
JAVASCRIPT
for Swift Developers

SWIFT
let dog = Dog(age: 3, furColor: "brown")
print(dog) // => "Dog(age: 3)"

JAVASCRIPT
let dog = new Dog(3, "brown");
console.log(dog); // => "Dog(age: 3)"

SUPERFICIAL

▸ Both have variable declarations with let.
▸ Swift has parameter names.

▸ Different calls to make console prints.
▸ JavaScript has a new operator.
▸ JavaScript has semicolons.

VARIABLE DECLARATIONS
▸ var

▸ let

▸ const

var

▸ In Swift: declares a mutable variable

▸ In JavaScript: declares a variable which is hoisted within the
function or global scope

let

▸ In Swift: declares an immutable variable,
 enforced beyond re-assignments for value types

▸ In JavaScript: declares a variable which is block-scoped

const

▸ Only in JavaScript: declares a variable which is block-scoped and not
re-assignable

;

WRITE MULTIPLE STATEMENTS
IN A SINGLE LINE

IN SWIFT IT'S OPTIONAL.

IN JAVASCRIPT IT'S SOMETIMES OPTIONAL.

AUTOMATIC
SEMICOLON
INSERTION

return
{
 name: "This is fine."
};

return;
{
 name: "This is fine."
};

semi: ["error", "always"] // or: ["error", "never"]

BUT THERE IS
MORE THAN THE
SUPERFICIAL…

STEP BACK
What do we compare?

SWIFT
▸ 2014: 1.0
▸ …

▸ 2017-03-27: 3.1

JAVASCRIPT
▸ 1996: 1.0

▸ 2000: 1.5 - ECMA 3rd edition
▸ 2010: ECMA 5th edition

▸ 2015: ECMA 6th edition - ES6 / ES2015

ENGINES
▸ JavaScriptCore

▸ V8
▸ SpiderMonkey, Chakra, Carakan, …

SWIFT & JAVASCRIPT
SUPPORT DIFFERENT

PROGRAMMING PARADIGMS.

▸ Imperative Programming
▸ Object-oriented Programming
▸ Declarative Programming
▸ Functional Programming
▸ Many things in between …

Let's talk about
TYPES

SWIFT HAS A
STRONG TYPE

SYSTEM.

JAVASCRIPT HAS
A DYNAMIC TYPE

SYSTEM.

INHERITANCE

CLASSES IN SWIFT
class Animal : CustomStringConvertible {
 var age: Int

 init(age: Int) {
 self.age = age
 }

 toString() {
 let className = String(describing: type(of: self))
 return "\(className)(age: \(age))"
 }
}

class Dog : Animal {
 var furColor: String

 init(age: Int, furColor: String) {
 super(age: age)
 self.furColor = furColor;
 }
}

JAVASCRIPT HAS MANY

⠀
⠀

JAVASCRIPT'S PROTOTYPAL INHERITANCE
function Animal(age) {
 this._age = age;
}

Object.defineProperty(Animal.prototype, "age", {
 get: function() {
 return this._age;
 },
});

Animal.prototype.toString = function() {
 return this.constructor.name + "(age: " + this.age + ")";
}

function Dog(age, furColor) {
 Object.getPrototypeOf(Dog).call(this, age);
 this.furColor = furColor;
}

Dog.prototype = Object.create(Animal.prototype, {
 constructor: { value: Dog }
});

ES6 SYNTAX
class Animal {
 constructor(age) {
 this._age = age;
 }

 get age() {
 return this._age;
 }

 toString() {
 return `${this.constructor.name}(age: ${this.age})`;
 }
}

class Dog extends Animal {
 constructor(age, furColor) {
 super(age);
 this.furColor = furColor;
 }
}

TYPESCRIPT
class Animal {
 age: number;

 constructor(age: number) {
 this.age = age;
 }

 toString() {
 return `${this.constructor.name}(age: ${this.age})`;
 }
}

class Dog extends Animal {
 constructor(age: number, furColor: string) {
 super(age);
 this.furColor = furColor;
 }
}

WHY THE UGLY?
UNDER THE HOOD IT'S STILL THE SAME!*

EQUALITY?

SWIFT HAS ==.

SEMANTICS ARE
ENCODED IN THE STANDARD LIBRARY

AND EXTENSIBLE.

extension Animal : Equatable {}

public function ==(lhs: Animal, rhs: Animal) {
 return lhs.age == rhs.age;
}

JAVASCRIPT HAS MORE:

== & ===

==

===

ROLL YOUR OWN
class Animal {
 …

 isEqual(other) {
 return this.age === other.age;
 }
}

Let's talk about ⠀⠀⠀⠀⠀⠀⠀⠀⠀

null

Swift has an explicit concept of nullability encoded in the type system.

JavaScript hasn't.

IN ADDITION TO null,
EVERYTHING CAN BE undefined.

null

▸ typeof null => "object"

▸ Literal

undefined

▸ typeof undefined => "undefined"

▸ Property of the global object
▸ Can be overwritten !

!
TYPESCRIPT

TO THE RESCUE!

let u: undefined = undefined;
let n: null = null;

// In Swift
func greet(name: string) { … }
func greet(name: string?) { … }

// In TypeScript
// when compiled with --strictNullChecks
function greet(name: string) { … }
function greet(name: string | undefined = undefined) { … }

ECO SYSTEM

SWIFT RUNS ON …

▸ Mac and iOS devices
▸ Linux
▸ (Android)
▸ (Windows)

JAVASCRIPT RUNS …

everywhere

JavaScript is an assembly language.
— Erik Meijer

ASM.JS

Let's talk about ⠀⠀⠀⠀⠀⠀⠀⠀⠀

⠀
⠀
⠀

The Dream
IMPLEMENT THE APP ONCE &

DEPLOY IT ON ALL PLATFORMS

REALITY?
Platforms have different requirements!

SHARE THE BUSINESS LOGIC
But not UI

⠀
⠀

!

DEPENDENCY
MANAGEMENT

Reminder
SWIFT IS INTEROPERABLE WITH OBJECTIVE-C

OBJECTIVE-C DEVELOPERS HISTORICALLY USED …

▸ No dependencies
▸ Git Submodules
▸ CocoaPods

WITH SWIFT, MOST USE:

▸ CocoaPods
▸ Carthage

▸ Swift Package Manager

NO CENTRAL CODE REGISTRY,
YOU RELY ON PRIVATE HOSTED

REPOSITORIES.

JAVASCRIPT HAS …
▸ NPM for Node.js

▸ Different approaches for frontend code: Bower or Browserify /
Webpack etc.

NPM IS A PACKAGE MANAGER AND A PLATFORM.

YOU SUBMIT ACTUAL CODE.

!
NO FULL DEPENDENCY RESOLUTION

BY DEFAULT

PITFALLS OF RECURSIVE RESOLUTION
MyApp@1.4.2
!"" BananaKit@1.3.2
$"" monkey@1.1.0
$"" monkey@1.0.7

import BananaKit from 'bananakit';
import Monkey from 'monkey';

const monkey = new Monkey();
const tree = new BananaKit.Tree();
monkey.visit(tree);
// => TypeError: m.climb is not a function
// at tree.accept (bananakit.js)
// at monkey.visit (monkey.js)

DIFFERENT APPROACHES FOR
 LOCKING YOUR DEPENDENCIES !

▸ Commit node_modules
▸ npm shrinkwrap

▸ Yarn

⠀
⠀
⠀
⠀

THE STATE OF AFFAIRS?

questions.forEach((question) => {
 question.ask();
});

THANKS FOR YOUR
ATTENTION!

@MRACKWITZ
MR@REALM.IO

https://twitter.com/mrackwitz
mailto:mr@realm.io
mailto:mr@realm.io
mailto:mr@realm.io

