Swift with Hundreds
of Engineers

"Engineer

Tuomas Artman, Sta

May 13th, 2017

Swift with Hundreds of Engineers

Motivation, Architecture, Learnings

> -;.; YA i’;';' :
pp. T . ,
- o O -
. P W P
B 5] e o AL
. (..\ N NP L e

'’

Uber’s mobile team 4 years ago

YYT 11:23 100% .
= UBER
< 8 & ke
o Go to PIn
—
] (’: .S:, C"Cr‘ ‘F‘;'J' I
E] f‘d o /,

F
oy | YA / : <
VEWPORT ok Washington S~
Q) L8, Square Park FAST VILLAGE
SOHO /
SUAL ~ |

(,—‘3‘\.

/! fs\ S‘/f";:. ':"{/
BatteryPark X\ # Jb'&
N S Wy
& o), -

.
\
O’
n
c

{EROOKLYN|
| HEIGHTS

N ——

e | (?/ v \T:
Google \ o
LR be. "\\'. -)‘l
P s mTTm ! A
uberXL

FOOL SELECT UberBLACK TAXI ACCESS

8800
<
-

Ve

11:23

UBER

Go to PIn

0/,;

(9A)

—

SELECT UberBLACK

Washington
Square Park

uberXL

TAXI

ACCESS

™~
100% .
-~ -~
w .\\-t
)
£ A
."Jlr«'/ o
§
$ c
\z‘.‘ -
&
~

00000 ATRT = 12:19 PM

1571 N Sheffield Ave

W Armitage Ave

N Burling St

.-
/p
o
-
-
("3
(]
v

Goose Island

SHARE YOUR RIDE SPLIT THE CO 1-2 PEOPLE

POOL
uberX uberTAXI SELECT ubereLack ACCESS UberRUSHUberELVES

i) {1

N Cleveland Ave

“Let’s just change everything”

Rider App Rewrite

Architectural goals

99.99% reliability of core flows

Enable global roll-back of core flows to a guaranteed
WOrking state

Rider App Rewrite

Architectural goals

99.99% reliability of core flows

Enable global rollback of core flows to a guaranteed
WOrking state

Support Uber’s growth for years to come

Narrow and decouple functionality as much as possible

Rider App Rewrite

Architectural goals

99.99% reliability of core flows

Enable global rollback of core flows to a guaranteed
working state

Support Uber’s growth for years to come

Narrow and decouple functionality as much as possible

Provide rails for both design and code

Guidelines for both architecture and design

Rider App Rewrite

Architectural goals

99.99% reliability of core flows

Enable global rollback of core flows to a guaranteed
working state

Support Uber’s growth for years to come

Narrow and decouple functionality as much as possible

Provide rails for both design and code

Guidelines for both architecture and design

Monitoring is a first-class citizen

Automatic analytics, logging, debugging, and tracing

Rider App Rewrite

Architectural goals

99.99% reliability of core flows

Enable global rollback of core flows to a guaranteed
working state

Support Uber’s growth for years to come

Narrow and decouple functionality as much as possible

Provide rails for both design and code

Guidelines for both architecture and design

Monitoring is a first-class citizen

Automatic analytics, logging, debugging, and tracing

De-risk experimentation

Application framework with plugin API

Rider App Rewrite

Architectural goals

99.99% reliability of core flows

Enable global rollback of core flows to a guaranteed
working state

Support Uber’s growth for years to come

Narrow and decouple functionality as much as possible

Provide rails for both design and code

Guidelines for both architecture and design

Monitoring is a first-class citizen

Automatic analytics, logging, debugging, and tracing

De-risk experimentation

Application framework with plugin API

Make magic

Performance second to none, graceful degradation on
low-end devices and networks

Multiplatform Architecture

Double the effectiveness of your teams

A

https://www.flickr.com/photos/86979666@N00/

Router Interaction Builder

[Root

]\

[LoggedOut J [LoggedIn
[Onboarding] Request [Menu] [OnTrip }

|
./ \ |

[LocatlonEdltor Shortcuts [LocationEditor}

Y | |

[Favorites J [Favorites }

e
P scubo AT&T LTE TukSU 13113 10 % 7%
| = | Golden Gate A m
‘ L1 Asian ArtiMuseum & /)
nfr = Where to? LD
\ g
\'\ & - :
LoggedOut [Logged In | Hayes St & %d} v
J [seTheatre @ -
o,
& SFJAZZ Center ‘&
iy £ W,)
Y San Fr?ﬁcisco ‘.\
. , . ¥y
Onboarding Request Menu OnTrip L
"y
: 7z,
2 R/ /46}
@
& .
o L).
Y v £S
- | DNA Lounge ©
LocationEditor Shortcuts LocationEditor)
-) [O m (D
© Hame Columbus ~ The
' ' Cafe Sycamoare
[Favorites] Save this destination
i icrn N
| /\

Favorites
p—

Timeline

February June August November

Core architecture & framework

Core Tlow

Everything else

Rider Application

A lot of files with a lot of lines of code

Over ten thousand Switt files

A million lines of Swift code

SWiTt - the good

Defer

Guard

Functional programming

Tuples
Default parameters olicit overrides
’ ®
It’s just a better
Generics Type inference

Protocol extensions
Optionals ece code

Cnumerations

SWiTt - the good

Reliability

Crash-free rate targ

99.999%

SWiTt - the good

Reliability

P

99.9/7% 99.90%

Swift beats Java by a factor of 3 in reliability*

https://www.flickr.com/photos/86979666@N00/

SWiTt - the good

Reliability

callmeMaybe(who person: Person?) {

doCall(who: person!) 0 Bang Violation: Oh no, you didn't! (Bang)

Don't unconditionally unwrap

Swift - the good

Android™ engineers

Android engineers more welcome!

The Android robot is reproduced or modified from work created and shared by Google and used according to terms described in the Creative Commons 3.0 Attribution License.

https://creativecommons.org/licenses/by/3.0/

SwiTt

The bad

SWiITt - the bad

Testing is hard

H =2 Q AN O

» [" | DriverCoreTests 74 tests

u

> DriverintegrationTests 1 test

-

DriverMapsNonCoreTests 33 tests

>

» [|NetworkOrchestratorTests 6 tests
¥ [| PresidioFoundationTests 73 tests
P (1) ArrayTest

» [ArrayTests

» [1]) AssertsTests

» [1I] AtomicBoolTests

» [1] AtomicintTests

» (1) AtomicReferenceTests

» [1/] BundleExtensionsTests

» [1f) ConcurrencyTests

» (1] ConcurrentReadVariableTests

P> CountDownlLatchTests

Testing

What can we do about it?

Testing is hard

Storing {1

dataForKey(key: String, nameSpace: String) —> Data?

storeDataForKey(key: String, nameSpace: String, data: Data) —> Storage.StorageResult

What can we do about it?

Testing is hard

Storing 1

dataForKey(key: String, nameSpace: String) —> Data?

storeDataForKey(key: String, nameSpace: String, data: Data) —> Storage.StorageResult

Mock generation:

artman@ $ script/generate—-mocks

What can we do about it?

Testing is hard

StoringMock: Storing {

dataForKeyHandler: ((key: String, nameSpace: String) —-> (Data?))?
dataForKeyCallCount: Int = 0

storeDataForKeyHandler: ((key: String, nameSpace: String, data: Data) —> (StorageResult))?
storeDataForKeyCallCount: Int = 0

() A

s
dataForKey(key: String, nameSpace: String) —> Data? {
dataForkKeyCallCount += 1
dataForKeyHandler = dataForKeyHandler <
dataForKeyHandler(key: key, nameSpace: nameSpace)
s
s
storeDataForKey(key: String, nameSpace: String, data: Data) —> StorageResult {
storeDataForKeyCallCount += 1
storeDataForKeyHandler = storeDataForKeyHandler {
storeDataForKeyHandler(key: key, nameSpace: nameSpace, data: data)
}
StorageResult.Success
s

SWiITt - the bad

Tooling issues

Indexing | Processing files 13 @ 40

Interactor.swift RootRouter.swift RootInteractor.swift

) = Model.swift) No Selection

SourceKitService 328.3 4:25:51.16

SwiTt - the bad

Tooling issues

& Xcode File Edit View Find Navigate Editor Product Debug Source Control Window Help Mon 2:19 PM Q =
. o) = E) Uber) g iPhone 7 Indexing | Processing files 1 = O < L] 2 [
RootRouter.swift Rootinteractor.swift +
e 2 Uber Rider Features Root) ¥ Rootinteractor.swift » [startPluginWarkers() < >

context = RootWorkerPluginContext{(urlStream: urlStreamSubject.asObservable(),
statusUpdateMeasurementWorkerlListener: '
sessionStream: authorizationStream.session)
workerPluginManager.craataPlugins(context: context)
.take(1)
.subscribeNext { (workers: [Working]l)
worker workers {
worker.start()

.pluginWorkers = workers

}

.disposeOnDeactivate()

subscribeToSessionForRouting() {
__traceUUID = uniqueTraceStart("\(- - - { uniqueTraceStop(__traceuviD) }

sessionStream = authorizationStream.session
authorizationStream.session
.subscribeNext { [weak] session
strongSelf = {

Auto & @ Filter All Output 2 (®) Filter IR |

\What can we do about It?

Tooling issues

What can we do about it?

Tooling issues

Use alternatives More frameworks

artman@ $ defaults write com.apple.dt.XCode IDEIndexDisable 1

SWiITt - the bad

Binary size

Any app’s budget

SWiITt - the bad

Binary size

Structs

Struct are allocated on the stack and can increase binary size

Optionals

Are implemented as enums and add code that you might be unaware of

Generic specialization

Generics are awesome, but speed comes at a cost

Swift runtime libraries
4.5 MB Tor three architectures

What can we do about it?

Binary size

Wait for Swift 4

Apple is working on decreasing binary size of value types

Play around with optimization settings

Sometimes whole module optimization will yield smaller binary sizes, often larger

Know where you are spending binary size
We use link-maps to map symbols back to files

Then we combine all of them and generate an interactive tool

\What can we do about It?
Binary size

09 ® < |’ il Search or enter website name & (4]

>
()

rider pojv uv tmm a i v ar vg en Tt ¢S hn t€ atb Sf st cp 3oltBlog— Medium tciff schema Ios#refiecilion £k DIff View startup_trec...~AM_FDT.htn +

Stats

SWiITt - the bad

Startup speed

Pre-main Post-main

\What can we do about It?

Pre-main startup speed

Pre-main

The number of dynamic libraries linearly affects pre-main startup speed

- Re-link all of the symbols in all of our dynamic libraries into the application binary

- Butyou can’t link in the Swift runtime libraries (that's 250ms on an iPhone 6s)

Test all the time, although its hard

- The number of dev/enterprise provisioning profiles on your phone greatly affects startup speed

- Tooling is needed to graph pre-main times

What can we do about it?

Post-main startup speed

Post-main

Reordering symbols in the app binary
- Use DTrace to probe which symbols are accessed in your startup sequence and in what order
- Re-link your application with that order

. 20% speedup on a 4s

SwiTt

The Ugly

Switt - the ugly

Compile speeds

THE #1 PROGRAMMER EXCUSE

FOR LEGITIMATELY SLACK
MY CODE'S COMPIL

»NG.‘\

NG OFF:

HEY! GET BACK
TOWRK! ./

Image copyright (c) 2016 xkcd (CC BY-NC 2.5)

“Holistically considering all the positive and
negative experiences you've had with writing
code, which language do you think works
better for 10S development at Uber going

June 2016

O Switt

@® Objective-C

June 2016

L. @® Objective-C for life!
@ Objective-C © Swift with all its flaws
® Swift, if it compiled faster
© Swift, if it compiled & indexed faster
@ Swift, if it compiled faster & had better tooling

O Swift

What can we do about it?

Compile speeds

Contribute to Swift

- |t's open source

Add warnings on slow type inference

- Other Swift Flags: -warn-long-function-bodies=100 -solver-memory-threshold 300000

Combine files

- Merging 200 model files into 1 decreased compilation time from 1min 35sec to 17sec

\What can we do about It?

Compile speeds

¥ Swift Compiler - Code Generation
Setting
Disable Safety Checks
¥ Optimization Level

Debug
Release

» Swift Compiler - Custom Flags

» Swift Compiler - General

» Swift Compiler - Search Paths

» Swift Compiler - Version

» Swift Compiler - Warnings Policies

¥ User-Defined
Setting
» MTL_ENABLE_DEBUG_INFO
Y SWIFT WHOLE_MODULE_OPTIMIZATION

Debug
Release

& Uber
No T
<Multiple values> ¢

None [-Onone] T
Fast, Single-File Optimization [-O]

B Uber

<Multiple values>
<Multiple values>
YES

NO

Buck

Superior dependency management
Reliable incremental builds
Remote build cache
https://buckbuild.com

https://buckbuild.com

Buck

Superior dependency management
Reliable incremental builds
Remote build cache

Android

Clean: 4x faster Clean: 6x faster
Incremental: 20x faster Incremental: 30x faster

Swift Support for Buck?

It's (almost) here

Swift support for Xcode project file generation
- Implemented (https://github.com/facebook/buck/tree/uber-pr)

Swift support for Buck builds
- Implemented (https://github.com/facebook/buck/tree/uber-pr)

Swift support for Buck builds in the Xcode IDE

- Work not yet started...
- Generate projects based on what targets you want to work on

- Local builds can use the remote build cache

Results

How did Swift help us?

Rider app rewrite

Where does Swift help?

99.99% reliability of core flows

Enable global rollback of core flows to a guaranteed
working state

Support Uber’s growth for years to come

Narrow and decouple functionality as much as possible

Provide rails for both design and code

Guidelines for both architecture and design

Monitoring is a first-class citizen

Automatic analytics, logging, debugging, and tracing

De-risk experimentation

Application framework with plugin AP

Make magic

Performance second to none, graceful degradation on
low-end devices and networks

“Holistically considering all the positive and
negative experiences you've had with writing
code, which language do you think works
better for 10S development at Uber going

February 2017

O Switt

@® Objective-C

Takeaways

When growing your engineering team, make sure to:

. Keep an eye on compile times
. Monitor your binary sizes
» Figure out how to unit test

. Start using Buck

- When you start running into problems, your team should already be big enough
to address these problems

uber.github.io

uber.github.io
eng.uper.com

Thank you!

Tuomas Artman

Mobile Platform, Uber
tuomas@uber.com
@artman

uber.github.io
eng.uber.com

mailto:tuomas@uber.com?subject=
http://uber.github.io
http://eng.uber.com

