

What if you want the observation process on the global queue, but you want to
handle the subscription on the Main Thread? For the first case, the observeOn is
already correct, but for the second it’s necessary to use subscribeOn.

Replace the animal subscription, this time with the following:

animal
 .subscribeOn(MainScheduler.instance)
 .dump()
 .observeOn(globalScheduler)
 .dumpingSubscription()
 .addDisposableTo(bag)

Build and run, and you’ll get the following result:

03s | [D] [cat] received on Animals Thread
03s | [S] [cat] received on Anonymous Thread
04s | [D] [strawberry] received on Anonymous Thread
04s | [S] [strawberry] received on Main Thread
06s | [D] [tiger] received on Animals Thread
06s | [S] [tiger] received on Anonymous Thread
09s | [D] [fox] received on Animals Thread
09s | [S] [fox] received on Anonymous Thread
12s | [D] [leopard] received on Animals Thread
12s | [S] [leopard] received on Anonymous Thread

Wait?! What? Why isn’t the computation happening on the correct scheduler? This is
a common and dangerous pitfall that comes from thinking of Rx as asynchronous or
multi-threaded by default — which isn’t the case.

Rx and the general abstraction is free-threaded; there’s no magic thread switching
taking place when processing data. The computation is always performed on the
original thread if not specified otherwise.

Note: Any thread switching happens after an explicit request by the
programmer using the operators subscribeOn and observeOn.

Thinking Rx does some thread handling by default is a common trap to fall into.
What’s happening above is a misuse of the Subject. The original computation is
happening on a specific thread, and those events are pushed in that thread using
Thread() { ... }. Due to the nature of Subject, Rx has no ability to switch the
original computation scheduler and move to another thread, since there’s no direct
control over where the subject is pushed.

RxSwift - Reactive Programming with Swift Chapter 15: Intro To Schedulers

raywenderlich.com 293

Why does this work with the fruit thread though? That’s because using
Observable.create puts Rx in control of what happens inside the Thread block so
you can more finely customize thread handling.

This unexpected outcome is commonly known as the "Hot and Cold" observables
problem.

In the case above, you are dealing with a hot observable. The observable doesn't
have any side-effect during subscription, but it does have its own context in which
events are generated and RxSwift can't control it (namely, it sports its own Thread).

A cold observable in contrast doesn't produce any elements before any observers
subscribe to it. That effectively means it doesn't have its own context until, upon
subscription, it creates some context and starts producing elements.

Hot vs. cold
The section above touched on the topic of hot and cold observables. The topic of
hot and cold observables is quite opinionated and generates a lot of debate, so let's
briefly look into it here. The concept can be reduced to a very simple question:

Some examples of side effects are:

• Fire a request to the server

• Edit the local database

• Write to the file system

• Launch a rocket :]

The world of side effects is endless, so you need to determine whether your
Observable instance is performing side effects upon subscription. If you can’t be
certain about that, then perform more analysis or dig further into the source code.
Launching a rocket on every subscription might not be what you’re looking to
achieve...

Another common way to describe this is to ask whether or not the Observable
shares side-effects. If you’re performing side effects upon subscription, it means
that the side effect is not shared. Otherwise, the side effects are shared with all
subscribers.

RxSwift - Reactive Programming with Swift Chapter 15: Intro To Schedulers

raywenderlich.com 294

This is a fairly general rule, and applies to any ObservableType object like a subject
and related subtypes.

As you've certainly noticed, we haven't spoken much about hot and cold
observables so far in the book. It's a common topic in reactive programming, but in
Rx you encounter the concept only in specific cases like the Thread example above
or when in need of greater control like in tests.

Keep this section as a point of reference, so in case you need to approach a
problem in terms of hot or cold observables, you can quickly open the book to this
point and refresh yourself on the concept.

Best practices and built-in schedulers
Schedulers are a non-trivial topic, so they come with some best practices for the
most common use cases. In this section, you’ll get a quick introduction to serial and
concurrent schedulers, learn how they process the data and see which type works
better for a particular context.

Serial vs concurrent schedulers
Considering that schedulers are simply a context, which could be anything (a
dispatch queue, thread, or a custom context), and that all operators transforming
sequences need to preserve the implicit guarantees, you need to be sure you’re
using the right scheduler.

• If you’re using a serial scheduler, Rx will do computations serially. For a serial
dispatch queue, schedulers will also be able to perform its own optimizations
underneath.

• In a concurrent scheduler, Rx will try running code simultaneously, but observeOn
and subscribeOn will preserve the sequence in which tasks need to be executed,
and ensure that your subscription code ends up on the correct scheduler.

MainScheduler
MainScheduler sits on top of the main thread. This scheduler is used to process
changes on the user interface and perform other high-priority tasks. As a general
practice when developing applications on iOS, tvOS or macOS, long-running tasks
should not be performed using this scheduler, so avoid things like server requests
or other heavy tasks.

Additionally, if you perform side effects that update the UI, you must switch to the
MainScheduler to guarantee those updates make it to the screen.

The MainScheduler is also used to perform all the computations when using Units,
and more specifically, Driver. As discussed in an earlier chapter, Driver ensures the

RxSwift - Reactive Programming with Swift Chapter 15: Intro To Schedulers

raywenderlich.com 295

computation is always performed in the MainScheduler to give you the ability to
bind data directly to the user interface of your application.

SerialDispatchQueueScheduler
SerialDispatchQueueScheduler manages to abstract the work on a serial
DispatchQueue. This scheduler has the great advantage of several optimizations
when using observeOn.

You can use this scheduler to process background jobs which are better scheduled
in a serial manner. For example, if you have an application talking with a single
endpoint of a server (as in a Firebase or GraphQL application), you might want to
avoid dispatching multiple, simultaneous requests, which would put too much
pressure on the receiving end. This scheduler is definitely the one you would want
for any jobs that should advance much like a serial task queue.

ConcurrentDispatchQueueScheduler
ConcurrentDispatchQueueScheduler, similar to SerialDispatchQueueScheduler,
manages to abstract work on a DispatchQueue. The main difference this time is that
instead of a serial queue, the scheduler uses a concurrent one. This kind of
scheduler isn’t optimized when using observeOn, so remember to account for that
when deciding which kind of scheduler to use.

A concurrent scheduler might be a good option for multiple, long-running tasks that
need to end simultaneously. Combining multiple observables with a blocking
operator, so all results are combined together when ready, can prevent serial
schedulers from performing at their best. Instead, a concurrent scheduler could
perform multiple concurrent tasks and optimize the gathering of the results.

OperationQueueScheduler
OperationQueueScheduler is similar to ConcurrentDispatchQueueScheduler, but
instead of abstracting the work over a DispatchQueue, it performs the job over an
NSOperationQueue. Sometimes you need more control over the concurrent jobs you
are running, which you can’t do with a concurrent DispatchQueue.

If you need to fine tune the maximum number of concurrent jobs, this is the
scheduler for the job. You can define maxConcurrentOperationCount to cap the
number of concurrent operations to suit your application’s needs.

TestScheduler
TestScheduler is a special kind of beast. It’s meant only to be used in testing, so try
not to use this scheduler in production code. This special scheduler simplifies
operator testing; it’s part of the RxTest library. You will have a look into using this
scheduler in the dedicated chapter about testing, but let's have a quick look since
you're doing the grand tour of schedulers.

RxSwift - Reactive Programming with Swift Chapter 15: Intro To Schedulers

raywenderlich.com 296

A good use case for this scheduler is provided by the test suite of RxSwift. Open the
dedicated file for testing the delay operator Observable+TimeTest.swift and
search for the single test case named testDelaySubscription_TimeSpan_Simple.
Inside this test case, you have the initialization of the scheduler:

let scheduler = TestScheduler(initialClock: 0)

Following this initialization, you have the definition of the observable to test:

let xs = scheduler.createColdObservable([
 next(50, 42),
 next(60, 43),
 completed(70)
])

And just before the definition of the expectations, you have the declaration of how
to get the results:

let res = scheduler.start {
 xs.delaySubscription(30, scheduler: scheduler)
}

res will be created by the scheduler using the previously defined xs observable.
This result contains all the information about the events sent as well as the time
tracked by the test scheduler.

With this, you could write a test case like so:

XCTAssertEqual(res.events, [
 next(280, 42),
 next(290, 43),
 completed(300)
])

Wondering why the event happens at 280, and not at 80 (considering the original
50, plus 30 for the delay)? This is due to the nature of testScheduler, which starts
all subscriptions to ColdObservable after 200. This trick ensures that a cold
observable won’t start at an unpredictable time — which would make testing a
nightmare!

The same thing doesn’t apply to a HotObservable, so a HotObservable will start
pushing events right away.

As you’re testing a delaySubscription operator, just the information about the
events sent and their time won’t be enough to work with. You’ll need extra
information about the time of the subscription to ensure everything is working as
expected.

RxSwift - Reactive Programming with Swift Chapter 15: Intro To Schedulers

raywenderlich.com 297

With xs.subscriptions, you can get the list of the subscriptions to make the final
part of the test:

XCTAssertEqual(xs.subscriptions, [
 Subscription(230, 300)
])

The first number defines the starting time of the first subscription. The second one
defines when the subscription will be disposed. In this case, the second number
matches the completed event because completion will dispose of all subscriptions.

Where to go from here?
Schedulers are a non-trivial topic in the Rx space; they’re responsible for computing
and performing all tasks in RxSwift. The golden rule of a Scheduler is that it can be
anything. Keep this in mind and you’ll get along just fine when working with
observables and using and changing schedulers.

As explained earlier, a scheduler can sit on top of a DispatchQueue, a
NSOperationQueue, a NSThread or even perform the task immediately on the current
thread. There’s no hard rule about this, so make sure you know what scheduler
you’re using for the job at hand. Sometimes, using the wrong scheduler can have a
negative impact on performance, while a well-chosen scheduler can have great
returns in performance.

Before proceeding, invest some time in playing with the current example and test
some schedulers to see what impact they have on the final result. Understanding
schedulers will make life easier with RxSwift, and will improve your confidence
when using subscribeOn and observeOn.

RxSwift - Reactive Programming with Swift Chapter 15: Intro To Schedulers

raywenderlich.com 298

16Chapter 16: Testing with RxTest
By Scott Gardner

$ %

& That’s for you, for not skipping this chapter. Studies show that there are two
reasons why developers skip writing tests:

1. They write bug-free code.

2. Writing tests isn’t fun.

If the first reason is all you, you’re hired! And if you agree with the second reason,
well, let me introduce you to my little friend: RxTest. For all the reasons why you
started reading this book and are excited to begin using RxSwift in your app
projects, RxTest (and RxBlocking) may very soon have you excited to write tests
against your RxSwift code, too. They provide an elegant API that makes writing
tests easy and fun.

This chapter will introduce you to RxTest, and later, RxBlocking, by writing tests
against several RxSwift operations and also writing tests against production RxSwift
code.

raywenderlich.com 299

Getting started
The starter project for this chapter is named Testing, and it contains a handy app
to give you the red, green, and blue values and color name (if available) for the hex
color code you enter. After running pod install, open up the project workspace and
run it. You will see the app starts off with rayWenderlichGreen, but you can enter
any hex color code and get the rgb and name values.

This app is organized using the MVVM design pattern, which you’ll learn all about in
the MVVM chapter. Suffice it to say that the view model is where the logic is
housed that the view controller will use to control the view. And aside from an
enumeration to model popular color names, the entire app runs on this logic, which
you’ll write tests against later in the chapter:

// Convert hex text to color
color = hexString.asObservable()
 .map { hex in
 guard hex.characters.count == 7 else { return .clear }
 let color = UIColor(hex: hex)
 return color
 }
 .asDriver(onErrorJustReturn: .clear)

// Convert the color to an rgb tuple
rgb = color.asObservable()
 .map { color in
 var red: CGFloat = 0.0
 var green: CGFloat = 0.0
 var blue: CGFloat = 0.0

 color.getRed(&red, green: &green, blue: &blue, alpha: nil)

RxSwift - Reactive Programming with Swift Chapter 16: Testing with RxTest

raywenderlich.com 300

 let rgb = (Int(red * 255.0), Int(green * 255.0), Int(blue * 255.0))
 return rgb
 }
 .asDriver(onErrorJustReturn: (0, 0, 0))

// Convert the hex text to a matching name
colorName = hexString.asObservable()
 .map { hexString in
 let hex = String(hexString.characters.dropFirst())

 if let color = ColorName(rawValue: hex) {
 return "\(color)"
 } else {
 return "--"
 }
 }
 .asDriver(onErrorJustReturn: "")

Before diving into testing this code, it would be helpful to learn about RxTest by
writing a couple tests against RxSwift operators.

Note: This chapter presumes you are familiar with writing unit tests in iOS
using XCTest. If you’re new to this, check out our video course, Beginning iOS
Unit and UI Testing at https://videos.raywenderlich.com/courses/beginning-
ios-unit-and-ui-testing/lessons/1.

Testing operators with RxTest
Note: RxTest was recently renamed from “RxTests” because of problems with
the Swift Package Manager. So if you see “RxTests” out in the wild, it’s most
likely referring to RxTest.

RxTest is a separate library from RxSwift. It’s hosted within the RxSwift repo but
requires a separate pod install and import. RxTest provides many useful additions
for testing RxSwift code, such as TestScheduler, which is a virtual time scheduler
that gives you granular control over testing time-linear operations, and methods
including next(_:_:), completed(_:_:), and error(_:_:) that enable adding these
events onto observables at specified times in your tests. It also adds hot and cold
observables that you can think of as hot and cold sandwiches. No, not really.

What are hot and cold observables?
RxSwift goes to great lengths to streamline and simplify your Rx code, and there
are circles of thought that feel the differences between hot and cold, when it comes
to observables, in RxSwift can be thought of more as a trait of the observable
instead of concrete types. This is somewhat of an implementation detail, but worth

RxSwift - Reactive Programming with Swift Chapter 16: Testing with RxTest

raywenderlich.com 301

being aware of because you won’t see much talk about hot and cold observables in
RxSwift outside of testing.

Hot observables:

• Use resources whether there are subscribers or not.

• Produce elements whether there are subscribers or not.

• Are primarily used with stateful types such as Variable.

Cold observables:

• Only consume resources upon subscription.

• Only produce elements if there are subscribers.

• Are primarily used for async operations such as networking.

You’ll be using hot observables in the unit tests you’ll soon be writing. But it’s good
to know the difference in case your needs call for using one over the other.

Open up TestingOperators.swift in the TestingTests group. At the top of the
class TestingOperators definition there are a couple of properties defined:

var scheduler: TestScheduler!
var subscription: Disposable!

scheduler is an instance of the TestScheduler that you’ll use in each test, and
subscription will hold your subscription in each test. Change the definition of
setUp() to match the following:

override func setUp() {
 super.setUp()

 scheduler = TestScheduler(initialClock: 0)
}

In the setUp() method, which is called before each test case begins (e.g., the set of
tests included in TestingOperators in your case), you initialize a new scheduler with
an initialClock value of 0. This means you want to start the test scheduler at the
beginning time of the test. This will make more sense shortly.

Now change the tearDown() definition to match this code:

override func tearDown() {
 scheduler.scheduleAt(1000) {
 self.subscription.dispose()
 }

 super.tearDown()
}

RxSwift - Reactive Programming with Swift Chapter 16: Testing with RxTest

raywenderlich.com 302

tearDown() is called at the completion of each test. In it, you schedule disposal of
the test’s subscription at 1000 milliseconds. Each of the tests you’ll write will run
for less than 1 second, so it is safe to dispose of the test’s subscription at 1 second.

And now friends, it’s time to write a test! Add this new test to TestingOperators
after the definition of tearDown():

func testAmb() {

 // 2
 let observer = scheduler.createObserver(String.self)
}

Here’s what you did:

1. As with all tests using XCTest, the method name must begin with test. You stub
out a new test here of the amb operator.

2. You create an observer using the scheduler’s createObserver(_:) method, with
a type hint of String.

observer will record and timestamp every event it receives, kind of like the debug
operator in RxSwift, except it doesn’t print anything out. You learned about the amb
operator in the Combining Operators chapter. amb is used between two
observables, and it will propagate events emitted by whichever observable emits
first. In order to test amb, you’ll need to create two observables. Add this code to
test to do that:

// 1
let observableA = scheduler.createHotObservable([
 // 2
 next(100, "a)"),
 next(200, "b)"),
 next(300, "c)")
])

// 3
let observableB = scheduler.createHotObservable([
 // 4
 next(90, "1)"),
 next(200, "2)"),
 next(300, "3)")
])

With this code, you:

1. Create an observableA using the scheduler’s createHotObservable(_:) method.

2. Use next(_:_:) to add .next events onto observableA at the designated times
(in milliseconds) with the value passed as the second parameter.

3. Create observableB hot observable.

RxSwift - Reactive Programming with Swift Chapter 16: Testing with RxTest

raywenderlich.com 303

4. Add .next events to observableB at the designated times and with the specified
values.

Understanding that amb will propagate events emitted by the observable that emits
first, you can guess that your test will confirm that using amb between these two
observables should result in observableB’s elements being received.

In order to test this, add the following code to use the amb operator and assign the
result to a local constant:

let ambObservable = observableA.amb(observableB)

Option-click on ambObservable and you will see that it is of type Observable<String>.

Note: If Xcode is on the fritz again, you might see <<error type>> instead -
don't worry, Xcode will figure things out when you run the test.

Next, you’ll need to tell the scheduler to schedule an action at a specific time. Add
this code:

scheduler.scheduleAt(0) {
 self.subscription = ambObservable.subscribe(observer)
}

Here you schedule the ambObservable to subscribe to the observer at 0 time, and
assign that subscription to the subscription property. In doing this, tearDown() will
dispose of the subscription.

In order to actually kick off the test and then verify the results, add the following
code:

scheduler.start()

This starts the virtual time scheduler, and observer will receive the .next events you
specified via the amb operation.

Now you can collect and analyze the results. Enter this code:

let results = observer.events.map {
 $0.value.element!
}

RxSwift - Reactive Programming with Swift Chapter 16: Testing with RxTest

raywenderlich.com 304

You use map on the observer’s events property to access each event’s element. Now
you can assert that these actual results match your expected results by adding this
code:

XCTAssertEqual(results, ["1)", "2)", "3)"])

Click the diamond button in the gutter to the left of func testAmb() to execute this
test.

After Xcode builds and runs this test, you should see that it succeeded (aka
passed).

Normally you would create a negative test to complement this one, such as to test
that the results received do not match what you know they should not be. You’ve
got many more tests to write before this chapter is done, so to quickly test that
your test is working, change the assertion to match the following:

XCTAssertEqual(results, ["1)", "2)", "No you didn't!"])

Run the test again to verify that it failed with this error message:

XCTAssertEqual failed: ("["1)", "2)", "3)"]") is not equal to ("["1)",
"2)", "No you didn't!"]")

Undo that change and run the test again, and confirm it passes again.

You spent a whole chapter learning about filtering operators, so why not test one
out? Add this test to TestingOperators, which follows the exact same format as
testAmb():

func testFilter() {

 // 1
 let observer = scheduler.createObserver(Int.self)

 // 2
 let observable = scheduler.createHotObservable([
 next(100, 1),
 next(200, 2),
 next(300, 3),
 next(400, 2),
 next(500, 1)
])

RxSwift - Reactive Programming with Swift Chapter 16: Testing with RxTest

raywenderlich.com 305

 // 3
 let filterObservable = observable.filter {
 $0 < 3
 }

 // 4
 scheduler.scheduleAt(0) {
 self.subscription = filterObservable.subscribe(observer)
 }

 // 5
 scheduler.start()

 // 6
 let results = observer.events.map {
 $0.value.element!
 }

 // 7
 XCTAssertEqual(results, [1, 2, 2, 1])
}

From the top, you:

1. Create an observer, this time type-hinting Int.

2. Create a hot observable that schedules a .next event every second for 5
seconds.

3. Create the filterObservable to hold the result of using filter on observable
with a predicate that requires the element value to be less than 3.

4. Schedule the subscription to start at time 0 and assign it to the subscription
property so it will be disposed of in tearDown().

5. Start the scheduler.

6. Collect the results.

7. Assert that the results are what you expected.

Click the diamond in the gutter for this test to run it, and you should get a green
checkmark indicating that the test succeeded.

These tests have been synchronous. When you want to test asynchronous
operations, you have a couple choices. You’ll learn the easiest way first, using
RxBlocking.

Using RxBlocking
RxBlocking is another library housed within the RxSwift repo that, like RxTest, has
its own pod and must be separately imported. Its primary purpose is to convert an
observable to a BlockingObservable via its toBlocking(timeout:) method. What this
does is block the current thread until the observable terminates, or if you specify a

RxSwift - Reactive Programming with Swift Chapter 16: Testing with RxTest

raywenderlich.com 306

value for timeout (it is nil by default), and that timeout is reached before the
observable terminates, it will throw an RxError.timeout error. This essentially turns
an asynchronous operation into a synchronous one, making testing much easier.

Add this test to TestingOperators to test the toArray operator in three lines of code
using RxBlocking:

func testToArray() {

 // 1
 let scheduler = ConcurrentDispatchQueueScheduler(qos: .default)

 // 2
 let toArrayObservable = Observable.of("1)",
"2)").subscribeOn(scheduler)

 // 3
 XCTAssertEqual(try! toArrayObservable.toBlocking().toArray(), ["1)",
"2)"])
}

What you just did:

1. Create a concurrent scheduler to run this asynchronous test, with the default
quality of service.

2. Create an observable to hold the result of subscribing to an observable of two
strings on the scheduler.

3. Use toArray on the result of calling toBlocking() on toArrayObservable, and
assert that the return value from toArray equals the expected result.

toBlocking() converts toArrayObservable to a blocking observable, blocking the
thread spawned by the scheduler until it terminates. Run the test and you should
see it succeed. Three lines of code to test an asynchronous operation — woot! You’ll
work more with RxBlocking shortly, but now it’s time to move away from testing
operators and write some tests against the app’s production code.

Testing RxSwift production code
Start by opening ViewModel.swift in the Testing group (the app’s main group).
At the top, you’ll see these property definitions:

let hexString = Variable<String>("")
let color: Driver<UIColor>
let rgb: Driver<(Int, Int, Int)>
let colorName: Driver<String>

hexString receives input from the view controller. color, rgb, and colorName are
output that the view controller will bind to views. In the initializer for this view
model, each output observable is initialized by transforming another observable and

RxSwift - Reactive Programming with Swift Chapter 16: Testing with RxTest

raywenderlich.com 307

returning the result as a Driver. This is the code displayed at the beginning of the
chapter.

Below the initializer is an enumeration definition to model common color names.

enum ColorName: String {
 case aliceBlue = "F0F8FF"
 case antiqueWhite = "FAEBD7"
 case aqua = "0080FF"
 // And many more...

Now open ViewController.swift and focus on the the viewDidLoad()
implementation.

override func viewDidLoad() {
 super.viewDidLoad()

 configureUI()

 guard let textField = self.hexTextField else { return }

 textField.rx.text.orEmpty
 .bindTo(viewModel.hexString)
 .addDisposableTo(disposeBag)

 for button in buttons {
 button.rx.tap
 .bindNext {
 var shouldUpdate = false

 switch button.titleLabel!.text! {
 case "⊗":
 textField.text = "#"
 shouldUpdate = true
 case "←" where textField.text!.characters.count > 1:
 textField.text = String(textField.text!.characters.dropLast())
 shouldUpdate = true
 case "←":
 break
 case _ where textField.text!.characters.count < 7:
 textField.text!.append(button.titleLabel!.text!)
 shouldUpdate = true
 default:
 break
 }

 if shouldUpdate {
 textField.sendActions(for: .valueChanged)
 }
 }
 .addDisposableTo(self.disposeBag)
 }

 viewModel.color
 .drive(onNext: { [unowned self] color in
 UIView.animate(withDuration: 0.2) {
 self.view.backgroundColor = color

RxSwift - Reactive Programming with Swift Chapter 16: Testing with RxTest

raywenderlich.com 308

 }
 })
 .addDisposableTo(disposeBag)

 viewModel.rgb
 .map { "\($0.0), \($0.1), \($0.2)" }
 .drive(rgbTextField.rx.text)
 .addDisposableTo(disposeBag)

 viewModel.colorName
 .drive(colorNameTextField.rx.text)
 .addDisposableTo(disposeBag)
}

From the top:

1. Bind the text field’s text (or an empty string) to the view model’s hexString
input observable.

2. Loop over the buttons outlet collection, binding taps and switching on the
button’s title to determine how to update the text field’s text, and if the text
field should send the .valueChanged control event.

3. Use the view model’s color driver to update the view’s background color.

4. Use the view model’s rgb driver to update the rgbTextField’s text.

5. Use the view model’s colorName driver to update the colorNameTextField’s text.

With that overview of how the app works, you can now write tests against it. Open
TestingViewModel.swift in the TestingTests group, and change the
implementation of setUp() to match the following:

override func setUp() {
 super.setUp()

 viewModel = ViewModel()
 scheduler = ConcurrentDispatchQueueScheduler(qos: .default)
}

Here, you assign viewModel an instance of the app’s ViewModel class and scheduler
an instance of a concurrent scheduler with default quality of service.

Now you are ready to write tests against the app’s view model. To begin, you’ll
write an asynchronous test using the traditional XCTest API with expectations. Add
this test of the view model’s color driver (using the traditional approach) to
TestingViewModel:

func testColorIsRedWhenHexStringIsFF0000_async() {

 let disposeBag = DisposeBag()

 // 1
 let expect = expectation(description: #function)

RxSwift - Reactive Programming with Swift Chapter 16: Testing with RxTest

raywenderlich.com 309

 // 2
 let expectedColor = UIColor(red: 1.0, green: 0.0, blue: 0.0, alpha:
1.0)

 // 3
 var result: UIColor!
}

Here’s what you did:

1. Create an expectation to be later fulfilled.

2. Create the expected test result expectedColor equal to a red color.

3. Define the result to be later assigned.

This is just setup code. Now add the following code to the test to subscribe to the
view model’s color driver:

// 1
let expect = expectation(description: #function)

// 2
let expectedColor = UIColor(red: 1.0, green: 0.0, blue: 0.0, alpha: 1.0)

// 3
var result: UIColor!
// 1
viewModel.color.asObservable()
 .skip(1)
 .subscribe(onNext: {
 // 2
 result = $0
 expect.fulfill()
 })
 .addDisposableTo(disposeBag)

// 3
viewModel.hexString.value = "#ff0000"

// 4
waitForExpectations(timeout: 1.0) { error in
 guard error == nil else {
 XCTFail(error!.localizedDescription)
 return
 }

 // 5
 XCTAssertEqual(expectedColor, result)
}

RxSwift - Reactive Programming with Swift Chapter 16: Testing with RxTest

raywenderlich.com 310

With this code, you:

1. Create a subscription to the view model’s color driver. Notice that you skip the
first one because Driver will replay the initial element upon subscription.

2. Assign the .next event element to result and call fulfill() on the expectation.

3. Add a new value onto the view model’s hexString input observable (a Variable)

4. Wait for the expectation to fulfill with a 1 second timeout, and in the closure you
guard for an error and then assert that the expected color equals the actual
result.

Easy peasy, but a bit verbose. Run that test just to make sure it passes.

Now add the following test which accomplishes the same thing by using RxBlocking:

func testColorIsRedWhenHexStringIsFF0000() {

 // 1
 let colorObservable =
viewModel.color.asObservable().subscribeOn(scheduler)

 // 2
 viewModel.hexString.value = "#ff0000"

 // 3
 do {
 guard let result = try colorObservable.toBlocking(timeout:
1.0).first() else { return }

 XCTAssertEqual(result, .red)
 } catch {
 print(error)
 }
}

Here’s the play-by-play:

1. Create the colorObservable to hold on to the observable result of subscribing on
the concurrent scheduler.

2. Add a new value onto the view model’s hexString input observable.

3. Use guard to optionally bind the result of calling toBlocking() with a 1 second
timeout, catching and printing an error if thrown, and then asserting that the
actual result matches the expected one.

Run the test to confirm it succeeds. This is essentially the same test as the previous
one. You just didn’t have to work as hard.

RxSwift - Reactive Programming with Swift Chapter 16: Testing with RxTest

raywenderlich.com 311

Next, add this code to test that the view model’s rgb driver emits the expected red,
green, and blue values for the given hexString input:

func testRgbIs010WhenHexStringIs00FF00() {

 // 1
 let rgbObservable =
viewModel.rgb.asObservable().subscribeOn(scheduler)

 // 2
 viewModel.hexString.value = "#00ff00"

 // 3
 let result = try! rgbObservable.toBlocking().first()!

 XCTAssertEqual(0 * 255, result.0)
 XCTAssertEqual(1 * 255, result.1)
 XCTAssertEqual(0 * 255, result.2)
}

From the top:

1. Create rgbObservable to hold the subscription on the scheduler.

2. Add a new value onto the view model’s hexString input observable.

3. Retrieve the first result of calling toBlocking on rgbObservable and then assert
that each value matches expectations.

The conversion from 0-to-1 to 0-to-255 was just to match the test name and make
things easier to follow. Run this test and it should succeed.

One more driver to test. Add this test to TestingViewModel, which tests that the
view model’s colorName driver emits the correct element for the given hexString
input:

func testColorNameIsRayWenderlichGreenWhenHexStringIs006636() {

 // 1
 let colorNameObservable =
viewModel.colorName.asObservable().subscribeOn(scheduler)

 // 2
 viewModel.hexString.value = "#006636"

 // 3
 XCTAssertEqual("rayWenderlichGreen", try!
colorNameObservable.toBlocking().first()!)
}

The above code is fairly straightforward:

1. Create the observable.

2. Add the test value.

RxSwift - Reactive Programming with Swift Chapter 16: Testing with RxTest

raywenderlich.com 312

3. Assert that the actual result matching the expected result.

The phrase “rinse and repeat” comes to mind, but in a good way. Writing tests
should always be this easy. Press Command-U to run all the tests in this project,
and everything should pass with flying colors — or at least with the only color you
want to see here: green.

Writing tests using RxText and RxBlocking is akin to writing data and UI binding
code using RxSwift and RxCocoa (et al). There are no challenges for this chapter,
because you will be doing more view model testing in the MVVM chapter. Happy
testing!

RxSwift - Reactive Programming with Swift Chapter 16: Testing with RxTest

raywenderlich.com 313

17Chapter 17: Creating Custom
Reactive Extensions
By Junior Bontognali

After being introduced to RxSwift, RxCocoa, and learning how to create tests, you
have yet to see how to create extensions using RxSwift on top of frameworks
created by Apple or by third parties. Wrapping an Apple or third party framework’s
component was introduced in the chapter about RxCocoa, so you’ll extend your
learning as you work your way through thic chapter’s project.

In this chapter, you will create an extension to NSURLSession to manage the
communication with an endpoint, as well as managing the cache and other things
which are commonly part of a regular application. This is example is pedagogical; if
you want to use RxSwift with networking, there are several libraries available to do
this for you, including RxAlamofire, which we also cover in this book.

raywenderlich.com 314

Getting started
To start, you’ll need a beta key for Giphy https://giphy.com, one of the most
popular GIF services on the web. To get the beta key, navigate to the official
repository at https://github.com/Giphy/GiphyAPI.

It’s a shared beta key that you can use during development, so one single key is
available for everyone (with some usage rate limits).

Open ApiController.swift and copy the key into the correct place:

private let apiKey = "[YOUR KEY]"

At this point, you can proceed with the CocoaPods installation process. Open
Terminal, navigate to the root of the project and perform the necessary pod install
command. Once you’ve completed this step, you will have all the necessary
dependencies installed so you can build and run the application. Once you’re sure
the project builds without issues, you can proceed!

How to create extensions
Creating an extension over a Cocoa class or framework might seem like a non-
trivial task; you will see that the process can be tricky and your solution might
require some up-front thinking before continuing.

The goal here is to extend URLSession with the rx namespace, isolating the RxSwift
extension, and making sure collisions are nearly impossible if you (or your team)
need to extend this class further.

How to extend URLSession with .rx
To enable the .rx extension for URLSession, open URLSession+Rx.swift and add
the following:

extension Reactive where Base: URLSession {

}

The Reactive extension, through a very clever protocol extension, exposes the .rx
namespace over URLSession. This is the first step in extending URLSession with
RxSwift. Now it’s time to create the real wrapper.

How to create wrapper methods
You’ve exposed the .rx namespace over NSURLSession, so now you can create some
wrapper functions to return an Observable of the type of the data you want to
expose.

RxSwift - Reactive Programming with SwiftChapter 17: Creating Custom Reactive Extensions

raywenderlich.com 315

APIs can return various types of data, so it’s a good idea to have some checks on
the type of data your app expects. You want to create the wrappers for handling the
following types of data:

• Data: just plain data

• String: data as text

• JSON: an instance of a JSON object

• Image: an instance of image

These wrappers are going to ensure the type you expect will be the one delivered.
Otherwise, an error will be sent and the application will error out without crashing.

This wrapper, and one that will be used to create all the others, is the one that
returns the HTTPURLResponse and the result Data. Your goal is to have an
Observable<Data>, which will be used to create the remaining three operators:

Start by creating the skeleton of the main response function, so you know what to
return. Add inside the extension you just created:

func response(request: URLRequest) -> Observable<(HTTPURLResponse, Data)>
{
 return Observable.create { observer in
 // content goes here
 return Disposables.create()
 }
}

It’s pretty clear what this extension should return. The URLResponse is the part you
will check to ensure the request has been successfully processed, while Data is, of
course, the actual data returned by it.

URLSession is based on callbacks and tasks. For example the built-in method that
sends a request and receives back the server response is
dataTask(with:completionHandler:). This function uses a callback to manage the
result, so the logic of your observable has to be managed inside the required
closure.

To do that add the following inside Observable.create:

let task = self.base.dataTask(with: request) { (data, response, error) in

}
task.resume()

RxSwift - Reactive Programming with SwiftChapter 17: Creating Custom Reactive Extensions

raywenderlich.com 316

The created task must to be resumed (or started), so the resume() function will
trigger the request. The result is then appropriately handled by the callback.

Note: The use of the resume() function is what is known as “Imperative
Programming”. You’ll see exactly what this means later on.

Now that the task is in place, there’s a change to perform before proceeding. In the
previous block, you were returning a Disposable.create(), which would simply do
nothing if the Observable was disposed. It’s better to cancel the request so that you
don’t waste any resources.

To do this, replace return Disposables.create() with:

return Disposables.create(with: task.cancel)

Now that you have the Observable with the correct lifetime strategy, it’s time to
make sure the data is correctly returned before sending any event to this instance.
To achieve this, add the following to your task closure just above task.resume():

guard let response = response, let data = data else {
 observer.on(.error(error ?? RxURLSessionError.unknown))
 return
}

guard let httpResponse = response as? HTTPURLResponse else {
 observer.on(.error(RxURLSessionError.invalidResponse(response:
response)))
 return
}

Both guard statements confirm the request has been successfully performed before
notifying all the subscriptions.

After ensuring the request has been correctly completed, this observable needs
some data. Add the following code immediately after the code you added above:

observer.on(.next(httpResponse, data))
observer.on(.completed)

This sends the event to all subscriptions followed immediately by the completion.
Firing a request and receiving its response is a single usage Observable. It wouldn’t
make sense to keep the observable alive and perform other requests, which is more
appropriate for things such as socket communication.

This is the most basic operator to wrap URLSession. You’ll need to wrap a few more
things to make sure the application is dealing with the correct kind of data. The
good news is that you can reuse this method to build the rest of the convenient
methods. Start by adding the one returning a Data instance:

func data(request: URLRequest) -> Observable<Data> {

RxSwift - Reactive Programming with SwiftChapter 17: Creating Custom Reactive Extensions

raywenderlich.com 317

 return response(request: request).map { (response, data) -> Data in
 if 200 ..< 300 ~= response.statusCode {
 return data
 } else {
 throw RxURLSessionError.requestFailed(response: response, data:
data)
 }
 }
}

The Data observable is the root of all the others. Data can be converted to a String,
JSON object or UIImage.

Add the following to return a String:

func string(request: URLRequest) -> Observable<String> {
 return data(request: request).map { d in
 return String(data: d, encoding: .utf8) ?? ""
 }
}

A JSON data structure is a simple structure to work with, so a dedicated conversion
is more than welcomed. Add:

func json(request: URLRequest) -> Observable<JSON> {
 return data(request: request).map { d in
 return JSON(data: d)
 }
}

Finally, implement the last one to return an instance of UIImage:

func image(request: URLRequest) -> Observable<UIImage> {
 return data(request: request).map { d in
 return UIImage(data: d) ?? UIImage()
 }
}

When you modularize an extension like you just did, you allow for better
composability. For example the last observable can be visualized in the following
way:

Some of RxSwift’s operators, such as map, can be smartly assembled to avoid
processing overhead so a multiple chain of maps will be optimized into a single call.
Don’t worry about chaining them or including too much in the closures.

RxSwift - Reactive Programming with SwiftChapter 17: Creating Custom Reactive Extensions

raywenderlich.com 318

How to create custom operators
In the chapter about RxCocoa you created a function to cache data. This looks like
a good approach here, considering the size of some GIFs. As well, a good
application should minimize loading times as much as possible.

A good approach in this case is to create a special operator to cache data that is
only available for observables of type (HTTPURLResponse, Data). The goal is to cache
as much as possible, so it sounds reasonable to create this operator only for
observables of type (HTTPURLResponse, Data) and use the response object to
retrieve the absolute URL of the request and use it as a key in the dictionary.

The caching strategy will be a simple Dictionary; you can later extend this basic
behavior to persist the cache and reload it when reopening the app, but this goes
beyond the current project scope.

Create the cache dictionary at the top, before the RxURLSessionError’s definition:

fileprivate var internalCache = [String: Data]()

Then create the extension which will target only observables of Data type:

extension ObservableType where E == (HTTPURLResponse, Data) {

}

Inside this extension you can create the cache() function as shown:

func cache() -> Observable<E> {
 return self.do(onNext: { (response, data) in
 if let url = response.url?.absoluteString, 200 ..< 300 ~=
response.statusCode {
 internalCache[url] = data
 }
 })
}

To use the cache, make sure to modify the data(request:)'s return statement to
cache the response before returning its own result like so (you can simply insert
only the .cache() part):

return response(request: request).cache().map { (response, data) -> Data
in
 //...
}

To check if the data is already available, instead of firing a network request every
time, add the following to the top of data(request:), before the return:

if let url = request.url?.absoluteString, let data = internalCache[url] {
 return Observable.just(data)
}

RxSwift - Reactive Programming with SwiftChapter 17: Creating Custom Reactive Extensions

raywenderlich.com 319

You now have a very basic caching system that extends only a certain type of
Observable:

You can reuse the same procedure to cache other kinds of data, considering this is
an extremely generic solution.

Use custom wrappers
You’ve created some wrappers around URLSession as well as custom operators
targeting only some specific type of observables. Now it’s time to fetch some results
and display some funny cat GIFs.

The current project already has the batteries included, so the only thing you need
to provide is a a list of JSON structures coming from the Giphy API.

Open ApiController.swift and have a look at the search() method. The code
inside prepares a proper request to the Giphy API, but at the very bottom it doesn't
make a network call, but just returns an empty observable instead (since this is
placeholder code).

Now that you've completed your URLSession reactive extension, you can make use
of it to get data from the network in the bespoke method. Modify the return
statement like so:

return URLSession.shared.rx.json(request: request).map() { json in
 return json["data"].array ?? []
}

This will handle the request for a given query string, but the data is still not
displayed. There’s one last step to be performed before the GIF actually pos up on
screen.

Add the following to GifTableViewCell.swift, right at the end of
downloadAndDisplay(gif stringUrl:):

let s = URLSession.shared.rx.data(request: request)

RxSwift - Reactive Programming with SwiftChapter 17: Creating Custom Reactive Extensions

raywenderlich.com 320

 .observeOn(MainScheduler.instance)
 .subscribe(onNext: { imageData in
 self.gifImageView.animate(withGIFData: imageData)
 self.activityIndicator.stopAnimating()
 })
disposable.setDisposable(s)

The usage of SingleAssignmentDisposable() is mandatory to keep things performing
well. When a download of a GIF starts, you should make sure it’s been stopped if
the user scrolls away and doesn’t wait for the rendering of the image. To correctly
balance this, in prepareForReuse() there are these two lines (already included in the
starter code, no need to type them now):

disposable.dispose()
disposable = SingleAssignmentDisposable()

The SingleAssignmentDisposable() will ensure only one subscription is ever alive at
a given time for every single cell so you won’t bleed resources.

Build and run, type something in the search bar and you’ll see the app come alive.

Testing custom wrappers
Although everything seems to be working properly, it’s a good habit, especially
when wrapping third party frameworks, to create some tests and ensure everything
keeps working correctly as you develop the code further.

Test suites ensure the wrapper around a framework stays in good shape, and will
help you find where the code is failing due to a breaking change or a bug.

RxSwift - Reactive Programming with SwiftChapter 17: Creating Custom Reactive Extensions

raywenderlich.com 321

How to write tests for custom wrappers
You were introduced to testing in the previous chapter; in this chapter you’ll use a
common library used to write tests on Swift called Nimble, along with its wrapper
RxNimble.

RxNimble makes tests easier to write and helps your code be more concise. Instead
of writing the classic:

let result = try! observabe.toBlocking().first()
expect(result) != 0

You can write the much shorter:

expect(observable) != 0

Open the test file iGifTests.swift. Checking the import section, you can see the
Nimble, RxNimble, OHHTTPStubs used to stub network requests and RxBlocking
necessary to convert an asynchronous operation into a blocking ones.

At the end of the file you can also find a short extension for BlockingObservable
with a single function:

func firstOrNil() -> E? {}

This would avoid abusing the try? method all through the test file. You’ll see this in
use shortly.

At the top of the file, you’ll find a dummy JSON object to test with:

let obj = ["array": ["foo", "bar"], "foo": "bar"] as [String: Any]

Using this predefined data makes it easier to write tests for Data, String and JSON
requests.

The first test to write is the one for the data request. Add the following test to the
test case class to check that a request is not returning nil:

func testData() {
 let observable = URLSession.shared.rx.data(request: self.request)
 expect(observable.toBlocking().firstOrNil()) != nil
}

As soon as you wrap up typing in the method, Xcode will display a diamond shaped
button in the editor gutter much like this (the line number might differ for you):

RxSwift - Reactive Programming with SwiftChapter 17: Creating Custom Reactive Extensions

raywenderlich.com 322

Click on the button and run the test. If the test succeeds, the button will turn
green; if it fails, it will turn red. Hopefully you type all code in correctly and you will
see the button turn into a green checkmark.

Once the observable returning Data is tested and works correctly, the next one to
test is the observable that handles String. Considering the original data is a JSON
representation, and considering that keys are sorted, the expected result should
be:

{"array":["foo","bar"],"foo":"bar"}

The test is then really straightforward to write. Add the following, taking in
consideration that the JSON string has to be escaped:

func testString() {
 let observable = URLSession.shared.rx.string(request: self.request)
 let string = "{\"array\":[\"foo\",\"bar\"],\"foo\":\"bar\"}"
 expect(observable.toBlocking().firstOrNil()) == string
}

Press the test button for that new test, and once finished, move on to testing JSON
parsing. The test requires a JSON data structure to compare with. Add the following
code to convert the string version to Data and process it as JSON:

func testJSON() {
 let observable = URLSession.shared.rx.json(request: self.request)
 let string = "{\"array\":[\"foo\",\"bar\"],\"foo\":\"bar\"}"
 let json = JSON(data: string.data(using: .utf8)!)
 expect(observable.toBlocking().firstOrNil()) == json
}

The last test is to make sure that errors are returned properly. Comparing two
errors is a rather uncommon procedure, so it doesn’t make sense to have an equal
operator for an error. Therefore the test should use do, try and catch for the
unknown error.

Add the following:

func testError() {
 var erroredCorrectly = false
 let observable = URLSession.shared.rx.json(request: self.errorRequest)
 do {
 let _ = try observable.toBlocking().first()
 assertionFailure()
 } catch (RxURLSessionError.unknown) {
 erroredCorrectly = true
 } catch {
 assertionFailure()
 }
 expect(erroredCorrectly) == true
}

RxSwift - Reactive Programming with SwiftChapter 17: Creating Custom Reactive Extensions

raywenderlich.com 323

At this point your project is complete. You’ve created your own extensions on top of
URLSession and you also created some cool tests which will ensure your wrapper is
behaving correctly. Testing wrappers like the one you’ve built is extremely
important because Apple frameworks and other third party frameworks can feature
breaking changes inn major releases — so you should be prepared to act fast if a
test breaks and the wrapper stops working.

Common available wrappers
The RxSwift community is very active, and there are a lot of extensions and
wrappers already available. Some are based on Apple components, while some
others are based on widely-used third-party libraries found in many iOS and macOS
projects.

You can find a list of up-to-date wrappers at http://community.rxswift.org.

Here’s a quick overview of the most common wrappers at present:

RxDataSources
RxDataSources is a UITableView and UICollectionView data source for RxSwift with
some really nice features such as:

• O(N) algorithm for calculating differences

• Heuristics to send the minimal number of commands to sectioned view

• Support for extending already implemented views

• Support for hierarchical animations

These are all important features, but my favorite is the O(N) algorithm to
differentiate two data sources – it ensures the application isn’t performing
unnecessary calculations when managing table views.

Consider the code you write with the built-in RxCocoa table binding:

let data = Observable<[String]>.just(
 ["1st place", "2nd place", "3rd place"]
)

data.bindTo(tableView.rx.items(cellIdentifier: "Cell")) { index, model,
cell in
 cell.placeLabel.text = model
}
.addDisposableTo(disposeBag)

This works perfectly with simple data sets, but lacks animations, support for
multiple sections, and doesn’t extend very well.

RxSwift - Reactive Programming with SwiftChapter 17: Creating Custom Reactive Extensions

raywenderlich.com 324

With RxDataSource correctly configured, the code becomes more robust:

//configure sectioned data source
let dataSource =
RxTableViewSectionedReloadDataSource<SectionModel<String, String>>()

//bind data to the table view, using the data source
Observable.just(
 [SectionModel(model: "Position", items: ["1st", "2nd", "3rd"])]
)
.bindTo(tableView.rx.items(dataSource: dataSource))
.addDisposableTo(disposeBag)

And the minimal configuration of the data source that needs to be done in advance
looks like so:

dataSource.configureCell = { dataSource, tableView, indexPath, item in
 let cell = tableView.dequeueReusableCell(
 withIdentifier: "Cell", for: indexPath)
 cell.placeLabel.text = item
 return cell
}
dataSource.titleForHeaderInSection = { dataSource, index in
 return dataSource.sectionModels[index].header
}

Since binding table and collection views is an important every day task, you'll look
into RxDataSources in more detail in a dedicated cookbook-style chapter later in this
book.

RxAlamofire
RxAlamofire is a wrapper around the elegant Swift HTTP networking library
Alamofire. Alamofire is one of the most popular third-party frameworks.

RxAlamofire features the following convenience extensions:

func data(_ method:_ url:parameters:encoding:headers:)
 -> Observable<Data>

This method combines all the request details into one call and returns the server
response as Observable<Data>.

Further, the library offers:

func string(_ method:_ url:parameters:encoding:headers:)
 -> Observable<String>

This one returns an Observable of the content response as String.

RxSwift - Reactive Programming with SwiftChapter 17: Creating Custom Reactive Extensions

raywenderlich.com 325

Last, but no less important:

func json(_ method:_ url:parameters:encoding:headers:)
 -> Observable<Any>

This returns an instance of an object. It’s important to know that this method
doesn’t return a JSON object like the one you created before.

Other than this, RxAlamofire also includes convenience functions to create
observables to download or upload files and to retrieve progress information.

RxBluetoothKit
Working with Bluetooth can be complicated. Some calls are asynchronous, and the
order of the calls is crucial to correctly connect, send data and receive data from
devices or peripherals.

RxBluetoothKit abstracts some of the most painful parts of working with Bluetooth
and delivers some cool features:

• CBCentralManger support

• CBPeripheral support

• Scan sharing and queueing

To start using RxBluetoothKit, you have to create a manager:

let manager = BluetoothManager(queue: .main)

The code to scan for peripherals looks something along the lines of:

manager.scanForPeripherals(withServices: [serviceIds])

.flatMap { scannedPeripheral in
 let advertisement = scannedPeripheral.advertisement
}

And to connect to one:

manager.scanForPeripherals(withServices: [serviceId])
 .take(1)
 .flatMap { $0.peripheral.connect() }
 .subscribe(onNext: { peripheral in
 print("Connected to: \(peripheral)")
 })

It’s also possible to observe the current state of the manager:

manager.rx_state
 .filter { $0 == .poweredOn }
 .timeout(1.0, scheduler)
 .take(1)

RxSwift - Reactive Programming with SwiftChapter 17: Creating Custom Reactive Extensions

raywenderlich.com 326

 .flatMap { manager.scanForPeripherals(withServices: [serviceId]) }

In addition to the manager, there are also super-convenient abstractions for
characteristics and peripherals. For example, to connect to a peripheral you can do
the following:

peripheral.connect()
 .flatMap { $0.discoverServices([serviceId]) }
 .subscribe(onNext: { service in
 print("Service discovered: \(service)")
 })

And if you want to discover a characteristic:

peripheral.connect()
 .flatMap { $0.discoverServices([serviceId]) }
 .flatMap { $0.discoverCharacteristics([characteristicId])}
 .subscribe(onNext: { characteristic in
 print("Characteristic discovered: \(characteristic)")
 })

RxBluetoothKit also features functions to properly perform connection restorations,
to monitor the state of Bluetooth and to monitor the connection state of single
peripheral.

Where to go from here?
In this chapter, you saw how to implement and wrap an Apple framework.
Sometimes, it’s very useful to abstract an official Apple Framework or third party
library to better connect with RxSwift. There’s no real written rule about when an
abstraction is necessary, but the recommendation is to apply this strategy if the
framework meets one or more of these conditions:

• Uses callbacks with completion and failure information

• Uses a lot of delegates to return information asynchronously

• The framework needs to inter-operate with other RxSwift parts of the application

You also need to know if the framework has restrictions on which thread the data
must be processed. For this reason, it’s a good idea to read the documentation
thoroughly before creating a RxSwift wrapper. And don’t forget to look for existing
community extensions — or, if you’ve written one, consider sharing it back with the
community! :]

RxSwift - Reactive Programming with SwiftChapter 17: Creating Custom Reactive Extensions

raywenderlich.com 327

Challenges
Challenge 1: Add processing feedback
In this challenge you’re asked to add some information about the processing of JSON
and UIImage. In the current state, the application receives an empty string or image
when the data can’t be processed.

Take a moment to review the code, remove the default, empty objects and make
the code raise an error if the type conversion doesn't work out. The
RxURLSessionError enum in URLSession+Rx.swift already includes a case called
deserializationFailed — throw it when type conversion fails.

Before starting, try to understand where this has to be raised and when. Sending
an error to an observable is a termination, so make sure you are sending the error
in the correct case.

If you can't wrap up with this on your own, no worries — there's a provided solution
along with this chapter.

RxSwift - Reactive Programming with SwiftChapter 17: Creating Custom Reactive Extensions

raywenderlich.com 328

Section V: RxSwift Community
Cookbook

RxSwift's popularity keeps growing every day. Thanks to the friendly and creative
community that formed around this library, a lot of community-driven Rx projects
are being released on GitHub.

The advantage of the community-built libraries that use RxSwift is that unlike the
main repository, which needs to follow the Rx standard, these libraries can afford to
experiment and explore different approaches, provide non multi-platform
specializations, and more.

In this section you are going to look into just a few of the many community open
source projects. The section contains five short cookbook-style chapters that look
briefly into five community projects that help you with binding table views, handling
user gestures, persisting data with the Realm database, and talking to your server
with Alamofire.

Chapter 18: Table and collection views

Chapter 19: Action

Chapter 20: RxGesture

Chapter 21: RxRealm

Chapter 22: RxAlamofire

raywenderlich.com 329

18Chapter 18: Table and
Collection Views
By Florent Pillet

The most frequent requirement for iOS applications is to display content in table or
collection views. A typical implementation features two or more data source and
delegate callbacks, although you often end up with more. RxSwift not only comes
with the tools to perfectly integrate observable sequences with tables and
collections views, but also reduces the amount of boilerplate code by quite a large
amount.

Basic support for UITableView and UICollectionView is present in the RxCocoa
framework you were introduced to in previous chapters.

In this chapter, you’ll learn how to quickly wire up tables and collections with just
the built-in framework tools. Extended support for things such as sections and
animations comes with RxDataSources https://github.com/RxSwiftCommunity/
RxDataSources, an advanced framework found under the umbrella of
RxSwiftCommunity organization.

The examples below are for UITableView, but the same patterns work for
UICollectionView as well.

Basic table view
In a typical scenario, you want to display a list of items of the same type: for
example, a list of cities, as you saw in previous chapters. Using standard cells to
display them requires nearly zero setup. Consider a single observable list:

@IBOutlet var tableView: UITableView!

func bindTableView() {
 let cities = Observable.of(["Lisbon", "Copenhagen", "London", "Madrid",
"Vienna"])

 cities

raywenderlich.com 330

 .bindTo(tableView.rx.items) {
 (tableView: UITableView, index: Int, element: String) in
 let cell = UITableViewCell(style: .default, reuseIdentifier:
"cell")
 cell.textLabel?.text = element
 return cell
 }
 .addDisposableTo(disposeBag)
}

And. That’s. All. You don’t even need to set your UIViewController as an
UITableViewDataSource. Wow!

This deserves a quick overview of what’s going on:

• tableView.rx.items is a binder function operating on observable sequences of
elements (like Observable<[String]>).

• The binding creates an invisible ObserverType object which subscribes to your
sequence, and sets itself as the dataSource and delegate of the table view.

• When a new array of elements is delivered on the observable, the binding reloads
the table view.

• To obtain the cell for each item, RxCocoa calls your closure with details (and
date) for the row being reloaded.

This is straightforward to use. But what if you want to capture the user selection?
Again, the framework is here to help:

tableView.rx
 .modelSelected(String.self)
 .subscribe(onNext: { model in
 print("\(model) was selected")
 })
 .addDisposableTo(disposeBag)

The modelSelected(_:) extension returns an observable which emits the model
object (the element represented by the cell) every time the user selects it. A
variant (itemSelected()) transports the IndexPath of the selected item.

RxCocoa offers a number of observables:

• modelSelected(), modelDeselected(), itemSelected(), itemDeselected() fire on
item selection

• accessoryButtonTapped() fire on accessory button tap

• itemInserted(), itemDeleted(), itemMoved() fire on events callbacks in table edit
mode

• willDisplayCell(), didEndDisplayingCell() fire every time related
UITableViewDelegate callbacks fire.

RxSwift - Reactive Programming with Swift Chapter 18: Table and Collection Views

raywenderlich.com 331

These are all simple wrappers around equivalent UITableViewDelegate callbacks.

Multiple cell types
It’s nearly as easy to deal with multiple cell types. From a model standpoint, the
best way to handle it is to use an enum with associated data as the element model.
This way you can handle as many different cell types as you need while binding the
table to an observable of arrays of the enum type.

To build a table with cells made of either just a string, or custom cells with two
images, first define a data model with an enum then create an observable of arrays
of this model:

enum MyModel {
 case title(String)
 case pairOfImages(UIImage, UIImage)
}

let observable: Observable<[MyModel]> = Observable.of([
 .textEntry("Paris"),
 .pairOfImages(UIImage(named: "EiffelTower.jpg"), UIImage(named:
"LeLouvre.jpg")),
 .textEntry("London"),
 .pairOfImages(UIImage(named: "BigBen.jpg"), UIImage(named:
"BuckinghamPalace.jpg"))
])

To bind it to the table, use a slightly different closure signature, and load a different
cell class depending on the element emitted. The idiomatic code looks like this:

observable.bindTo(tableView.rx.items) {
 (tableView: UITableView, index: Int, element: MyModel) in
 let indexPath = IndexPath(item: index, section: 0)
 switch element {
 case .textEntry(let title):
 let cell = tableView.dequeueReusableCell(withIdentifier:
"titleCell", for: indexPath)
 cell.titleLabel.text = title
 return cell
 case .pairOfImages(let firstImage, let secondImage):
 let cell = tableView.dequeueReusableCell(withIdentifier:
"pairOfImagesCell", for: indexPath)
 cell.leftImage.image = firstImage
 cell.rightImage.image = secondImage
 return cell
 }
}

This is not much more code than before. The only complexity is dealing with
multiple data types in the observable of arrays of objects, which you can elegantly
solve using an enum. Isn’t Swift great?

RxSwift - Reactive Programming with Swift Chapter 18: Table and Collection Views

raywenderlich.com 332

Providing additional functionality
Even though RxCocoa-driven table views and collection views don’t need you to set
up your view controller as a delegate, you can do so to provide complementary
functionality not managed by RxCocoa extensions. In the case of UICollectionView,
you may want to leave your UIViewController as the UICollectionViewDelegate. If
you bind this in a nib or storyboard, RxCocoa will do the right thing: it will set itself
as the actual delegate, then forward callbacks your view controller implements.

For example when using UICollectionView with manual sizing, you often need to
implement collectionView(_:layout:sizeForItemAt:) to compute correct item
sizes. If you wired up your collection view with your view controller as its delegate,
then later use RxCocoa binding to manage the content, you have nothing special to
do. RxCocoa takes care of the details.

If you have already bound your collection view with RxCocoa and want to add your
view controller as the collection view delegate, you can simply use this idiom:

tableView.rx.setDelegate(myDelegateObject)

The table reactive extension will do the “right thing” and correctly forward your
object all delegate methods it implements. Do not directly set your object as the
table view or collection view delegate after binding it with RxCocoa. This would
prevent some or all of the bindings from working correctly.

RxDataSources
RxCocoa handles the table and collection view needs of many apps. However you
might want to implement many advanced features like animated insertions and
deletions, sectioned reloading and partial (diff) updates, all with editing support for
both UITableView and UICollectionView.

Using RxDataSources requires more work to learn its idioms, but offers more
powerful, advanced features. Instead of a simple array of data, it requires you to
provide contents using objects which conform to the SectionModelType protocol.
Each section itself contains the actual objects. For sections with multiple object
types, use the enum technique shown above to differentiate the types.

The power of RxDataSources lies in the diff algorithm it uses to determine what’s
changed in a model update, and optionally animate the changes. By adopting the
AnimatableSectionModelType protocol, your section model can provide details on the
animations it wants to perform for insertions, deletions and updates.

Look up the repository at https://github.com/RxSwiftCommunity/RxDataSources
and the included examples to learn more about this advanced framework!

RxSwift - Reactive Programming with Swift Chapter 18: Table and Collection Views

raywenderlich.com 333

19Chapter 19: Action
By Florent Pillet

A project living under the RxSwiftCommunity https://github.com/
RxSwiftCommunity organization, Action is an important building block for reactive
applications. Thinking about what actions are in your code, the definition is along
the lines of:

• A trigger event signals that it’s time to do something.

• A task is performed.

• Immediately, later (or maybe never!), some value results from performing this
task.

Notice a pattern? The trigger event can be represented as an observable sequence
of something, such as button taps, timer ticks, or gestures, which may or may not
convey data, but always signals work to be done. The result of each action can
therefore be seen as a sequence of results, one result for each piece of work
performed.

In the middle sits the Action object. It does the following:

• Provides an input endpoint to connect to an observable sequence or manually
trigger new work.

• Can observe an Observable<Bool> to determine its “enabled” status (in addition
to whether it’s currently executing).

• Calls your factory closure which performs / starts the work and returns an
observable of results.

• Exposes an observable of all work results (a flatMap of all work observables).

• Gracefully handles errors emitted by work observables.

raywenderlich.com 334

Action exposes observables for errors, the current execution status, an observable
of each work observable, guarantees that no new work starts when the previous
has not completed, and generally is such a cool class that you don’t want to miss it!

Last but not least, Action defines a contract, where you provide some or no data,
some work is done and you may later get resulting data. How this contract is
implemented doesn’t matter to the code using the action. You can replace real
actions with mock ones for testing without impacting the code at all, as long as the
mock respects the contract.

Creating an Action
Action is a generic class defined as class Action<Input, Element>. Input is the type
of the input data provided to your factory worker function. Element is the type of
element emitted by the observable your factory function returns.

The simplest example of an action takes no input, performs some work and
completes without producing data:

let buttonAction: Action<Void, Void> = Action {
 print("Doing some work")
 return Observable.empty()
}

This is dead simple. Now what about an action which takes credentials, performs a
network request and returns a “logged in” status?

let loginAction: Action<(String, String), Bool> = Action { credentials in
 let (login, password) = credentials
 // loginRequest returns an Observable<Bool>
 return networkLayer.loginRequest(login, password)
}

Note: Each action executed is considered complete when the observable
returned by your factory closure completes or errors. This prevents multiple
start of long running actions. This behavior is handy with network requests as
you’ll see below.

Action looks useful at first sight but it might not be immediately obvious how to use
it in your apps, so let’s have a look at few practical examples.

RxSwift - Reactive Programming with Swift Chapter 19: Action

raywenderlich.com 335

Connecting buttons
Action comes with reactive extensions for UIButton and several other UIKit
components. It also defines CocoaAction, a typealias for Action<Void, Void> —
perfect for buttons which don’t expect an output.

To connect a button, simply do the following:

button.rx.action = buttonAction

Every time user presses the button, the action executes. If the action from the
previous press is not complete, the tap is dismissed. Remove the action from the
button by setting it to nil:

button.rx.action = nil

Composing behavior
Let’s consider loginAction again from the Creating an Action example above.
Connect it to your UI like this:

let loginPasswordObservable =
Observable.combineLatest(loginField.rx.text, passwordField.rx.text) {
 ($0, $1)
}
loginButton
 .withLatestFrom(loginPasswordObservable)
 .bindTo(loginAction.inputs)
 .addDisposableTo(disposeBag)

Every time user presses the Login button, the latest value of the login and
password text fields is emitted to the inputs observer of loginAction. If the action
is not already executing (such as if a previous login attempt isn’t ongoing), the
factory closure is executed, a new login request is initiated and the resulting
observable will deliver either a true or false value, or it will error out.

Now you can subscribe to the action’s elements observable and get notified when
the login is successful:

loginAction.elements
 .filter { $0 } // only keep "true" values
 .take(1)
 .subscribe(onNext: {
 // login complete, push the next view controller
 })
 .addDisposableTo(disposeBag)

RxSwift - Reactive Programming with Swift Chapter 19: Action

raywenderlich.com 336

Errors get a special treatment to avoid breaking your subscriber sequences. There
are two kinds of errors:

• notEnabled - the action is already executing or disabled, and

• underlyingError(error) - an error emitted by the underlying sequence.

Handle them this way:

loginAction
 .errors
 .subscribe(onError: { error in
 if case .underlyingError(let err) = error {
 // update the UI to warn about the error
 }
 })
 .addDisposableTo(disposeBag)

Passing work items to cells
Action helps solve a common problem: how to connect buttons in table view cells.
Action to the rescue! When configuring a cell, you assign an action to a button. This
way you don’t need to put actual work inside your cell subclasses, helping enforce a
clean separation — even more important so if you’re using an MVVM architecture.

Reusing an example from the previous cookbook chapter, here’s how simple it is to
bind a button:

observable.bindTo(tableView.rx.items) {
 (tableView: UITableView, index: Int, element: MyModel) in
 let cell = tableView.dequeueReusableCell(withIdentifier: "buttonCell",
for: indexPath)
 cell.button.rx.action = CocoaAction { [weak self] in
 // do something specific to this cell here
 return .empty()
 }
 return cell
}
.addDisposableTo(disposeBag)

Of course you could set an existing action instead of creating a new one. The
possibilities are endless!

RxSwift - Reactive Programming with Swift Chapter 19: Action

raywenderlich.com 337

Manual execution
To manually execute an action, call its execute(_:) function, passing it an element
of the action’s Input type:

loginAction
 .execute(("john", "12345"))
 .subscribe(onNext: {
 // handle return of action execution here
 })
 .addDisposableTo(disposeBag)

Perfectly suited for MVVM
If you’re using MVVM (see Chapter 24, “MVVM with RxSwift” and Chapter 25,
“Building a complete RxSwift app”) you may have figured out by now that RxSwift
is very well-suited for this architectural pattern. Action is a perfect match too! It
nicely complements the separation between your View Controller and View Model.
Expose your data as observable and all actionable functionality as Action to achieve
MVVM nirvana!

RxSwift - Reactive Programming with Swift Chapter 19: Action

raywenderlich.com 338

20Chapter 20: RxGesture
By Florent Pillet

Gesture processing is a good candidate for reactive extensions. Gestures can be
viewed as a stream of events, either discrete or continuous. Working with gestures
normally involves using the target-action pattern, where you set some object as the
gesture target and create a function to receive updates.

At this point, you can appreciate the value of turning as much as of your data and
event sources as possible into observable sequences. Enter RxGesture, https://
github.com/RxSwiftCommunity/RxGesture, a project living under the
RxSwiftCommunity at https://github.com/RxSwiftCommunity. It’s cross-platform
and works on both iOS and macOS.

In this chapter, you’ll focus on the iOS implementation of RxGesture.

Attaching gestures
RxGesture makes it dead simple to attach a gesture to a view:

view.rx.tapGesture()
 .when(.recognized)
 .subscribe(onNext: { _ in
 print("view tapped")
 })
 .addDisposableTo(disposeBag)

In this example, RxGesture creates a UITapGestureRecognizer, attaches it to the
view and emits an event every time the gesture is recognized. When you want to
get rid of the recognizer, simply call dispose() on the Disposable object returned by
the subscription.

You can also attach multiple gestures at once:

view.rx.anyGesture(.tap(), .longPress())
 .when(.recognized)

raywenderlich.com 339

 .subscribe(onNext: { gesture in
 if let gesture = gesture as? UITapGestureRecognizer {
 print("view was tapped")
 } else {
 print("view was long pressed")
 }
 })
 .addDisposableTo(disposeBag)

The event the subscription emits is the gesture recognizer object which changed
state. The when(_:...) operator above lets you filter events based on the recognizer
state to avoid processing events you’re not interested in.

Supported gestures
RxGesture works with all iOS and macOS built-in gesture recognizers. You can use
it with your own gesture recognizers, but that’s beyond the scope of this chapter.

When you need a single gesture, use its reactive extension directly to attach it to
the view. When you need multiple gestures at once, use the anyGesture(_:...)
operator along with one of the supported functions. As seen in the examples above,
you can either use view.tapGesture() or view.anyGesture(.tap()).

On iOS, the gesture extensions of UIView are rx.tapGesture(),
rx.swipeGesture(_:), rx.longPressGesture(), rx.screenEdgePanGesture(edges:),
rx.pinchGesture(), rx.panGesture() and rx.rotationGesture(). Swipe and Screen
Edge Pan gestures require you to provide parameters to indicate the expected
swipe direction or the screen edge for the recognizer to detect the gesture:

view.screenEdgePanGesture(edges: [.top, .bottom])
 .when(.recognized)
 .subscribe(onNext: { recognizer in
 // gesture was recognized
 })
 .addDisposableTo(disposeBag)

On macOS, the gesture extensions of NSView are rx.clickGesture(),
rx.rightClickGesture(), rx.pressGesture(), rx.rotationGesture() and
rx.magnificationGesture().

Each function that creates a gesture observable can take a configuration closure;
this allows you to further tweak the gesture to your needs. For example, if you’re
writing an iPad Pro application and want to detect a swipe with the stylus only, you
could do the following:

let observable = view.rx.swipeGesture(.left, configuration: { recognizer
in
 recognizer.allowedTouchTypes = [.stylus]
})

RxSwift - Reactive Programming with Swift Chapter 20: RxGesture

raywenderlich.com 340

Current location
Any gesture observable can be transformed to an observable of the location in the
view of your choice with asLocation(in:), saving you from doing it manually:

view.tapGesture()
 .when(.recognized)
 .asLocation(in: .window)
 .subscribe(onNext: { location in
 // you now directly get the tap location in the window
 })
 .addDisposableTo(disposeBag)

Pan gestures
When creating a pan gesture observable with the rx.panGesture() reactive
extension, use the asTranslation(in:) operator to transform events and obtain a
tuple of current translation and velocity. The operator lets you specify which of the
gestured view, superview, window or any other views you want to obtain the
relative translation for. You’ll get an Observable<(translation: CGPoint, velocity:
CGPoint)> in return:

view.rx.panGesture()
 .asTranslation(in: .superview)
 .subscribe(onNext: { translation, velocity in
 print("Translation=\(translation), velocity=\(velocity)")
 })
 .addDisposableTo(disposeBag)

Rotation gestures
Similarly to pan gestures, rotation gestures created with the rx.rotationGesture()
extension can be further transformed with the asRotation() operator. It creates an
Observable<(rotation: CGFloat, velocity: CGFloat)>.

view.rx.rotationGesture()
 .asRotation()
 .subscribe(onNext: { rotation, velocity in
 print("Rotation=\(rotation), velocity=\(velocity)")
 })
 .addDisposableTo(disposeBag)

Automated view transform
More complex interactions, such as the pan/pinch/rotate combination gesture in
MapView, can be fully automated with the help of the transformGestures() reactive
extension of UIView:

view.rx.transformGestures()
 .asTransform()

RxSwift - Reactive Programming with Swift Chapter 20: RxGesture

raywenderlich.com 341

 .subscribe(onNext: { [unowned view] transform in
 view.transform = transform
 })
 .addDisposableTo(disposeBag)

transformGestures() is a convenience extension which creates three gestures — a
pan, a pinch and a rotation — attaches them to the view and returns an
Observable<TransformGestureRecognizers>. The TransformGestureRecognizers struct
simply holds the three recognizers.

The asTransform() operator turns the structure into an Observable<(transform:
CGAffineTransform, velocity: TransformVelocity)>. The TransformVelocity struct
holds the individual velocity for each of the gestures.

If you don’t need the three gestures, you can disable one of them at configuration
time, as the default configuration creates and attaches all three recognizers:

view.rx.transformGestures(configuration: { recognizers in
 recognizers.pinchGesture.enabled = false
})

Advanced usage
You’ll sometimes need to use the observable for the same gesture at multiple
places. Since subscribing to the observable creates and attaches the gesture
recognizer, you only want to do this once.

This is a good opportunity to use the shareReplay(_:) operator, as shown here:

let panGesture = view.rx.panGesture()
 .shareReplay(1)

panGesture
 .when(.changed)
 .asTranslation()
 .subscribe(onNext: { [unowned self] translation, _ in
 view.transform = CGAffineTransform(translationX: translation.x,
 y: translation.y)
 })
 .addDisposableTo(stepBag)

panGesture
 .when(.ended)
 .subscribe(onNext: { _ in
 print("Done panning")
 })
 .addDisposableTo(stepBag)

RxSwift - Reactive Programming with Swift Chapter 20: RxGesture

raywenderlich.com 342

21Chapter 21: RxRealm
By Florent Pillet

A long time ago, in a parallel universe far away, developers who needed a database
for their application had the choice between using the ubiquitous but tortuous Core
Data, or creating custom wrappers for SQLite. Then Realm appeared, and all of a
sudden using databases in applications became a breeze.

Database queries in Realm are “live”: the contents of a Results collection update
along with any database changes. Insert, modify or remove items and you’ll
immediately see the changes in the Results object. Additionally, fine-grained
notifications can provide detailed information about changes in a Results object.

Same goes also for the List type, which allows you to build collections of objects,
and even single objects you are working with will auto-update their contents should
there be changes committed to the database meanwhile. All this makes Realm an
ideal candidate for exposing these dynamic changes as observable sequences!

RxRealm, https://github.com/RxSwiftCommunity/RxRealm, is another project living
under the RxSwiftCommunity organization. Its goal is to help you seamlessly
integrate Realm into your reactive workflow.

Auto-updating results
A database query defines a collection of objects. At the most basic level, RxRealm
wraps Results as an observable which fires once with initial contents, then again
every time the collection changes:

let realm = try! Realm()
let result = realm.objects(MyObject.self)
Observable.collection(from: result)
 .subscribe(onNext: { items in
 print("Query returned \(items.count) items")
 })
 .addDisposableTo(disposeBag)

raywenderlich.com 343

Every time you commit a change to the database that could affect results, the
collection fires again.

Arrays
Getting an array instead of a Realm collection is easy:

let result = realm.objects(MyObject.self)
Observable.array(from: result)
 .subscribe(onNext: { array in
 print("Query returned \(array.count) items")
 })
 .addDisposableTo(disposeBag)

Note: Since every object from the result has to be loaded from the database,
there's both a memory and a time penalty to grab all objects as an array.
Working with collection(from:) is usually what you’ll need most often.

Asynchronous first item
Both Observable.collection(from:) and Observable.array(from:) emit the initial
collection or array of items synchronously. At the time you subscribe to the
observable (before the subscribe(_:) function returns), you receive the first
element. This may interfere with your application, particularly when setting up user
interfaces. A common source of bugs is to write subscribe(_:) while assuming that
the code that follows has already been executed – but it hasn't for the first
element.

Luckily, both functions actually take a second parameter which defaults to true. The
actual signatures are Observable.collection(from:synchronousStart:) and
Observable.array(from:synchronousStart:).

If you want to let the first element be emitted asynchronously, pass false for the
synchronousStart flag:

let result = realm.objects(MyObject.self)
Observable.array(from: result, synchronousStart: false)
 .subscribe(onNext: { array in
 print("Query returned \(array.count) items")
 })
 .addDisposableTo(disposeBag)

You will receive the initial contents when the initial Realm notification fires.

RxSwift - Reactive Programming with Swift Chapter 21: RxRealm

raywenderlich.com 344

Changesets
RxRealm gives access to more elaborate observables. You can get changesets (the
ones Realm notifies when results are updated) with
Observable.changeset(from:synchronizedStart:). The observable sends the
changeset along with the original collection of results:

let result = realm.objects(MyObject.self)
Observable.changeset(from: result)
 .subscribe(onNext: { results, changes in
 if let changes = changes {
 // it's an update
 print("deleted: \(changes.deleted)")
 print("inserted: \(changes.inserted)")
 print("updated: \(changes.updated)")
 } else {
 // it's the initial data
 print(results)
 }
 }
 .addDisposableTo(disposeBag)

A variant of this API returns an observable of array and a Realm ChangeSet. For this,
use Observable.arrayWithChangeset(from:synchronizedStart:).

Single objects
A final feature of RxRealm lets you observe a single object and get a new one every
time it updates in the database. For example, if you store user settings in an object
in the database, observe it at various places in your code to automatically update
on settings change.

This is particularly handy for live updates being synced from other devices if you're
using the Realm Mobile Platform:

let hideCompletedObs = Observable.from(object: preferencesObject)
 .map { prefs -> Bool in prefs.hideCompletedTodos }
 .distinctUntilChanged()
let todosObs = realm.objects(Todo.self)
Observable.combineLatest(hideCompletedObs, todosObs) {
 hideCompleted, todos in
 if hideCompleted {
 return todos.filter { $0.completed == false }
 }
 return todos
 }
 .bindTo(tableView.rx.items) {
 (tableView: UITableView, index: Int, element: Todo) in
 // return cell here
 }
 .addDisposableTo(disposeBag)

RxSwift - Reactive Programming with Swift Chapter 21: RxRealm

raywenderlich.com 345

In this scenario where your application displays a list of todo items, the list
refreshes once initially, then again every time the “hide completed todos” flag
changes in the user preferences.

In case you are interested in the changes to only certain properties of an object,
you can use Observable.propertyChanges(object:) to subscribe to change events
per property. In the todo app scenario from above, you might want to observe for
changes on a given task's title, like so:

Observable.propertyChanges(object: task)
 .filter { $0.name == "taskTitle" }
 .subscribe(onNext: { change in
 print("property \(change.name) changed from: \(change.oldValue) to: \
(change.newValue)")
 })
 .addDisposableTo(bag)

Adding objects
RxRealm extends the Realm class with add() and delete() observers. You can use
them to observe sequences of items to add or delete. Every time the sequence
emits an object, it can be automatically added to or deleted from the database.

Consider the scenario where you need to query a remote server for new messages
at regular intervals. When the API returns new messages, you want to see the
messages added to the database (you’re using RxRealm elsewhere in your
application to automatically update the message list on database change):

Observable
 .timer(0, period: 60, scheduler: MainScheduler.instance)
 .flatMap { _ -> Observable<[Message]> in
 let messages = realm.objects(Messages.self).sorted(byProperty:
"dateReceived")
 if let lastMessage = messages.last {
 return MailAPI.newMessagesSince(lastMessage.dateReceived)
 }
 return MailAPI.newMessagesSince(Date.distantPast)
 }
 .subscribe(realm.rx.add())
 .addDisposableTo(disposeBag)

Simply ignore the value emitted by the timer, request all messages since the date
of the last received message and pass the result on to RxRealm.

Be careful when you use add() on a realm object. RxRealm retains the Realm
database object for the duration of the subscription. If you don’t want the
subscription to retain the Realm object you can use one of the variations on the
class itself: Realm.rx.add() or Realm.rx.add(configuration:) — the static method
will fetch any existing Realm instance on the current thread and use it without
retaining it.

RxSwift - Reactive Programming with Swift Chapter 21: RxRealm

raywenderlich.com 346

Deleting objects
A similar endpoint lets you delete existing objects or collections of objects from the
database:

let realm = try! Realm()
deleteSelectedMessagesButton.rx.tap
 .map { self.selectedMessages() }
 .bindTo(realm.rx.delete())
 .addDisposableTo(disposeBag)

Again, the Realm object is retained for the entire duration of the subscription.

RxSwift - Reactive Programming with Swift Chapter 21: RxRealm

raywenderlich.com 347

22Chapter 22: RxAlamofire
By Florent Pillet

One of the basic needs of modern mobile applications is the ability to query remote
resources. You’ve seen several examples of this throughout this book, using the
basic extensions to NSURLSession included with RxSwift.

Many developers like to use wrappers around OS-provided query mechanisms. The
most popular undoubtedly is Alamofire https://github.com/Alamofire/Alamofire, a
networking library with roots in Objective-C as it itself stems from AFNetworking
https://github.com/AFNetworking/AFNetworking.

RxAlamofire https://github.com/RxSwiftCommunity/RxAlamofire is a project living
under the RxSwiftCommunity organization. It adds an idiomatic Rx layer to
Alamofire, making it straightforward to integrate into your observable workflow.

Most of the RxAlamofire API revolves around extending SessionManager.

Basic requests
It’s straightforward to perform requests using the default SessionManager session. If
you don’t need to reuse a customized session, this can be your go-to request
mechanism:

string(.get, stringURL)
 .subscribe(onNext: { print($0) })
 .addDisposableTo(disposeBag)

Most of the time you’ll want to deal with and decode JSON, as simply as this:

json(.get, stringURL)
 .subscribe(onNext: { print($0) })
 .addDisposableTo(disposeBag)

raywenderlich.com 348

The resulting observable emits the result as a decoded JSON object. Since the
element type is Any, you’ll need to further map for observable chaining, or cast it in
the subscription.

You can also obtain raw Data:

data(.get, stringURL)
 .subscribe(onNext: { print($0) })
 .addDisposableTo(disposeBag)

RxAlamofire defines variants of these convenience functions prefixed with request
(requestString, requestJSON, requestData), taking the same input parameters but
returning an observable of a tuple of the HTTPURLResponse object along with the
decoded body.

Note: RxAlamofire requests are well-behaved observables. If you dispose() a
subscription before the request has completed, the ongoing request is
canceled. This is an important behavior of the framework, in particular when
performing large uploads or downloads.

All of the above are convenience functions using the default SessionManager. Under
the hood, they call the actual implementation defined as reactive extensions to
SessionManager:

let session = NSURLSession.sharedSession()
session.rx.json(.get, stringURL)
 .subscribe(onNext: { print($0) })
 .adDisposableTo(disposeBag)

Note: The SessionManager reactive extensions returning observables of tuple
are prefixed with response, not with request. For example you’ll use
session.rx.responseJSON(.get, stringURL) to obtain an
Observable<(HTTPURLResponse, Any)>.

Request customization
The examples above didn’t modify the default values for customized parameters,
URL encoding and HTTP headers. But that’s easy as well:

// get current weather in london
json(.get,
 "http://api.openweathermap.org/data/2.5/weather",
 parameters: ["q": "London", "APPID": "{APIKEY}"])
 .subscribe(onNext: { print($0) })
 .addDisposableTo(disposeBag)

RxSwift - Reactive Programming with Swift Chapter 22: RxAlamofire

raywenderlich.com 349

The request URL will be http://api.openweathermap.org/data/2.5/weather?
q=London&APPID={APIKEY}. You can also customize the request headers by adding a
headers dictionary.

Note: All the examples use strings as the request URL. All the APIs in
RxAlamofire accept any object conforming to the URLRequestConvertible
protocol, so you aren’t limited to strings.

Response validation
The request and session.rx.request APIs let you perform further validation and
manipulation by exposing the underlying DataRequest. You can then use AlamoFire
extensions to perform validation, as well as RxAlamofire convenience extensions:

request(.get, stringURL)
 .flatMap { request in
 request
 .validate(statusCode: 200 ..< 300)
 .validate(contentType: ["text/json"])
 .rx.json
 }

RxAlamofire also offers a validateSuccessfulResponse() extension performing the
same status code validation as above.

Downloading files
You can download files to a destination determined by AlamoFire’s
DownloadDestination closure type:

let destination: DownloadRequest.DownloadFileDestination = { _, response
in
 let docsURL = FileManager.default.urls(for: .documentDirectory,
in: .userDomainMask)[0]
 let filename = response.suggestedFilename ?? "image.png"
 let fileURL = docsURL.appendPathComponent(filename)
 return (fileURL, [.removePreviousFile, .createIntermediateDirectories])
}

session.download(fileURL, to: destination)
 .subscribe(onCompleted: { print("Download complete") })
 .addDisposableTo(disposeBag)

Resuming a previously canceled download is also supported. Check out the
download(resumeData:to:) extension to SessionManager for more information.

RxSwift - Reactive Programming with Swift Chapter 22: RxAlamofire

raywenderlich.com 350

Note: the request, download and upload APIs all emit a single
AlamoFire.DataRequest, AlamoFire.DownloadRequest or
AlamoFire.UploadRequest at subscription time, then either complete or error.

Upload tasks
Uploading is equally easy. You can upload in-memory Data, stored files or even
provide an InputStream as the data source:

session.upload(someFileURL, stringURL)
 .subscribe(onCompleted: { print("Upload complete") })
 .addDisposableTo(disposeBag)

The download and upload operators return observables of
AlamoFire.DownloadRequest and AlamoFire.UploadRequest respectively. You can
perform advanced processing by further handling of the emitted object.

Tracking progress
Track upload and download progress by extracting an Observable<RxProgress> from
the AlamoFire.Request object emitted by request, download and upload APIs:

session.upload(someFileURL, stringURL)
 .flatMap { request in
 request
 .validateStatusCode()
 .rx.progress
 }
 .subscribe (
 onNext: { progress in
 let percent = Int(100.0f * progress.completed)
 print("Upload progress: \(percent)%")
 },
 onCompleted: { print("Upload complete") })
 .addDisposableTo(disposeBag)

The rx.progress extension emits a RxProgress element at regular intervals on the
main queue.

Note: RxAlamofire exposes a rich subset of the even richer AlamoFire API.
Make sure you explore the framework for more goodness!

RxSwift - Reactive Programming with Swift Chapter 22: RxAlamofire

raywenderlich.com 351

Section VI: Putting it All Together

The "easy" part of the book is over. :] If you made it this far and are looking to
learn even more in order to start creating production apps with RxSwift, this section
is for you.

The two chapters in this section are going to help you learn how to build real-life
applications with RxSwift.

The first chapter will cover the MVVM application architecture and show how a well
designed ViewModel can power both the iOS and macOS versions of an app. You
will look into building a flexible networking layer and touch on writing tests for your
view models.

The second chapter, and the last one in this book, is going to build upon what you
learned about the MVVM architecture and expand on it by adding services into the
mix and scene-based navigation.

Once you finish working through this section, you will be one of the top RxSwift
developers out there. There is, of course, more to know about Rx but at this point
you will be able to figure out things further on your own.

Also, don't forget to give back to the community! It would not have been possible
for us to put this book together without all the amazing Rx folks sharing their
knowledge, code, and good vibes.

Chapter 23: MVVM with RxSwift

Chapter 24: Building a Complete RxSwift App

raywenderlich.com 352

23Chapter 23: MVVM with
RxSwift
By Marin Todorov

RxSwift is such a big topic that this book hasn’t covered application architecture in
any detail yet. And this is mostly because RxSwift doesn't enforce any particular
architecture upon your app. However, since RxSwift and MVVM play very nicely
together, this chapter is dedicated to the discussion of that specific architecture
pattern.

Introducing MVVM
MVVM stands for Model-View-ViewModel; it’s a slightly different implementation of
Apple’s poster-child MVC (Model-View-Controller).

It’s important to approach MVVM with an open mind. MVVM isn’t a software
architecture panacea; rather, consider MVVM to be a software pattern, which is a
simple step toward good application architecture, especially if you start from an
MVC mindset.

raywenderlich.com 353

Some background on MVC
By now you’ve probably sensed a bit of tension between MVVM and MVC. What,
precisely, is the nature of their relationship? They are very similar, and you could
even say they are distant cousins. But they are still different enough that an
explanation is warranted.

Most of the examples in this book (and other books about programming) use an
MVC pattern for the code samples. MVC is a straightforward pattern for many
simple apps and looks like this:

Each of your classes is assigned a category: the controller classes play a central
role as they can update both the model and the view, while views only display data
on screen and send events like gestures to the controller. Finally, the models read
and write data to persist the app state.

MVC is a simple pattern that can serve you well for a while, but as your app grows
you will notice that a lot of classes are neither a view, nor a model, and must
therefore be controllers. A common trap to fall into is to start adding more and
more code to a single controller class. Since you start with a view controller with
iOS apps, the easiest thing to do is to stuff all your code into that view controller
class. Hence the old joke that MVC stands for “Massive View Controller“, because
the controllers can grow to hundreds or even thousands of lines.

Overloading your classes is simply a bad practice, and not necessarily a
shortcoming of the MVC pattern. Case in point: Many developers at Apple are fans
of MVC, and they turn out amazingly well-built macOS and iOS software.

Note: You can read more about MVC at the dedicated Apple documentation
page: https://developer.apple.com/library/content/documentation/General/
Conceptual/DevPedia-CocoaCore/MVC.html

MVVM to the rescue
MVVM looks a lot like MVC, but definitely feels better. People who like MVC usually
love MVVM, as this newer pattern lets them easily solve a number of issues
common to MVC.

RxSwift - Reactive Programming with Swift Chapter 23: MVVM with RxSwift

raywenderlich.com 354

The obvious departure from MVC is a new category named ViewModel:

ViewModel takes a central role in the architecture: It takes care of the business
logic and talks to both the model and the view.

MVVM follows these simple rules:

• Models don’t talk directly to other classes, although they can emit notifications
about data changes.

• View Models talk to Models and expose data to the View Controllers.

• View Controllers only talk to View Models and Views as they handle view
lifecycle and bind data to UI components.

• Views only notify view controllers about events (just as with MVC).

Wait, doesn’t the View Model do exactly what the controller did in MVC? Yes... and
no.

As mentioned earlier, a common issue is stuffing view controllers with code that
doesn’t control the view per se. MVVM tries to solve this problem by grouping the
view controller together with the view, and assign its sole responsibility of
controlling the view.

Another benefit of the MVVM architecture is the increased testability of the code.
Separating the view lifecycle from the business logic makes testing both the view
controller and the view model very straightforward.

Last but not least, the view model is completely separated from the presentation
layer and, when necessary, can be re-used between platforms. You can just replace
the view / view controller pair and migrate your app from iOS to macOS or even
tvOS.

What goes where?
However, don’t assume that everything else should go in your View Model class.

This would be the same madness as you sometimes end up with in MVC. It’s up to
you to sensibly divide and assign responsibilities across your code base. Thus, leave
the View Model as the brain between your data and your screen, but make sure you
split networking, navigation, cache, and similar responsibilities into other classes.

RxSwift - Reactive Programming with Swift Chapter 23: MVVM with RxSwift

raywenderlich.com 355

So how do you work with these extra classes, if they don’t fall under any of the
MVVM categories? MVVM doesn’t enforce rules about these, but in this chapter you
will work on a project that will introduce you to some possible solutions.

One good idea, which you’ll cover in this chapter, is to inject all objects a View
Model needs via its init, or possibly later in its lifecycle. This means you can pass
long-living objects like stateful API classes, or persistence layer objects from view
model to view model:

In the case of this chapter’s project, Tweetie, you will pass things around in that
fashion, such as the object taking care of in-app navigation (Navigator), the
currently-logged in Twitter account (TwitterAPI.AccountStatus), and more.

But are smaller files the only benefit of MVVM? When used properly, the pattern
allows for many more improvements over classic MVC:

• View controllers tend to be a lot simpler and really deserve their name because
their only responsibility is to “control” the view. MVVM works especially well with
RxSwift/RxCocoa because being able to bind observables to UI components is a
key enabler for that pattern.

• The view model follows a clear Input -> Output pattern and are really easy to
test as they provide predefined input and testing for the expected output.

• Visually testing view controllers becomes much easier by creating mock view
models and testing for the expected view controller state.

RxSwift - Reactive Programming with Swift Chapter 23: MVVM with RxSwift

raywenderlich.com 356

Last but not least, since MVVM is a great departure from MVC, it also serves as an
enabler and an inspiration to explore more software architecture patterns.

Keen to try out MVVM? As you work through this chapter you’ll see many of its
benefits in action.

Getting started with Tweetie
In this chapter you will work on a multi-platform project called Tweetie. It’s a very
simple Twitter-powered app, which uses a predefined user list to display tweets to
the user. By default, the starter project uses a Twitter list featuring all authors and
editors of this book. If you’d like, you can easily change the list to turn the project
into a sports, writing, or cinema-oriented app.

The project has macOS and iOS targets and solves a lot of real-life programming
tasks by using the MVVM pattern. There is a lot of code already included with the
starter project, you’ll just focus on the parts relevant to MVVM.

As you progress through this chapter, you’ll witness how MVVM aids a clear
distinction between the following:

• Code that has to do with UI and is therefore platform-specific, such as a view
controller that uses UIKit for iOS, and a separate macOS-only view controller that
uses Cocoa.

• Code that is reused as-is, since it doesn’t depend on the specific platform’s UI
framework, such as all the code in the model and view model.

Time to dive in!

Project structure
Find the starter project for this chapter, install all CocoaPods, and open the project
in Xcode. Take a quick peek into the project structure before working on any code.

RxSwift - Reactive Programming with Swift Chapter 23: MVVM with RxSwift

raywenderlich.com 357

In the project navigator, you will find a number of folders:

• Common Classes: Shared code between macOS and iOS. Includes an Rx
Reachability class extension, and extensions on UITableView, NSTableView, and
more.

• Data Entities: Data objects to use with the Realm Mobile Database in order to
persist data on disk.

• TwitterAPI: A light API implementation to make requests to Twitter’s JSON API.
TwitterAccount is the class that gives you access to the logged in Twitter account
on the user’s device, while TwitterAPI makes requests to the web JSON
endpoints.

• View Models: Where the three app view models reside. One is fully functional
and you will work on completing the other two.

• iOS Tweetie: Contains the iOS version of Tweetie, including a storyboard and
iOS view controllers.

• Mac Tweetie: Contains the macOS target with its storyboard, assets, and view
controllers.

• TweetieTests: Where the app’s tests and mock objects reside.

Note: The tests won’t pass until you’ve completed the chapter challenges, and
you can use the test provided to make sure you complete the challenges
correctly. Don’t be surprised if things don’t work right away! :]

Your task is to complete the app so users can see the tweets of all users in the list.
You will start by completing the networking layer, then move on to writing a view
model class, and in the end you will create the two view controllers (one for iOS
and one for macOS) that use the finished view model to display data onscreen.

RxSwift - Reactive Programming with Swift Chapter 23: MVVM with RxSwift

raywenderlich.com 358

You’ll get to work on a number of different classes and experience MVVM first hand.

Finishing up the network layer
The project already includes quite a lot of code. You’ve already been through a lot
in this book, and we’re not going to make you work through trivial tasks such as
setting up your observables and view controllers. You’ll start by completing the
project networking.

The class TimelineFetcher in TimelineFetcher.swift is responsible to
automatically refetch the latest tweets while the app is connected. The class is quite
simple and uses an Rx timer to repeatedly invoke the subscription that fetches the
JSON from the web.

TimelineFetcher has two convenience inits: one to fetch the tweets from a given
Twitter list, and another to fetch a given user’s tweets.

In this section, you’ll add the code that makes a web request and maps the
response to Tweet objects. You’ve already completed similar tasks in this book, so
we’ve included most of that code in Tweet.swift.

Note: People often ask where to add networking when working on an MVVM
project, so we’ve structured this chapter to give you the chance to add
networking yourself. There’s nothing confusing about networking; it’s a regular
class you inject into your view models.

In TimelineFetcher.swift, scroll to the bottom of init(account:jsonProvider:)
and find this line:

timeline = Observable<[Tweet]>.never()

RxSwift - Reactive Programming with Swift Chapter 23: MVVM with RxSwift

raywenderlich.com 359

Replace that line with the following:

timeline = reachableTimerWithAccount
 .withLatestFrom(feedCursor.asObservable(), resultSelector:
 { account, cursor in
 return (account: account, cursor: cursor)
 })

You take the timer observable reachableTimerWithAccount and combine it with
feedCursor. feedCursor currently doesn’t do anything, but you’ll use this variable to
store your current position in the Twitter timeline, indicating which tweets you’ve
already fetched.

Xcode might display an error once you add this code, but ignore it for the moment.
This will get resolved with the next code addition.

Now add the following to the chain:

.flatMapLatest(jsonProvider)

.map(Tweet.unboxMany)

.shareReplayLatestWhileConnected()

You start by flatmapping the method parameter jsonProvider. jsonProvider is a
closure that’s injected into init. Each of the convenience inits is supposed to fetch
different API endpoints, so injecting jsonProvider is a handy way to avoid using if
statements or branching the logic in the main initializer
init(account:jsonProvider:).

jsonProvider returns an Observable<[JSONObject]>, so the next step is to map that
to an Observable<[Tweet]>. You use the provided Tweet.unboxMany function, which
attempts to convert the JSON objects into an array of tweets.

With these few lines of code, you’re prepared to fetch the tweets. timeline is a
public observable, so this is how your view models will access the list of latest
tweets. The app’s view models might save the tweets to disk or use them straight
away to drive the app’s UI, but that’s entirely their own business. TimelineFetcher
simply fetches tweets and exposes the results:

RxSwift - Reactive Programming with Swift Chapter 23: MVVM with RxSwift

raywenderlich.com 360

Since this subscription is called repeatedly, you also need to store the current
position (or cursor) so that you don’t fetch the same tweets over and over again.
Just below the place you typed in the last piece of code, add:

timeline
 .scan(.none, accumulator: TimelineFetcher.currentCursor)
 .bindTo(feedCursor)
 .addDisposableTo(bag)

feedCursor is a property on TimelineFetcher of type Variable<TimelineCursor>.
TimelineCursor is a custom struct that holds the oldest and latest tweet IDs you’ve
fetched so far. In the above code, you use scan to track the IDs. Each time you grab
a new batch of tweets, you update the value of feedCursor. If you are interested in
the logic of updating the timeline cursot, have a look inside
TimelineFetcher.currentCursor().

Note: We won’t cover the cursor logic in detail, since it’s specific to the Twitter
API. You can read more about cursoring at https://dev.twitter.com/overview/
api/cursoring.

Next you need to create a view model. You’ll use the completed TimelineFetcher
class to grab the latest tweets from the API.

Adding a View Model
The project already includes a navigation class, data entities, and the Twitter
account access class. Now that your network layer is complete, you can simply
combine all of these to log the user into Twitter and fetch some tweets.

In this section, you won’t concern yourself with controllers. Find the project folder
View Models and open ListTimelineViewModel.swift. As the name suggests,
this view model will fetch the tweets of a given user list.

It’s a good practice (but certainly not the only way) to clearly define three sections
in your view model code:

1. Init: In which you define one or more inits where you do all your dependency
injection.

2. Input: Contains any public properties, such as plain variables or RxSwift
subjects, which allow the view controller to provide input.

3. Output: Contains any public properties (usually observables), which provide the
output of the view model. These are usually lists of objects to drive a table or
collection view, or any other type of data a view controller would use to drive
the app’s UI.

RxSwift - Reactive Programming with Swift Chapter 23: MVVM with RxSwift

raywenderlich.com 361

ListTimelineViewModel has a bit of code already in its init that initializes the
fetcher property. fetcher is an instance of TimelineFetcher for fetching tweets.

Time to add more properties to the view model. First, add the following two
properties, which are neither input nor output, but simply help you persist the
injected dependencies:

let list: ListIdentifier
let account: Driver<TwitterAccount.AccountStatus>

Since those are constants, your only chance to initialize them is in
init(account:list:apiType). Insert the following at the top of the class initializer:

self.account = account
self.list = list

Now you can move on to adding the input properties. But what properties should
those be, since you’ve already injected all the dependencies of this class? The
injected dependencies and the parameters you provide to init allow you to provide
input at initialization time. Other public properties will allow you to provide input to
the view model at any time through its lifetime.

For example, consider an app that lets the user search a database. You would bind
the search text field to an input property of the view model. As the search term
changes, the view model will search the database and change its output
accordingly, which in turn will be bound to a table view to show the results.

For the current view model, the only input you will have is a property that lets you
pause and resume the timeline fetcher class. TimelineFetcher already features a
Variable<Bool> to do just that, so you’ll need a proxy property in the view model.

Insert the code below in the input section of ListTimelineViewModel, as marked
with the handy comment // MARK: - Input:

var paused: Bool = false {
 didSet {
 fetcher.paused.value = paused
 }
}

RxSwift - Reactive Programming with Swift Chapter 23: MVVM with RxSwift

raywenderlich.com 362

This property is simply a proxy which sets the value of paused on the fetcher class.

Now you can move on to the view model’s output. The view model will expose the
fetched list of tweets and the logged-in status. The former will be a Variable of
tweet objects, loaded from Realm; the latter a Driver<Bool> simply emitting false
or true to indicate whether the user is currently logged into Twitter.

In the output section (marked by a comment), insert these two properties:

private(set) var tweets: Observable<(AnyRealmCollection<Tweet>,
RealmChangeset?)>!
private(set) var loggedIn: Driver<Bool>!

tweets contains the list of the latest Tweet objects. Before any tweets are loaded,
such as the point before the user hass logged into their Twitter account, the default
value will be nil. loggedIn is a Driver, which you will initialize later on.

Now you can subscribe to TimelineFetcher’s result and store the tweets into Realm.
This is, of course, quite easy when using RxRealm. Append to
init(account:list:apiType:):

fetcher.timeline
 .subscribe(Realm.rx.add(update: true))
 .addDisposableTo(bag)

You subscribe to fetcher.timeline, which is of type Observable<[Tweet]>, and bind
the result (an array of tweets) to Realm.rx.add(update:). Realm.rx.add persists the
incoming objects into the app’s default Realm database.

The last piece of code takes care of the influx of data in your view model, so all
that’s left is to build the view model’s output. Find the method named bindOutput,
and insert:

guard let realm = try? Realm() else {
 return
}
tweets = Observable.changesetFrom(realm.objects(Tweet.self))

As you learned in Chapter 21, “RxRealm”, you can easily create an observable
sequence with the help of Realm’s Results class. In the code above, you create a
result set out of all persisted tweets and subscribe for the changes of that
collection. You expose the tweets observable to interested parties, which is usually
your view controller.

Next you need to take care of the loggedIn output property. This one is easy to take
care of — you simply need to subscribe to account and map its elements to either
true or false. Append to bindOutput:

loggedIn = account
 .map { status in
 switch status {

RxSwift - Reactive Programming with Swift Chapter 23: MVVM with RxSwift

raywenderlich.com 363

 case .unavailable: return false
 case .authorized: return true
 }
 }
 .asDriver(onErrorJustReturn: false)

This is all this view model needs to do! You took care to inject all dependencies in
the init, you added some properties to allow other classes to provide input, and
finally you bound the view model’s results to public properties that other classes
can observe.

As you can see, the view model doesn’t know anything about the view controllers,
the views, or other classes that aren’t injected via its initializer. Since the view
model is so well isolated from the rest of the code, you can proceed to write its
tests to make sure it works fine — even before you see any output on screen.

Adding a View Model test
In Xcode’s project navigator, open the TweetieTests folder. Inside you will find a
few things provided for you:

• TestData.swift: Features some test JSON, and test objects.

• TwitterTestAPI.swift: A Twitter API mock class that tracks which methods
were called and records the API responses.

• TestRealm.swift: A test Realm configuration that ensures Realm uses a
temporary in-memory database for the tests.

Open ListTimelineViewModelTests.swift to add some new tests. The class
already has a utility method to create a fresh instance of ListTimelineViewModel
and two tests:

1. test_whenInitialized_storesInitParams(), which tests if the view model
persists its injected dependancies.

2. test_whenInitialized_bindsTweets(), which checks if the view model exposes
the latest persisted tweets via its tweets property.

To complete the test case, you’ll add one last test: the one to check if the loggedIn
output property reflects the account authentication status. Add the following inside
the class body:

func test_whenAccountAvailable_updatesAccountStatus() {
 let asyncExpect = expectation(description: "fullfill test")

}

Since this is an asynchronous test, you define an expectation, which you will fulfill
as soon as you detect the expected test results.

RxSwift - Reactive Programming with Swift Chapter 23: MVVM with RxSwift

raywenderlich.com 364

Append the following to the method:

let scheduler = TestScheduler(initialClock: 0)
let observer = scheduler.createObserver(Bool.self)

You create a test scheduler (scheduler) and use it to produce a test observer
creatively named observer. You will test the elements emitted by your view model’s
loggedIn property, and so you tell the observer to listen for Bool elements.

Now add the following:

let accountSubject = PublishSubject<TwitterAccount.AccountStatus>()
let viewModel =
createViewModel(accountSubject.asDriver(onErrorJustReturn: .unavailable))

Next you create a PublishSubject, which you will use to emit test AccountStatus
values. You pass the subject to createViewModel() and finally fetch a view model
instance, all ready and set up for the test.

Next you will subscribe to the observable under test. Add:

let bag = DisposeBag()
let loggedIn = viewModel.loggedIn.asObservable()
 .share()

Here you get a shareable connection and are ready for some action.

First subscribe loggedIn to the test observer by appending:

loggedIn
 .subscribe(observer)
 .addDisposableTo(bag)

Then in order to end the asynchronous test once you’re done emitting test values,
add:

loggedIn
 .subscribe(onCompleted: asyncExpect.fulfill)
 .addDisposableTo(bag)

Now that all subscriptions are in place, you simply emit few test values. Add the
following:

accountSubject.onNext(.authorized(TestData.account))
accountSubject.onNext(.unavailable)
accountSubject.onCompleted()

Finally to check if loggedIn emitted the correct values, add the following code to
compare the recorded events with a pre-defined expected list of events:

waitForExpectations(timeout: 1.0, handler: { error in
 XCTAssertNil(error, error!.localizedDescription)
 let expectedEvents = [next(0, true), next(0, false), completed(0)]

RxSwift - Reactive Programming with Swift Chapter 23: MVVM with RxSwift

raywenderlich.com 365

 XCTAssertEqual(observer.events, expectedEvents)
})

This code waits for the asynchronous expectation to fulfill and then checks if the
recorded events were the exact sequence of .next(true), .next(false),
and .completed.

Note: If you prefer, go ahead and rewrite this code to use RxBlocking. You
learned how to do that in Chapter 16, "Testing with RxTest".

With that, the test case is complete. The highly isolated view model class lets you
easily inject mock objects and simulate input. Read through the rest of the test
suite class to see what else is being tested. If you figure out some new tests that
would be useful, feel free to add them in!

Note: Since the view models in the Tweetie project are so well-isolated from
the rest of the app’s infrastructure, you don’t need to run the entire app to run
a test. Peek into iOS Tweetie/AppDelegate.swift to see how the code
avoids creating the app’s navigation and view controllers during testing.
Alternatively, you might disable the host app in testing altogether.

Now you have a fully functioning view model, which is also under test. It’s time to
make use of it!

Adding an iOS View Controller
In this section, you’ll write the code to wire your view model’s output to the views
in ListTimelineViewController — the controller that will display the combined
tweets of users in the preset list.

First, you’ll work on the iOS version of Tweetie. In the project navigator, open the
folder iOS Tweetie/View Controllers/List Timeline. Inside you will find the
view controller and iOS-specific table cell view files.

Open ListTimelineViewController.swift and have a quick look. The
ListTimelineViewController class features a view model property and a Navigator
property. Both classes are injected through the
createWith(navigator:storyboard:viewModel) static factory method.

You’ll add two sets of setup code to the view controller. One will be some static
assignments in viewDidLoad(), and the other will be bindings of the view model to
the UI in bindUI().

Add the code below to viewDidLoad(), before the call to bindUI():

title = "@\(viewModel.list.username)/\(viewModel.list.slug)"

RxSwift - Reactive Programming with Swift Chapter 23: MVVM with RxSwift

raywenderlich.com 366

navigationItem.rightBarButtonItem =
UIBarButtonItem(barButtonSystemItem: .bookmarks, target: nil, action:
nil)

This will set the title to the list’s name and create a new button on the right-hand
side of the navigation item.

Next, on to binding the view model. Insert this into bindUI():

navigationItem.rightBarButtonItem!.rx.tap
 .throttle(0.5, scheduler: MainScheduler.instance)
 .subscribe(onNext: { [weak self] _ in
 guard let this = self else { return }
 this.navigator.show(segue: .listPeople(this.viewModel.account,
this.viewModel.list), sender: this)
 })
 .addDisposableTo(bag)

You subscribe to taps on the right bar item and throttle them to prevent any double
taps. Then you call the show(segue:sender:) method on the navigator property to
show your intent to present the segue to the screen. The segue displays the list of
people: members of the selected Twitter list.

Navigator takes care to either present the requested screen, or discard your intent
if it decides to do so, as it might decide to ignore your intent to present the desired
view controller based on other parameters.

Note: Read through the Navigator class definition for more details about the
class implementation. It contains the list of all possible navigable screens, and
you can invoke these segues only by providing all required input parameters.

You also need to create another binding to display the latest tweets in the table
view. Scroll to the top of the file and import the following library to easily bind
RxRealm results to table and collection views:

import RxRealmDataSources

Then go back to bindUI() and append:

let dataSource = RxTableViewRealmDataSource<Tweet>(cellIdentifier:
 "TweetCellView", cellType: TweetCellView.self) { cell, _, tweet in
 cell.update(with: tweet)
}

dataSource is a table view data source, specifically suited to drive a table view from
an observable sequence that emits Realm collection changes. In a single line you
configure the data source completely:

1. You set the model type as Tweet.

2. Then you set the cell identifier to use as TweetCellView.

RxSwift - Reactive Programming with Swift Chapter 23: MVVM with RxSwift

raywenderlich.com 367

3. Finally you provide a closure to configure each cell before it shows on screen.

You can now bind the data source to the view controller’s table view. Add this code
under the last block:

viewModel.tweets
 .bindTo(tableView.rx.realmChanges(dataSource))
 .addDisposableTo(bag)

Here you bind viewModel.tweets to realmChanges and provide the preconfigured
data source. This is the bare minimum you need to drive the table view with
animated changes.

The final binding for this view controller will show or hide the message on top
depending on whether the user has logged in to Twitter or not. Append the
following:

viewModel.loggedIn
 .drive(messageView.rx.isHidden)
 .addDisposableTo(bag)

This binding toggles messageView.isHidden based on the current loggedIn value.

This section showed you why bindings are a key enabler of the MVVM pattern. With
your view controllers serving only as “glue” code, you can easily separate out
concerns really easily. Your view model remains mostly ignorant about the current
platform it runs on, as it doesn’t import any UI framework as UIKit or Cocoa.

Run the app and observe all the bindings your shiny new view model drives:

RxSwift - Reactive Programming with Swift Chapter 23: MVVM with RxSwift

raywenderlich.com 368

As soon as the app completes the JSON request, the message at the top
disappears. Then the fetched tweets “pour in” with a snappy animation. Finally,
when you tap on the bar item on the right side, the app will take you to the users
list view controller:

And that’s that! In the next section, you will learn how easy it is to reuse your view
model across platforms.

Adding a macOS View Controller
The view model doesn’t know anything about the view or the view controller that
uses it. It that sense, the view model could be platform independent when
necessary. The same view model can easily provide the data to both iOS and
macOS view controllers.

ListTimelineViewModel is precisely one such view model. Its only dependencies are
RxSwift, RxCocoa, and the Realm database. Since those libraries are cross-platform
themselves, the view model itself is cross-platform too.

You job is to switch to the macOS target of the Xcode project and build a view
controller that mirrors the iOS one you built above.

From Xcode’s scheme selector, choose MacTweetie/My Mac and run the project to
see what the macOS starter project looks like.

RxSwift - Reactive Programming with Swift Chapter 23: MVVM with RxSwift

raywenderlich.com 369

The app displays the list of all accounts included in the pre-defined Twitter list, but
the right-hand side of the window remains empty. The blank view controller is the
one that should be displaying the tweets timeline. When complete, it should look
much like the tweet list you created for the iOS Tweetie app.

Open Mac Tweetie/ViewControllers/List Timeline and select
ListTimelineViewController.swift. The file is named similarly to the iOS view
controller file, but is located in the Mac Tweetie folder instead.

Start by displaying the name of the list at the top, just as you did in the iOS app.
Add the following to viewDidLoad():

NSApp.windows.first?.title = "@\(viewModel.list.username)/\
(viewModel.list.slug)"

Now you can move on to the bindings. If you skim through the code of the macOS
view controller, you’ll notice it uses the same view model and navigator classes as
its iOS counterpart. That’s great news, since you already know (and love)
ListTimelineViewModel.

The view controller code is, in fact, almost identical to the iOS version! This code
similarity is one of the many benefits of RxSwift. A lot of Rx code looks quite similar
between languages as well. You will likely be amazed at the ease with which you
can can read and understand Java written with RxJava, or JavaScript if it’s written
using RxJS.

Much like for the iOS view controller, scroll up the current file and import
RxRealmDataSources:

import RxRealmDataSources

RxSwift - Reactive Programming with Swift Chapter 23: MVVM with RxSwift

raywenderlich.com 370

Now scroll down to bindUI(). To bind the view model’s tweets to the table view,
add:

let dataSource = RxTableViewRealmDataSource<Tweet>(cellIdentifier:
"TweetCellView", cellType: TweetCellView.self) { cell, row, tweet in
 cell.update(with: tweet)
}

Here you create a data source containing Tweet objects with a cell with identifier
TweetCellView and configure each cell before it’s reused by calling update(with:) on
it. Now to create the table view binding. Add the code below:

let binder = tableView.rx.realmChanges(dataSource)

You create a binding between the table view rows and Realm changes by using the
already initialized data source object.

Now you can simply bind the view model’s tweets property to the configured
binding. Add the following:

viewModel.tweets
 .bindTo(binder)
 .addDisposableTo(bag)

This binding should bring the table view to life. Run the app and observe :trollface:
the tweets showing up in the right hand side of the window.

Is this the real life — or is this just fantasy? You didn’t have to perform any
networking, data transformation, or JSON validation?

Nope — you’re working on the view controller and not on any other part of your
app. The view model takes care of everything, so the only thing you needed to do
was to bind the data to the UI.

A final step is to polish the table view a bit, as the rows are being cut off. You will
use one of the methods on NSTableViewDataSource to set a custom height for the
rows. Since you’re using a data source object, you can’t directly set the dataSource
property on your table view. Instead, you need to tell the data source object you’re
providing some custom methods of your own.

Scroll up a bit and add the following before the line where you create binder:

dataSource.dataSource = self

RxSwift - Reactive Programming with Swift Chapter 23: MVVM with RxSwift

raywenderlich.com 371

Now you need to make ListTimelineViewController conform to
NSTableViewDataSource and add the method to set the table row height. Add this to
the bottom of the file:

extension ListTimelineViewController: NSTableViewDataSource {
 func tableView(_ tableView: NSTableView, heightOfRow row: Int) ->
CGFloat {
 return 68.0
 }
}

You implement tableView(_:heightOfRow:) and return the height you want — 68
points. If you’d like to customize any other part of the appearance of your table
view, you can add other NSTableViewDataSource methods, or set the data source’s
delegate property and add NSTableViewDelegate methods to the view controller.

Run the app one more time, and you’ll see the table looks a bit nicer:

You now have a basic understanding of how to split your code into a model, a view
model, and a view with a view controller. MVVM certainly has benefits over MVC for
anything beyond simple apps, but it’s important to remember that MVVM isn’t the
only option out there.

MVVM is a particularly sweet pattern to use with RxSwift, since Rx makes creating
bindings a straightforward task. This leads to cleaner code that is easier to read and
test.

Other architecture patterns have different benefits, and there might be other
libraries that suit those patterns better. But if you see MVVM + RxSwift as
something you might want to learn, then definitely try out the challenges below!

Challenges
Challenge 1: Toggle "Loading..." in members list
At the bottom of the users list, the Loading... label is always visible. It’s useful to
have the loading indicator there, but you really only want it to be visible while the
app is fetching JSON from the server.

RxSwift - Reactive Programming with Swift Chapter 23: MVVM with RxSwift

raywenderlich.com 372

To complete this challenge, you will work on both the iOS and macOS apps.

First open ListPeopleViewController.swift in the iOS part of the project. In
bindUI(), subscribe to viewModel.people, convert it to a Driver and map the
elements to true and false. Emit false when viewModel.people is nil. Drive
messageView.rx.isHidden with the resulting Driver<Bool>.

In the end you should see “Loading...” only when the app is fetching the JSON.
Once it’s completed, the label should disappear automatically.

Once you’re happy with the result in the iOS app, move on to the macOS target.
Since the view controller outlets have the same names, you can copy the code
directly from the iOS view controller into the macOS app’s
ListPeopleViewController.swift.

Über challenge: Complete View Model and View Controller for
the user’s timeline
You’ve noticed that there is still a part missing in both the iOS and macOS app. If
you select a user from the users list, you’ll see a new, empty view controller appear.

As the über challenge in this chapter, you will finish the two apps in the project and
display the personal Twitter timelines of selected users. If you want to try
completing this challenge on your own follow the instructions below, otherwise the
challenge folder for this chapter includes a solution, which you can read through.

In PersonTimelineViewModel.swift, you will find a property named tweets.
Change this to a lazy variable and use the following code to initialize it.

return self.fetcher.timeline
 .asDriver(onErrorJustReturn: [])
 .scan([], accumulator: { lastList, newList in
 return newList + lastList
})

This code subscribes to the class’ TimelineFetcher instance and gathers all emitted
tweets in a list.

Then switch to the iOS PersonTimelineViewController.swift, scroll to bindUI()
and add two subscriptions to viewModel.tweets.

• With the first subscription, drive the rx.title of the view controller. Display
“None found” before you fetch the tweets along with the username of the user
(from the viewModel) when the tweets show up.

• For the second subscription, get a data source object by using the provided
crateTweetsDataSource(), then map the tweets to a single TweetSection (consult
the RxDataSources chapter if you need help), and drive the table.

RxSwift - Reactive Programming with Swift Chapter 23: MVVM with RxSwift

raywenderlich.com 373

For the macOS version of the app (in the corresponding
PersonTimelineViewController.swift), use the provided tweets array property.
Subscribe viewModel.tweets, update the tweets array and reload the table. You can
optionally update the window title just as you did for the iOS app.

Now you should be able to open the user’s list, select a user and see their personal
tweet timeline appear in the app like so:

RxSwift - Reactive Programming with Swift Chapter 23: MVVM with RxSwift

raywenderlich.com 374

24Chapter 24: Building a
Complete RxSwift App
By Florent Pillet

Throughout this book, you learned about the many facets of RxSwift. Reactive
programming is a deep subject; its adoption often leads to architectures very
different from the ones you’ve grown used to. The way you model events and data
flow in RxSwift is crucial to proper behavior as well as protecting against future
evolutions of the product.

To conclude this book, you’ll architect and code a small RxSwift application. The
goal is not to use Rx “at all costs”, but rather to make design decisions that lead to
a clean architecture with stable, predictable and modular behavior. The application
is simple by design, to clearly present ideas you can use to architect your own
applications.

This chapter is as much about RxSwift as it is about the importance of a well-
chosen architecture that suits your needs. RxSwift is a great tool that helps your
application run like a well-tuned engine, but it doesn’t spare you from thinking
about and designing your application architecture.

raywenderlich.com 375

Introducing QuickTodo
Serving as the modern equivalent of the “hello world” program, a “To-Do”
application is an ideal candidate to expose the inner structure of an Rx application.

In the previous chapter, you learned about MVVM and how well it fits with reactive
programming. You’ll structure the QuickTodo application with MVVM and learn how
you can isolate the data-processing parts of your code and make them fully
independent.

Architecting the application
One particularly important goal of your app is to achieve a clean separation
between the user interface, the business logic of your application, and the services
the app contains to help the business logic run. To that end, you really need a clean
model where each component is clearly identified.

First, let’s introduce some terminology for the architecture you are going to
implement:

• Scene: Refers to a screen managed by a view controller. It can be a regular
screen, or a modal dialog. It comprises a view controller and a view model.

• View model: Defines the business logic and data used by the view controller to
present a particular scene.

RxSwift - Reactive Programming with Swift Chapter 24: Building a Complete RxSwift App

raywenderlich.com 376

• Service: A logical group of functionality provided to any scene in the application.
For example, storage to a database can be abstracted to a service. Likewise,
requests to a network API can be grouped in a network service.

• Model: The most basic data store in the application. View models and services
both manipulate and exchange models.

You learned about ViewModel in the previous chapter, “MVVM with RxSwift”.
Services are a new concept and another good fit for reactive programming. Their
purpose is to expose data and functionality using Observable and Observer as much
as possible, so as to create a global model where components connect together as
reactively as possible.

For your QuickTodo application, the requirements are relatively modest. You’ll
architect it correctly nonetheless, so you have a solid foundation for future growth.
It’s also an architecture you’ll be able to reuse in other applications.

The basic items you need are:

• A TaskItem model that describes an individual task.

• A TaskService service that provides task creation, update, deletion, storage and
search.

• A storage medium; you’ll use a Realm database here and, of course, RxRealm.

• A series of scenes to list, create and search tasks. Each scene is split into a
view model and a view controller.

• A scene coordinator object to manage scene navigation and presentation.

RxSwift - Reactive Programming with Swift Chapter 24: Building a Complete RxSwift App

raywenderlich.com 377

As you learned in the previous chapter, the view model exposes the business logic
and the model data to the view controller. The rules you’ll follow to create the
ViewModel for each scene are simple:

• Expose data as Observable sequences. This guarantees automatic updates once
connected to the user interface.

• Expose all ViewModel actions connectable to the UI using the Action pattern.

• Any model or data publicly accessible and not exposed as an observable
sequence is immutable.

• Transitioning from scene to scene is part of the business logic. Each ViewModel
initiates this transition and prepares the next scene’s view model, but doesn’t
know anything about the view controller.

A solution to fully insulate ViewModels from the actual ViewController, including
triggering transitions to other scenes, is laid out later in this chapter.

Note: Data immutability guarantees total control over updates triggered by
the UI. Strict observance of the rules above also guarantees the best
testability of each part of the code.

The previous chapter showed how to use a mutable property to update the
underlying model with the help of didSet. This chapter will take the notion
further by completely removing mutability and only exposing Actions.

Bindable view controllers
You’ll start with the view controllers. At some point, you need to connect, or bind,
the view controllers to their associated view model. One way to do this is have your
controllers adopt a specific protocol: BindableType.

Note: The starter project for this chapter includes quite some code. When you
first open the project in Xcode it will not compile successfully, as you need to
add few key types before you can build and run for the first time.

Open BindableType.swift and add the basic protocol:

protocol BindableType {
 associatedtype ViewModelType

 var viewModel: ViewModelType! { get set }

 func bindViewModel()
}

RxSwift - Reactive Programming with Swift Chapter 24: Building a Complete RxSwift App

raywenderlich.com 378

Each view controller conforming to the BindableType protocol will declare a
viewModel variable and provide a bindViewModel() function to be called once the
viewModel variable is assigned. This function will connect UI elements to
observables and actions in the view model.

Binding at the right moment
There’s one particular aspect of binding you need to be careful about. You want the
viewModel variable to be assigned to your view controller as soon as possible, but
bindViewModel() must be invoked only after the view has been loaded.

The reason is that your bindViewModel() function will typically connect UI elements
that need to be present. Therefore, you’ll use a small helper function to call it after
instantiating each view controller. Add this to BindableType.swift:

extension BindableType where Self: UIViewController {
 mutating func bindViewModel(to model: Self.ViewModelType) {
 viewModel = model
 loadViewIfNeeded()
 bindViewModel()
 }
}

This way, by the time viewDidLoad() is called in your view controller, you’re sure the
viewModel variable has already been assigned. Since viewDidLoad() is the best time
to set your view controller’s title for a smooth push navigation title animation, and
you may need access to your view model to prepare the title, loading the view
controller, if required, is what works best in all cases.

Task model
Your task model is simple and derives from the Realm base object. A task is defined
as having a title (the task contents), a creation date and a checked date. Dates are
used to sort tasks in the tasks list. If you’re not familiar with Realm, check out their
documentation at https://realm.io/docs/swift/latest/.

Populate TaskItem.swift as follows:

class TaskItem: Object {
 dynamic var uid: Int = 0
 dynamic var title: String = ""

 dynamic var added: Date = Date()
 dynamic var checked: Date? = nil

 override class func primaryKey() -> String? {
 return "uid"
 }
}

RxSwift - Reactive Programming with Swift Chapter 24: Building a Complete RxSwift App

raywenderlich.com 379

There are two details you need to be aware of that are specific to objects coming
from a Realm database:

• Objects can’t cross threads. If you need an object in a different thread, either re-
query or use a Realm ThreadSafeReference.

• Objects are auto-updating. If you make a change to the database, it immediately
reflects in the properties of any live object queried from the database. This has
its uses as you’ll see further down.

• As a consequence, deleting an object invalidates all existing copies. If you access
any property of a queried object that is deleted, you’ll get an exception.

The second point above has side effects, which you’ll study in greater detail later in
this chapter when binding the task cell.

Tasks service
The tasks service is responsible for creating, updating and fetching task items from
the store. As a responsible developer, you’ll define your service public interface
using a protocol then write the runtime implementation and a mock implementation
for tests.

First, create the protocol. This is what you’ll expose to the users of the service.
Open TaskServiceType.swift and add the protocol definition:

protocol TaskServiceType {
 @discardableResult
 func createTask(title: String) -> Observable<TaskItem>

 @discardableResult
 func delete(task: TaskItem) -> Observable<Void>

 @discardableResult
 func update(task: TaskItem, title: String) -> Observable<TaskItem>

 @discardableResult
 func toggle(task: TaskItem) -> Observable<TaskItem>

 func tasks() -> Observable<Results<TaskItem>>
}

This is a basic interface providing the fundamental services to create, delete,
update and query tasks. Nothing fancy here. The most important detail is that the
service exposes all data as observable sequences. Even the functions which create,
delete, update and toggle tasks return an observable you can subscribe to.

RxSwift - Reactive Programming with Swift Chapter 24: Building a Complete RxSwift App

raywenderlich.com 380

The core idea is to convey any failures or successes of the operation through
successful completion of the observables. In addition, you can use the returned
observable as the return value in Actions. You’ll see some examples of this later in
the chapter.

For example, open TaskService.swift and you’ll see update(task:title:) looks
like this:

@discardableResult
func update(task: TaskItem, title: String) -> Observable<TaskItem> {
 let result = withRealm("updating title") { realm ->
Observable<TaskItem> in
 try realm.write {
 task.title = title
 }
 return .just(task)
 }
 return result ?? .error(TaskServiceError.updateFailed(task))
}

withRealm(_:action:) is an internal wrapper to get the current Realm database and
start an operation on it. In case an error is thrown, withRealm(_:action:) will
always return nil. This is a good occasion to return an error observable to signal
the error to the caller.

You won’t go through the complete implementation of the tasks service, but in case
you got few extra minutes read through the code in TaskService.swift.

Since the last thing you did was to add TaskServiceType, now open
TaskService.swift and make it conform to that protocol:

struct TaskService: TaskServiceType {

You’re done with the tasks service! Your view models will receive a TaskServiceType
object, either real or mocked during the test, and would be able to perform their
work.

Scenes
You learned above that in the chapter's architecture a scene is a logical
presentation unit made of a “screen” managed by a view controller and a view
model. Rules for scenes are:

• The view model handles the business logic. This extends to kicking off the
transition to another “scene”.

• View models know nothing about the actual view controller and views used to
represent the scene.

RxSwift - Reactive Programming with Swift Chapter 24: Building a Complete RxSwift App

raywenderlich.com 381

• View controllers shouldn’t initiate the transition to another scene; this is the
domain of the business logic running in the view model.

With this in mind you can lay down a model where application scenes are listed as
cases in a Scene enumeration, and each case has the scene view model as its
associated data.

Note: That's similar to what you did in the previous chapter in the Navigator
class, but here navigation is even more flexible by using scenes.

Open Scene.swift. You’ll define the two scenes we need in our simple app, tasks
and editTask. Add:

enum Scene {
 case tasks(TasksViewModel)
 case editTask(EditTaskViewModel)
}

At this stage, a view model can instantiate another view model and assign it to its
scene, ready for transition. You also fulfill the basic contract for view models, which,
as much as possible, shouldn’t depend on UIKit at all.

An extension to the Scene enum, that you are about to add in a moment, exposes a
function which is the only place you’ll instantiate a view controller for a scene. The
function will know how to pull the view controller from its resources for each scene.

Open Scene+ViewController.swift and add this function:

extension Scene {
 func viewController() -> UIViewController {
 let storyboard = UIStoryboard(name: "Main", bundle: nil)
 switch self {
 case .tasks(let viewModel):
 let nc = storyboard.instantiateViewController(withIdentifier:
"Tasks") as! UINavigationController
 var vc = nc.viewControllers.first as! TasksViewController
 vc.bindViewModel(to: viewModel)
 return nc

 case .editTask(let viewModel):
 let nc = storyboard.instantiateViewController(withIdentifier:
"EditTask") as! UINavigationController
 var vc = nc.viewControllers.first as! EditTaskViewController
 vc.bindViewModel(to: viewModel)
 return nc
 }
 }
}

The code instantiates the appropriate view controller and immediately binds it to its
view model, which is taken from the data associated to each enum case.

RxSwift - Reactive Programming with Swift Chapter 24: Building a Complete RxSwift App

raywenderlich.com 382

Note: This function can become quite long when you have many scenes in
your application. Don’t hesitate to split it up into multiple sections for clarity
and ease of maintenance. In a large application with multiple domains, you
could even have a “master” enum for domains, and sub-enums with the scenes
for each domain.

Finally a scene coordinator handles the transition between scenes. Each view
model knows about the coordinator and can ask it to push a scene.

Coordinating scenes
One of the most puzzling questions when developing an architecture around MVVM
is: “How does the application transition from scene to scene?”. There are many
answers to this question, as every architecture has a different take on it. Some do
it from the view controller, because of the need to instantiate another view
controller; while some do it using a router, which is a special object thats connects
view models.

Transitioning to another scene
The author of this chapter favors a simple solution which has proved to be efficient
over many applications he has developed:

1. A view model creates the view model for the next scene.

2. The first view model initiates the transition to the next scene by calling into the
scene coordinator.

3. The scene coordinator uses an extension function to the Scenes enum to
instantiate the view controller.

4. Next, it binds the controller to the next view model.

5. Finally, it presents the next scene view controller.

RxSwift - Reactive Programming with Swift Chapter 24: Building a Complete RxSwift App

raywenderlich.com 383

With this structure, you can completely insulate view models from the view
controllers using them, and also insulate them from from the details of where to
find the next view controller to push. Later in this chapter, you’ll see how to use the
Action pattern to wrap steps 1 and 2 above and kick off a transition.

Note: It’s important that you always call the scene coordinator’s
transition(to:type:) and pop() functions to transition between scenes, as the
coordinator needs to keep track of which view controller is frontmost,
particularly when presenting scenes modally. Do not use automatic segues.

The scene coordinator
The scene coordinator is defined through a SceneCoordinatorType protocol. A
concrete SceneCoordinator implementation is provided to run the application. You
can also develop a test implementation that fakes transitions.

The SceneCoordinatorType protocol (already provided in the starter project), is
simple yet efficient:

protocol SceneCoordinatorType {
 init(window: UIWindow)

 @discardableResult
 func transition(to scene: Scene, type: SceneTransitionType) ->
Observable<Void>

 @discardableResult
 func pop(animated: Bool) -> Observable<Void>
}

RxSwift - Reactive Programming with Swift Chapter 24: Building a Complete RxSwift App

raywenderlich.com 384

The two functions transition(to:type:) and pop(animated:) let you perform all the
transitions you need: push, pop, modal, and dismiss.

The concrete implementation in SceneCoordinator.swift shows some interesting
cases of intercepting delegate messages with RxSwift. Both transition calls were
designed to return an Observable<Void> that doesn’t emit anything and completes
once the transition is complete. You can subscribe to it to take further action, as it
works like a completion callback.

To implement this, the code included in the project creates a UINavigationController
DelegateProxy, an RxSwift proxy which can intercept messages while forwarding
messages to the actual delegate:

_ = navigationController.rx.delegate
 .sentMessage(#selector(UINavigationControllerDelegate.navigationControl
ler(_:didShow:animated:)))
 .map { _ in }
 .bindTo(subject)

The trick, found at the bottom of the transition(to:type:) method, is to bind this
subscription to a subject returned to the caller:

return subject.asObservable()
 .take(1)
 .ignoreElements()

The returned observable will take at most one emitted element to handle the
navigation case, but doesn’t forward it, and completes.

Note: You may question the memory safety of this construct because of the
unbounded subscription to the navigation delegate proxy. It’s totally safe: the
returned observable will take at most one element, then complete. When
completing, it disposes of its subscriptions. If nothing subscribes to the
returned observable, the subject is disposed from memory and its
subscriptions terminate as well.

Passing data back
Passing data back from a scene to the previous one, such as when a scene is
presented modally, is easy with RxSwift. A presenting view model instantiates the
view model for the presented scene, so it can access it and can set up
communication. For the best results, you can use one of these three techniques:

1. Expose an Observable in the second (presented) view model that the first
(presenting) view model can subscribe to. When the second view model
dismisses the presentation, it can emit one or more result elements on the
observable.

RxSwift - Reactive Programming with Swift Chapter 24: Building a Complete RxSwift App

raywenderlich.com 385

2. Pass an Observer object, such as a Variable or a Subject, to the presented view
model, which will use that object to emit result one or more elements.

3. Pass one or more Actions to the presented view model, to be executed with the
appropriate result.

These techniques allow for excellent testability and help you avoid playing games
with weak references between models. You’ll see an example of this later in this
chapter when adding the Edit Task view controller.

Kicking off the first scene
The final detail about using a coordinated scene model is the startup phase; you
need to kick off the scene’s presentation by introducing the first scene. This is a
process you’ll perform in your application delegate.

Open AppDelegate.swift and add the following code to
application(_:didFinishLaunchingWithOptions:):

let service = TaskService()
let sceneCoordinator = SceneCoordinator(window: window!)

The first step is to prepare all the services you need along with the coordinator.
Then instantiate the first view model and instruct the coordinator to set it as the
root.

let tasksViewModel = TasksViewModel(taskService: service, coordinator:
sceneCoordinator)
let firstScene = Scene.tasks(tasksViewModel)
sceneCoordinator.transition(to: firstScene, type: .root)

That was easy! The cool thing with this technique is that you can use a different
startup scene if needed; for example, a tutorial that runs the first time the user
opens your application.

Now that you’ve completed the setup for your initial scene, you can take a look at
your individual view controllers.

Binding the tasks list with RxDataSources
In Chapter 18, “RxCocoa Datasources”, you learned about the UITableView and
UICollectionView reactive extensions built in RxCocoa. In this chapter, you’ll learn
how to use RxDataSources, a framework available from the RxSwiftCommunity
and originally developed by Krunoslav Zaher, the creator of RxSwift.

The reason this framework isn’t part of RxCocoa is mainly that it is more complex
and deeper than the simple extensions RxCocoa provides.

But why should you use RxDataSources over RxCocoa’s built-in bindings?

RxSwift - Reactive Programming with Swift Chapter 24: Building a Complete RxSwift App

raywenderlich.com 386

RxDataSource provides the following benefits:

• Support for sectioned table and collection views.

• Optimized reloads that only reload what changed, such as deletions, insertions,
and updates, thanks to an efficient differentiation algorithm.

• Configurable animations for deletions, insertions and updates.

• Support for both section and item animations.

In your case, adopting RxDataSources will give you automatic animations without
doing any work. The goal is to move checked items at the end of the tasks list into
a “checked” section.

The downside of RxDataSources is that it is initially more difficult to understand
than the basic RxCocoa bindings. Instead of passing an array of items to the table
or collection view, you pass an array of section models. The section model defines
both what goes in the section header (if any), and the data model of each item.

The simplest way to start using RxDataSources is to use the SectionModel or
AnimatableSectionModel generic types as the type for your section. Since you want
to animate items, you’ll go for AnimatableSectionModel. You can use the generic
class as is by simply specifying the types of the section information and the items
array.

Open TasksViewModel.swift and add this to the top:

typealias TaskSection = AnimatableSectionModel<String, TaskItem>

This defines your section type as having a section model of type String (you just
need a title) and section contents as an array of TaskItem elements.

The only constraint with RxDataSources is that each type used in a section must
conform to the IdentifiableType and Equatable protocols. IdentifiableType
declares a unique identifier (unique among objects of the same concrete type) so
that RxDataSources uniquely identifies objects. Equatable lets it compare objects to
detect changes between two copies of the same unique object.

RxSwift - Reactive Programming with Swift Chapter 24: Building a Complete RxSwift App

raywenderlich.com 387

Realm objects already conform to the Equatable protocol (see note below for a few
gotchas). Now you simply need to declare TaskItem as conforming to
IdentifiableType. Open TaskItem.swift and add the following extension:

extension TaskItem: IdentifiableType {
 var identity: Int {
 return self.isInvalidated ? 0 : uid
 }
}

This code checks for object invalidation by the Realm database. This happens when
you delete a task; any live copy previously queried from the database becomes
invalid.

Note: Change detection is a little challenging in your case because Realm
objects are a class type, not a value type. Any update to the database
immediately reflects in the object properties, which makes comparison difficult
for RxDataSources. In fact, Realm’s implementation of the Equatable protocol
is fast because it only checks whether two objects refer to the same stored
object. See the “Task cell” section below for a solution to this specific issue.

Now you need to expose your tasks list as an observable. You’ll be using your
TaskService’s tasks observable which, thanks to RxRealm, automatically emits
when a change occurs in the tasks list. Your goal is to split the tasks list like so:

• Due (unchecked) tasks first, sorted by last-added-first

• Done (checked) tasks, sorted by checked data (last checked first)

Add this to your TasksViewModel class:

var sectionedItems: Observable<[TaskSection]> {
 return self.taskService.tasks()
 .map { results in
 let dueTasks = results
 .filter("checked == nil")
 .sorted(byKeyPath: "added", ascending: false)

 let doneTasks = results
 .filter("checked != nil")
 .sorted(byKeyPath: "checked", ascending: false)

 return [
 TaskSection(model: "Due Tasks", items: dueTasks.toArray()),
 TaskSection(model: "Done Tasks", items: doneTasks.toArray())
]
 }
}

By returning an array with two TaskSection elements, you automatically create a
list with two sections.

RxSwift - Reactive Programming with Swift Chapter 24: Building a Complete RxSwift App

raywenderlich.com 388

Now on to the TasksViewController. Some interesting action will happen here to
bind the sectionedItem observable to the table view. The first step is to create a
data source suitable for use with RxDataSources. For table views, it can be one of:

• RxTableViewSectionedReloadDataSource<SectionType>

• RxTableViewSectionedAnimatedDataSource<SectionType>

The Reload type isn’t very advanced. When the section observable it subscribes to
emits a new list of sections, it simply reloads the table.

The Animated type is the one you want. Not only does it perform partial reloads, but
it also animates each change. Add the following dataSource property to the
TasksViewController class:

let dataSource = RxTableViewSectionedAnimatedDataSource<TaskSection>()

The major difference with RxCocoa’s built-in table view support is that you set up
the datasource object to display each cell type, instead of doing it in the
subscription.

Within the task view controller, add a function to “skin” the datasource:

fileprivate func configureDataSource() {
 dataSource.titleForHeaderInSection = { dataSource, index in
 dataSource.sectionModels[index].model
 }

 dataSource.configureCell = {
 [weak self] dataSource, tableView, indexPath, item in
 let cell = tableView.dequeueReusableCell(withIdentifier:
"TaskItemCell", for: indexPath) as! TaskItemTableViewCell
 if let strongSelf = self {
 cell.configure(with: item, action:
strongSelf.viewModel.onToggle(task: item))
 }
 return cell
 }
}

As you learned in Chapter 18, “RxCocoa Data Sources”, when binding an observable
to a table or collection view, you provide a closure to produce and configure each
cell as needed. RxDataSources works the same way, but the configuration is all
performed in the “data source” object.

There’s one detail about this configuration code that’s key to this MVVM
architecture. Notice how you passed an Action to the configuration function?

This is the way your design handles actions triggered from cells, that propagate
back to the view model.

It’s much like a closure, except the action is provided by the view model, and the
view controller limits its role to connecting the cell with the action.

RxSwift - Reactive Programming with Swift Chapter 24: Building a Complete RxSwift App

raywenderlich.com 389

In the end, it works like this:

The interesting part is that the cell itself, aside from assigning the action to its
button (see below), doesn’t have to know anything about the view model itself.

Note: The titleForHeaderInSection closure returns a string title for section
headers. This simplest case for creating section headers. If you want
something more elaborate, you can configure it by setting
dataSource.supplementaryViewFactory to return an appropriate
UICollectionReusableView for the UICollectionElementKindSectionHeader kind.

Since viewDidLoad() is the place where the table view is placed in auto-height
mode, that’s a good place to complete the table configuration. The only
requirement of RxDataSources is that the data source configuration must be done
before you bind an observable.

In viewDidLoad() add:

configureDataSource()

Finally, bind the view model’s sectionedItems observable to the table view via its
data source in the bindViewModel() function:

viewModel.sectionedItems
 .bindTo(tableView.rx.items(dataSource: dataSource))
 .addDisposableTo(self.rx_disposeBag)

You’re done with the first controller! You can use different animations for each
change type in your dataSource object. Leave them at the default for now.

The cell used to display an item in the Tasks list is an interesting case. In addition
to using the Action pattern to relay the “checkmark toggled” information back to
the view model (see figure above), it has to deal with the fact that the underlying
object, a Realm Object instance, may change during display.

Fortunately, RxSwift has a solution to this problem. Since objects stored in a Realm
database use dynamic properties, they can be observed with KVO. With RxSwift you
can use object.rx.observe(class, propertyName) to create an observable sequence
from changes to the property!

RxSwift - Reactive Programming with Swift Chapter 24: Building a Complete RxSwift App

raywenderlich.com 390

Binding the Task cell
You’ll apply this technique to TaskTableViewCell. Open the class file and add some
meat to the configure(with:action:) method:

button.rx.action = action

You first bind the “toggle checkmark” action to the checkmark button. Check out
Chapter 19, “Action”, for more details on the Action pattern.

Now bind the title string and “checked” status image:

item.rx.observe(String.self, "title")
 .subscribe(onNext: { [weak self] title in
 self?.title.text = title
 })
 .addDisposableTo(disposeBag)

item.rx.observe(Date.self, "checked")
 .subscribe(onNext: { [weak self] date in
 let image = UIImage(named: (date == nil) ? "ItemNotChecked" :
"ItemChecked")
 self?.button.setImage(image, for: .normal)
 })
 .addDisposableTo(disposeBag)

Here you individually observe both properties and update the cell contents
accordingly. Since you immediately receive the initial value at subscription time,
you can be confident that the cell is always up to date.

Finally, don’t forget to dispose your subscriptions. Failure to do so would lead to bad
surprises when the cell is reused by the table view! Add the following:

override func prepareForReuse() {
 button.rx.action = nil
 disposeBag = DisposeBag()
 super.prepareForReuse()
}

This is the correct way to clean things up and prepare for cell reuse. Always be very
careful not to leave dangling subscriptions! In the case of a cell, since the cell itself
is reused it’s essential that you take care of this.

Build and run the application. You should be able to see a default list of tasks.
Check one off, and the nice animation you see is automatically generated by
RxDataSources’ difference engine!

RxSwift - Reactive Programming with Swift Chapter 24: Building a Complete RxSwift App

raywenderlich.com 391

Editing tasks
The next problem to tackle is the creation and modification of tasks. You want to
present a modal view controller when creating or editing a task, and actions (such
as update or delete) should propagate back to the tasks list view model. While not
absolutely necessary in this case, as changes could be handled locally and the tasks
list will update automatically, thanks to Realm, it is important that you learn
patterns for passing information back in a sequence of scenes.

The main way to achieve this is to use the trusted Action pattern. Here’s the plan:

• When preparing the edit scene, pass it one or more actions at initialization time.

• The edit scene performs its work and executes the appropriate action (update or
cancel) on exit.

• The caller can pass different actions depending on its context, and the edit scene
won’t know the difference. Pass a “delete” action for canceling at creation time,
or an empty action (or no action) for canceling an edit.

You’ll find this pattern to be quite flexible when you apply it to your own
applications. It is particularly useful when presenting modal scenes, but also to
convey the result of one of more scenes for which you want a synthetic result set
passed.

Time to put this into practice. Add the following function to TasksViewModel:

func onCreateTask() -> CocoaAction {
 return CocoaAction { _ in
 return self.taskService
 .createTask(title: "")
 .flatMap { task -> Observable<Void> in
 let editViewModel = EditTaskViewModel(task: task,
 coordinator: self.sceneCoordinator,
 updateAction: self.onUpdateTitle(task: task),
 cancelAction: self.onDelete(task: task))
 return self.sceneCoordinator.transition(to:
Scene.editTask(editViewModel), type: .modal)

RxSwift - Reactive Programming with Swift Chapter 24: Building a Complete RxSwift App

raywenderlich.com 392

 }
 }
}

Note: Since self is a struct, the action gets its own “copy” of the struct
(optimized by Swift to being just a reference), and there is no circular
reference - no risk of leaking memory! That's why you don't see [weak self]
or [unowned self] here, which don't apply to value types.

This is the action you’ll bind to the “+” button at top-right of the tasks list scene.
Here’s what it does:

• Creates a fresh, new task item.

• If creation is successful, instantiates a new EditTaskViewModel, passing it along
with updateAction, which updates the title of the new task item, and a
cancelAction which deletes the task item. Since it was just created, canceling
should logically delete the task.

Note: Since an Action returns an observable sequence, you integrate the
whole create-edit process into a single sequence that completes once the Edit
Task scene closes. Since an Action stays locked until the execution observable
completes, it is not possible to inadvertently raise the editor twice at the same
time. Cool!

Now bind the action to the “+” button on the bindViewModel() function of
TasksViewController:

newTaskButton.rx.action = viewModel.onCreateTask()

Next, move to EditTaskViewModel.swift and populate the initializer. Add this
code to init(task:coordinator:updateAction:cancelAction:):

onUpdate.executionObservables
 .take(1)
 .subscribe(onNext: { _ in
 coordinator.pop()
 })
 .addDisposableTo(disposeBag)

Note: To allow most of the code to compile, the onUpdate and onCancel
properties were defined as forced-unwrapped optionals. You can remove the
exclamation mark now.

What does the above do? Besides setting the onUpdate action to be the action
passed to the initializer, it subscribes to the action’s executionObservables sequence

RxSwift - Reactive Programming with Swift Chapter 24: Building a Complete RxSwift App

raywenderlich.com 393

which emits a new observable when the action executes. Since the action will be
bound to the OK button, you only see it executed once. When that happens, you
pop() the current scene, and the scene coordinator will dismiss it.

For the Cancel button, you need to proceed differently. Remove the existing
onCancel = cancelAction assignment; you’ll do something a little more clever.

Since the action received by the initializer is optional, as the caller may not have
anything to do on cancel, you need to generate a new Action. Therefore, this will be
the occasion to pop() the scene:

onCancel = CocoaAction {
 if let cancelAction = cancelAction {
 cancelAction.execute()
 }
 return coordinator.pop()
}

Finally, move to the EditTaskViewController (in EditTaskViewController.swift)
class to finalize the UI binding. Add this to bindViewModel():

cancelButton.rx.action = viewModel.onCancel

okButton.rx.tap
 .withLatestFrom(titleView.rx.text.orEmpty)
 .subscribe(viewModel.onUpdate.inputs)
 .addDisposableTo(rx_disposeBag)

All you have to do to handle the UI is pass the text view contents to the onUpdate
action when the user taps the OK button. You’re taking advantage of Action’s
inputs observer which lets you pipe values directly for execution of the action.

Build and run the application. Create new items and update their titles to see
everything in action.

The last thing to tackle is the addition of existing items. For this, you’ll need a new
Action that isn’t temporary; remember that actions have to be referenced other
than via a subscription, otherwise they’ll be deallocated. As mentioned in Chapter
19, this is a frequent source of confusion.

Create a new lazy variable in TasksViewModel:

lazy var editAction: Action<TaskItem, Void> = { this in
 return Action { task in
 let editViewModel = EditTaskViewModel(
 task: task,
 coordinator: this.sceneCoordinator,
 updateAction: this.onUpdateTitle(task: task)
)
 return this.sceneCoordinator.transition(to:
Scene.editTask(editViewModel), type: .modal)
 }
}(self)

RxSwift - Reactive Programming with Swift Chapter 24: Building a Complete RxSwift App

raywenderlich.com 394

Note: Since self is a struct you can’t create weak or unowned references.
Instead, pass self to the closure or function that initialized the lazy variable.

Now, back in TaskViewController.swift, you can bind this action in
TaskViewController’s bindViewModel(). Add:

tableView.rx.itemSelected
 .map { [unowned self] indexPath in
 try! self.dataSource.model(at: indexPath) as! TaskItem
 }
 .subscribe(viewModel.editAction.inputs)
 .addDisposableTo(rx_disposeBag)

You’re using dataSource to obtain the model object matching the received
IndexPath, then piping it into the action’s inputs. Easy!

Build and run the application: you can now create and edit tasks! Hooray!

Challenges
Challenge 1: Support item deletion
You’ve probably noticed that it isn’t possible to delete items. You’ll need to make
changes to both TaskViewModel and TaskViewController to add this functionality. For
this challenge, start from the final project of this chapter. Once you complete the
challenge, the users will be able to swipe on a task and delete it:

The easiest way to get started is to put the controller in edit mode all the time. This
will activate support for swiping right-to-left on cells so that you can reveal the
Delete button. In viewDidLoad, you can turn that feature on this way:

setEditing(true, animated: false)

The second change will be in your dataSource object. You need to indicate that all
the cells can be “edited”. Dig through RxDataSources’
TableViewSectionedDataSource class and I’m sure you’ll find what you need to set.
Hint: it’s a closure, and you can simply return true in all cases.

RxSwift - Reactive Programming with Swift Chapter 24: Building a Complete RxSwift App

raywenderlich.com 395

Now you can get to the core of the challenge: handling the actual deletion. The
solution to this challenge involves:

• Creating an Action in TasksViewModel such that, given a model item, will call the
appropriate API in TaskService. Can you figure out its signature? If not, read on!

• In TasksViewController, bind this action to tableView.rx.itemDeleted. You’ll have
to figure out how to go from the IndexPath you receive to a TaskItem.

You won’t reuse the existing onDelete(task:) function because it returns a
CocoaAction, not an Action<TaskItem,Void>.

Challenge 2: Add live statistics
To make the UI more interesting, you want to display the number of due and done
items in your list. A label is reserved for this purpose at the bottom of the
TasksViewController view; it’s connected to statisticsLabel. For this challenge,
start from either your solution to the previous challenge, or from the chapter’s final
project.

Gathering live statistics involves the following:

• Adding a single new API to TaskServiceType (and its implementation in
TaskService) to query both due and done items. Hint: use the checked date
property in TaskItem, it is nil if the item is not checked. Every time a query
returns a new result, that is, every time a change occurs in the database,
produce an updated statistic. You’ll need to run two permanent queries for that,
filter one of them to exclude either checked or unchecked item, then use the
zip(_:_:resultSelector:) RxSwift operator to produce the result.

• Exposing a new statistics observable in TasksViewModel. This is a piece of cake,
since you did all the hard work in TaskService.

• Subscribing to this observable in TasksViewController and updating the label.

To make things easier, you can define a TaskStatistics tuple typealias in
TaskServiceType.swift:

typealias TaskStatistics = (todo: Int, done: Int)

You shouldn’t meet any particular difficulties in completing this challenge, aside
from figuring out how to correctly filter Realm results. The interesting part is to see
how you can structure new functionality and correctly spread it across the relevant
components in your application.

RxSwift - Reactive Programming with Swift Chapter 24: Building a Complete RxSwift App

raywenderlich.com 396

Once you’re done with this, reuse your statistics observable to update the
application badge number dynamically. This is something you want to add to the
application delegate in application(_:didFinishLaunchingWithOptions:).

This concludes the final chapter of this book! We hope you loved it as much as we
did. You now have a solid foundation of programming with RxSwift (and Rx as a
whole) to build on as you continue your learning. Good luck!

RxSwift - Reactive Programming with Swift Chapter 24: Building a Complete RxSwift App

raywenderlich.com 397

CConclusion

"Why sometimes I've believed as many as six impossible things before
breakfast."

— The White Queen, Through the Looking-Glass

We hope you’re excited about all the new possibilities, previously seeming
impossible, that developing with RxSwift has opened up for you!

Reactive applications are solid, easier to test, and very agile about their user
experience. With data bindings, your apps’ UI is always up to date and the highly
composeable RxSwift operators allow you to craft complex app logic with a
minimum of effort.

This book took you all the way from a complete Rx beginner, just learning about the
pain points of asynchronous programming, all the way to being an RxSwift veteran.
It’s up to you now to couple your creativity with the all the knowledge you’ve
gained from this book and create some impressive apps of your own!

If you have any questions or comments about the projects in this book, please stop
by our forums at http://www.raywenderlich.com/forums.

Thank you again for purchasing this book. Your continued support is what makes
the books, tutorials, videos and other things we do at raywenderlich.com possible.
We truly appreciate it!

— Ash, Chris, Florent, Junior, Marin, Scott, and Vicki

The RxSwift: Reactive Programming with Swift team

raywenderlich.com 398

	Table of Contents : Extended
	Introduction
	What you need
	Who this book is for
	How to use this book
	What’s in store
	Book source code and forums
	Book updates
	License
	About the cover

	Section I: Getting Started with RxSwift
	Chapter 1: Hello RxSwift!
	Introduction to asynchronous programming
	Foundation of RxSwift
	App architecture
	RxCocoa
	Installing RxSwift
	Community
	Where to go from here?

	Chapter 2: Observables
	Getting started
	What is an observable?
	Lifecycle of an observable
	Creating observables
	Subscribing to observables
	Disposing and terminating
	Creating observable factories
	Challenges

	Chapter 3: Subjects
	Getting started
	What are subjects?
	Working with PublishSubjects
	Working with BehaviorSubjects
	Working with ReplaySubjects
	Working with Variables
	Challenges

	Chapter 4: Observables and Subjects in Practice
	Getting started
	Using a variable in a view controller
	Talking to other view controllers via subjects
	Which dispose bag to use?
	Creating a custom observable
	Challenges

	Section II: Operators and Best Practices
	Chapter 5: Filtering Operators
	Getting started
	Ignoring operators
	Skipping operators
	Taking operators
	Distinct operators
	Challenges

	Chapter 6: Filtering Operators in Practice
	Improving the Combinestagram project
	Sharing subscriptions
	Improving the photo selector
	Trying out time based filter operators
	Challenges

	Chapter 7: Transforming Operators
	Getting started
	Transforming elements
	Transforming inner observables
	Challenges

	Chapter 8: Transforming Operators in Practice
	Getting started with GitFeed
	Fetching data from the web
	Transforming the response
	Intermission: Handling erroneous input
	Persisting objects to disk
	Add a Last-Modified header to the request
	Challenges

	Chapter 9: Combining Operators
	Getting started
	Prefixing and concatenating
	Merging
	Combining elements
	Triggers
	Switches
	Combining elements within a sequence
	Challenges

	Chapter 10: Combining Operators in Practice
	Getting started
	Preparing the web backend service
	Categories view controller
	Adding the event download service
	Getting events for categories
	Events view controller
	Wiring the days selector
	Splitting event downloads
	Challenges

	Chapter 11: Time Based Operators
	Getting started
	Buffering operators
	Time-shifting operators
	Timer operators
	Challenges

	Section III: iOS Apps with RxCocoa
	Chapter 12: Beginning RxCocoa
	Getting started
	Using RxCocoa with basic UIKit controls
	Binding observables
	Improving the code with Units
	Disposing with RxCocoa
	Where to go from here?
	Challenges

	Chapter 13: Intermediate RxCocoa
	Getting started
	Showing an activity while searching
	Extending CCLocationManager to get the current position
	How to extend a UIKit view
	Conclusions about RxCocoa
	Challenges

	Section IV: Intermediate RxSwift/RxCocoa
	Chapter 14: Error Handling in Practice
	Getting started
	Managing errors
	Handle errors with catch
	Catching errors
	Retrying on error
	Custom errors
	Advanced error handling
	Where to go from here?
	Challenges

	Chapter 15: Intro To Schedulers
	What is a Scheduler?
	Setting up the project
	Switching schedulers
	Pitfalls
	Best practices and built-in schedulers
	Where to go from here?

	Chapter 16: Testing with RxTest
	Getting started
	Testing operators with RxTest
	Testing RxSwift production code

	Chapter 17: Creating Custom Reactive Extensions
	Getting started
	How to create extensions
	Use custom wrappers
	Testing custom wrappers
	Common available wrappers
	Where to go from here?
	Challenges

	Section V: RxSwift Community Cookbook
	Chapter 18: Table and Collection Views
	Basic table view
	Multiple cell types
	Providing additional functionality
	RxDataSources

	Chapter 19: Action
	Creating an Action
	Connecting buttons
	Composing behavior
	Passing work items to cells
	Manual execution
	Perfectly suited for MVVM

	Chapter 20: RxGesture
	Attaching gestures
	Supported gestures
	Advanced usage

	Chapter 21: RxRealm
	Auto-updating results
	Arrays
	Asynchronous first item
	Changesets
	Single objects
	Adding objects
	Deleting objects

	Chapter 22: RxAlamofire
	Basic requests
	Request customization
	Response validation
	Downloading files
	Upload tasks
	Tracking progress

	Section VI: Putting it All Together
	Chapter 23: MVVM with RxSwift
	Introducing MVVM
	Getting started with Tweetie
	Challenges

	Chapter 24: Building a Complete RxSwift App
	Introducing QuickTodo
	Architecting the application
	Bindable view controllers
	Task model
	Tasks service
	Scenes
	Coordinating scenes
	Binding the tasks list with RxDataSources
	Binding the Task cell
	Editing tasks
	Challenges

	Conclusion

