
OBJECTIVE-C TO SWIFT
A BRIEF IMMERSION FROM

INTRO

WHO IS THIS GUY?

▸ (Ruoyu Fu)

▸ A Mobile Developer from ThoughtWorks

▸ Author of SwiftyJSON

▸ A Geek with Drinking Problems

WHY SWIFT?WHEN SWIFT?

INTRO

TRICKY CODE

INTRO

▸ `[1,2,3]` someArray

▸ someArray.map result

▸ result

SOME TRICKY CODE

INTRO

SOME TRICKY CODE

IS THAT TRUE?

INTRO

SOME TRICKY CODE

▸

▸ · ·

WTF?

Really Serious Programmer

INTRO

NOTE THE TYPES, NOT THE INSTANCES

NOTE THE TYPES, NOT THE INSTANCES

?

INTRO

ANOTHER EXAMPLE

TYPE SYSTEMS

TYPE SYSTEMS

▸ ->

▸

▸ [⌘ + Click] -> [⌥ + Click]

TYPE SYSTEMS

TYPE SYSTEMS

▸ ->

▸
Protocol + Generics

▸ NSProxy is gone -_-!

▸ No more method swizzling 
 (And other Runtime tricks)

▸

TYPE SYSTEMS

TYPE SYSTEMS

▸ Runtime -> Runtime

•  
 

Swift ORM Mapper
 

TEXT

DESIGN PATTERNS

DESIGN PATTERNS

DESIGN PATTERNS

▸

▸ Objective-C Swift

DESIGN PATTERNS

DESIGN PATTERNS

▸ Rule No.1

▸ Rule No.2

▸ Why

DESIGN PATTERNS

WHY NOT INHERITANCE ?

▸ ()

▸ Implicit sharing (WWDC)

▸ Mutable…… 
Thread hells, locks etc

▸ “fatal error, should implemented by subclass”

▸ Type
Casting  
 a  
 b OC Type Casting Runtime  
 c

DESIGN PATTERNS

——

DESIGN PATTERNS

DESIGN PATTERNS

▸ 1 Protocol

▸ 2 Swift enum, struct, extension

▸ 3

EXAMPLE

EXAMPLE

▸ as!

▸ assertion: “fatal error, implement me!”

▸ copy

EXAMPLE

EXAMPLE

EXAMPLE

EXAMPLE

EXAMPLE

EXAMPLE
OC + JSON id 

Crash  
Swift

EXAMPLE

EXAMPLE
enum + subscript

JSON

PARADIGMS

PARADIGMS

▸ Protocol Oriented Programming

▸ Object Oriented Programming

▸ Reactive Programming

▸ Functional Programming

▸ ……

Swift
ReactiveCocoa RxSwift

THINK FUNCTIONALLY

THINK FUNCTIONALLY

A Sad Story About API disasters

THINK FUNCTIONALLY

THINK FUNCTIONALLY

是可忍孰不可忍？

THINK FUNCTIONALLY

THINK FUNCTIONALLY

⾃⼰写个Promise？

THINK FUNCTIONALLY

THINK FUNCTIONALLY

或许，还有更简单的办法！

THINK FUNCTIONALLY

THINK FUNCTIONALLY

完⼯之后的样⼦
看起来棒棒哒！

THINK FUNCTIONALLY

THINK FUNCTIONALLY

第⼀步，定义⼀个叫做Async的
东西，将异步过程封装起来

其中⽤到的Result如下：

THINK FUNCTIONALLY

THINK FUNCTIONALLY

注意到它是⼀个Functor，所以
第⼆步，定义⼀个map函数

THINK FUNCTIONALLY

THINK FUNCTIONALLY
注意它也是⼀个Monad，所以
第三步，定义⼀个flatMap函数

THINK FUNCTIONALLY

THINK FUNCTIONALLY

第四步，给flatMap改个名字，叫做then

THINK FUNCTIONALLY

THINK FUNCTIONALLY

OK，Done！ 
并且

▸ apply Applicative

▸ foldl

▸ ……

THINK FUNCTIONALLY

THINK FUNCTIONALLY

可以看到，在Swift中，适当引⼊函数式编程的
思想和⽅法，常常会有奇效 
然⽽，凡事总有个然⽽

THINK FUNCTIONALLY

FUNCTIONAL TIPS

▸ FP

▸ Reactive Programming
(RxSwift, Reactive Cocoa)

THANKS

