
Control Jujutsu:
On the Weaknesses of Fine-Grained Control Flow Integrity∗

Isaac Evans
MIT Lincoln Laboratory

ine@mit.edu

Fan Long
MIT CSAIL

fanl@csail.mit.edu

Ulziibayar Otgonbaatar
MIT CSAIL

ulziibay@csail.mit.edu

Howard Shrobe
MIT CSAIL

hes@csail.mit.edu

Martin Rinard
MIT CSAIL

rinard@csail.mit.edu
Hamed Okhravi

MIT Lincoln Laboratory
hamed.okhravi@ll.mit.edu

Stelios Sidiroglou-Douskos
MIT CSAIL

stelios@csail.mit.edu

ABSTRACT
Control flow integrity (CFI) has been proposed as an approach to
defend against control-hijacking memory corruption attacks. CFI
works by assigning tags to indirect branch targets statically and
checking them at runtime. Coarse-grained enforcements of CFI
that use a small number of tags to improve the performance over-
head have been shown to be ineffective. As a result, a number of
recent efforts have focused on fine-grained enforcement of CFI as
it was originally proposed. In this work, we show that even a fine-
grained form of CFI with unlimited number of tags and a shadow
stack (to check calls and returns) is ineffective in protecting against
malicious attacks. We show that many popular code bases such
as Apache and Nginx use coding practices that create flexibility in
their intended control flow graph (CFG) even when a strong static
analyzer is used to construct the CFG. These flexibilities allow an
attacker to gain control of the execution while strictly adhering to a
fine-grained CFI. We then construct two proof-of-concept exploits
that attack an unlimited tag CFI system with a shadow stack. We
also evaluate the difficulties of generating a precise CFG using scal-
able static analysis for real-world applications. Finally, we perform
an analysis on a number of popular applications that highlights the
availability of such attacks.

∗This work is sponsored by the Assistant Secretary of Defense for
Research & Engineering under Air Force Contract #FA8721-05-
C-0002 and Defense Advanced Research Projects Agency under
Contract #FA8650-11-C-7192. Opinions, interpretations, conclu-
sions, and recommendations are those of the author and are not
necessarily endorsed by the United States Government.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CCS’15, October 12–16, 2015, Denver, Colorado, USA.
c© 2015 ACM. ISBN 978-1-4503-3832-5/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2810103.2813646.

1. INTRODUCTION
Memory corruption bugs continue to be a significant problem for

unmanaged languages such as C/C++ [7, 17, 53]. The level of con-
trol provided by unmanaged languages, such as explicit memory
management and low level hardware control, makes them ideal for
systems development. Unfortunately, this level of control, bears a
heavy cost: lack of memory safety [53]. Lack of memory safety, in
turn, forms the basis for attacks in the form of code injection [40]
and code reuse [17, 49]. Retrofitting memory safety to C/C++ ap-
plications can introduce prohibitive overhead (up to 4x slowdown)
[37] and/or may require significant programmer involvement in the
form of annotations [30, 38].

As a result, the past three decades of computer security research
have created a continuous arms race between the development of
new attacks [12, 13, 21, 40, 49, 50] and the subsequent develop-
ment of corresponding defenses [4, 19, 31, 41, 54]. This arms
race attempts to strike a balance between the capabilities of the
attackers and the overhead, compatibility, and robustness of the de-
fenses [53].

The wide spread deployment of defenses such as Data Execu-
tion Prevention (DEP) [35, 41], address space layout randomiza-
tion (ASLR) [54] and stack smashing protection (SSP) [19] has
driven the evolution, and sophistication, of attacks. Information
leakage attacks [12, 47, 52] enable the construction of multi-step
attacks that bypass ASLR and SSP, while code reuse attacks, such
as return-oriented program (ROP) [49], jump-oriented program-
ming (JOP) [13], and return-to-libc [56] can be used to circumvent
DEP.

The majority of the attacks rely on some form of control hi-
jacking [53] to redirect program execution. Control Flow Integrity
(CFI) is a runtime enforcement technique that provides practical
protection against code injection, code reuse, and is not vulnera-
ble to information leakage attacks [4, 61, 62]. CFI provides run-
time enforcement of the intended control flow transfers by disal-
lowing transfers that are not present in the application’s Control
Flow Graph (CFG). CFGs are constructed either by analyzing the
source code [55], or, less accurately, by analyzing the disassembled
binary [61]. The enforcement is done by assigning tags to indirect
branch targets and checking that indirect control transfers point to
valid tags.

901

Precise enforcement of CFI, however, can introduce significant
overhead [4, 5]. This has motivated the development of more prac-
tical, coarse-grained, variants of CFI that have lower performance
overhead but enforce weaker restrictions (i.e., limit the number of
tags) [61, 62]. For example, control transfer checks are relaxed to
allow transfers to any valid jump targets as opposed to the correct
target. Unfortunately, these implementations have been shown to
be ineffective as they allow enough valid transfers to enable an at-
tacker to build a malicious payload [22].

As a result of the attacks on coarse-grained variants of CFI, re-
searchers have focused on fine-grained, yet still practical enforce-
ment of CFI. For example, forward-edge CFI [55] enforces a fine-
grained CFI on forward-edge control transfers (i.e. indirect calls,
but not returns). Cryptographically enforced CFI [34] enforces an-
other form of fine-grained CFI by adding message authentication
code (MAC) to control flow elements which prevents the usage of
unintended control transfers in the CFG. Opaque CFI (OCFI) [36]
enforces fine-grained CFI by transforming branch target checks to
bounds checking (possible base and bound of allowed control trans-
fers).

The security of fine-grained CFI techniques is contingent on the
ability to construct CFGs that accurately capture the intended con-
trol transfers permitted by the application. For C/C++ applications,
even with access to source code, this assumption is tenuous at best.
In theory, the construction of an accurate CFG requires the use of
a precise (sound and complete) pointer analysis. Unfortunately,
sound and complete points-to analysis is undecidable [43]. In
practice, pointer analysis can be made practical by either adopting
unsound techniques or reducing precision (incomplete). Unsound
techniques may report fewer connections (tags), which can result
in false positives when used in CFI. Given that false positives can
interfere with the core program functionality, researchers have fo-
cused on building sound but incomplete pointer analysis.

Incomplete analysis leads to conservative over-approximate re-
sults. The analysis will conservatively report more connections
(i.e,. when two pointers may alias). While using incomplete pointer
analysis may be sufficient for most program analysis tasks, we
show that it is insufficient under adversarial scenarios. The accu-
racy of the pointer analysis is further exacerbated by the use of
common C idioms and software engineering practices that hinder
the use of accurate and scalable program analysis techniques.

We present a novel attack, Control Jujutsu 1, that exploits the
incompleteness of pointer analysis, when combined with common
software engineering practices, to enable an attacker to execute ar-
bitrary malicious code even when fine-grained CFI is enforced. The
attack uses a new “gadget” class that we call Argument Corruptible
Indirect Call Site (ACICS). ACICS gadgets are pairs of Indirect
Call Sites (ICS) and target functions that enable Remote Code Ex-
ecution (RCE) while respecting a CFG enforced using fine-grained
CFI. Specifically, ACICS gadgets 1) enable argument corruption
of indirect call sites (data corruption) that in conjunction with the
corruption of a forward edge pointer 2) can direct execution to a
target function that when executed can exercise remote code exe-
cution (e.g., system calls). We show that for modern, well engi-
neered applications, ACICS gadgets are readily available as part of
the intended control transfer.

To demonstrate our attack, we construct two proof-of-concept
exploits against two popular web servers, Apache HTTPD and Ng-
inx. We assume that the servers are protected using fine-grained

1Jujutsu is a Japanese martial art in which an opponent’s force is
manipulated against himself rather than using one’s own force. In
Control Jujutsu, an application’s intended controls are manipulated
against it.

CFI (unlimited tags), to enforce only intended control transfers on
the forward-edge (i.e,. indirect calls/jumps), and a shadow stack to
protect the backward-edge (i.e., returns). For the forward edge, the
CFG is constructed using the state-of-the-art Data Structure Analy-
sis (DSA) [33] pointer analysis algorithm. For the backward edge,
the shadow stack provides a sound and complete dynamic analy-
sis (i.e., there is no imprecision). We show that even under this
scenario, which is arguably stronger than any of the available fine-
grained CFI implementations, an attacker can perform a control
hijacking attack while still operating within the intended CFG.

To evaluate the prevalence, and exploitability, of ACICS gadgets,
we evaluate 4 real-world applications. The results show that ACICS
gadgets are prevalent and provide a rich target for attackers. Our
results indicate that in the absence of data integrity, which is hard
to achieve for practical applications, fine-grained CFI is insufficient
protection against a motivated attacker.

This paper makes the following contributions:

• Control Jujutsu: We present Control Jujutsu, a new attack
on fine-grained CF that exploits the incompleteness of pointer
analysis, when combined with common software engineering
practices, to enable an attacker to execute arbitrary malicious
code.

• ACICS gadgets: We introduce a new “gadget” class, ACICS,
that enables control hijacking attacks for applications pro-
tected using fine-grained CFI.

• Proof-of-Concept Exploits: We present two proof-of-concept
exploits against Apache HTTPD and Nginx protected using
fine-grained CFI with forward and backward-edge protec-
tion.

• Experimental Results: We present experimental results that
characterize the prevalence of ACICS gadgets in real-world
applications.

2. EXAMPLE EXPLOIT
We next present an example that illustrates how Control Jujutsu

utilizes ACICS gadgets in conjunction with the imprecision of the
DSA pointer analysis algorithm to create an RCE attack on Apache
2.4.12, a popular web server.

2.1 Threat Model
The threat model in this paper is a remote attacker trying to hi-

jack control of a machine by exploiting memory vulnerabilities. We
assume the system is protected by fine-grained CFI with unlimited
tags for the forward edge and a shadow stack implementation for
the backward edge. We also assume the deployment of DEP and
ASLR. These assumptions are consistent with the literature on code
reuse attacks. Finally, we assume the availability of a memory cor-
ruption vulnerability that allows an attacker to corrupt certain val-
ues on stack or heap. As numerous past vulnerabilities have shown,
this assumption is realistic. It is also weaker than an arbitrary at-
tacker read/write assumption made in the related work [31].

2.2 ICS Discovery
Control Jujutsu begins with a search for suitable ICS sites for

the ACICS gadget. Control Jujutsu identifies the following require-
ments for ICS locations:

1. The forward edge pointer and its argument(s) should reside
on the heap or a global variable to facilitate attacks from mul-
tiple data flows.

902

1 AP_IMPLEMENT_HOOK_RUN_FIRST(apr_status_t,dirwalk_stat,
2 (apr_finfo_t *finfo,
3 request_rec *r,
4 apr_int32_t wanted),
5 (finfo, r, wanted), AP_DECLINED)
6

7 apr_status_t ap_run_dirwalk_stat(
8 apr_finfo_t *finfo, request_rec *r,
9 apr_int32_t wanted) {

10 ap_LINK_dirwalk_stat_t *pHook;
11 int n;
12 apr_status_t rv = AP_DECLINED;
13 ...
14 //check the corresponding field of the global _hooks
15 if (_hooks.link_dirwalk_stat) {
16 pHook = (ap_run_dirwalk_stat_t *)
17 _hooks.link_dirwalk_stat->elts;
18 //invoke registered functions in the array one by
19 //one until a function returns a non-decline value.
20 for(n=0; n < _hooks.link_dirwalk_stat->nelts;++n){
21 ...
22 // our seelcted ICS
23 rv = pHook[n].pFunc(finfo, r, wanted);
24 ...
25 if (rv != AP_DECLINED) break;
26 }
27 }
28 ...
29 return rv;
30 }

Figure 1: APR hook macro in server/request.c:97 defining
ap_run_dirwalk_stat() in Apache HTTPD and the
simplified code snippet of ap_run_dirwalk_stat()

1 if (r->finfo.filetype == APR_NOFILE ||
2 r->finfo.filetype == APR_LNK) {
3 rv = ap_run_dirwalk_stat(&r->finfo,
4 r,
5 APR_FINFO_MIN);

Figure 2: dirwalk_stat called in server/request.c:616 in
Apache HTTPD

2. The arguments at the ICS can be altered without crashing the
program (before reaching a target function).

3. The ICS should be reachable from external input (e.g., a net-
work request).

Using these requirements, we found many viable ACICS can-
didates which we discuss at length in section 5.1. Here we
present a detailed example exploit based on the selected ICS
seen in Figure 1. Lines 1-5 use a macro defined in the
Apache Portable Runtime (APR) library to define the function
ap_run_dirwalk_stat(). Lines 7-30 present the simplified
code snippet of ap_run_dirwalk_stat() after macro expan-
sion. The actual ICS itself occurs at line 23, which invokes the
function pointer pHook[n].pFunc. Figure 2 presents the spe-
cific ap_run_dirwalk_stat() call we use in our exploit.

Apache HTTPD uses a design pattern that facilitates modularity
and extensibility. It enables Apache module developers to regis-
ter multiple implementation function hooks to extend core Apache
functionality. ap_run_dirwalk_stat() is a wrapper func-
tion that iteratively calls each registered implementation function
for the dirwalk functionality until an implementation function re-
turns a value other than AP_DECLINED.

2.3 Target Selection
Next, Control Jujutsu searches the application for candidate tar-

get sites for the ACICS gadgets. Control Jujutsu identifies target

1 /* Spawn the piped logger process pl->program. */
2 static apr_status_t piped_log_spawn(piped_log *pl)
3 {
4 apr_procattr_t *procattr;
5 apr_proc_t *procnew = NULL;
6 apr_status_t status;
7

8 ...
9 char **args;

10 apr_tokenize_to_argv(pl->program, &args, pl->p);
11 procnew = apr_pcalloc(pl->p, sizeof(apr_proc_t));
12 status = apr_proc_create(procnew,
13 args[0],
14 (const char * const *) args,
15 NULL, procattr, pl->p);
16 ...
17 }

Figure 3: Target function piped_log_spawn in Apache
HTTPD

functions that exercise behavior equivalent to a RCE (e.g. system
or exec calls).

In this example, the piped_log_spawn function meets and
exceeds all of our requirements. Apache allows a configuration
file to redirect the Apache logs to a pipe rather than a file; this
is commonly used by system administrators to allow transparent
scheduled log rotation. This functionality involves Apache reading
its configuration file, launching the program listed in the config-
uration file along with given arguments, and then connecting the
program’s standard input to Apache’s log output.

Figure 3 presents a simplified version of the example tar-
get function, piped_log_spawn. This target function ac-
cepts a pointer to the piped_log structure as an argument.
piped_log_spawn invokes an external process found in the
char *program field of the piped_log structure.

The piped_log structure has a similar layout to many other
Apache structure types, which significantly expands the number of
viable ACICS that can reach it without a crash. This is because
many Apache structs also have an entry with type apr_pool_t
as their first field, so that value will not need to be overwritten.
This also eliminates the need to leak valid memory values for the
apr_pool_t field, which must be valid for our example attack to
succeed.

2.4 Exploit Generation:
Next, Control Jujutsu constructs the exploit as follows:

1. Use a heap memory corruption vulnerability to corrupt an en-
try in the _hooks structure’s link_dirwalk_stat field
to point to piped_log_spawn.

2. Use the same vulnerability to corrupt the struct in the
request_rec->finfo field such that, when viewed as
a piped_log struct, the fields read_fd and write_fd
are null, and the field program points to a string with the
name and arguments of the program we intend to invoke
(e.g., “/bin/sh -c ...”).

2.5 CFG Construction
Next, Control Jujutsu examines the CFG to ensure that the

ACICS sites we identified using a tool described in Section 4 can be
redirected to the target site. In our example, the CFG constructed by
the DSA algorithm [33] allows the ICS located at dirwalk_stat
to point to the target function piped_log_spawn. In the
next section, we describe why DSA, a context-sensitive and field-
sensitive analysis, was not able to construct a CFG that can be used
by fine-grained CFI to stop the attack.

903

1 void ap_hook_dirwalk_stat(ap_HOOK_dirwalk_stat_t *pf,
2 ...) {
3 ap_LINK_dirwalk_stat_t *pHook;
4 //check the corresponding field of the global _hooks
5 if (!_hooks.link_dirwalk_stat)
6 _hooks.link_dirwalk_stat = apr_array_make(...);
7 // store the function pointer pf into the array
8 pHook = apr_array_push(_hooks.link_dirwalk_stat);
9 pHook->pFunc = pf;

10 ...
11 }

Figure 4: The code snippet for
ap_hook_dirwalk_stat() in Apache HTTPD

3. BUILDING CONTROL FLOW GRAPHS
WITH STATIC ANALYSIS

The construction of a precise CFG requires a pointer analysis [6,
23, 24, 26, 33, 42, 45, 51, 59] to determine the set of functions to
which the pointer at each indirect call site (e.g., line 23 in Figure 1)
can point.

Figure 4 presents a simplified version of
ap_hook_dirwalk_stat(), which registers implemen-
tation functions that ap_run_dirwalk_stat() (shown in
Figure 1) can later invoke for the functionality of dirwalk_stat.
The intended behavior of the ICS shown at line 23 in Fig-
ure 1 is to only call implementation functions registered via
ap_hook_dirwalk_stat() in Figure 4.

The first argument pf of ap_hook_dirwalk_stat()
is the function pointer to an implementation function of
dirwalk_stat. It has the type ap_HOOK_dirwalk_t,
which corresponds to the function signature for dirwalk_stat.
ap_hook_dirwalk_stat() stores the function pointer
to the APR array _hooks.link_dirwalk_stat.
ap_LINK_dirwalk_stat_t (line 3 in Figure 1) represents the
type of each array entry.

The function ap_run_dirwalk_stat() (line 7 in Figure 1)
iterates over the APR array _hook.link_dirwalk_stat and
runs each implementation function until an implementation func-
tion returns a value other than AP_DECLINED.

The example code in Figure 1 and Figure 4 highlights the fol-
lowing challenges for the static analysis:

• Global Struct: The analysis has to distinguish between
different fields in global variables. _hooks in Figure 1
and Figure 4 is a global struct variable in Apache HTTPD.
Each field of _hooks contains an array of function point-
ers to registered implementation functions for a correspond-
ing functionality. For example, the link_dirwalk_stat
field contains function pointers to implementation functions
of the functionality dirwalk_stat.

• Customized Container API: The analysis has to capture
inter-procedural data flows via customized container APIs.
The code in Figure 1 and Figure 4 uses customized array
APIs apr_array_push() and apr_array_make()
to store and manipulate function pointers.

• Macro Generated Code: The code shown in Fig-
ure 1 and Figure 4 is generated from macro templates
found in Apache Portable Runtime library. For example,
for a functionality malicious, there are pairs of functions
ap_hook_malicious() and ap_run_malicious()
that are structurally similar to the code shown in Figure 1
and Figure 4. This imposes a significant additional precision

requirement on the static analysis, as it needs to consider a
(potentially) large number of similar functions that can ma-
nipulate the data structures inside _hooks.

3.1 Static Analysis: Knobs and Trade-offs
Precise (sound and complete) pointer analysis is undecid-

able [43]. Unsound pointer analysis may generate a CFG that
misses legitimate indirect transfers, which may ultimately lead CFI
to report false positives. Breaking program functionality is typi-
cally undesirable (see Section 3.3).

Researchers instead focus on sound but incomplete pointer anal-
ysis algorithms [6, 23, 24, 26, 33, 42, 45, 51, 59] that conserva-
tively report more connections. For example, two pointers may
alias and an indirect call site may call a function. The hope is that
such imprecision could be controlled and that the analysis could be
accurate enough so that the generated CFG still does not contain
malicious connections.

Another important design decision for pointer analysis algo-
rithms is scalability [25]. Standard pointer analysis algorithms
for C programs have three important knobs that control the
trade-offs between accuracy and scalability: context-sensitivity,
field sensitivity, and flow sensitivity.

Context Sensitivity: A context-sensitive analysis [33, 51, 59] is
able to distinguish between different invocations of a function at
different call sites. It tracks local variables, arguments, and return
values of different function invocations, at different call sites sep-
arately. A context-insensitive analysis, in contrast, does not dis-
tinguish between different invocations of a function, i.e., analysis
results for local variables, arguments, and the return values from
different invocations of the function are merged together.

Previous work in the programming language community has
shown that context sensitivity is indispensable for obtaining precise
pointer analysis results in real world applications [25, 33, 51, 59],
because it eliminates a large set of unrealizable information prop-
agation paths where calls and returns do not match. Context sen-
sitivity is especially important for analyzing C programs that im-
plement customized memory management functions or manipulate
generic data structures with common interfaces, because otherwise
all pointer values returned by each memory management or data
structure function will be aliased (to each other).

For our example in Figure 4, context sensitivity is also im-
portant. A context-insensitive analysis will merge the anal-
ysis results of the return value of different invocations of
apr_array_push(). Therefore a context-insensitive analysis
will incorrectly determine that pHook at line 9 in Figure 4 may
alias to pHook in another implementation registration function
such as ap_hook_malicious() (recall that all implementa-
tion registration functions are generated with macro templates), be-
cause both are equal to a return value of apr_array_push()
(albeit from different invocations). Eventually, this imprecision
will cause the analysis to determine that the indirect call at line
23 in Figure 1 may call to an implementation function regis-
tered via ap_hook_malicious(), because the analysis con-
servatively determines that the function pointer argument value in
ap_hook_malicious() may flow to pHook->pFunc via the
aliased pHook pointer.

Unfortunately, context-sensitive pointer analysis is expensive for
large real-world applications. Full context-sensitive analysis is also
undecidable for programs that contain recursions [44]. Standard
clone-based context-sensitive pointer analysis [59] duplicates
each function in a program multiple times to distinguish different
invocations of the function. This unfortunately will increase the

904

size of the analyzed program exponentially. The DSA algorithm
uses bottom-up and top-down algorithms to traverse the call graph
of a program and summarizes context-sensitive analysis results
into a unification-based data structure graph [33]. It produces
slightly less accurate results than clone-based algorithms but
avoids an exponential blow up on real world programs.

Field Sensitivity: A field-sensitive analysis [33, 42] is able to
distinguish different fields of a struct in C programs, while a field-
insensitive analysis treats the whole struct as a single abstract vari-
able. Modifications to different fields are transformed into weak
updates to the same abstract variable, where the analysis conserva-
tively assumes that each of the modifications may change the value
of the abstract variable.

For our example in Figure 1 and Figure 4, field sensitivity is im-
portant. A field insensitive analysis treats the global struct _hooks
as a single abstract variable, so that it cannot distinguish the field
link_dirwalk_stat from other fields in _hooks such as
link_malicious. Therefore the analysis conservatively deter-
mines that the assignment at lines 16-17 in Figure 1 may retrieve
an array that contains function pointers for other functionalities like
malicious. This causes the analysis to eventually determine that the
indirect call at line 23 in Figure 1 may make call to any implemen-
tation function registered via ap_hook_malicious().

Field-sensitive pointer analysis is hard for C programs due to the
lack of type-safety. Pointer casts are ubiquitous, and unavoidable
for low-level operations such as memcpy(). Field-sensitive anal-
ysis algorithms [33, 42] typically have a set of hand-coded rules to
handle common code patterns of pointer casts. When such rules
fail for a cast of a struct pointer, the analysis has to conservatively
merge all fields associated with the struct pointer into a single
abstract variable and downgrade into a field-insensitive analysis
for the particular struct pointer.

Flow Sensitivity: A flow-sensitive analysis considers the execu-
tion order of the statements in a function [23, 26, 45], while a flow-
insensitive analysis conservatively assumes that the statements in-
side a function may execute in arbitrary order. Flow sensitivity
typically improves pointer-analysis accuracy but when combined
with context-sensitive analysis it can lead to scalability issues. To
the best of our effort, we are unable to find any publicly available
context-sensitive flow-sensitive pointer analysis that can scale to
server applications such as Apache HTTPD. A common practice
to improve the accuracy of a flow-insensitive analysis is to apply
single static assignment (SSA) transformation to a code before the
analysis [24].

3.2 DSA Algorithm
As discussed above, the combination of context sensitivity and

field sensitivity is critical for generating a precise CFG that can stop
the attack described in Section 2. We next present the results of us-
ing the DSA algorithm [33] to generate a CFG for Apache HTTPD.
We chose the DSA algorithm because, to the best of our knowledge,
it is the only analysis that 1) is context-sensitive and field-sensitive,
2) can scale to server applications like Apache HTTPD and Nginx,
and 3) is publicly available.

The DSA algorithm is available as a submodule of the LLVM
project [3] and is well maintained by the LLVM developers. It
works with programs in LLVM intermediate representation (IR)
generated by the LLVM Clang compiler [2]. We use Clang to
compile Apache HTTPD together with the Apache Portable Run-
time(APR) library [1] into a single bitcode file that contains LLVM
IRs for the whole Apache HTTPD and APR library. We run the

LLVM mem2reg pass (SSA transformation pass) on the bitcode file
to improve the accuracy of the pointer analysis . We then construct
an LLVM pass that runs the DSA algorithm and queries the DSA
result to generate a CFG for the bitcode file.

Unfortunately, the DSA algorithm produces a CFG that cannot
stop the attack in Section 2. Specifically, the CFG specifies
that the indirect call at line 26 in Figure 4 may call to the
function piped_log_spawn(). We inspected the debug
log and the intermediate pointer analysis results of the DSA
algorithm. We found that although as a context-sensitive and
flow-sensitive analysis the DSA algorithm should theoretically be
able to produce a precise CFG to stop the attack, the algorithm
in practice loses context sensitivity and flow sensitivity because
of convoluted C idioms and design patterns in Apache HTTPD
and the APR library. As a result, it produces an imprecise CFG.
Fine-grained CFI systems that disallow the calling of functions
whose address is not taken can prevent the proposed attack through
piped_log_spawn(). The attack can succeed, however, by
targeting piped_log_spawn() indirectly through functions
such as ap_open_piped_log_ex(), whose address is directly
taken by the application. Next, we describe some of the sources of
imprecision in more detail.

Struct Pointer Casts: We found that struct pointer-cast operations
in Apache HTTPD cause the DSA algorithm to lose field sensitiv-
ity on pointer operations. Pointer casts are heavily used at the in-
terface boundaries of Apache components. There are in total 1027
struct pointer conversion instructions in the generated bitcode file
of Apache HTTPD.

For example, pointers are cast from void* to
apr_LINK_dirwalk_stat_t * at line 8 in Figure 4
when using the array container API apr_array_push().
Apache HTTPD also uses its own set of pool memory management
APIs and similar pointer casts happen when a heap object crosses
the memory management APIs. When the DSA algorithm detects
that a memory object is not accessed in a way that matches the
assumed field layout of the object, the algorithm conservatively
merges all fields into a single abstract variable and loses field
sensitivity on the object.

Integer to Pointer Conversion: Our analysis indicates that the
Clang compiler generates an integer to pointer conversion instruc-
tion (inttoptr) in the bitcode file for the APR library function
apr_atomic_casptr(), which implements an atomic pointer
compare-and-swap operation.

For such inttoptr instructions, the DSA algorithm has to con-
servatively assume that the resulting pointer may alias to any point-
ers and heap objects that are accessible at the enclosing context.
Although such instructions are rare (apr_atomic_casptr()
is called three times in the Apache HTTPD source code), they act
as sink hubs that spread imprecision due to this over-conservative
aliasing assumption.

Cascading Imprecision: The struct pointer casts and integer to
pointer conversions are the root sources of the imprecision. One
consequence of the imprecision is that the DSA algorithm may gen-
erate artificial forward edges (calls) for indirect call sites.

Although initially such artificial forward edges may not directly
correspond to attack gadgets in the Apache HTTPD, they introduce
artificial recursions to the call graph. Because maintaining context
sensitivity for recursions is undecidable, the DSA algorithm has to
conservatively give up context sensitivity for the function calls be-
tween functions inside a recursive cycle (even they are artificially

905

recursive due to the analysis imprecision). This loss of context sen-
sitivity further introduces imprecision in field sensitivity because of
type mismatch via unrealizable information propagation paths.

In our Apache HTTPD example, this cascading effect contin-
ues until the DSA algorithm reaches an (imprecise) fix-point on the
analysis results. As a result, 51.3% of the abstract struct objects
the DSA algorithm tracks are merged into single abstract variables
(i.e., the loss of field sensitivity); we observed a phenomenal ar-
tificial recursion cycle that contains 110 functions (i.e., due to the
loss of context sensitivity). Some of this imprecision may be at-
tributed to changes in LLVM IR metadata since version 1.9. Previ-
ous versions relied on type annotations that used to persist from the
llvm-gcc front-end into the LLVM IR metadata that are no longer
available. LLVM DSA prior to version 1.9 used a set of type-based
heuristics to improve the accuracy of the analysis. Aggressive use
of type-based heuristics is unsound and could introduce false neg-
atives (opening up another possible set of attacks).

3.3 Unsound Analysis with Annotations
To maintain soundness guarantees, existing pointer analysis al-

gorithms conservatively over-approximate results. For example,
sound pointer analysis algorithms conservatively assume that two
pointers may alias or an indirect call site may call a function when
analyzing hard-to-analyze C idioms or code design patterns.

One way to improve the security of fine-grained CFI is to gen-
erate CFGs using pointer analysis algorithms that relax sound-
ness guarantees. Unsound pointer analysis can avoid such over-
conservative assumptions and generate restrictive CFGs that may
stop attacks based on ACICS gadgets. One consequence of apply-
ing unsound analysis, however, is that a restrictive CFG may cause
undesirable false positives that interfere with legitimate program
operation.

Our experiments show that developers adopt design patterns that
improve modularity and maintainability at the cost of adding pro-
gram analysis complexity. One way to improve pointer-analysis
precision, is to rely on programmers to provide annotations that
help the underlying analysis navigate hard-to-analyze code seg-
ments. One promising research direction is the design of an an-
notation system that improves the underlying pointer analysis with
minimal developer involvement.

4. ACICS DISCOVERY TOOL
We next discuss how to automate the discovery of ACICS gad-

gets using the ACICS Discovery Tool (ADT). To help discover can-
didate ICS/target function pairs (ACICS gadgets), ADT dynami-
cally instruments applications using the GDB 7.0+ reverse debug-
ging framework. For each candidate ACICS gadget, ADT runs a
backward data-flow analysis that discovers the location of the ICS
function pointer (and its arguments) in memory. Once a candidate
pair is identified, ADT automatically corrupts the forward edge
pointer and its arguments to verify that remote code execution can
be achieved. Below, we describe ADT’s approach in detail.

4.1 Approach
As input, ADT takes a target program, a list of candidate indirect

call sites (ICS), sample inputs that exercise the desired program
functionality (and the list of ICS), and the address of a candidate
target function inside the target program. For each ICS location,
ADT performs the following steps (illustrated in Figure 5):

1. Reach ICS: ADT instruments program execution, using the
GDB framework, with the ability to perform reverse exe-
cution analysis once program execution reaches a candidate

Input : The target ICS instruction icsinst .
Input : Prev , a function that returns the previous instruction (or NULL if not

available) before a given instruction.
Output: The memory address that stores the call target or NULL if failed

1 if icsinst is the form of “call REG[i]” then
2 r ←− i

3 else
4 return NULL

5 inst ←− Prev(icsinst)
6 while inst 6= NULL do
7 if inst modifies REG[r] then
8 if inst is the form of “REG[r] = a ∗ REG[i] + c” then
9 r ←− i

10 if inst is the form of “REG[r] = ∗(a ∗ REG[i] + c)” then
11 return a× regv(i) + b

12 inst ←− Prev(inst)

13 return NULL

Figure 6: Backward dataflow analysis to identify the target
address

ICS location. Specifically, ADT adds a breakpoint which en-
ables the process recording functionality at the entry to the
function enclosing the ICS location.

2. Backward Dataflow Analysis: Once execution reaches the
ICS location, ADT performs a backward reaching-definition
dataflow analysis (see Section 4.2) from the registers con-
taining the target function address and its arguments to the
memory locations that hold their values.

3. Determine Last Write IP: Next, ADT needs to identify pro-
gram locations that can be used to corrupt the ICS function
pointer and its values. To do this, ADT restarts the debugger
and instruments the memory addresses, identified in the pre-
vious step, to record the code locations (i.e., the instruction
pointer) that perform memory writes to these locations. To
differentiate memory writes that occur in loops, ADT main-
tains a write counter. Using this information, ADT can de-
termine the ideal program location to corrupt the ICS target
and its arguments such as to minimize possible interference.

4. Corrupt Function Pointers and Arguments: At this point,
ADT is able to restart the debugger and halt the program at
the ideal point identified in the previous step. Then ADT
redirects the ICS function pointer and its arguments to the
target function. Additionally, by tracking every statement
executed until the target ICS is reached, a lower bound of the
liveness of the ACICS can be reported.

The liveness of an ACICS allows us to reason about its
exploitability; if the liveness persists across the program
lifecycle, the ICS can be attacked by almost any memory
read/write vulnerability, regardless of where it occurs tem-
porarily. On the other hand, an ACICS whose liveness is
contained in a single function is significantly less exploitable.

5. ACICS validation: Finally, ADT validates the ACICS gad-
get by verifying that the target function is reached, the argu-
ment values match the values in the corruption step and ul-
timately verifying that the target function can exercise func-
tionality equivalent to remote code execution (e.g., create a
file, launch a process, etc.).

906

call *x (y)

r.xyz
r.abc

r.handler
r.len

HEAP

x = r->handler y = r->len

valid_target_1(y)

valid_target_2(y)

valid_target_3(y)

malicious(y)

(2) Backward dataflow
analysis

(3) Determine Last Write IP
(4) Corrupt Function Pointer and Arguments

(5) ACICS Validation

(1) Reach ICS

Figure 5: ACICS Discovery Tool

4.2 Backward Dataflow
Figure 6 presents ADT’s backward dataflow analysis algorithm.

The goal of this analysis to perform a backward reaching definition
analysis from the register values that hold the target function and
its arguments to corruptible memory locations. For example, in
Figure 5, the dataflow algorithm called on input x would produce
the address of r.handler. This is done by iteratively stepping
back in time (reverse debugging) and examining any instruction
that modifies the register which originally contained the function
pointer. We assume that the instructions involved in the dataflow of
the target function can be represented as the composition of linear
functions and dereferences, and report a dataflow error if this does
not hold. Once a function which dereferences a memory location is
discovered, linear function models are used to compute the source
address of the forward edge.

ADT contains several additional checks, such as an assertion to
ensure that the forward edge pointer value at the ICS matches the
value observed at the computed source memory address which is
the output of the backward dataflow procedure. The typical use
case discovered by the backward analysis is the lookup of a member
element from a struct pointer; such as x->y; additional levels of
indirection such as x->y->z are currently not supported.

4.3 Discussion
ADT was not designed to discover all possible ACICS gadgets

but rather as a tool to facilitate the construction of proof-of-concept
exploits. Specifically, ADT under-reports the number of ACICS
gadgets for the following reasons. First, the backward dataflow
analysis does not support multi-level argument redirection. Sec-
ond, ADT assumes deterministic execution; non-deterministic be-
havior will result in under-reporting ACICS gadgets (i.e., it may
miss ACICS gadgets but it will not report incorrect results). Third,
ADT does not consider possible ACICS gadgets caused by unin-
tentional arguments–pointers left in registers from previous func-
tion calls which might become relevant again if a function pointer
were changed to point at a higher function of higher arity. Finally,
we acknowledge that increasing the distance from ACICS gadget
to target system calls may introduce more opportunities for failure
due to argument clobbering. Our results show that in practice this is

not a problem. Software engineering techniques such as refactoring
make this less of a problem in large, well engineered software.

5. EVALUATION
We evaluate Control Jujutsu using two proof-of-concept exploits

against two popular web servers Apache and Nginx. We assume
that the servers are protected using fine-grained CFI (unlimited
tags), to enforce only intended control transfers on the forward-
edge (i.e,. indirect calls/jumps), and a shadow stack to protect the
backward-edge (i.e. returns). For the forward edge, the CFG is
constructed using the state-of-the-art DSA [33] pointer analysis al-
gorithm. To protect the backward edge, we assume a shadow stack
implementation.

For each exploit, we evaluate the availability of ACICS gadgets
by measuring 1) the number of suitable indirect call sites and 2)
the number of target functions that can be used together to launch
remote code execution attacks.

5.1 Apache HTTPD 2.4.12

5.1.1 Suitable ICS:
Our evaluation of the unoptimized Apache binary shows that the

server contains 172 indirect call sites (ICS). We limit our evaluation
to the core binary and omit reporting potential ICS target in other
Apache modules, such as the Apache Portable Runtime (APR) and
APR-util libraries. From these 172 sites, we want to find a subset of
sites 1) which are exercised when the program processes a request
and 2) whose forward edge pointer and arguments can be success-
fully corrupted by our ADT tool without crashing the program.

We run our ADT tool described in Section 4 on each of the 172
sites. We use a test script program that sends simple HTTP GET
requests to drive our experiments. There are 51 sites exercised in
our experiments. The remaining 121 sites do not satisfy our re-
quirement, because they are either inside specific modules that are
not enabled by default or depend on specific functionalities that a
simple HTTP GET request does not exercise.

Table 1 presents the classification results of ICS exercised during
different execution stages of Apache. In order to detect whether
an ICS is exercised during the HTTP GET request life cycle or the
startup, we vary when the test script is called in our tool. Our results

907

Total ICS 172
Exercised in HTTP GET request 20

Exercised during startup 45
Unexercised 121

Table 1: Indirect Call Sites Dynamic Analysis

Number of ICS dynamically encountered 51
Detected forward edge pointer on the heap/global 34

Automatically corrupted forward edges 34
Automatically corrupted forward edges + arguments 3

Table 2: Automatic Corruption Analysis

show that there are 20 sites exercised during an HTTP GET request
life cycle and 45 sites exercised during startup. Note that some of
sites exercised during startup are also exercised by an HTTP GET
request .

We use our ADT tool to detect the location of the forward edge
pointer and arguments of each of the exercised 51 ICS and to cor-
rupt these values. Table 2 presents our experimental results. Of the
51 ICS that are exercised dynamically in our experiments, our tool
successfully corrupt forward edge pointers for 34 ICS. For 3 ICS
our tool successfully corrupted both the forward edge pointers and
the arguments.

Code patterns inside Apache facilitate our attack. We discovered
that 108 of the total 172 ICS listed are in the Apache binary, but
generated from the APR library’s “hook” system, which allows a
function to register a function pointer for a callback at a later time.
For all of the ICS generated by the APR hooks, the forward edge
pointers are stored inside the global struct _hooks inside APR (see
Section 2, Figures 1 and 4). This hook structure persists across the
lifetime of the Apache worker process, which is ideal for our attack.
Additionally, almost all of the hook functions have argument that
are pointers to objects visible across the entire request lifecycle,
such as the ubiquitous request_rec* r argument. This is also
ideal for corruption purposes.

In our Apache exploit example in Section 2, we use the ICS in-
side ap_run_dirwalk_stat(), the function meets all of our
requirements and it is exercised during every HTTP GET request.
While our evaluation focuses on unoptimized binaries to facilitate
the construction of our proof-of-concept attacks, we also verified
that the target ACICS gadget is still present in LLVM -02 level of
optimizations. We believe that optimizations such as inlining will
not significantly reduce the number of available gadgets.

5.1.2 Target Functions:
We run a script that searches the Apache source code for system

calls that we can use to trigger behaviors equivalent to RCE such
as exec() and system(). For each function in Apache, the
script measures the distance between the function and a function
that contains such system calls.

Table 3 presents the results. The farther away a target func-
tion is in the CallGraph, the harder it generally is to use it in the
payload. At the same time, more viable functions become avail-
able. Related work has found similar results for the Windows
platform [22]. Our example Apache exploit in Section 2 uses
piped_log_spawn(), which is two calls away from the sys-
tem call.

Direct calls to system calls 1 call away 2 calls away
4 13 31

Table 3: Target Functions Count Based on CallGraph distance

5.2 Nginx 1.7.11
Our analysis for Nginx mirrors the analysis we performed for

Apache source code. We used the ACICS Discovery Tool (ADT)
described in Section 4 and performed manual analysis to find the
most suitable indirect call site and target function to demonstrate
our attack.

5.2.1 Suitable ICS:
Our analysis on the unoptimized Nginx binary shows that there

are 314 ICS in Nginx. We run our ADT tool on each of the 314
ICS in a way similar to our Apache experiments. Table 4 presents
the classification results of ICS based on different execution stages
and Table 5 presents the corruption experiment results.

Our results show that there are 36 ICS exercised during our Ng-
inx experiments and 27 of these ICS are exercised during an HTTP
GET request lifecycle after Nginx startup. Of the 36 exercised ICS,
our ADT tool successfully corrupted the forward edge pointers and
arguments for 4 ICS.

Total ICS 314
Exercised in HTTP GET request 27

Exercised during startup 18
Unexercised 278

Table 4: Indirect Call Sites Dynamic Analysis

Number of ICS dyanmically encountered 36
Detected forward edge pointer on the heap/global 7

Automatically corrupted forward edges 7
Automatically corrupted forward edges + arguments 4

Table 5: Automatic Corruption Analysis

We found that the ICS at core/ngx_output_chain.c:74 in
ngx_output_chain() is an ideal candidate ICS for our
attack. Figure 7 presents the simplified code snippet of
ngx_output_chain(). The ICS is at line 27 in Figure 7. The
function implements the filter chaining mechanism that is inherent
to Nginx’s modular design because it gives an easy way to manip-
ulate the output of various handlers run on the request object to
generate a response.

In this function, the function pointer ctx->output_filter
and arguments ctx->filter_ctx are all derived from ctx
which is a ngx_output_chain_ctx struct pointer. This ctx
a global object lives on the heap, so that our tool successfully cor-
rupts all of these values.

Secondly, the argument ctx->filter_ctx is a void pointer
that is written only once during the request life cycle, whereas ar-
gument in is a pointer to the head of a linked list of filters that are
applied to request responses. This linked list is modified in every
module that implements a filter. However with manual dataflow
analysis, it is possible to modify this linked list so that the checks
at lines 18, 19, and 20 of Figure 7 pass and we reach the execution
of the ICS before any crash happens. Thirdly, as all response body
filters are called before the response is returned to the user, we were
able to remotely exercise this ICS during the request life cycle.

908

1 ngx_int_t
2 ngx_output_chain(ngx_output_chain_ctx_t *ctx,
3 ngx_chain_t *in)
4 {
5 ...
6

7 if (ctx->in == NULL && ctx->busy == NULL)
8 {
9 /*

10 * the short path for the case when the ctx->in
11 * and ctx->busy chains are empty, the incoming
12 * chain is empty too or has the single buf
13 * that does not require the copy
14 */
15

16 if (in == NULL) {
17 return ctx->output_filter(ctx->filter_ctx, in);
18 }
19

20 if (in->next == NULL
21 #if (NGX_SENDFILE_LIMIT)
22 && !(in->buf->in_file && in->buf->file_last
23 > NGX_SENDFILE_LIMIT)
24 #endif
25 && ngx_output_chain_as_is(ctx, in->buf))
26 {
27 return ctx->output_filter(ctx->filter_ctx, in);
28 }
29 }
30 ...
31 }

Figure 7: ACICS for Nginx found in ngx_output_chain func-
tion

5.2.2 Target Function:
We use a script to search Nginx source code for system calls

with RCE capability. Table 6 shows the number of potential tar-
gets based on the distance in the call graph. We found that the
function ngx_execute_proc() (shown in Figure 8) is an ideal
target function for our proof-of-concept attack, because it executes
a execve() call with passed-in arguments and it has a small arity
of 2, which facilitates the type punning.

1 static void
2 ngx_execute_proc(ngx_cycle_t *cycle, void *data)
3 {
4 ngx_exec_ctx_t *ctx = data;
5

6 if (execve(ctx->path, ctx->argv, ctx->envp) == -1) {
7 ngx_log_error(...);
8 }
9 exit(1);

10 }

Figure 8: Nginx Target Function that calls execve

5.2.3 Proof-of-concept Attack:
Hence, we identified the ACICS gadget pair for our attack

which is composed of the ICS at core/ngx_output_chain.c:74 in
ngx_output_chain() (see line 27 in Figure 7) and the target
function ngx_execute_proc() (see Figure 8).

We then perform the attack as follows. We corrupt
ctx->output_filter to point to the target function
ngx_execute_proc() and we corrupt the memory re-
gion that in points to so that when the memory region is viewed
as a ngx_exec_ctx_t struct in ngx_execute_proc(), it
will trigger RCE at line 6 in Figure 8. We successfully achieved
RCE with our attack.

Direct calls to system calls 1 call away 2 calls away
1 2 3

Table 6: Target Functions Count Based on CallGraph distance

5.3 CFG Construction Using DSA
We next evaluate the precision of CFG construction using

the DSA algorithm on four popular server applications: Apache
HTTPD, Nginx, vsftpd, and BIND. Specifically, we evaluate the
loss of context sensitivity by measuring the maximum size of
strongly connected components and the loss of field sensitivity by
measuring the number of merged objects. We performed all of our
experiments on an Intel 2.3GHz machine running Ubuntu 14.04.

Table 7 summarizes the results. The first column presents the ap-
plication name. The second and third columns represent the source
code line count and LLVM IR count respectively. The application
size ranges from 17K LoC for vsftpd to approximately 460K LoC
for BIND.

The fourth column presents the number of functions in the largest
(potentially artificial) recursion cycle DSA algorithm found for
each application. High numbers translate to high loss of context
sensitivity. The fifth column presents the percentage of the abstract
struct objects that the DSA algorithm tracks which the DSA al-
gorithm merges conservatively. High percentage numbers indicate
high loss of field sensitivity.

Together, columns four and five show that the DSA algorithm
is unable to produce satisfactory results on any of the four applica-
tions due to the loss of field sensitivity and context sensitivity. DSA
loses field sensitivity on up to 70.5% of tracked struct objects and
detects artificial recursion groups that contain up to 1023 functions.

Note that even for Nginx, where the relative loss is small,
the generated CFG is unable to stop the ASICS gadgets
index Section 5.2. The CFG allows the ICS found in
core/ngx_output_chain.c:74 (line 27 in Figure 7) to call the tar-
get function ngx_execute_proc shown in Figure 8 due to the
pointer analysis imprecision.

The sixth column presents the running time of the DSA algo-
rithm on each application. Our results show that the running time
of the DSA algorithm grows non-linearly to the amount of ana-
lyzed code. For BIND, the algorithm needs more than 14 minutes
to finish. This result highlights the difficult trade-offs between the
accuracy and the scalability in pointer analysis algorithms.

5.4 Summary
In summary, our results demonstrate that the availability of

ACICS gadgets inside Apache and Nginx can be harnessed to pro-
duce with two proof-of-concept attacks. Our results also show that
on all evaluated applications, the DSA algorithm loses a significant
part of field sensitivity and context sensitivity and that the generated
CFGs are not precise enough to stop the proof-of-concept attacks.
Together the results indicate the difficulty of creating a sound, pre-
cise and scalable CFG construction algorithm that can be used by
fine-grained CFI to stop ACICS gadgets.

6. DISCUSSION
In this section, we discuss possible defenses against the Control

Jujutsu attack and explore their viability, security, and practicality.

909

Program LoC LLVM IR Max. SCC Size Merged% Time
HTTPD 272K 318K 110 51.3% 14s
Nginx 123K 358K 38 10.8% 10s
vsftpd 16K 24K 255 70.5% 1s
BIND 462K 1167K 1023 41.2% 14m52s

Table 7: DSA analysis statistics

6.1 Complete Memory Safety
Complete memory safety techniques that enforce both temporal

and spatial safety properties can defend against all control hijack-
ing attacks, including Control Jujutsu. Softbound with its CETS
extensions [37] enforces complete memory safety albeit at a signif-
icant cost (up to 4x slowdown).

On the other hand, experience has shown that low overhead tech-
niques that trade security guarantees for performance (e.g., approx-
imate [48] or partial [5] memory safety) are eventually bypassed
[16, 22, 47]. CPI [31] is a recent technique that achieves low per-
formance overhead by providing memory safety properties for code
pointers only (i.e., not data pointers). Unfortunately, it has already
been shown to be bypassable [21].

Hardware support can make complete memory safety practical.
Intel memory protection extensions (MPX) [29] can provide fast
enforcement of memory safety checks. The Low-Fat fat pointers
scheme shows that hardware-based approaches can enforce spatial
memory safety at very low overhead [32]. Tagged architectures
and capability-based systems such as CHERI [58] can also provide
a promising direction for mitigating such attacks.

6.2 Runtime Arity Checking
The recently published Indirect Function-Call Checks (IFCC)

[55] is forward-edge enforcement variant of CFI designed for C++
programs. In addition to forward-edge enforcement, it further im-
poses a restriction that the arity of call sites and target functions
must match. IFCC is capable of more powerful restrictions, but
they limit themselves to checking arity for reasons discussed in
Section 6.3.1.

IFCC may limit the number of available ACICS, but it cannot
prevent the Control Jujutsu attack in general. In particular, using
our ACICS discovery tool, we were able to easily expand on our
original exploit for Apache and develop an additional full exploit
based on an ACICS with an arity that matches its ICS with its tar-
get function. This exploit would not be detected by IFCC and is
detailed in Section 6.3.1. As for Nginx, our proof-of-concept ex-
ploit uses an ACICS gadget with matching arity so IFCC will not
be able to detect it.

6.3 Runtime Type Checking (RTC)
One way to restrict ACICS gadgets is to use a runtime type

checker for C. The most precise runtime type checker would need
access to the program source for type name information that is typ-
ically removed by C compilers. Although some information (e.g.,
the width in words of arguments) is inferrable purely from binary
analysis with the use of an interpreter and runtime environment,
as in the Hobbes checker [14], but the guarantees of runtime type
checking are substantially weakened.

6.3.1 Challenges of RTC
Unfortunately, runtime checks based on source code inference

would break compatibility with a large subset of real-world code.
Qualifiers such as const are routinely violated at runtime; a recent
paper [18] found that for const pointers alone, each of thirteen large
FreeBSD programs and libraries examined contained multiple “de-
const” pointer idioms which would be broken if const had been

enforced at runtime. In general, real-world programs do not always
respect function pointer types at runtime, as the IFCC paper noted
when they explained that their approach could support one tag per
type signature, but that this “can fail for function-pointer casts.”

The callback and object-oriented programming patterns that ex-
ist in large C programs are analogous to the virtual table semantics
of C++ programs. As our attack examples clearly demonstrate,
these indirect call sites in C programs with higher-order constructs
require protections in the same way that C++ programs need prin-
cipled virtual table protection.

A telling example of these patterns is the APR library’s bucket
brigade system. The bucket brigade structure, seen in Figure 9 is
analogous to a C++ object. It contains members like “data” along
with generic member functions that know how to read, write, and
delete the data. Additionally, buckets live on the heap, so they are
globally visible and thus can be corrupted in any function with a
heap vulnerability.

1 struct apr_bucket_type_t {
2 const char *name;
3 int num_func;
4 void (*destroy)(void *data);
5 ...
6 };
7

8 struct apr_bucket {
9 const apr_bucket_type_t *type;

10 apr_size_t length;
11 apr_off_t start;
12 void *data;
13 void (*free)(void *e);
14 ...
15 };

Figure 9: bucket_brigade declarations in APR-util

The structure is exercised by macros in the APR-util library such
as the bucket_brigade_destroy seen in Figure 10. This
macro is an ideal example of an ACICS–particularly dangerous
because the function it executes and its argument are stored in a
closure-like style inside the same structure. If an attacker can cor-
rupt a bucket brigade struct which is later destroyed, an arbitrary
function can be called with an arbitrary argument.

There are dozens of calls to apr_bucket_destroy and
its wrapper macro apr_bucket_delete in the Apache
source. We verified that the DSA analysis determines that
apr_bucket_delete might call piped_log_spawn. Un-
like the example in Figure 2, the arities of the ICS and the target
match, which passes the arity check imposed by IFCC.

We took a particular instance and verified that the data in e was
live throughout much of the request lifecycle, and that e->data
and e->type->destroy could be corrupted immediately af-
ter initialization (as long as e->length was also corrupted to 0)
without causing a crash before a call to apr_bucket_delete
was made. In particular the function which makes the call to this
ACICS is ap_get_brigade.

Patterns like this occur even more frequently in BIND, where
many structs are effectively objects with a “methods” field; an ex-

1 #define apr_bucket_destroy(e)
2 do {
3 (e)->type->destroy((e)->data);
4 (e)->free(e);
5 } while (0)

Figure 10: bucket_brigade_destroy macro definition in APR-
util

910

1 result = xfr->stream->methods->next(xfr->stream);

Figure 11: Example call from BIND xfrout.c

ample is seen in Figure 11 displaying the same pattern observed in
an APR-util function.

Clearly, if the bucket brigade struct or the XFR struct were
implemented as C++ classes, they would need to be protected
by a scheme such as v-table verification [55]. Fine-grained CFI
schemes which can make strong guarantees about typical C pro-
grams will fail to account for cases such as this or other higher-level
patterns implementing, without language support, object-oriented
techniques, or closures on top of the C runtime. Programs that em-
ploy these patterns blur the traditional distinction between “data
flow” and “control flow” attacks and present a significant challenge
for static analysis, let alone CFI.

6.3.2 Security Implications of RTC
Even assuming a correct, compatible, and performant type-

checking runtime, in-graph control flow attacks will still be pos-
sible as many program functions alias in signature. To evaluate ex-
actly how much flexibility would be left, we wrote a tool that uses
the libclang [2] library from Clang 3.6.0 to identify function signa-
tures and indirect call signatures. We ran this tool against several
popular server-side applications, reporting the number of matching
function signatures for indirect call sites and function declarations.
Note that the numbers include the linked headers from the standard
libraries and the application libraries, as their functions are viable
potential targets.

Number of unique... HTTPD
+ APR

BIND vsftpd Nginx

...function names 9158 10125 1421 2344
...function signatures 5307 5729 730 1135

...indirect call signatures 117 135 5 3
...aliased signatures 81 27 5 2
...aliased functions 553 328 68 119

Table 8: Matching ICS & Function Signatures

The versions of the applications shown in Table 8 are Apache
HTTPD 2.4.12, APR 1.5.1, BIND 9.10.2, vsftpd 3.0.2, and Nginx
1.7.11. The number of unique aliased signatures refers to the num-
ber of signatures found which matched both an indirect call and a
function declaration. At a minimum, this number should be equal
to the number of indirect call sites in the program. The last entry,
the number of unique aliased functions, refers to the total number
of functions (rather than function signatures) that could be potential
targets of these indirect call sites. Thus, if at least one ACICS can
be found for each aliased signature, the number of aliased functions
is the number of functions that can be targeted while staying within
the type system. Of course, a number of these are valid targets, but
without programmer annotations the true number of unintention-
ally aliased pairs cannot be determined.

There are many pairings with few call sites and many target
functions. For example, in BIND the signature void() matches 3
indirect calls and 252 target functions. In Apache, the signature
void (apr_pool_t *, void *, void *) matches 2 in-
direct calls and 59 target functions, and apr_status_t(void

*) matches 3 indirect call sites and 93 target functions. Even the
relatively small vsftpd has 48 matches for its one indirect call with
void(), and 11 for its one call with signature void(void *).

The principled solution to reducing this problem entirely would
be explicit programmer annotations for any aliasing function signa-
ture. However, the effort required to annotate all programs at this
level of detailed would be immense.

7. RELATED WORK
Control Flow Bending (CFB) [15] also demonstrates, inde-

pendently and concurrently with our work, attacks against fine-
grained CFI. To perform their proof-of-concept attacks, Control
Flow Bending introduces the notion of printf-oriented program-
ming, a form of ACICS gadgets, that can be used to perform
Turing-complete computation. CFB assumes a fully-precise CFG,
which we show is undecidable. CFB relies on manual analysis for
attack construction and is only able to achieve remote code execu-
tion in one of their six benchmarks. Moreover, printf-oriented pro-
gramming is only applicable to older versions glibc. In the newer
versions, the %n protection prevents the printf-oriented program-
ming attack [11]. In contrast, Control Jujutsu introduces a frame-
work (policies and tools) that enable automatic attack construction.
CFB and Control Jujutsu demonstrate attacks against fine-grained
CFI are possible in theory and in practice.

The Out of Control work by Göktas et al. [22] shows that coarse-
grained implementations of CFI (with 2 or 3 tags) can be bypassed.
In contrast, we show that even the fine-grained implementation of
CFI with unlimited number of tags and a shadow stack using the
state-of-the-art context- and field- sensitive static analysis is by-
passable by a motivated attacker. Moreover, by studying the inher-
ent limitations of scalable static analysis techniques, we show that
attacks such as Control Jujutsu are hard to prevent using CFI.

Counterfeit Object Oriented-Programming (COOP) [46] is an-
other recent attack on modern CFI defenses. COOP focuses ex-
clusively on C++ by showing that protecting v-table pointers in
large C++ programs is insufficient. Their work, like ours, focuses
on showing certain design patterns that are common in sufficiently
large or complex applications and are not accounted for in the de-
sign of CFI defenses. There may be some extensions of the COOP
approach to C programs (particularly ones making heavy use of the
patterns we described early); we leave this exploration to future
work.

On the defense side, a number of recent fine-grained CFI tech-
niques have been proposed in the literature. Forward-edge CFI [55]
enforces a fine-grained CFI on forward-edge control transfers (i.e.
indirect calls, but not returns). Cryptographically enforced CFI [34]
enforces another form of fine-grained CFI by adding message au-
thentication code (MAC) to control flow elements which prevents
the usage of unintended control transfers in the CFG. Opaque CFI
(OCFI) [36] enforces a fine-grained CFI by transforming the prob-
lem of branch target check to bounds checking (possible base and
bound of allowed control transfers). Moreover, it prevents attacks
on unintended CFG edges by applying code randomization. The
authors of OCFI mention that it achieves resilience against infor-
mation leakage (a.k.a. memory disclosure) attacks [47, 52] because
the attacker can only learn about intended edges in such attacks,
and not the unintended ones which were used in previous attacks
against coarse-grained CFI [22]. Our attack shows that just the in-
tended edges are enough for a successful attack.

Coarse-grained CFI efforts include the original CFI implemen-
tation [4], CCFIR [61], and Bin-CFI [62] all of which are bypassed
by the Out of Control attack.

Software Fault Isolation (SFI) and SFI-like techniques also im-
plement CFI at various granularities. Native Client [8, 60], XFI
[20], and WIT [5] are some of those examples.

911

Other randomization-based [10, 27, 28, 57] and enforcement-
based defenses [9, 58] against memory corruption attacks have
been proposed and studied in the literature. Due to space limi-
tations, we do not discuss them in detail here. Interested read-
ers can refer to the surveys in the literature for a list of these de-
fenses [39, 53].

8. CONCLUSION
We present a new attack, Control Jujutsu, that exploits the impre-

cision of scalable pointer analysis to bypass fine-grained enforce-
ment of CFI (forward and backward edge). The attack uses a new
“gadget” class, Argument Corruptible Indirect Call Site (ACICS),
that can hijack control flow to achieve remote code execution while
still respecting control flow graphs generated using context- and
field-sensitive pointer analysis.

We show that preventing Control Jujutsu by using more pre-
cise pointer analysis algorithms is difficult for real-world applica-
tions. In detail, we show that code design patterns for standard
software engineering practices such as extensibility, maintainabil-
ity, and modularity make precise CFG construction difficult.

Our results provide additional evidence that techniques that trade
off memory safety (security) for performance are vulnerable to mo-
tivated attackers. This highlights the need for fundamental memory
protection techniques such as complete memory safety and indi-
cates that the true cost of memory protection is higher than what is
typically perceived.

9. ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their helpful feedback

and our shepherd Hovav Shacham for his help with the cam-
era ready version of the paper. We also thank Deokhwan Kim,
Vladimir Kiriansky, and William Streilein for their support, feed-
back and suggestions for improving this paper. This research was
supported by DARPA (Grant FA8650-11-C-7192) and the Assis-
tant Secretary of Defense for Research & Engineering under Air
Force Contract #FA8721-05-C-0002.

10. REFERENCES
[1] Apache Portable Runtime Project. https://apr.apache.org/.
[2] Clang. http://clang.llvm.org/.
[3] The LLVM Compiler Infrastructure. http://llvm.org/.
[4] ABADI, M., BUDIU, M., ERLINGSSON, U., AND LIGATTI,

J. Control-flow integrity. In Proc. of ACM CCS (2005).
[5] AKRITIDIS, P., CADAR, C., RAICIU, C., COSTA, M., AND

CASTRO, M. Preventing memory error exploits with wit. In
Proc. of IEEE S&P (2008).

[6] ANDERSEN, L. O. Program analysis and specialization for
the c programming language. Tech. rep., 1994.

[7] ANDERSON, J. P. Computer security technology planning
study. volume 2. Tech. rep., DTIC Document, 1972.

[8] ANSEL, J., MARCHENKO, P., ERLINGSSON, Ú., TAYLOR,
E., CHEN, B., SCHUFF, D. L., SEHR, D., BIFFLE, C. L.,
AND YEE, B. Language-independent sandboxing of
just-in-time compilation and self-modifying code.

[9] BACKES, M., HOLZ, T., KOLLENDA, B., KOPPE, P.,
NÜRNBERGER, S., AND PEWNY, J. You can run but you
can’t read: Preventing disclosure exploits in executable code.
In Proc. of ACM CCS (2014).

[10] BIGELOW, D., HOBSON, T., RUDD, R., STREILEIN, W.,
AND OKHRAVI, H. Timely rerandomization for mitigating
memory disclosures. In Proc. of ACM CCS (2015).

[11] BILAR, D.
https://twitter.com/grsecurity/status/631670791445217280.
In GRSecurity’s Twitter Feed (2015).

[12] BITTAU, A., BELAY, A., MASHTIZADEH, A., MAZIERES,
D., AND BONEH, D. Hacking blind. In Proc. of IEEE S&P
(2014).

[13] BLETSCH, T., JIANG, X., FREEH, V., AND LIANG, Z.
Jump-oriented programming: A new class of code-reuse
attack. In Proc. of ACM CCS (2011).

[14] BURROWS, M., FREUND, S. N., AND WIENER, J. L.
Run-time type checking for binary programs. In Proc. of the
CC (2003).

[15] CARLINI, N., BARRESI, A., PAYER, M., WAGNER, D.,
AND GROSS, T. R. Control-flow bending: On the
effectiveness of control-flow integrity. In USENIX Security
(2015).

[16] CARLINI, N., AND WAGNER, D. Rop is still dangerous:
Breaking modern defenses. In USENIX Security Symposium
(2014).

[17] CHEN, X., CASELDEN, D., AND SCOTT, M. New zero-day
exploit targeting internet explorer versions 9 through 11
identified in targeted attacks, 2014.

[18] CHISNALL, D., ROTHWELL, C., WATSON, R. N.,
WOODRUFF, J., VADERA, M., MOORE, S. W., ROE, M.,
DAVIS, B., AND NEUMANN, P. G. Beyond the pdp-11:
Architectural support for a memory-safe c abstract machine.
SIGPLAN Not. (2015).

[19] COWAN, C., BEATTIE, S., DAY, R. F., PU, C., WAGLE, P.,
AND WALTHINSEN, E. Protecting systems from stack
smashing attacks with stackguard. In Linux Expo (1999),
Citeseer.

[20] ERLINGSSON, U., ABADI, M., VRABLE, M., BUDIU, M.,
AND NECULA, G. C. Xfi: Software guards for system
address spaces. In Proc. of the OSDI (2006).

[21] EVANS, I., FINGERET, S., GONZÁLEZ, J., OTGONBAATAR,
U., TANG, T., SHROBE, H., SIDIROGLOU-DOUSKOS, S.,
RINARD, M., AND OKHRAVI, H. Missing the point(er): On
the effectiveness of code pointer integrity. In Proc. of IEEE
S&P (2015).

[22] GÖKTAS, E., ATHANASOPOULOS, E., BOS, H., AND
PORTOKALIDIS, G. Out of control: Overcoming
control-flow integrity. In Proc. of IEEE S&P (2014).

[23] HARDEKOPF, B., AND LIN, C. Semi-sparse flow-sensitive
pointer analysis. In Proc. of POPL (2009).

[24] HASTI, R., AND HORWITZ, S. Using static single
assignment form to improve flow-insensitive pointer
analysis. In Proc. of PLDI (1998).

[25] HIND, M. Pointer analysis: Haven’t we solved this problem
yet? In Proc. of PASTE (2001).

[26] HIND, M., BURKE, M., CARINI, P., AND CHOI, J.-D.
Interprocedural pointer alias analysis. ACM Trans. Program.
Lang. Syst. (1999).

[27] HISER, J., NGUYEN, A., CO, M., HALL, M., AND
DAVIDSON, J. Ilr: Where’d my gadgets go. In Proc. of IEEE
S&P (2012).

[28] HOMESCU, A., BRUNTHALER, S., LARSEN, P., AND
FRANZ, M. librando: Transparent code randomization for
just-in-time compilers. In Proc. of ACM CCS (2013).

[29] INTEL. Introduction to intel memory protection extensions,
2013.

912

[30] JIM, T., MORRISETT, J. G., GROSSMAN, D., HICKS,
M. W., CHENEY, J., AND WANG, Y. Cyclone: A safe
dialect of c. In USENIX Technical Conference (2002).

[31] KUZNETSOV, V., SZEKERES, L., PAYER, M., CANDEA,
G., SEKAR, R., AND SONG, D. Code-pointer integrity.

[32] KWON, A., DHAWAN, U., SMITH, J., KNIGHT, T., AND
DEHON, A. Low-fat pointers: compact encoding and
efficient gate-level implementation of fat pointers for spatial
safety and capability-based security. In Proc. of ACM CCS
(2013).

[33] LATTNER, C., LENHARTH, A., AND ADVE, V. Making
context-sensitive points-to analysis with heap cloning
practical for the real world. In Proc. of PLDI (2007).

[34] MASHTIZADEH, A. J., BITTAU, A., MAZIERES, D., AND
BONEH, D. Cryptographically enforced control flow
integrity.

[35] MICROSOFT. A detailed description of the data execution
prevention (dep) feature in windows xp service pack 2,
windows xp tablet pc edition 2005, and windows server
2003. Online, September 2006.

[36] MOHAN, V., LARSEN, P., BRUNTHALER, S., HAMLEN,
K., AND FRANZ, M. Opaque control-flow integrity. In Proc.
of NDSS (2015).

[37] NAGARAKATTE, S., ZHAO, J., MARTIN, M. M., AND
ZDANCEWIC, S. Cets: compiler enforced temporal safety
for c. In ACM Sigplan Notices (2010).

[38] NECULA, G. C., MCPEAK, S., AND WEIMER, W. Ccured:
Type-safe retrofitting of legacy code. ACM SIGPLAN Notices
37, 1 (2002), 128–139.

[39] OKHRAVI, H., HOBSON, T., BIGELOW, D., AND
STREILEIN, W. Finding focus in the blur of moving-target
techniques. IEEE Security & Privacy 12, 2 (Mar 2014).

[40] ONE, A. Smashing the stack for fun and profit. Phrack
magazine 7, 49 (1996), 14–16.

[41] OPENBSD. Openbsd 3.3, 2003.
[42] PEARCE, D. J., KELLY, P. H., AND HANKIN, C. Efficient

field-sensitive pointer analysis of c. ACM Trans. Program.
Lang. Syst. 30, 1 (Nov. 2007).

[43] RAMALINGAM, G. The undecidability of aliasing. ACM
Trans. Program. Lang. Syst. 16, 5 (Sept. 1994), 1467–1471.

[44] REPS, T. Undecidability of context-sensitive
data-dependence analysis. ACM Trans. Program. Lang. Syst.
22, 1 (Jan. 2000), 162–186.

[45] RUGINA, R., AND RINARD, M. Pointer analysis for
multithreaded programs. In Proc. of PLDI (1999).

[46] SCHUSTER, F., TENDYCK, T., LIEBCHEN, C., DAVI, L.,
SADEGHI, A.-R., AND HOLZ, T. Counterfeit
object-oriented programming. In Proc. of IEEE S&P (2015).

[47] SEIBERT, J., OKHRAVI, H., AND SODERSTROM, E.
Information Leaks Without Memory Disclosures: Remote
Side Channel Attacks on Diversified Code. In Proc. of ACM
CCS (2014).

[48] SEREBRYANY, K., BRUENING, D., POTAPENKO, A., AND
VYUKOV, D. Addresssanitizer: A fast address sanity
checker. In USENIX Technical Conference (2012).

[49] SHACHAM, H. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In
Proc.of ACM CCS (2007).

[50] SNOW, K. Z., MONROSE, F., DAVI, L., DMITRIENKO, A.,
LIEBCHEN, C., AND SADEGHI, A.-R. Just-in-time code
reuse: On the effectiveness of fine-grained address space
layout randomization. In Proc. of IEEE S&P (2013).

[51] SRIDHARAN, M., AND BODÍK, R. Refinement-based
context-sensitive points-to analysis for java. In Proc. of
PLDI.

[52] STRACKX, R., YOUNAN, Y., PHILIPPAERTS, P., PIESSENS,
F., LACHMUND, S., AND WALTER, T. Breaking the
memory secrecy assumption. In Proc. of EuroSec (2009).

[53] SZEKERES, L., PAYER, M., WEI, T., AND SONG, D. Sok:
Eternal war in memory. In Proc. of IEEE S&P (2013).

[54] THE PAX TEAM. Address space layout randomization.
http://pax.grsecurity.net/docs/aslr.txt.

[55] TICE, C., ROEDER, T., COLLINGBOURNE, P.,
CHECKOWAY, S., ERLINGSSON, Ú., LOZANO, L., AND
PIKE, G. Enforcing forward-edge control-flow integrity in
gcc & llvm. In USENIX Security Symposium (2014).

[56] TRAN, M., ETHERIDGE, M., BLETSCH, T., JIANG, X.,
FREEH, V., AND NING, P. On the expressiveness of
return-into-libc attacks. In Proc. of RAID’11 (2011).

[57] WARTELL, R., MOHAN, V., HAMLEN, K. W., AND LIN, Z.
Binary stirring: Self-randomizing instruction addresses of
legacy x86 binary code. In Proc. of ACM CCS (2012).

[58] WATSON, R. N., WOODRUFF, J., NEUMANN, P. G.,
MOORE, S. W., ANDERSON, J., CHISNALL, D., DAVE, N.,
DAVIS, B., LAURIE, B., MURDOCH, S. J., NORTON, R.,
ROE, M., SON, S., VADERA, M., AND GUDKA, K. Cheri:
A hybrid capability-system architecture for scalable software
compartmentalization. In Proc. of IEEE S&P (2015).

[59] WHALEY, J., AND LAM, M. S. Cloning-based
context-sensitive pointer alias analysis using binary decision
diagrams. In Proc. of PLDI (2004).

[60] YEE, B., SEHR, D., DARDYK, G., CHEN, J. B., MUTH,
R., ORMANDY, T., OKASAKA, S., NARULA, N., AND
FULLAGAR, N. Native client: A sandbox for portable,
untrusted x86 native code. In Proc. of IEEE S&P (2009).

[61] ZHANG, C., WEI, T., CHEN, Z., DUAN, L., SZEKERES,
L., MCCAMANT, S., SONG, D., AND ZOU, W. Practical
control flow integrity and randomization for binary
executables. In Proc. of IEEE S&P (2013).

[62] ZHANG, M., AND SEKAR, R. Control flow integrity for cots
binaries. In USENIX Security (2013), pp. 337–352.

913

