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Abstract: Commodity operating system kernels are vulnerable to a wide range of attacks due to the large code base and broad
attack surface. Mitigation mechanisms such as code signing, W⊕X, and code integrity protection have raised the bar for kernel
security. In turn, attack mechanisms have also become increasingly advanced. They have evolved from simple injection of
malicious code into more sophisticated code-reuse attacks [e.g. return-oriented programming (ROP)]. In this study, the authors
describe exception-oriented programming (EOP), a novel code-reuse method to construct kernel malware. Unlike previous ROP
that can only reuse a limited part of existing code (gadgets), EOP is able to reuse any instruction in existing code and chain the
instructions in any order to generate malicious programmes. As a result, EOP can provide the attackers with more powerful
capabilities and less complexity for building kernel malware.

1 Introduction
Over the last decade, kernel malware has increased dramatically.
By exploiting vulnerabilities in operating system (OS) kernel, the
malware effectively runs at the privilege layer with the ability to
compromise any part of the system. Moreover, the malware can
further hide its presence deep within the system, making the
detection of such malware very difficult.

Traditional kernel malware generally relies on code injection
that brings in new code or alters existing code to perform malicious
activities. However, many protection mechanisms (such as code
signing [1], W⊕X, and code integrity protection [2–7]) have
gained adoption in OSs, and they are making it more difficult for
attackers to inject malicious code. To bypass such protection
mechanisms, more sophisticated kernel malware, named return-
oriented malware (or return-oriented rootkit) [8, 9], is currently
employed based on the return-oriented programming (ROP)
technique [10–12].

Return-oriented malware carries out attacks by reusing the
instruction sequence ending in a return instruction (or an indirect
jump for jump-oriented programming (JOP) [12]). This kind of
instruction sequences is known as ‘gadget’. If the control flow is
diverted to a gadget, the gadget will execute the first part to
perform the malicious computation and then execute a return.
Since the attacker controls the stack, she can use the return to
transfer the control flow to another gadget, and finally chain
enough useful code gadgets to execute an arbitrary programme.
While this procedure sounds straightforward, return-oriented
malware still has the following limitations.

1.1 High complexity

As discussed above, the attacker generates malicious programme
by choosing useful instructions from existing code. Generally
speaking, if more instruction choices are provided to the attacker, it
is simpler for the attacker to generate her desired programme. In
ROP, however, the attacker can only use a very limited part
(gadgets) of existing code, which may make the programme
generation complex. For example, the attacker needs to choose
instructions to read the carry flag (CF) in the rflags register for
performing a conditional jump [10]. A simple way to achieve this
is to choose the lahf instruction that transfers the CF flag to the ah
register. Unfortunately, this instruction does not exist in any gadget
that we found in Linux kernel code, though it exists at other

positions of the code. In such a situation, the attacker has to use
some other indirect ways [10, 12], which are complex and obscure,
to read the CF flag.

Another cause of complexity is the side effects of the gadgets.
For instance, Shacham [10] used the gadget add (%edx), %eax;
push %edi; ret to perform an add operation. In this gadget, the first
instruction add (%edx), %eax is exactly what we want. The next
instruction push %edi, however, causes side effect because the
value pushed onto the stack by it is then used by the ret instruction.
In such situations, the attacker must additionally deal with possible
side effects on registers, memory, or even control flow. Though a
simple method to avoid side effects is to only consider the gadget
that contains only one instruction preceding a return instruction
(single-instruction gadget). However, this will reduce the number
of instruction choices that the attacker can make. Moreover, in
some kernels with small code base (e.g. library OS or hypervisor),
the set of single-instruction gadgets may not even be Turing-
complete.

1.2 Limited capability

Sophisticated kernel malware often requires the capability to
execute privileged instructions to manipulate the underlying
hardware, e.g. changing the root of page tables, flushing translation
lookaside buffer (TLB) caches, generating interrupts, reading, or
modifying hardware settings etc. For this requirement, the attacker
must find either appropriate gadgets containing privileged
instructions or special library functions dedicated to executing
privileged instructions. Unfortunately, both of these may not exist
in even commodity OS kernel code. First, those library functions
are often defined as inline functions in the source code, and thus do
not exist in the final binary code. Additionally, the probability of
finding a useful gadget containing a desired privileged instruction
is very low, since privileged instructions are relatively rare in
kernel code. To demonstrate this, we conducted a simple
experiment in which we searched Linux-3.2 kernel code binary
(vmlinux) for all possible library functions and gadgets (both
intended and unintended) containing privileged instructions. The
vmlinux was compiled from unmodified Linux kernel source code
with the default configuration except that we only disabled the
para-virtualisation support for performance. We tested three
privileged instructions (mov-to-cr3, invlpg, and lidt) and our results
are shown in Table 1. We did not find any library functions or no-
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side-effect gadgets for each privileged instruction. Even if we set
the maximum gadget length to five instructions to search for side-
effect gadgets, the number of useful gadgets is still small. Note that
the attacker has to additionally handle the side effects in this
situation. Moreover, these gadgets with side effects, which rarely
appear in kernel code, may disappear in an updated kernel version
or in other kinds of OS kernels with smaller code base. 

Kernel malware may also need to read the gs register which
points to the base address of the process task structure and per-cpu
variables. However, in the experiment described above, we did not
find any appropriate library functions or no-side-effect gadgets in
kernel code for reading the gs register.

Additionally, we observe that the general-purpose registers that
can be used in return-oriented malware are also limited, since the
instruction choices for the attacker are limited. Though one or two
general-purpose registers are enough to perform Turing-complete
computation, it is better if more register choices can be provided to
the attacker. For example, the attacker can use additional registers
to store temporary states and variables, which are useful for
sophisticated kernel malware.

1.3 What the attacker wants

From an attacker's perspective, a better attack mechanism should
provide powerful capabilities for the attacker to complete her
malicious activities, while keeping attacker's manipulation simple
at the same time. For a code-reuse attack mechanism, it is better if
the mechanism can provide more instruction choices so that the
attacker can find the most appropriate instructions and have the
opportunity to reduce the complexity. It is better to provide the
attacker with not only Turing-complete computational instructions
but also privileged instructions to access the hardware, while
freeing the attacker from annoying side effects. It is better if the
mechanism can provide more general-purpose registers for
computation, so that the attacker can better construct her
programme.

Consequently, in this paper we present a novel code-reuse
attack technique [named exception-oriented programming (EOP)]
to construct kernel malware, which scores much better than ROP
on all of the above requirements. Like traditional ROP techniques,
EOP still constructs malicious programmes within existing benign
code in the tradition of ‘weird machines’ [13]. However, rather
than reusing just a limited part of existing code (gadgets), EOP is
able to make full use of any instruction in existing code. That is to
say, any single instruction can be served as machine code in the
weird machine to chain together the final malicious programme.
Consequently, EOP provides much more instruction choices for the
attacker. For example, EOP can reuse any privileged instruction as
long as the instruction exists in kernel code. EOP also frees the
attacker from annoying side effects and thus the attacker can focus
her attention only on her malicious activities.

We have implemented a proof of concepts (PoCs) for EOP,
which installs kernel malware by exploiting a real-world
vulnerability in a commodity OS (Linux). This proves that EOP is
not only powerful, but also realistic to bypass code integrity
protection mechanisms. We focus our attention on kernel malware
in OSs (rather than user-space malware) because the
implementation of EOP requires privilege-level access. EOP can be
also used to carry out exploits in other privilege software such as
hypervisors.

2 Related work

In the related work, we focus on both protection and attack
mechanisms in OS kernels.

2.1 Kernel code integrity protection

One of the most popular mitigations is W⊕X which takes
advantage of the access rights in hardware paging to map single
memory pages as either executable or writable. This prevents
attackers from modifying existing code or bringing in new code for
execution. To further prevent return-to-user attacks in which the
attacker hijacks kernel control flow to execute code in user space,
Pax [2] makes use of hardware segmentation (for x86-32) or
temporarily maps user space into a different location with non-
execute permissions (for x86-64). kGuard [3] proposes a
lightweight compiler-based approach to counter such attacks by
preventing kernel execution from crossing to user space. Recent
Intel processors provide a hardware feature named supervisor
mode execution protection (SMEP) [4]. With this feature, the
processor will generate a fault whenever the kernel attempts to
execute code residing in user space. We also see that advanced
RISC machine (ARM) specifications describe a similar mechanism
in their security extensions [5]. Some other systems make use of
virtualisation to provide kernel code integrity guarantees.
Specifically, SecVisor [6] is implemented as a tiny hypervisor that
allows only approved code to execute in kernel mode and prevents
such code from being modified. NICKLE [7] provides similar
protections via virtualisation-based kernel code authentication. In
addition, driver code signing [1] has been widely adopted to verify
the code integrity of the loaded drivers in commodity OS.

2.2 Kernel control flow protection

Hooksafe [14] relies on virtualisation to protect dynamic function
hooks in kernel code. Li et al. [15] proposed a compiler-based
approach to replace the return address in the stack frame with a
return index and disallow kernel rootkits from using their own
return addresses to hijack kernel control flow. However, due to the
complexity of kernel control flow (e.g. asynchronous interrupt
handling, context switches, and signal dispatches), these protection
mechanisms still leave attack surface for code injection and return-
to-user attacks. KCoFI [16] is the first system to realise complete
control flow integrity for commodity OS kernel by making use of
the compiler-based secure virtual architecture framework.
However, it incurs notable performance overhead and requires
substantial kernel modifications.

2.3 Kernel data protection

To protect kernel data integrity, KOP [17] automatically maps all
kernel objects with nearly complete coverage and high accuracy to
enable systematic kernel data integrity checking. Sentry [18]
provides a framework to partition kernel memory into separate
regions with different access control permissions and thus it can
efficiently prohibit illegal accesses to sensitive kernel data. To
protect kernel data from untrusted kernel modules, Huko [19] and
Silver [20] rely on virtualisation to run untrusted modules in a
different domain from the core kernel. Some other systems [21–23]
make use of monitoring or introspection to ensure kernel data
integrity.

2.4 Address space layout randomisation

Address space layout randomisation (ASLR) randomises the virtual
memory layout either when a new code execution starts or when
the system is booted. In combination with the W⊕X property,
ASLR can effectively reduce the attack surface for code-reuse
attacks. In commodity OSes, Windows provides ASLR support
since Vista in both user and kernel space, Linux implements it with
the PaX patches [2], and MacOS ships with ASLR since version
10.5. Many researches [24–27] further provide fine-grained ASLR
that randomises code at the granularity of functions, basic blocks,
or even instructions. Giuffrida et al. [28] proposed the first system
to realise fine-grained and comprehensive ASLR for OS kernels.

Table 1 Number of the gadgets and library functions for
privileged instructions found in Linux-3.2
Privileged
instructions

Library
function

No-side-effect
gadget

Side-effect
gadget

mov-to-cr3 0 0 4
invlpg 0 0 2
lidt 0 0 1
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However, ASLR, even in the fine-grained implementations, is
vulnerable to memory disclosure vulnerabilities [29].

2.5 Return-oriented programming

The technique of ROP was first introduced by Shacham [10] and
Buchanan et al. [11]. Further variations on this include JOP which
uses indirect jumps to chain the gadgets [12]. It has been shown
that such methods are Turing-complete in many situations [8, 10,
12]. To bypass kernel code integrity protection, ROP is also used as
an effective attack method in kernel space for installing return-
oriented malware [8, 9]. SROP [30] leverages the sigreturn system
call to realise ROP and needs only a single gadget for the exploit.
However, SROP can only be used in user space, but cannot be used
to construct kernel malware.

In the remainder of this paper, we will describe the overall
design and the PoCs of EOP. For a better understanding, we start
with the background: debug facilities in x86.

3 Background: debug facilities in x86
In x86, software can set the trap flag (TF) in the rflags register to
enable single-step debugging [4]. When the processor detects that
the TF flag is set, it will generate a debug exception after each
instruction is executed. Then the control flow is transferred to the
debug exception handler predefined by system software. The
processor temporarily clears the TF flag during the execution of the
exception handler, so that a nested debug exception will not occur.
Software can execute the instructions such as popf and iret to set
the TF flag in the rflags register. However, the debug exception
will not immediately occur after the instruction that sets the TF
flag. For instance, if an iret instruction is executed to set the TF
flag, the processor will not generate this exception until after the
instruction that follows the iret instruction.

4 Exception-oriented programming
4.1 High-level idea

The overall design of EOP is based on the single-step debugging
facility provided by x86 processors. Fig. 1a shows the control flow
when single-step debugging is enabled. The processor executes the
instruction sequence (e.g. from instruction i to instruction i + 2)
step by step. It generates a debug exception at each instruction
boundary, pushes the interrupt stack frame (containing the saved
rip, cs, rflags, rsp, and ss) on the stack, and transfers the control
flow to the debug exception handler. Hereafter, we refer to the
interrupt stack frame as ISF for simplicity. At the end of the
exception handler, the processor executes the iret instruction to pop
the ISF on the stack and transfer the control flow to the next
instruction. The original use of single-step debugging is to examine
the state of the programme and related data before and after the
execution of each instruction. 

Our key insight is that if the attacker can control the ISF (e.g.
the saved rip) popped in the exception handler, she can divert the

control flow to an arbitrary instruction (rather than the next
instruction) each time the procedure is returned from the exception
handler. In this way, the attacker can chain a set of instructions
together to execute the programme as she desires. Fig. 1b gives an
example to illustrate this mechanism. After Instruction i is
executed, a debug exception occurs for single-step debugging. The
processor pushes the ISF on the stack and transfers the control flow
to the debug exception handler. The ISF's rip field points to the
next instruction (Instruction i + 1), so that the control flow will be
transferred to Instruction i + 1 when the procedure is returned from
the exception handler. However, if the attacker manipulates the rsp
register to point to an attacker-controlled ISF, she can transfer the
control flow to an arbitrary instruction (e.g. Instruction n in this
figure). In the same manner, the attacker can then transfer the
control flow to other instructions and finally chain these
instructions together to perform any computation.

Traditional ROP (or JOP) techniques make use of return
instructions (or indirect jumps) to divert the control flow and chain
the gadgets together. Thus, they can only reuse the instruction
sequence ending in a return instruction (or an indirect jump).
However, EOP leverages debug exceptions triggered at the end of
the instructions to transfer the control flow, and thus can reuse any
instruction in existing code. In the following, we will describe the
overall design of EOP in detail.

4.2 Preconditions

For the exploitation to be successful, certain preconditions have to
be fulfilled. EOP shares the same preconditions as previous kernel-
level ROP attacks [8, 9]:

(i) The attacker should have control over the instruction pointer
(the rip register).
(ii) The attacker should have control over the stack pointer (the rsp
register).

Hund et al. [8] have shown how to make use of a buffer overflow
vulnerability in kernel code to satisfy the above two preconditions.
Specifically, the attacker exploits the vulnerability and overwrites
the return address on the stack to control the rip register. The return
address is set to point to a pop %rsp; ret gadget. Thus, by further
overwriting 8 bytes following the return address, the attacker can
use this gadget to control the rsp register.

4.3 Chaining instructions

As discussed in Section 4.1, the key of chaining arbitrary
instructions together is to set the rsp register to point to an attacker-
controlled ISF in the debug exception handler. This is not a
problem as the attacker has control over the rsp register. In the
following, we will use the same example present in Fig. 1b to
illustrate how to chain Instruction i, Instruction n, and Instruction
m together using EOP.

Fig. 1  Control flows in single-step debugging and EOP
a Control flow in single-step debugging
b Control flow in EOP
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Since the attacker controls the rsp register, we assume that the
rsp register has pointed to a manipulated stack (as shown in
Fig. 2a) when Instruction i is executed. There are two attacker-
controlled ISFs (named ISF-n and ISF-m) on the manipulated
stack. The rip field of ISF-n points to Instruction n and the rip field
of ISF-m points to Instruction m. After Instruction i is executed, the
processor generates a debug exception and pushes a hardware-
generated ISF (ISF-H) on the stack before invoking the exception
handler (Fig. 2b). The next step is to change the rsp register to
point to the attacker-controlled ISF-n. To achieve this, the attacker
only needs to install a new exception handler which points to the
instruction sequence add 0 × 50, %rsp; iret. In this way, the new
exception handler first executes the add 0 × 50, %rsp instruction to
increase the rsp register, so that the rsp register can point right to
ISF-n with some 0 bytes inserted on the stack (as shown in
Fig. 2c). Then the exception handler executes the iret instruction to
pop ISF-n and transfers the control flow to Instruction n. At the
same time, the iret instruction also modifies the rsp register
according to the rsp field of ISF-n. We carefully set the rsp field of
ISF-n, so that the iret instruction will set the rsp register to reserve
space on the stack for the next ISF-H (as shown in Fig. 2d). After
Instruction n is executed, the processor pushes ISF-H onto the
reserved space and invokes the debug exception handler again.
Similarly, the debug exception handler then pops ISF-m and finally
transfers the control flow to Instruction m. Note that it is necessary
to reserve space for ISF-H, because otherwise ISF-n on the stack
will be overwritten by the ISF-H and cannot be reused again. 

The instruction sequence add 0 × 50, %rsp; iret is easy to find
in Linux kernel code. In our test, this instruction sequence exists in
the code of all Linux-3.x kernel versions (from Linux-3.0 to
Linux-3.19). Though this sequence has been removed in the latest
Linux-4.x kernel versions, we can still use other instruction
sequences as substitutes. For example, in all Linux-4.x kernel
versions (from Linux-4.0 to Linux-4.2), it is easy to find the return-
oriented gadget such as add 0 × 38, %rsp; ret, which can be also
used as the debug exception handler to chain instructions.
Specifically, this gadget first increases the rsp register to bypass
ISF-H and then executes the ret instruction to transfer the control
flow to an iret instruction (with an attacker-controlled return
address on the stack). When the iret instruction gets control, it will

pop the attacker-controlled ISF on the stack to realise instruction
chaining. In our test, these kinds of gadgets is also easy to find in
the code of other privilege software (e.g. all supported versions of
Xen [31]).

4.4 Chaining functions

Besides chaining instructions, we can also use the debug exception
to chain functions in kernel code. For performance, when the
control flow is transferred to a function being chained, we should
disable single-step debugging during the execution of the function.
After the function is executed, we should re-enable single-step
debugging again for chaining other instructions. It is also necessary
to execute the function with the rsp register set to a separated stack,
because otherwise the function might trash the ISFs on the stack
that we intend to reuse again.

In the following, we give an example that chains Instruction i,
Function n, and Instruction m together to illustrate our mechanism.
Fig. 3a shows the stack layout after Instruction i is executed. As
discussed in Section 4.3, the processor generates a debug exception
and the iret instruction in the exception handler then pops the
attacker-controlled ISF (ISF-Fn in this figure) on the stack and
transfers the control flow to the entry point of Function n. At the
same time, the iret instruction disables single-step debugging, since
the TF flag in the rflags field of ISF-Fn is cleared. The iret
instruction also modifies the rsp register to point to the separated
stack for the function, since the rsp field of ISF-Fn is set to it.
Then, the processor executes the function on the separated stack as
traditional. The layout of the separated stack is shown in Fig. 3b.
When the processor finishes the execution of the function and
executes a ret instruction to perform a function return, it will pop
the manipulated return address (return addr in Fig. 3b) which
points to an iret instruction. Then the iret instruction gets control
and pops the manipulated ISF-m on the stack. Thus the control
flow is then transferred to Instruction m. Meanwhile, the TF flag in
the rflags register is set again to enable single-step debugging and
the rsp register is also modified to point to the original stack. 

Fig. 2  Stack layout for chaining Instructions
a Stack layout when Instruction i is executed
b Stack layout after the processor pushes the ISF-H
c Stack layout after the add 0 × 50, %rsp instruction is executed
d Stack layout after the iret instruction is executed
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4.5 Chaining traditional ROP gadgets

EOP can be also used to chain traditional ROP gadgets. The
attacker can set the next ISF to point to a traditional ROP gadget if
she desires to chain it. At the same time, the TF flag in the rflags
field of the ISF should be cleared to disable single-step debugging.
Then the attacker is free to chain ROP gadgets using the sequence
of gadget addresses on the stack, as with traditional ROP attacks.
To re-enable EOP, the attacker only needs to use the return to
transfer the control flow to an iret instruction which enables single-
step debugging again and starts chaining instructions.

4.6 Changing the debug exception handler

Before chaining instructions and functions, the attacker should first
change the debug exception handler as discussed above. A straight-
forward method is to use traditional ROP (note that EOP cannot be
used at this moment) to modify the corresponding entry in the
interrupt descriptor table (IDT). Unfortunately, the IDT is mapped
as read-only since Linux-3.10, and using ROP is also complicated.
Another method is to load a new attacker-controlled IDT by
executing the lidt instruction. However, the ROP gadgets or library
functions for executing the lidt instruction may not be easy to find
in kernel code, as discussed in Section 1.

To address this, we propose a novel approach to load an
attacker-controlled IDT, which only requires a single lidt
instruction wherever it is in kernel code. Specifically, we first
execute an iret instruction to perform an interrupt return with a
manipulated ISF on the stack, so that we can set both of the rflags
register and the rip register at the same time. The manipulated ISF
is shown in Fig. 4. Its rip field is set to point to the lidt instruction,
and the TF flag is set in the rflags field. Thus, after the iret
instruction is executed, the processor will transfer the control flow
to the lidt instruction and enable single-step debugging at the same
time. Then the processor executes the lidt instruction to load an
attacker-controlled IDT. Note that the debug exception will not
occur until after the lidt instruction (the instruction that follows the
iret instruction) as discussed in Section 3. That is to say, when the
debug exception occurs, the debug exception handler has been

properly modified to be add 0 × 50, %rsp; iret. As a result, from
then on we can use the new debug exception handler to realise
instruction chaining as described in Section 4.3. 

4.7 Turing completeness

To demonstrate the Turing completeness of EOP, we have
successfully created Turing-complete instruction sets for both
Linux kernel code (Linux-3.2, Linux-3.8, and Linux-4.0) and Xen
hypervisor code (Xen-3.4.4, Xen-4.2.5, and Xen-4.5.1). In each
Turing-complete set, load/store and arithmetic operations can be
simply realised by choosing corresponding instructions in kernel
code since EOP can reuse each single instruction. Unconditional
jump is realised by using the instructions that can change the value
of the rsp register, e.g. pop %rsp or the combination of pop %rdi
and mov %rdi, %rsp.

However, conducting conditional jump needs some additional
efforts. To conduct a conditional jump, we should first acquire the
condition flag in the rflags register, and then change the rsp
register (e.g. by adding rsp_delta) to complete the jump based on
the condition. In EOP, the condition flag in the rflags register is
easy to acquire, because the processor always pushes the current
value of the rflags register onto the stack (in ISF-H) after each
instruction is executed. Thus we only need to chain a load
instruction to read the condition flag from the stack. After
acquiring the condition flag whose value is 0 or 1, the next step is
to transform it to be either 0 or rsp_delta, so that we can simply
add this value to the rsp register to complete the conditional jump.
Similar to the original ROP work [10], we further chain a neg
instruction and a bitwise and instruction to realise this
transformation.

With the conditional jump, loops can also be created by
conditionally modifying the rsp register to point to a previous ISF,
so that the control flow will be repeatedly diverted to the
instruction pointed by this ISF if the loop condition is fulfilled.

5 Proof of concepts
5.1 Attack model

We assume a local attacker that has user-level access. Further we
assume a vulnerability in kernel code which allows the attacker to
start EOP attacks. In our current implementation, we used the real
Linux kernel vulnerability CVE-2013-209410 which has been also
used to trigger traditional ROP attacks [9]. In addition, we used a
standard installation of a 64 bit Ubuntu 13.04, in which the Linux
kernel is protected by the W⊕X property and SMEP mechanism.

5.2 Implementation

Within the attack model described above, we make use of EOP to
construct the kernel malware which realises some real-world
rootkit functionalities such as process hiding and kernel module
hiding. Our implementation includes three stages (initialisation

Fig. 3  Stack layout for chaining function calls
a Stack layout after Instruction i is executed
b Layout of the separate stack

 

Fig. 4  Stack layout for changing the debug exception handler
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stage, exploit stage, and EOP stage) as we will detail in the
following.

5.2.1 Initialisation stage: In this phase, we execute a user
application to prepare a manipulated stack and a manipulated IDT
in user space. In the manipulated IDT, the entry of the debug
exception handler is set to point to the instruction sequence add 0 
× 50, %rsp; iret in kernel code. Other entries are the same as those
of the original IDT. Though the contents of IDT entries are kernel
specific, it is not a problem for the attacker to acquire them.

5.2.2 Exploit stage: After the manipulated stack and IDT are
prepared, the user application then exploits the kernel vulnerability
CVE-2013-209410 which allows the attacker to control both the
rip register and the rsp register in kernel space. The details of this
exploit process are well discussed in the previous work [9], and
will not be repeated due to the limited paper space.

In our PoC, this vulnerability is used to divert the kernel control
flow to a gadget pop %rbp; ret, and to modify the rsp register to
point to our manipulated user-space stack (shown in Fig. 5). The
gadget pop %rbp; ret is used to transfer the address of our user-
space IDT to the rbp register. Specifically, the pop %rbp
instruction pops the next 8 bytes on the stack (IDT address in
Fig. 5) to the rbp register; and then the ret instruction pops the
return address on the stack and transfers the control flow to an iret
instruction. 

This iret instruction, as discussed in Section 4.6, is used to
enable single-step debugging and transfers the control to a lidt
instruction [lidt -0 × 3a(%rbp)] that we found in kernel code. Then,
the lidt -0 × 3a(%rbp) instruction is executed to load our user-
space IDT from the address pointed by the rbp register. After the
lidt -0 × 3a(%rbp) instruction is executed, the debug exception will
be continuously triggered to invoke the new debug exception
handler which pops the manipulated ISFs on the stack and chains
the instructions pointed by these ISFs.

5.2.3 EOP stage: Once the exploit stage is completed, we can use
the sequence of ISFs on the user-space stack to chain arbitrary
instructions and functions to perform any computation we desire.
In this stage, we use EOP to realise two rootkit functionalities:
process hiding and kernel module hiding. Process hiding is realised
by setting the process identifier (PID) of the process that should be
hidden to zero. In this way, the information of the process will no
longer be displayed by the process listing tools such as ps. We
additionally chain instructions to build a simple communication

channel for acquiring the attacker's hiding request (e.g. the PID for
the process to be hidden) from user space. Kernel module hiding is
realised by removing the module object that should be hidden from
the module list. As a result, the module will no longer be displayed
by the lsmod programme. After the malicious activities are
completed, we restore the original IDT by executing the single lidt
instruction again and disable single-step debugging.

6 Discussion
6.1 Comparison with traditional ROP

In this section, we give a systematic comparison of key properties
with traditional ROP to give insights on the advantages and
limitations of EOP.

6.1.1 Code-reuse rate: Compared with traditional ROP, EOP can
reuse every existing instruction or function in kernel code, and
does not require those instruction sequences ending with returns to
be useful. With this much higher code-reuse rate, EOP attackers
can have a flexible choice of existing instructions and can realise
some functionalities that traditional ROP may not be able to
provide (e.g. executing some privileged instructions).

6.1.2 Side effects: Compared with traditional ROP, EOP makes
use of a customised debug exception handler to chain each
instruction together. There is no need to deal with the side effects.
Therefore, EOP attackers can focus their attention only on their
malicious activities.

6.1.3 Application scenarios: Since EOP requires the privilege to
trigger single-step debugging and modify the debug exception
handler, it can be only used in kernel space to construct code-reuse
kernel malware. In addition, it also relies heavily on the debugging
facilities provided by x86. However, traditional ROP is a more
generic attack method, which in principle can be used in both user
space and kernel space, and in different hardware platforms.

6.1.4 Payloads: The payloads that control the execution of the
‘weird machines’ are different in EOP and traditional ROP. EOP
uses a sequence of crafted ISFs on the stack to control the
execution order of the instructions, while ROP needs only a
sequence of gadget addresses on the stack. From this point of view,
it might be a bit more complicated for EOP attackers to install their
desired payloads. On the other hand, using ISFs to control the
execution gives EOP attackers more flexibilities. For example, the
attackers can use the rsp field in the crafted ISF to modify the stack
register at the same time.

6.2 EOP in x86-32

We have also applied EOP to x86-32. There are two main
differences compared with x86-64. First, the layout of the ISF for
intra-privilege interrupt return is different in x86-32. Second, in
x86-32, function arguments are passed through stack, which will
overlap with the next ISF. To avoid overlapping, we simply
relocate the next ISF to the place that follows the function
arguments on the stack. When the processor finishes function
execution and performs a function return, it will pop the
manipulated return address that points to a gadget add
imm32,%esp; ret. This gadget is used to increase the esp register to
bypass the function arguments on the stack and point right to the
next ISF. Then the gadget performs a return to transfer the control
flow to an iret instruction. Finally, the iret instruction gets control
and pops the next ISF to chain the next instruction.

6.3 EOP in other privilege software

Though we only use EOP to implement kernel malware in our
PoCs, EOP can be also used in other privilege software.

6.3.1 EOP in hypervisors: Compared with the previous ROP, the
implementation of EOP requires privilege-level access. By

Fig. 5  Layout of the manipulated user-space stack
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exploiting vulnerabilities in a hypervisor such as Xen [31], the
attacker can also acquire privilege-level access and thus can use
EOP to install malware in the hypervisor. It is worth noting that
EOP is more useful in such a situation, because the code base of a
hypervisor is usually much smaller than an OS kernel's. EOP can
provide more instruction choices to the attacker within such a small
code base.

6.3.2 EOP in virtual machines: When the attacker exploits an
OS kernel running in a virtual machine (VM), she is still able to
trigger single-step debugging in the VM and execute the lidt
instruction to modify the debug exception handler used in the VM,
though some intercepts and virtualisation may be performed by the
underlying hypervisor. As a result, EOP still works even if the OS
kernel runs in a VM. However, in a para-virtualised VM, some
modifications to the exploitation process are required. For
example, we should substitute the lidt instruction with its
corresponding para-virtualised interface.

6.4 Countermeasures

As with ROP, an EOP relies on the existing instructions located at
known addresses and needs to alter the original kernel control flow.
Thus previous mitigation mechanisms for ROP such as ASLR and
control flow integrity are also useful to raise the bar of EOP
attacks. However, EOP has its own unique characteristics. It relies
on the debug exception to alter the control flow and needs to
change the debug exception handler. As a result, mitigation
mechanisms for EOP can take these features into account. For
example, we can make use of virtualisation to prevent the attacker
from modifying existing IDT or loading a new IDT after system
initialisation, or intercept the debug exception to detect the
violations of kernel control flow.

7 Conclusion
In this paper, we introduced a novel code-reuse approach named
EOP for the attacker to construct kernel malware. We began our
discussion by detailing the limitations of existing return-oriented
malware and then introduced the overall design of EOP and finally
presented the PoCs for a Linux kernel exploit. We showed that
EOP can provide the attackers with more powerful capabilities and
less complexity than previous ROP for building kernel malware.
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