
40 Int. J. Security and Networks, Vol. 9, No. 1, 2014

A taxonomy of privilege escalation attacks in Android
applications

Mohammed Rangwala
Department of Computer and Information Science,
Indiana University Purdue University Indianapolis,
Indianapolis, IN 46202, USA
E-mail: mmrangwa@iupui.edu

Ping Zhang
Department of Computer Science and Engineering,
Henan Institute of Engineering,
Zhengzhou, HN 451191, China
E-mail: zpings@sina.com

Xukai Zou*
Department of Computer and Information Science,
Indiana University Purdue University Indianapolis,
Indianapolis, IN 46202, USA
E-mail: xkzou@cs.iupui.edu
*Corresponding author

Feng Li
Department of Computer and Information Technology,
Indiana University Purdue University Indianapolis,
Indianapolis, IN 46202, USA
E-mail: fengli@iupui.edu

Abstract: Google’s Android is one of the most popular mobile operating system platforms today,
being deployed on a wide range of mobile devices from various manufacturers. It is termed as a
privilege- separated operating system which implements some novel security mechanisms. Recent
research and security attacks on the platform, however, have shown that the security model of
Android is flawed and is vulnerable to transitive usage of privileges among applications. Privilege
escalation attacks have been shown to be malicious and with the wide spread and growing use of the
system, the platform for these attacks is also growing wider. This provides a motivation to design
and implement better security frameworks and mechanisms to mitigate these attacks. This paper
discusses; 1) the security features currently provided by the Android platform; 2) a definition, few
working examples and classifications of privilege escalation attacks in Android applications; 3) a
classification and comparison of different frameworks and security extensions proposed in recent
research.

Keywords: Android; privilege escalation; smartphone security.

Reference to this paper should be made as follows: Rangwala, M., Zhang, P., Zou, X. and Li, F.
(2014) ‘A taxonomy of privilege escalation attacks in Android applications’, Int. J. Security and
Networks, Vol. 9, No. 1, pp.40–55.

Biographical notes: Mohammed Rangwala is a Master’s student with the Department of Computer
and Information Science at Indiana University-Purdue University Indianapolis. He obtained his BE
in Computer Engineering from University of Mumbai, India in 2012. His research interests include
network security, android security and digital provenance. He received the University Fellowship in
2012.

Ping Zhang is a Faculty Member with Department of Computer Science and Engineering, Henan
Institute of Engineering, China. Her research area covers networking, operating systems, network
management and protocol design.

Copyright c⃝ 2014 Inderscience Enterprises Ltd.

A taxonomy of privilege escalation attacks in Android applications 41

Xukai Zou is a Faculty Member with the Department of Computer and Information Science at
Indiana University-Purdue University Indianapolis. He completed his PhD in Computer Science
from University of Nebraska-Lincoln. His current research focus is applied cryptography, network
security, biometrics, authentication and communication networks. His research has been supported
by NSF, the Department of Veterans Affairs and Industry such as Cisco and Northrop Grumman.

Feng Li received his PhD in Computer Science from Florida Atlantic University in August 2009.
His PhD advisor is Dr. Jie Wu. He joined the Department of Computer, Information, and Leadership
Technology at Indiana University-Purdue University Indianapolis as an Assistant Professor in
August 2009. His research interests include the areas of wireless networks and mobile computing,
security, and trust management. He has published more than 30 papers in conferences and journals.

1 Introduction

Google’s Android is a modern and popular operating system
platform for smartphones and tablet devices. Since the
first release in 2008, its popularity and sales of devices
hosting the system have increased at a very fast rate.
A report by Strategy Analytics in January 2013 states
that smartphone sales grew 38% in the last quarter of
2012 to reach 217 million units worldwide, and over 700
million units for the entire year (Strategy Anayltics, 2013;
Yahoo! Finance, 2013). Of this number, 68.4% devices
operate the Android platform. In October 2012, Google
said that there were about 700,000 applications available
for downloading onto Android devices matching the number
of applications on Apple’s App Store for iOS devices
(Bloomberg Businessweek, 2012). There are a large number
of end user devices and a large number of applications being
used on them. Handsets today have become full-fledged
computing platforms supporting complete operating systems
and complex applications. However, this brings new security
challenges. A recent mobile security report states that:

“The sheer number of mobile applications at a time when
the technology in mobile security is still in its infancy
presents complex, multifaceted, and unprecedented security
challenges to enterprises while putting individual privacy at
high risk.” (Li and Clark, 2013)

The current model of the Android Application Market allows
developers to upload arbitrary applications at a minimal fee.1

This creates a large attack surface for malicious applications
to be published on the market and installed on end user
devices. According to the Kaspersky Security Bulletin 2012,
99% of the newly discovered mobile malicious programs
target the Android platform (Kaspersky, 2012). Soundcomber
(Schlegel et al., 2011) is a trojan that uses innocuous
permissions and context-aware tone- and speech-analysis to
extract small amounts of targeted private data. The trojan
GGTracker (The Lookout Blog, 2012) sends SMS to a
premium-rate number and can steal private information from
the device. Apple screens applications posted to its App
Market, which protects users from malicious applications.
Nevertheless, applications could still have vulnerabilities that
may be exploited. Google, on the other hand, does not
screen applications being published to its market, making
it possible for malicious applications to easily reach users.

It occasionally takes down applications that are found to
contain malware.

Android implements a permissions and sandboxing
mechanism through its middleware layer to control access to
resources and mediate inter-application communication. It is
a privilege separated system, with each application having
its own distinct system identity. This model is not able to
prevent transitive usage of permissions that can be leveraged
to launch privilege escalation attacks (Davi et al., 2010). It is
possible for a malicious application to gain capabilities leaked
from benign applications making its capabilities more than it
is permitted to have. It is possible to prevent this by having
strong checking of permissions; however, since developers
are not security-minded, this is not used in practice. As a
result, there is need for a more secure framework to be
implemented to prevent these attacks.

The main contributions of this paper are:

• discusses a classification of privilege escalation attacks
depending on the channels and mechanisms used,
explained by Figure 4 in Section 4

• provides comparisons of different analysis tools and
security extensions, explained by Tables 1–3 in
Section 6

• this paper not only provides tutorial knowledge for the
inquisitive reader, but also provides guidance to
security researchers and application developers.

The rest of this paper is organised as follows: Section 2
discusses background information about Android along
with the security mechanisms currently implemented. The
privilege escalation attack is formally defined and explained
in Section 3. A classification of the application level privilege
escalation attacks is provided in Section 4. Section 5
discusses defense goals and models. Section 6 discusses
different analysis tools and extensions proposed in recent
research, and their comparison. Security guidelines that must
be followed along with some recoomendations are discussed
in Sections 7 and 8 concludes the paper.

2 The Android platform

Android is an open source mobile platform built on a
Linux kernel. It implements certain security mechanisms

42 M. Rangwala et al.

Figure 1 Android architecture diagram

Drivers
Process

Manager

File

System
Network

LINUX KERNEL LAYER

MIDDLEWARE LAYER

Application Framework

Native

Libraries Core

Java Libraries

Dalvik

Virtual Machine

Android Runtime System

Default (core) applications Third party applications

APPLICATION LAYER

Reference

Monitor

Binder

Component

Framework

Application

Installer

Policy

Application Application

ICC

File Systems /

Default Linux IPC /

Network Sockets

that impose restrictions on how applications are allowed to
behave. This section reviews some of these concepts.

2.1 The architecture

The Android platform, as depicted in Figure 1 is built
on a Linux kernel which provides the basic functionalities
of drivers, file system support, networking and process
scheduling. On top of the kernel are the native libraries,
written in C/C++ (http://elinux.org/ Android Architecture).
The runtime environment contains an Android-specific
optimised Java Virtual Machine called the Dalvik Virtual
Machine and the core Java libraries. Every application runs
on its own instance of the virtual machine providing isolation.
An application framework layer provides the applications
with basic functionalities such as resource management,
activity life cycle management, window management, etc.
Android applications are written primarily in Java, but it is
possible to include C/C++ libraries using the Java native
interface (JNI). However, the security mechanisms of Java,
e.g., bounds checking, are lost when such libraries are
included. Applications run over the application framework
layer. The reference monitor is a component of the application
framework that mediates inter component communication
(ICC) on the basis of a system policy (Enck et al., 2009).
It provides a mandatory access control (MAC) enforcement
of how applications access components. The application
installer installs new applications and the Binder component
framework provides a synchronous RPC mechanism for ICC
within the same application as well as between applications.
The right portion of the figure shows the different
communication channels possible between applications at the
different layers of the Android architecture.

2.2 Inter component communication

Applications make use of components in their logic that
communicate with each other through the mechanism of
Intents. Intent is a passive data structure that contains two
items: action to be performed, and data to be operated

upon. Applications can make use of four components and
Figure 2 shows the standard interaction between components
through the use of intents. Activity – provides a user interface
and handles a single focused thing a user can perform.
An application can contain many Activities, one for each
screen presented to the user. The interface progression is a
sequence of one Activity starting another, possibly expecting
a return value (Enck et al., 2008). Activities can start
other or return to other activities using intents as shown
in Figure 2(a). Service – used to perform a long-running
background operation even after an application loses focus.
Service components are bound to activities that can start/stop
them as seen in Figure 2(b). Content Provider – used to
manage a structured set of data, such as, a local database.
Content providers provide interfaces that support SQL-like
queries, e.g., SELECT, INSERT, UPDATE, through which
components of other applications can access the data. They
are queried by activities through intents as seen in Figure 2(c).
Broadcast Receiver – used to receive broadcasted intents from
multiple components. It acts as an asynchronous mailbox for
directed broadcasts of system and application event messages
and sometimes invokes a Service or Activity to handle the
task. Broadcast receivers gather broadcasted intents from
multiple components as seen in Figure 2(d).

2.3 Security mechanisms

Android makes use of the following security mechanisms
(Chan et al., 2011; Davi et al., 2010):

Discretionary access control. Each running process is
assigned a UserID and each file (i.e., object) has certain
access rules which is inherited from Linux. For example in
Linux, every file has read, write, execute privileges for a user,
group of users and everyone. Similar mechanisms exist in
Android as well.

Sandboxing. Every application is logically isolated from other
applications and system resources. An application can only
access the files owned by it or files of other applications that

A taxonomy of privilege escalation attacks in Android applications 43

explicitly give permissions for other applications to access
them.

Component isolation. Application components may be
specified as public or private. A private component is only
accessible to components of the same application. This
imposes restrictions by default. A public component can
be accessed by other applications and needs to perform
permission checking to restrict other applications from
accessing it.

Figure 2 Inter component communication (ICC) of four
components: (a) activity components ICC; (b) service
components ICC; (c) content providers ICC and
(d) broadcast receivers ICC

Source: Chan et al. (2012)

Permissions. Android provides finer-grained security features
through the use of permissions mechanism. It enforces
restrictions or specific permissions that a particular process
can perform. It is provided by the middleware layer and
the reference monitor enforces a MAC on ICC calls.
Android has roughly 100 built-in permissions that control
operations ranging from dialing the phone (CALL PHONE),
taking pictures (CAMERA), using the Internet (INTERNET),
listening to key strokes (READ INPUT STATE), whereas,
applications may also declare custom sets of permissions to
restrict access to them (Shabtai et al., 2010). Permissions

can be classified into four categories (Felt et al., 2011a;
Chin et al., 2011):

• Normal permissions protect API calls that would annoy
a user but not cause any harm (e.g.,
SET WALLPAPER) and do not require user approval

• Dangerous permissions allow an application to perform
potentially harmful operations. They are granted by the
user on installation (e.g., RECORD AUDIO)

• Signature permissions only granted if the requesting
application is signed by the same developer that defined
the permission

• SignatureOrSystem permissions are granted if the
application meets the Signature requirement or if the
application is installed in the system applications folder.

Permissions are declared in AndroidManifest.xml, which
is a compulsory file for all applications and is used at
installation time by the Android system for user’s consent.
It relies on the user to judge whether he or she permits the
application to use all the permissions it requires or does
not install the application. The current Android platform
only performs a static checking of permissions, but does not
take into account the context in which these permissions are
used by applications (Schlegel et al., 2011). This leads to
vulnerabilities in the system.

Application signing. Android uses certain cryptographic
signatures to verify the origins of applications and establish
trust relationships among them. For this, developers sign their
code using a certificate with a private key held by them.
This certificate is present in the installation APK file of an
application and is validated at install time. It allows to enable
signature-based permissions, or to allow applications from
the same origin (i.e., signed by the same developer) to share
the same UserID.

Ongtang et al. (2009) state that:

“The Android system protects the phone from malicious
applications, but provides severely limited infrastructure for
applications to protect themselves.”

They identify three missing policies not available to
applications:

• Permission assignment policy: Applications have
limited ability to control which other applications are
granted permissions to access its interfaces.

• Interface exposure policy: The system provides limited
ability for applications to control how their interfaces
are used by other applications.

• Interface use policy: At run-time, applications have
limited ability to select which other application’s
interfaces they use.

Shabtai et al. (2010) provide an assessment of the Android
security framework. They state that the Android system in its
normal state is secure since the owner (and the attacker) can
not modify the kernel without hardware changes. The only way

44 M. Rangwala et al.

to circumvent this is to exploit vulnerabilities in the kernel
modules or core libraries giving the attacker root privileges.
This is an indication of a privilege escalation at the kernel level,
but this paper focusses on attacks at the application level. This
classification will be further discussed in Section 4.

3 The privilege escalation attack

It has been shown in the works (Davi et al., 2010; Chan
et al., 2011; Bugiel et al., 2012; Chan et al., 2012; Felt et
al., 2011a) that the Android security mechanisms, though
novel, are flawed and it is possible for transitive usage of
privileges to take place between applications. This section
formally defines the privilege escalation attack along with
working examples.

3.1 Definition

Davi et al. (2010) first defined the privilege escalation attack
as:

“An application with less permissions (a non-privileged
caller) is not restricted to access components of a more
privileged application (a privileged callee).”

This definition is better explained through an example
depicted in Figure 3, which illustrates a privilege escalation
attack between components of different applications (Davi
et al., 2010). Consider three applications A, B and C,
each running in its own sandbox and each having two
components. In application C, component CC1 is protected
by permission p1, similarly, CC2 by p2. Application B
is granted permission p1, hence CB1 and CB2 can access
CC1. However, B is not protected by any permission and
its components are publicly accessible. A does not have any
permissions, but its component CA1 can access CB1. CA1

is not able to access CC1 directly since it does not have
permission p1, however, it can do so via component CB1.
This is a Privilege Escalation Attack since the privileges
of application A (non-privileged caller) are escalated to
the privileges of application C (privileged callee) indirectly
through B which indicates the transitive usage of privileges.

The attack described here is called the confused deputy
privilege escalation attack and will be discussed in further
detail in Section 4. In order to prevent this type of an attack,
application B must ensure that another application calling it
must have permission p1. This is done in Android through
the use of permission checking mechanisms in the code
and this task is delegated to application developers. Since
developers are not security-minded and applications usually
face a time-to-deliver deadline, this permission checking is
generally ignored and making it an error-prone approach.
Similar to other security vulnerabilities in software systems,
these vulnerabilities are a result of undertrained developers,
lack of application quality assurance mechanisms, usability
issues of existing security mechanisms – issues that are
difficult to avoid in reality (Lu et al., 2012).

3.2 Working examples

Davi et al. (2010) discussed a vulnerablility in the early
version of Android that could be used to launch a
privilege escalation attack. They stated that the core Android
application Phone had an unprotected component that
provided an interface to other applications that could be
used to make unauthorised phone calls. This attack could be
mapped to the example scenario of the previous section as:
application Phone in place of B, the system interface in place
of C. Any other application, e.g., Activity Manager could
be in place of A. The Activity Manager could access the
unprotected component of the Phone application sending a
phone number to it, which would invoke the system interface
to call that number, making an unauthorised phone call.

As a proof-of-concept attack in their work DroidChecker,
(Chan et al., 2012) exploit a capability leak in the Adobe
Photoshop Express 1.3.1 (PEA). They created an attacker
application that used the vulnerability in APE to retrieve
e-mail addresses of contacts on the phone. The attacker
application is first launched, which then launches the
vulnerable component of APE. The user then gets tricked
into selecting a contact from the contact list, which is then
passed back to the attacker application. This indicates that the
attacker application gains more privileges by exploiting the
vulnerability of the APE application.

Figure 3 Component-based permission escalation attack (see online version for colours)

Sandbox

Application A

C
A1

C
A2

Sandbox

Sandbox

Application B

C
B1

C
B2

Sandbox

Application C

C
C1

C
C2

Android Middleware

MAC Reference Monitor

p
1

p
2

C
B1

 can be accessed

without permissions

C
B1

 can access C
C1

C
A1

 cannot access C
C1

 directly

Granted permissions: p
1

Granted permissions: -Granted permissions: -

Source: Davi et al. (2010)

A taxonomy of privilege escalation attacks in Android applications 45

Hobarth and Mayrhofer (2011) authors discuss four
example exploits that allow applications to temporarily
escalate their privileges to root privilege. They are created
using the Android Native Development Kit and depend
on the Android system version being used, and can cause
missing input sanitisation for applications receiving input
from untrusted sources, overflow the limit of supported
number of processes created by the same uid, remap the
shared memory and restrict access to the ashmem (Android
shared memory) shared memory. Though these exploits do
not fall into the specific categories of attacks discussed
in Section 4, they give an indication of vulnerabilities
in the Android system and applications that can be
exploited.

4 Classification of application-level privilege
escalation attacks

Privilege escalation is possible at two levels in an Android
system: the kernel level or the application level. Attacks at
the kernel level exploit vulnerabilities in the Linux kernel
or core system libraries (Shabtai et al., 2010). This paper
focusses on privilege escalation attacks at the application
level and this section gives a classification of them depending
on the channel used to exploit vulnerabilities in applications.
A classification of privilege escalation attacks is discussed
by Bugiel et al. (2012) which is further extended here, as
described by Figure 4. They classify them, based on the
mechanism used, into two broad categories: confused deputy
attacks and attacks by colluding applications.

The first category, confused deputy attacks, involves an
attacker application exploiting vulnerabilities of a target
benign application (called a deputy) (Hardy, 1988) to perform
some unauthorised operation. This is also referred to as
permission re-delegation (Felt et al., 2011a). Permission
re-delegation can occur in three ways:

• if an application accidentally exposes some internal
functionality to other applications

• a confused deputy may intentionally expose some
functionality but an attacker may use it for malicious
purposes

• a developer may expose functionality with the goal of
attenuating authority, but may implement the
attenuation policy incorrectly or inconsistently.

Recent research shows that there are vulnerabilities in both
the default core Android applications as well as third party
developed applications that can be exploited (Bugiel et al.,
2012). Relying on developers to prevent this is not a good
practice, since developers are not security experts and they
do not have independent motivation because a confused
deputy attack does not affect the deputy itself. This attack can
be further categorised, depending on whether vulnerabilities
are leveraged using inter component communication (ICC) or
through the use of internet sockets.

In the second category, both applications are malicious
and they collude to gain a permission set that is not
allowed for either of them. An example of this type
of attack is the Soundcomber (Schlegel et al., 2011), in
which one application has permission to monitor and record
audio call activity and another application has internet
access permission. Both applications collude to extract credit
card information using targeted tone- and speech-analysis
and send the data to a remote attacker. Marforio et al.
(2012) analysed different mechanisms that could be used
for communication by colluding applications, which may
be used further for escalation of privileges. Mechanisms
for communication channels can be classified into three
categories: Application, Operating System and Hardware
levels; and may be either overt or covert. It can be
argued that if applications collude such that, a privileged
application sends data to an unprivileged application (which
does not have the requisite permissions to access the
data), it results in a privilege escalation attack. Colluding
applications may communicate directly using ICC or internet
sockets, or through indirect communication like covert
channels. Concentrating on covert channels as a means of
communication, there are different mechanisms possible at
each of the levels: Application level – through the use of

Figure 4 Classification of application-level privilege escalation attacks

46 M. Rangwala et al.

single/multiple settings, types of Intents, automatic Intents;
Operating system level – through thread enumeration, UNIX
socket delivery, free space on file systems; Hardware level –
through timing channels and processor frequency. Colluding
applications can either communicate directly through the use
of ICC or internet sockets, or indirectly by sharing files or
through covert/overt channels in system components. Since
covert channels are not as popular or effective in terms
of time of attack, this paper restricts the discussion to file
systems and Unix sockets. As will be discussed in Section 5,
the existing security solutions to prevent privilege escalation
attacks are insufficient to adequately prevent collusion attacks
(Marforio et al., 2012), which remains an open research
problem.

Zhongyang et al. (2013) discuss another classification for
privilege escalation attacks based on the type of cooperation
between applications code cooperation and data cooperation.
In code cooperation, a less privileged application invokes the
components of a more privileged application, whereas in data
cooperation, it gets sensitive information or data from the
more privileged application. Each of these types may use
mechanisms discussed in the previous classification.

5 Defense discussion

After defining and categorising different types of privilege
escalation attacks, it is important to focus on the defense
strategies to use to prevent them. It is essential to identify the
requirements that a defense mechanism must satisfy, in order
to build an efficient system.

5.1 Requirements of security mechanisms

Defense mechanisms should satisfy the following (Felt et al.,
2011a):

• Prevention of privilege escalation: Defense mechanisms
should be able to prevent privilege escalation attacks of
both categories – confused deputy and colluding
applications that use either code or data cooperation.

• Developer independence: The mechanism should not
rely on the developers to write their applications
cautiously to meet some of the security requirements (if
developers were themselves security minded, privilege
escalation would be prevented at the root cause level).

• Ease of development: Applications should retain their
functionality without imposing excessive burden on the
developers.

• Dynamic: The mechanism should be dynamic, consider
different runtime behaviours and not require application
analysis.

5.2 Adversary model

Bugiel et al. (2012) propose a scalable adversary model that
can be used as reference to build a defense mechanism:

• WeakAdversary is able to launch only known confused
deputy attacks through ICC mechanisms. This is the
simplest case of an adversary, and since the type of
attacks are known, defense is relatively easier.

• BasicAdversary is able to launch confused deputy
attacks using both ICC mechanisms as well as through
internet sockets. Most research addresses this type of
Adversary, since preventing privilege escalation attacks
with colluding applications is a tougher challenge.

• AdvancedAdversary is able to launch any type of
confused deputy attack as well as unknown collusion
attacks that use the direct ICC mechanism.

• StrongAdversary is able to launch any type of
application-level privilege escalation attack (confused
deputy or collusion attacks) via all types of
communication mechanisms discussed earlier.

An ideal security solution should be able to prevent a
StrongAdversary from attacking the system. Although this
model gives a coarse categorisation, it will be used to
compare different security frameworks and techniques in
Section 6.2.

5.3 General strategies for defense

Felt et al. (2011a) discuss some general strategies for defense
against privilege escalation attacks. These methods include:

Capabilities: A capability is an un-forgeable, shareable token
that, when used, grants access to a privilege (Hardy, 1988).
A method of preventing privilege escalation attacks is to have
the deputy (or any other application) ask for a capability token
from its requester to be able to make API calls. This method
does not satisfy developer independence and could result in
malicious developers circumventing this mechanism.

Taint tracking: When a requester application makes a request,
its data can be a source of the taint which can then be tracked
through the application till it reaches a sink (i.e., API call). If
tainted data reaches a corresponding sink, privilege escalation
is possible. This method incurs a large overhead when used to
track both control and data flows through an application and
can also result in taint explosion.

MAC: Mandatory access control systems involve the
operating system enforcing certain access and control flow
policies across different levels of confidentiality and integrity.
In such systems, no information can flow from low-
integrity principals to high-integrity principals or from high-
confidentiality principals to low-confidentiality principals.
Android applications do not follow strict relationships of
confidentiality and integrity between applications, and hence
it is not feasible to have strict MAC rules.

Stack Inspection: When a privileged API call is made, the
system can check the call stack (with some modifications) to
determine the applications in the call chain and verify their
privileges. However, this approach can not prevent against
attacks if calls are asynchronous and they do not appear in the
same call stack.

A taxonomy of privilege escalation attacks in Android applications 47

HAC: History based access control involves reduction of
permissions of trusted code if it interacts with untrusted
code. This mechanism places constraints on application
functionality.

After looking at the requirements and the adversary model,
the analysis tools and security extensions to the platform can
be discussed.

6 Analysis tools, security frameworks and
techniques

Bugiel et al. (2012) discuss the security extensions for
the Android platform which is extended and depicted in
the Figure 5. Most proposed solutions require changes to
Android’s middleware with extensions to components of the
application installer, the reference monitor, the permissions
database and the Dalvik Virtual Machine. These tools aim at
achieving objectives that can be commonly listed as:

• system-centric protection mechanism

• a general solution to prevent all (or most) types of
attacks

• compatibility with legacy Android applications

• low performance overhead in mobile phone usage.

Monitoring techniques face certain general challenges:

• smartphones are resource-constrained limiting the use
of heavyweight techniques

• techniques need to distinguish between different types
of information, requiring more storage and processing

• privacy information can be dynamic, making it difficult
to track

• applications share information amongst each other
which requires monitoring between them.

There are various tools proposed, some perform analysis of
applications to detect capability leaks, some track the flow of
sensitive data through an application, whereas others focus on
prevention of privilege escalation (Enck, 2011). This section
discusses a classification of these methods according to the
technique used and also provides a comparison between some
of them.

6.1 Analysis tools

SCanDroid (Fuchs et al., 2009) is an analysis tool
that performs incremental checking of applications as
they are installed on an Android device. It extracts
security specifications from the manifest file and determines
whether data flows through the application satisfy and
are consistent with these specifications. It was the
first program analysis tool aimed at providing security
certification of Android applications. It uses the tool WALA
(http://wala.sourceforge.net/ wiki/index.php/Main Page) that
parses through a set of Java classes and generates a call
graph for all reachable methods. It involves string analysis
to recover addresses of components, pointer analysis to
track flows through the heap and handles interprocedural
flows through JVML byte code. However, it remained in
the research stage and was not implemented on real world
applications.

ComDroid (Chin et al., 2011) is a static application
analysis tool that detects vulnerabilities in Android

Figure 5 Security frameworks for Android

App A

Perm. P
1

Sensitive

Data

App B

Perm. P
3

Dalvik VM

TaintDroid

AppFence

YAASE

Reference Monitor

Saint

XManDroid

YAASE

IPC Inspection

QUIRE

TrustDroid

ScanDroid

Installer

Saint

XManDroid

ScanDroid

Android Middleware

QUIRE TrustDroidLinux Kernel

Hardware

Analysis tools

ComDroid

Mr. Hide

Service

DroidChecker

Woodpecker

Dr. Android

Perm. P
2

Permissions
Database CHEX

Diordna

DroidAlarm

Source: Bugiel et al. (2012)

48 M. Rangwala et al.

applications. The authors examined security challenges
from the perspectives of Intent senders and receivers.
ComDroid disassembles applications using the tool Dedexer
(http://dedexer.sourceforge.net/) and then parses the output
to detect potential Intent and component vulnerabilities.
It examines Intent creation and transmission to detect
any unauthorised receipt of Intents which could result in
Broadcast theft, Activity hijacking or Service hijacking. A
malicious application may launch an Intent spoofing attack
by sending an Intent to an exported component that is not
expecting Intents from that application, resulting in malicious
Activity or Service launch. ComDroid’s component analysis
decides whether components might be susceptible to an Intent
spoofing attack by examining the application’s manifest file
and performing intraprocedural analysis on each component.
20 applications were analysed with ComDroid and manually
verified in which 34 exploitable vulnerabilities were found
– 12 of the 20 applications had at least one vulnerability.
ComDroid can lead to false negatives because it does not
consider the reason for control flow in code.

DroidChecker (Chan et al., 2012) is another static
application analysis tool which searches for vulnerabilities
in Android applications. It performs a check on the manifest
file of the application to detect vulnerable components in
the application on the basis of a decision making process.
This list of potentially vulnerable components is then used
along with the decompiled source files obtained using the
tool dex2jar (https://code.google.com/p/dex2jar/) to extract
a call graph. Static taint analysis is then performed on this
graph to identify paths between public entry points and API
calls data as well as action calls, which could result in
capability leaks. Their previous work (Chan et al., 2011) only
checks for vulnerabilities based on the manifest file which
was then further enhanced to determine capability leaks.
An experiment with 1179 Android applications revealed six
applications with true capability leaks. The sample attack
in the Adobe Photoshop Express 1.3.1 application was
discussed in Section 3.2.

Woodpecker (Grace et al., 2012) is also a static
analysis application tools for determining capability leaks
in Android applications. It performs data flow analysis
of pre-loaded applications to find the reachability of
dangerous permissions from a public interface. Woodpecker
categorises capability leaks into two types: explicit
– similar to capability leaks in a confused deputy
problem and implicit – similar to maliciously colluding
applications. Implicit leaks are caused by the abuse of
the ‘sharedUserId attribute in the manifest which gives
applications of the same author the same ID allowing
all such applications to acquire a union of permissions.
Woodpecker extracts the pre-loaded applications and
the manifest file from the phone image, then uses the
disassembler baksmali (https://code.google.com/p/smali/) to
get an intermediate representation. It then constructs a control
flow graph and examines public unprotected interfaces that
have paths leading to capabilities to detect explicit leaks.
The system detects and reports the use of an unrequested
capability by another application. 8 phone images were tested
to find that among 13 privileged permissions examined,

11 were leaked, with individual phones leaking up to 8
permissions.

Diordna (Zhong et al., 2012) is another static analysis tool
that checks the various sources of permission re-delegation
and generates test cases for IPC unit testing. It uses
the tool dex2jar (https://code.google.com/p/dex2jar/) to
first convert the application into jar and then WALA
(http://wala.sourceforge.net/ wiki/index.php/Main Page) to
construct a call graph of the application and a control flow
graph for each method in it. Diordna works on the bytecode
obtained from WALA to find all the permission-redelegation
points and then traverses back from them towards the
public entry points, thus marking the method trace. It
then uses these method traces to generate test cases along
with taint propagation analysis. Diordna detected permission
re-delegation vulnerabilities and generated appropriate test
cases for Music and DeskClock system applications focusing
on the MediaPlaybackService and AlarmKlaxon. It is limited
by the completeness of the graph generated by WALA and
can not take into account runtime dynamic features of
applications.

CHEX (Component Hijacking EXaminer) (Lu et al.,
2012) is a static analysis tool that detects component
hijacking vulnerabilities, in which an unauthorised
application A reads sensitive data from or writes to the critical
region of another application B using the public component
interfaces of B. It is designed for a category of attacks
different from privilege escalation attacks, but can indirectly
detect them. CHEX is built on the Dalysis (Dalvik bytecode
analysis) framework that works directly on Dalvik bytecode,
which overcomes the limitation of incomplete reconstruction
in other analysis tools. It treats the analysis as a data-flow
problem, by splitting the application code into different parts
to assess the asynchronous invocations of different interfaces.
It first detects entry point methods in the application obtained
from Dalysis and generates a data-flow summary by splitting
the application code. Depending on the permutations of
possible split sequences, it creates a permutation data-flow
summary and data dependence graph. By testing source to
sink connectivity in this graph, it detects the existence of
vulnerabilities. CHEX targets at general vulnerabilities in all
Android applications, and can only detect privilege escalation
vulnerabilities at the ICC level, but not data cooperation that
uses file systems or network sockets.

AndroidLeaks (Gibler et al., 2012) is a static analysis
framework that detects leakage of sensitive information
from applications on a large scale. It considers the
exfiltration of data off the phone to be a privacy leak,
regardless of whether it is a malicious leak or a part
of the application’s functionality. A permission map
is created between APIs and their respective required
permissions by analysing the Android source code.
AndroidLeaks first converts an application into a JAR
file using dex2jar (https://code.google.com/p/dex2jar/) and
then builds a call graph from the byte code using WALA
(http://wala.sourceforge.net/ wiki/index.php/Main Page). It
then iterates through the call graph to find source and sink
API calls. A source API call is one that generates sensitive
data, whereas a sink API call is one which can send the data

A taxonomy of privilege escalation attacks in Android applications 49

off the device. If such API calls are found, it uses static taint
analysis to determine if the data from a source reaches a
network sink and also handles taint analysis for data returned
from callback functions. AndroidLeaks detected 57,299 leaks
of various kinds in 7414 Android applications. It does not
take into account Android-specific data and control flows,
and covers a wide range of data flow leakages, a large number
of which can be false positives for privilege escalation
vulnerability analysis. It can, thus, detect vulnerabilities that
can lead to data cooperation attacks, but can not detect code
cooperation vulnerabilities.

DroidAlarm (Zhongyang et al., 2013) is a more recent
static analysis tool that conducts a complete analysis of
the application to first identify potential capability leaks
and then analyse the leak paths. It works directly on the
Dalvik bytecode as well. It is specifically used to detect
leaks in Android malware, recognising that privilege-
escalation malware can hide their sensitive functions by
using exposed interfaces of other susceptible applications,
making them more difficult to detect. It uses the tool apktool
(https://code.google.com/p/android-apktool/) to extract
permissions from the manifest file and checks each item
for its permission level to detect sensitive components. For
each sensitive component, it then checks for public interfaces
by extracting information from the dex file using the tool
androguard (https://code.google.com/p/androguard/). Based
on the results of these steps, it flags an application as
suspicious. For a suspicious application, DroidAlarm then
uses separate techniques to detect code or data cooperation
type of attacks. To detect code cooperation, it uses an iterative
process to construct a path between a public interface
and a sensitive API. For detecting data cooperation, it
analyses the usage of sensitive registers from APIs to public
interfaces, through series of function calls. DroidAlarm

does not consider legitimate exposure of public interfaces in
applications since it is designed mainly to analyse capability
leaks in malware, which are initially known to be malicious
applications. It also can not detect data cooperation through
file systems or network sockets.

A summary of the analysis tools is provided in
Table 1, which serves as a comparison between them.
The analysis tools are likely to be incomplete because
they can not completely predict runtime behaviour and
communication. They rely on tools such as dex2jar
(https://code.google.com/p/dex2jar/), WALA (http://
wala.sourceforge.net/ wiki/index.php/Main Page), Dedexer
(http://dedexer.sourceforge.net/), etc. to generate byte
codes, control flow graphs and call graphs which may not
be complete. They can detect vulnerabilities that could
prevent privilege escalation due to ICC, but not other
methods. Analysis tools may not be specifically targeted
at preventing privilege escalation attacks, but they can be
used in combination with other tools to satisfactorily detect
vulnerabilities and prevent attacks.

6.2 Security extensions

Secure application interaction (Saint) (Ongtang et al., 2009)
is an extension to the Android security architecture with
policies that address the missing abilities for applications as
discussed in Section 2.3. It allows application developers to
define access control rules for their components, providing a
fine-grained access control model. The decision mechanism
is based on signatures, configuration of the calling application
and context in which the call is made (e.g., location)
and decisions are enforced at both install-time and run-
time. Thus, Saint relies on developers to ensure that
the caller application has at least the same permissions

Table 1 Summary of analysis tools

Analysis tool Technique used Works with Detects

ScanDroid (Fuchs et al., 2009) Data flow tracking across Bytecode Determines whether data flows are

application consistent with security specifications

ComDroid (Chin et al., 2011) Intraprocedural Decompiled files Intent and component

vulnerablity analysis vulnerabilities

DroidChecker (Chan et al., 2012) Static taint analysis Decompiled files Component vulnerabilities and capability

leaks through Intents (using forward

approach source to sink)

Woodpecker (Grace et al., 2012) Control flow graph analysis Stock phone Capability leaks (using

image, Bytecode forward approach source to sink)

Diordna (Zhong et al., 2012) Call graph and control Bytecode Component vulnerabilities

flow graph analysis (using backward approach sink to source)

CHEX (Lu et al., 2012) Data flow analysis Bytecode Component vulnerabilities

(using forward approach source to sink)

AndroidLeaks (Gibler et al., 2012) Call graph and static Bytecode Leakage of sensitive

taint analysis information through network sinks

DroidAlarm (Zhongyang et al., 2013) Function call tracking Bytecode Capability leaks

in Android malware

50 M. Rangwala et al.

as the callee to prevent confused deputy attacks, thus,
not providing developer independence which makes it
an error-prone approach. If no Saint policy exists, the
access is implicity allowed. It is an application centric
mechanism and not system-centric. Saint can not address the
problem of malicious developers building applications that
maliciously collude to achieve privilege escalation without
being controlled by Saint’s policies.

TaintDroid (Enck et al., 2010) is a security extension
that tracks the flow of sensitive data through third party
applications in real-time. It performs dynamic taint analysis,
where it tracks how data flows between applications through
variables, messages and files, and also out to the network
through Binder IPC. This real-time data allows users to
monitor data flow and detect suspicious activity of malicious
applications. It labels private data with a taint mark, and
follows tainted data as it propagates through the system,
alerting the user when it leaves the system through a taint
sink (e.g., network interface). TaintDroid can track and detect
data leakages occurring from privilege escalation attacks. It
performs taint analysis at four levels of granularity: variable-
level, method-level, message-level, and file-level. It can
track data flows through the system, however, it can not
efficiently track control flows (where privilege escalation
is also possible) since it causes heavy performance issues.
TaintDroid detects leakages but can not distinguish between
legitimate and malicious data leakage without a policy
based decision making mechanism. Since it only tracks data
flows, it can detect only data cooperation privilege escalation
attacks.

AppFence (Hornyack et al., 2011) is an extension
of TaintDroid framework to allow users to transparently
enable privacy control mechanism on existing unmodified
Android applications. It allows users to withhold data from
suspicious applications that do not need the data to perform
their advertised functionality by providing two approaches:
shadowing sensitive data and blocking sensitive data from
being ex-filtrated off the device. In data shadowing, if an
application does not require sensitive data, shadowed data
is provided to it, for example, an application requesting
the device’s location is returned the coordinated dummy
coordinates. To block exfiltration, AppFence intercepts
attempts to associate domain names to sockets and to write
tainted data to a socket. It then either drops the message
overtly or covertly. It also tackles the usability issue of
applications when their permissions are removed. However,
like TaintDroid, AppFence can only detect data leakages,
thus, data cooperation attacks and can not directly detect
privilege escalation attacks.

QUIRE (Dietz et al., 2011) is a security extension
that provides a lightweight provenance system to prevent
confused deputy attacks. It tracks the IPC call chain to
determine if the caller application has the corresponding
permissions, allowing an application to choose if it wishes to
operate with reduced privileges or act explicitly on its own
behalf. It annotates IPCs such that a receiver application has
knowledge of the history of the complete call chain. It also
extends the network module in the Android Linux kernel
to provide a lightweight signature scheme that allows the

application to create a signed statement. This can be used
to verify remote procedure calls (RPCs) when they leave the
device. QUIRE employs simple cryptographic mechanisms to
protect data moving over IPC and RPC channels. However,
QUIRE is application centric unlike XManDroid (Bugiel
et al., 2011a) or YAASE (Rusello et al., 2011) and can not
prevent against attacks by colluding applications because they
may circumvent QUIRE’s mechanism by dropping the IPC
call chain and acting on their own behalf. It can not attacks
that exploit covert channels in Android’s core. Also, it is
not transparent to the application developer since existing
applications need to be rewritten.

IPC Inspection (Felt et al., 2011a) is a mechanism similar
to QUIRE that prevents confused deputy attacks using Binder
IPC. IPC Inspection reduces a deputy application’s privileges
if it receives a message from a less privileged application.
If the privilege is reduced, it indicates that a deputy is
under the influence of another application. In a chain of
influence between applications, IPC Inspection reduces the
privileges if any application lacks appropriate permission(s).
IPC Inspection does not require a policy framework and
thus, does not suffer from the problem of unknown attacks
due to policy incompleteness. However, it does not provide
a solution for privilege escalation attacks due to colluding
applications or situations where a malicious deputy can
directly abuse its privileges. Colluding applications can
reside in the same sandbox without proper isolation and
communicate freely. It also does not defend against attacks
where an unprivileged application returns a malicious value
in a request-reply IPC. IPC Inspection also poses an overhead
since it requires multiple instances of applications with
different privilege sets to be maintained – a primary interface
that the user interacts with and multiple instances for each
time a message is sent to the application.

XManDroid (Bugiel et al., 2011a) is a security
framework that extends the Android system’s reference
monitor for real-time detection and prevention of privilege
escalation attacks. XManDroid dynamically monitors
communication between applications through the extension
in the reference monitor and verifies them with security rules
defined in a system centric policy, thereby, detecting any
transitive usage of privileges. XManDroid can successfully
detect communication links between dynamically created
components, handle exceptional cases of pending intents,
and prevent communication through covert channels between
system components. It can detect all privilege escalation
attacks (confused deputy and colluding types) that use
ICC mechanisms. The authors claim that XManDroid is
efficient and causes negligible performance overhead for
the user. However, a large number of false positives in their
experimental manual usability test motivated them to further
enhance it as XManDroid22 (Bugiel et al., 2012) with a
kernel module to enable MAC using TOMOYO Linux.
This employs a faster and more efficient ICC call-chaining
mechanism that is based on modifications to the Binder
mechanism instead of Intents alone. The novelty of this
technique is the runtime interaction of security extensions
with the Android middleware and TOMOYO Linux, allowing
dynamic runtime policy mapping from the middleware to the

A taxonomy of privilege escalation attacks in Android applications 51

kernel. It tracks ICC calls, operations on files, Unix domain
sockets and internet sockets, thus protecting against the
StrongAdversary model. However, it relies on a set of system
policies which, if incomplete, will not be able to prevent
against unknown attacks.

Yet another Android security extension (Y AASE)
(Rusello et al., 2011) was designed with the motivation of
having a single solution with mechanisms that are needed
for user privacy protection. YAASE provides a fine-grained
policy enforcement mechanism by having different levels
of control granularity over accesses to phone resources. It
employs data tracking and tagging, similar to TaintDroid,
for user-defined labels (private, confidential, public, etc.)
associated with inter-application and application-to-internet
data flows. Policies define the data labels that an application
can access and violations cause alerts to users. YAASE
can work without requiring collaboration with applications
and controls which labels can be associated with each
application. With this strategy, it can detect privilege
escalation attacks of both confused deputy and colluding
applications types. Since YAASE does data tracking, it can
detect only data cooperation based attacks and not purely ICC
based attacks. Experimental results show that accessing un-
optimised data structures incurs heavy overheads, whereas,
the overhead for tracking data sent over the internet is
acceptable.

TrustDroid (Bugiel et al., 2011b) is a security extension
that aims at providing isolation between applications
belonging to different domains depending on their trust
levels. This framework works at the middleware layer to
prevent inter-domain application communication and data
access, at the kernel layer to enforce MAC on the file system
and on IPC channels, and at the network layer to filter
network traffic. TrustDroid performs fine-grained analysis
filtering on application data and data stored in databases
preventing unauthorised access to it. It relies on a method
of classifying applications into separate domains at install-
time and assigns each application a separate colour according
to the domain. A colour is associated with system Content
providers and service providers as well to confine their usage
of data to a particular domain. Malicious applications can
not use interfaces of applications belonging to other domains,
even if the interfaces are exposed as public, because the
colours assigned would be different. This prevents cross-
domain direct ICC, IPC, file system sharing and consequently

cross-domain privilege escalation attacks. However, it can not
provide protection against attacks (both confused deputy and
colluding applications) taking place within the same domain.
The access control imposed is static as compared to other
works like XManDroid (Bugiel et al., 2011a) which offers a
more dynamic solution.

Kantola et al. (2012) propose modifications to the
Android platform (DK3) that detect and protect accidental
inter-application messages that should have actually been
intra-application messages. They identify a subclass
of communication vulnerabilities in which applications
unintentionally expose their components or messages to
third party applications and provide a solution to detect
and patch such vulnerabilities automatically. A heuristic
is developed depending on combinations of permissions
and component behaviours to determine when components
should be exported. Although the main focus of this work
is not to prevent privilege escalation attacks, by making
unintentionally exposed components private, this work can
prevent some access by third-party Intents, thus preventing a
subset of privilege escalation attacks. It can solve both attacks
due to both confused deputy and colluding applications,
restricted to only those applications where components are
exposed unintentionally.

A summary of the techniques used in the different security
extensions is provided in Table 2. Table 3 gives a comparison
of the different security extensions. Each mechanism is
focused at preventing particular security vulnerabilities and
has its limitations. Mechanisms like Saint (Ongtang et al.,
2009), TaintDroid (Enck et al., 2010), AppFence (Hornyack
et al., 2011) and TrustDroid (Bugiel et al., 2011b) are not
aimed at preventing privilege escalation but their mechanisms
can indirectly prevent some types of attacks. On the other
hand frameworks like IPC Inspection (Felt et al., 2011a),
XManDroid (Bugiel et al., 2011a), XManDroid2 (Bugiel
et al., 2012), YAASE (Rusello et al., 2011), QUIRE (Dietz
et al., 2011), DK (Kantola et al., 2012) are designed to
prevent specific categories of attacks, but they have their own
limitations.

Saint (Ongtang et al., 2009) does not provide developer
independence because it requires developers to specify access
control rules. TaintDroid (Enck et al., 2010) does not provide
runtime independence since it requires user action when data
leakage is detected. The other frameworks provide all the
general requirements discussed in Section 5.

Table 2 Summary of security extensions

Security extension Technique used Adversary model

Saint (Ongtang et al., 2009) Monitoring of runtime permission usage Strong (without unknown attacks)
TaintDroid (Enck et al., 2010) Tracking flow of sensitive data, taint analysis N/A
AppFence (Hornyack et al., 2011) Tracking flow of sensitive data, taint analysis N/A
QUIRE (Dietz et al., 2011) Tracking of call-chain IPC Weak
IPC Inspection (Felt et al., 2011a) Tracking of call-chain IPC Weak
XManDroid (Bugiel et al., 2011a) Customised framework Advanced
XManDroid2 (Bugiel et al., 2012) Customised framework Strong (without unknown attacks)
YAASE (Rusello et al., 2011) Tracking flow of sensitive data, taint analysis N/A
TrustDroid (Bugiel et al., 2011b) Data colouring and domain isolation N/A
DK (Kantola et al., 2012) Heuristic of permissions and component behaviours N/A

52 M. Rangwala et al.

An ideal framework would provide a complete solution
that takes into account all types of privilege escalation attacks
– confused deputy and colluding (with all mechanisms
of achieving them) – known as well as unknown; and
requirements with respect to usability, development,
resource constraints and dynamism. The frameworks
discussed individually satisfy and provide a subset of these
requirements.

6.3 Other analysis tools and extensions

Analysis tools and extensions that are concerned with
permissions and not directly related to privilege escalation
attacks are discussed here:

Kirin (Enck et al., 2008) is an extension to the Android
application installer. It provides a framework that checks
the permissions requested by applications at install-time by
analysing the AndroidManifest.xml file and allows only
those applications whose permissions comply with a system-
centric policy. The main goal of Kirin is to mitigate malware

in a single application. Also, the Kirin framework can
identify communication links that are security critical by
analysing the interfaces that the application is authorised
to communicate with. Enck et al. (2008) discuss certain
policy invariants with respect to core system functionality,
user privacy and applications that represent realistic security
requirements of the phone. The model allows automated
analysis which can identify insecure policy configurations
that can leave the phone in a vulnerable state. It is static
in nature and does not consider real-time behaviour, thus,
it has to consider all possible communication links over
unprotected interfaces. Also, it could result in a large number
of false positives since Kirin would disallow applications that
can potentially establish arbitrary communication links over
the unprotected interfaces.

Android permission extension (Apex) (Nauman et al.,
2010) is an extension to the Android permission mechanism.
It provides a policy enforcement framework which allows a
user to selectively grant or deny permissions to applications
at install-time. It also allows the user to constraint the

Table 3 Comparison of security extensions

Security extension CDA-ICC CDA-IS CA-ICC CA-I Limitations

Saint (Ongtang et al., 2009) X X X X • Can prevent only known attacks only if predicted
by the developer

• Relies on (honest) developers to ensure security
TaintDroid (Enck et al., 2010) X • Can not track control flows without performance

overhead
• Can not distinguish between legitimate and malicious

data leakages
• Can detect only data cooperation based attacks
• Can not detect colluding attacks

AppFence (Hornyack et al., 2011) X • Does not directly detect privilege escalation attacks
• Can detect only data cooperation based attacks
• Can not detect colluding attacks

QUIRE (Dietz et al., 2011) X • Not a system centric approach
• Can not prevent collusion attacks
• Not a developer independent solution

IPC Inspection (Felt et al., 2011a) X • Overhead of multiple instances
• Cannot prevent collusion attacks
• Can detect only confused deputy attacks based on ICC

XManDroid (Bugiel et al., 2011a) X X • Large number of false positives due to policy
incompletion or over estimation

• Can detect only ICC based attacks
XManDroid2 (Bugiel et al., 2012) X X X X • Relies on policy completion for prevention against

all attacks
• Can not prevent unknown attacks

YAASE (Rusello et al., 2011) X X X X • Incurs heavy overheads for accessing unoptimised data
structures

• Can detect only data cooperation attacks
TrustDroid (Bugiel et al., 2011b) X X X • Not a dynamic approach – relies on pre-classification

of applications
• Can not prevent intra-domain privilege escalation attacks

DK (Kantola et al., 2012) X X • Only for applications whose components are exposed
unintentionally

CDA-ICC: Confused deputy attacks due to ICC.
CA-ICC: Colluding Attacks due to ICC.
CDA-IS: Confused Deputy Attacks due to internet Sockets.
CA-I: Colluding Attacks due to Indirect.

A taxonomy of privilege escalation attacks in Android applications 53

usage of resources by defining certain runtime policies.
Poly, an advanced application installer, provides the user
with an interface for fine-grained control over individual
permissions demanded by the application allow, deny or
constrain in number of times and time of the day. The
Apex framework monitors the usage of permissions to ensure
that the application conforms to this defined policy. Apex
makes the Android permission system more flexible but it
relies on users to make the security decisions which may
be error-prone. Although this approach may allow a user to
prevent confused deputy attacks, it can not prevent attacks
by colluding applications in which permissions are split over
different applications.

Stowaway (Felt et al., 2011b) is a static analysis tool built
on top of ComDroid and it checks if developers follow the
principle of least privilege in terms of permission requests.
Stowaway determines the set of API calls that an application
uses and then maps those API calls to permissions.
Automated testing tools were used on the Android API in
order to build a permission map to detect over privilege.
The permission map correlates permissions to API calls,
Intents and ContentProviders and covers 85% of the Android
API. Stowaway decompiles Android applications using
Dedexer (http://dedexer.sourceforge.net/) and then performs
static analysis on the source code to determine the API calls,
accesses to ContentProviders and transmission of Intents
to detect vulnerabilities. 940 applications were checked
and one third of them were found to be over privileged.
The study also shows many applications leak sensitive
information.

Dr. Android and Mr. Hide (Jeon et al., 2012) are a
suite of tools that allow finer-grained permissions to be
to be inferred on existing applications; to be enforced by
developers on their own applications; and to be retrofitted
by users on existing applications. Android implements coarse
permissions some of which can be split into finer permissions
that can reduce unnecessary privilege levels and prevent
threat from vulnerabilities. The suite consists of 2 tools:

• Mr. Hide (the Hide interface to the droid environment)
– a set of services that wrap several privileged Android
APIs and dynamically enforces a specific set of
finer-grained permissions onto applications

• Dr. Android (Dalvik Rewriter for Android) – a tool that
removes existing permissions and replaces them with
finer-grained permissions from Mr. Hide to be able to
retrofit applications.

The advantage is that these tools do not require source
code or recompilation, they work directly with downloaded
applications. Mr. Hide consists of a service that runs in its
own process on the device, and hidelib which is a replacement
for sensitive APIs that manages interprocess communication
with the Mr. Hide service. Dr. Android is a separate tool that
uses apktool (https://code.google.com/p/android-apktool/)
to decompress the application into its constituent files. It
modifies classes.dex file and concatenates hidelib.dex to
it; modifies the list of permissions in the manifest file
and may modify some other resource files. By altering

permissions to be finer-grained, this suite of tools prevents
certain combinations of finer privileges between applications,
indirectly preventing privilege escalation. However, it can not
prevent developer-made maliciously colluding applications.

These tools can help reduce some of the causes of
privilege escalation attacks, and combined with other security
extensions could prove useful in defense.

7 Security guidelines and recommendations

Chin et al. (2011) and Chan et al. (2012) discuss guidelines
on how applications should be developed to prevent
capability and data leakages. They can be summarised as
follows:

• Developers should avoid making components
accessible to components of other applications to
prevent capability leakage. This can be done by either
not declaring any Intent filters, or setting
Android:exported attributes to false in the manifest file.

• For components that must be public, they must be
protected by appropriate permissions such that only
other applications that have the permissions can
access it.

• Developers should be aware of the distinction between
inter-application and intra-application communication
mechanisms.

• Different components, if possible, should handle inter-
and intra-application communication.

• The checkPermission() system call should be used
before invoking an API call to check if the caller/sender
application possesses the required permissions.

• Applications should use explicit Intents when sending
private data and also specify strong permissions to
protect it.

• Applications should check the identity of a caller
application, as well as the identity of the application
returning any value since privilege escalation can take
place through data leakage as well.

Though these guidelines are developer-dependent, they help
eliminate some of the causes of vulnerabilities in the
Android system and applications. Developer – independent
solutions are needed to effectively prevent attacks on the
vulnerabilities.

Based on these requirements, some recommendations
can be made to make changes in the Android platform to
effectively limit, if not completely prevent, vulnerabilities
in a developer-independent manner. Recommendations by
Chin et al. (2011) are extended here as follows:

• The Android system should use different mechanisms
for inter- and intra-application communication.
Currently Intents are used for both purposes, which
unknowingly can lead to vulnerabilities.

54 M. Rangwala et al.

• Accessibility of components available is either public
or private. It should be extended to include three types:
internal, exported to only the system and exported to
other applications. By adding such constructs in the
programming, the true intentions of developers can be
captured while developing the application.

• To avoid unintentional Intent-sending vulnerabilities,
the system should try to deliver an Intent to internal
components first, and then if required to other external
components.

• The Android system implicitly considers a component
to be public if it declares an Intent filter. To avoid
Intent-receiving vulnerabilities, the system should
consider a component to be public only if it

• sets the exported flag

• has an Intent filter with a data field

• has an Intent filter that registers to receive
protected system actions

• has a main launcher specification, or

• has an Intent filter that registers to receive Intents
with one of the standard Android actions.

Although these recommendations may introduce issues
of backward-compatibility with existing applications and
systems, a suitable trade-off between backward compatibility
and security needs to be made to ensure that such
vulnerabilities are limited.

8 Conclusion

Google’s Android is a fast growing mobile operating
system that implements some novel security mechanisms
such as privilege separation. This paper discusses how
these mechanisms have flaws resulting in vulnerabilities in
applications that can be used to escalate privileges. Privilege
escalation attacks are classified in this paper and various
different security frameworks and techniques proposed in
recent research are discussed and compared. The solutions
developed do not individually provide a complete solution to
prevent all types of attacks. With the number of applications
rising at a very fast rate, vulnerabilities are also increasing,
making the platform for attacks wider. Thus, there is a
need for a technique that provides a complete solution
against privilege escalation attacks along with satisfying all
the usability requirements. This paper provides knowledge
to inquisitive readers as well as guidelines to security
researchers and application developers.

References

Bloomberg Businessweek (2012) Google Says 700,000
Applications Available for Android, http://www.businessweek.
com/news/2012-10-29/google-says-700-000-applications-
available-for-android-devices

Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T. and Sadeghi, A.
(2011a) XManDroid: A New android Evolution to Mitigate
Privilege Escalation Attacks, Technische Universitt Darmstadt
Technical Report of Center for Advanced Security Research
Darmstadt, TR-2011-04.

Bugiel, S., Davi, L., Dmitrienko, A., Heuser, S., Sadeghi, A. and
Shastry, B. (2011b) ‘Practical and lightweight domain isolation
on Android’, Proceedings of the 1st ACM Workshop on Security
and Privacy in Smartphones and Mobile Devices (SPSM ’11),
Chicago, IL, USA, pp.51–62.

Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.
and Shastry, B. (2012) ‘Towards Taming Privilege-Escalation
Attacks on Android’, Proceedings of the 19th Annual
Symposium on Network and Distributed System Security,
San Diego, CA, USA, pp.346–360.

Chan, P., Hui, L. and Yiu, S.M. (2011) ‘A privilege escalation
vulnerability checking system for Android applications’,
Communication Technology (ICCT), 2011 IEEE 13th
International Conference on. IEEE, Jinan, China, pp.681–686.

Chan, P., Hui, L. and Yiu, S.M. (2012) ‘DroidChecker: analyzing
Android applications for capability leak’, Proceedings of the
fifth ACM conference on Security and Privacy in Wireless and
Mobile Networks, Tucson, Arizona, USA, pp.125–136.

Chin, E., Felt, A.P., Greenwood, K. and Wagner, D. (2011)
‘Analyzing inter-application communication in Android’,
Proceedings of the 9th International Conference on Mobile
Systems, Applications, Bethesda, MD, USA, pp.239–252.

Davi, L., Dmitrienko, A., Sadeghi, A. and Winandy, M. (2010)
‘Privilege escalation attacks on Android’, Proceedings of the
13th International Conference on Information Security, Boca
Raton, FL, USA, pp.346–360.

Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A. and Wallach,
D.S. (2011) ‘Quire: lightweight provenance for smart
phone operating systems’, Proceedings of the 20th USENIX
Conference on Security, San Francisco, CA, USA, pp.23–23.

Enck, W. (2011) ‘Defending users against smartphone apps:
techniques and future directions’, Proceedings of the 7th
International Conference on Information Systems Security,
Kolkata, India, pp.49–70.

Enck, W., Ongtang, M. and McDaniel, P. (2008) Mitigating Android
Software Misuse Before It Happens, Technical Report NAS-
TR-0094-2008 The Pennsylvania State University, pp.22–22.

Enck, W., Ongtang, M. and McDaniel, P. (2009) ‘Analysis of
the communication between colluding applications on modern
smartphones’, Proceedings of the 28th Annual Computer
Security Applications Conference, Honolulu, Hawaii, USA,
pp.51–60.

Enck, W., Gilbert, P., Chun, B.G., Cox, L. P., Jung, J., McDaniel, P.
and Sheth, A.N. (2010) ‘TaintDroid: an information-
flow tracking system for realtime privacy Monitoring on
smartphones’, Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation, Vancouver,
BC, Canada, pp.1–6.

Felt, A.P., Wang, H.J., Moshchuk, A., Hanna, S. and Chin, E.
(2011a) ‘Permission re-delegation: attacks and defenses’,
Proceedings of the 20th USENIX Conference on Security, San
Francisco, CA, USA, pp.22–22.

Felt, A.P., Chin, E., Hanna, S., Song, D. and Wagner, D. (2011b)
‘Android permissions demystified’, Proceedings of the 18th
ACM Conference on Computer and Communications Security,
Chicago, IL, USA, pp.627–638.

A taxonomy of privilege escalation attacks in Android applications 55

Fuchs, A., Chaudhuri, A. and Foster, J.S. (2009) SCanDroid:
Automated Security Certification of Android Applications,
Technical Report University of Maryland, College Park,
http://www.cs.umd.edu/ avik/projects/scandroidascaa

Gibler, C., Crussell, J., Erickson, J. and Chen, H. (2012)
‘AndroidLeaks: automatically detecting potential privacy leaks
in Android applications on a large scale’, Proceedings of the 5th
International Conference on Trust and Trustworthy Computing
(TRUST ’12), Vienna, Austria, pp.291–307.

Grace, M., Zhou, Y., Wang, Z. and Jiang, X. (2012) ‘Systematic
detection of capability leaks in stock Android smartphones’,
Proceedings of the 19th Annual Symposium on Network and
Distributed System Security, San Diego, CA, USA.

Hobarth, S. and Mayrhofer, R. (2011) ‘A framework for on-
device privilege escalation exploit execution on Android’,
Proceedings of the 3rd International Workshop on Security and
Privacy in Spontaneous Interaction and Mobile Phone Use,
San Francisco, CA, USA.

Hornyack, P., Han, S., Jung, J., Schechter, S. and Wetherall, D.
(2011) “These aren’t the droids you’re looking for’: retrofitting
Android to protect data from imperious applications’,
Proceedings of the 18th ACM Conference on Computer and
Communications Security, Chicago, IL, USA, pp.639–652.

Jeon, J., Micinski, K.K., Vaughan, J.A., Fogel, A., Reddy, N.,
Foster, J.S. and Millstein, T. (2012) ‘Dr. Android and Mr. Hide:
fine-grained permissions in Android applications’, Proceedings
of the Second ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices, Raleigh, NC, USA, pp.3–14.

Kantola, D., Chin, E., He, W. and Wagner, D. (2012) ‘Reducing
attack surfaces for intra-application communication in
Android’, Proceedings of the Second ACM workshop on
Security and Privacy in Smartphones and Mobile Devices,
Raleigh, NC, USA, pp.69–80.

Kaspersky (2012) 99% of all Mobile Threats Target Android
Devices, http://www.kaspersky.com/about/news/virus/2013/
99 of all mobile threats target Android devices

Li, Q. and Clark, G. (2013) ‘Mobile security: a look ahead’, IEEE
Security and Privacy, pp.78–81.

Lu, L., Li, Z., Wu, Z., Lee, W. and Jiang, G. (2012) ‘CHEX:
statically vetting Android apps for component hijacking
vulnerabilities’, Proceedings of the 2012 ACM Conference on
Computer and Communications Security, Chicago, IL, USA,
pp.229–240.

Marforio, C., Ritzdorf, H., Francillon, A. and Capkun, S.
(2012) ‘Analysis of the communication between colluding
applications on modern smartphones’, Proceedings of the 28th
Annual Computer Security Applications Conference, Orlando,
Florida, USA, pp.51–60.

Nauman, M., Khan, S. and Zhang, X. (2010) ‘Apex: extending
Android permission model and enforcement with user-defined
runtime constraints’, Proceedings of the 5th ACM Symposium
on Information, Computer and Communications Security,
Beijing, China, pp.328–332.

Hardy, N. (1988) ‘The confused deputy: (or why capabilities
might have been invented)’, ACM SIGOPS Operating Systems
Review, Vol. 22, No. 4, pp.36–38.

Ongtang, M., McLaughlin, S., Enck, W. and McDaniel, P.
(2009) ‘Semantically rich application-centric security in
Android’, Proceedings of the 2009 Annual Computer Security
Applications Conference (ACSAC ’09), Honolulu, Hawaii,
USA, pp.340–349.

Russello, G., Crispo, B., Fernandes, E. and Zhauniarovich, Y. (2011)
‘YAASE: yet another Android security extension’, 2011 IEEE
Third International Conference on Privacy, Security, Risk and
Trust and 2011 IEEE Third International Conference on Social
Computing, Boston, MA, USA, pp.1033–1040.

Schlegel, R., Zhang, K., Zhou, X., Intwala, M., Kapadia, A. and
Wang X. (2011) ‘Soundcomber: a stealthy and context-aware
sound Trojan for smartphones’, Proceedings of the 18th Annual
Network and Distributed System Security Symposium, San
Diego, CA, USA, pp.17–33.

Shabtai, A., Fledel, Y., Kanonov, U., Elovici, Y., Dolev, S. and
Glezer, C. (2010) ‘Google Android: a comprehensive security
assessment’, IEEE Security and Privacy, Vol. 8, No. 2,
pp.35–44.

Strategy Anayltic (2013) http://www.strategyanalytics.com
The Lookout Blog (2012) UPDATE: Security Alert: Android

Trojan GGTracker Charges Premium Rate SMS Messages,
https://blog.lookout.com/blog/2011/06/20/security-alert-
android-trojan- ggtracker-charges-victims-premium-rate-sms-
messages

Yahoo! Finance (2013) Strategy Analytics: Android and
Apple iOS Capture a Record 92 Percent Share
of Global Smartphone Shipments in Q4 2012,
http://finance.yahoo.com/news/strategy-analytics-android-
apple-ios-114300553.html

Zhong, J., Huang, J. and Liang, B. (2012) ‘Android permission
re-delegation detection and test case generation’, 2012
International Conference on Computer Science and Service
System, Nanjing, China, pp.871–874.

Zhongyang, Y., Xin, Z., Mao, B. and Xie, L. (2013) ‘DroidAlarm:
an all-sided static analysis tool for Android privilege-escalation
malware’, Proceedings of the 8th ACM SIGSAC Symposium
on Information, Computer and Communications Security,
Hangzhou, China, pp.353–358.

Notes

1A user can register as a developer for $25 and publish applications
freely thereafter.

2Called XManDroid2 for easier referencing.
3Called DK for easier referencing.

Websites

androguard: Reverse Engineering, Malware and
Goodware Analysis of Android Applications,
https://code.google.com/p/androguard/

apktool: Tool for Reverse Engineering Android Apps,
https://code.google.com/p/android-apktool/

smali/baksmali: Assembler/Disassembler for the dex Format,
https://code.google.com/p/smali/

Dedexer: Disassembler Tool for DEX Files,
http://dedexer.sourceforge.net/

dex2jar: Tool to Convert Android .dex to .jar Files,
https://code.google.com/p/dex2jar/

eLinux.org, Android Architecture, http://elinux.org/
Android Architecture

WALA: T.J. Watson Libraries for Analysis, Android Architecture,
http://wala.sourceforge.net/wiki/index.php/Main Page

