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ABSTRACT | Implementations of cryptographic algorithms

continue to proliferate in consumer products due to the in-

creasing demand for secure transmission of confidential

information. Although the current standard cryptographic

algorithms proved to withstand exhaustive attacks, their hard-

ware and software implementations have exhibited vulner-

abilities to side channel attacks, e.g., power analysis and fault

injection attacks. This paper focuses on fault injection attacks

that have been shown to require inexpensive equipment and a

short amount of time. The paper provides a comprehensive

description of these attacks on cryptographic devices and the

countermeasures that have been developed against them.

After a brief review of the widely used cryptographic algo-

rithms, we classify the currently known fault injection attacks

into low-cost ones (which a single attacker with a modest

budget can mount) and high-cost ones (requiring highly skilled

attackers with a large budget). We then list the attacks that

have been developed for the important and commonly used

ciphers and indicate which ones have been successfully used in

practice. The known countermeasures against the previously

described fault injection attacks are then presented, including

intrusion detection and fault detection. We conclude the survey

with a discussion on the interaction between fault injection

attacks (and the corresponding countermeasures) and power

analysis attacks.

KEYWORDS | Countermeasures; cryptographic devices; fault

injection; power analysis; side-channel attacks

I . INTRODUCTION

Cryptographic algorithms are being employed in an in-

creasing number of consumer products, e.g., smart cards,

cell phones, and set-top boxes, to meet their high security

requirements. Many of these products require high-speed

operation and include, therefore, dedicated hardware en-
cryption and/or decryption circuits for the cryptographic

algorithm. Unfortunately, these hardware circuits, unless

carefully designed, may result in security vulnerabilities.

The cryptographic algorithms (also called ciphers) that

are being implemented, are designed so that they are dif-

ficult to break mathematically [1]. To obtain the secret key,

which allows the decryption of encrypted information, an

attacker must perform a brute force analysis that requires a
prohibitively large number of experiments. For the most

commonly used cryptographic algorithms, there is no

known methodology to significantly reduce the secret key

search space.

However, it has been shown that secret information

(such as the key of the encryption algorithm) can leak

through side channels. Examples of such side channels are

the time needed to perform the encryption or the power
consumed by the device implementing the encryption

algorithm. Timing and power side channel attacks are

based on the fact that the individual computation steps that
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are needed during the encryption are dependent on the
bits of the secret key and thus, the time needed for these

steps and the power consumed by them are directly corre-

lated to the secret key bits. These attacks have proven to be

effective and incur a relatively low cost. Furthermore, once

a side-channel attack technique has been developed and

made public, high technical skills and/or expensive equip-

ment are not required to apply it in practice.

Another type of a side-channel attack is based on the
electromagnetic radiation that emanates from the individ-

ual circuits executing the encryption/decryption. This

attack is even more dangerous than power analysis since it

can be performed at some distance from the circuit, and a

direct contact with the circuit, that can be detected by

suitable sensors, is not necessary.

Side-channel attacks have become a major industrial

concern in the last 15 years and resulted in an intensive
research effort to develop suitable countermeasures that

can defeat the attacks, or at least make them more difficult

and time consuming to perform. Many different types of

countermeasures have been developed, including: restruc-

turing of the algorithm, shielding of the device, random-

izing the computation, using power-independent

implementation, and others.

A different type of side-channel attack that proved to be
very effective is realized through the injection of deliberate

(malicious) faults into a cryptographic device and the ob-

servation of the corresponding erroneous outputs [2], [3].

Using this type of attack and analyzing the outputs of the

cryptographic device, called differential fault analysis

(DFA) [4], the number of experiments needed to obtain

the bits of the secret key can be drastically reduced. This

kind of active side-channel attacks (in contrast to the pre-
viously described passive ones) has been in the last decade

the subject of intense and expanding research, as it has

been demonstrated to be highly effective [5]–[7].

Thus, incorporating countermeasures against fault in-

jection attacks into cryptographic devices through some

form of fault detection and possibly tolerance is necessary

for security purposes as well as for the more common

objective of data integrity [8]–[10].
We start this survey paper with a brief overview of the

two important classes of ciphers, namely, symmetric (or

private) key and asymmetric (or public) key. We then

explain the general approach to fault-injection-based

attacks and describe the DFA technique. Next we present

the state of the art in fault injection attacks that can be

mounted against symmetric and asymmetric key ciphers,

and we illustrate them using two ciphers of each type.
Finally, we present the currently known countermeasures

against fault injection attacks including algorithmic

changes, sensors and shields, and fault detection or

correction techniques. A comprehensive list of references

completes the survey and provides pointers to the main

literature contributions to this rapidly evolving scientific

and technological topic.

II . DESCRIPTION OF CRYPTOGRAPHIC
ALGORITHMS

Cryptographic algorithms use secret keys for encrypting

the given data (known as plaintext) thus generating a

ciphertext, and for decrypting the ciphertext to reconstruct

the original plaintext. The keys used for the encryption and

decryption steps can be either identical (or trivially re-

lated), leading to what are known as symmetric key ciphers,

or they can be different, leading to what are known as

asymmetric key (or public key) ciphers. Symmetric key ci-

phers have simpler, and therefore faster, encryption and

decryption processes compared to asymmetric key ciphers.

The main weakness of symmetric ciphers is the shared

secret key which may be subject to discovery by an adver-

sary, and therefore, must be changed periodically. The

generation of new keys, commonly carried out using a

pseudorandom number generator, must be very carefully

executed because, unless properly initialized, such gen-

erators may result in easy to discover keys. The new keys

must then be distributed securely, preferably by using a

more secure (but more computationally intensive) asym-

metric cipher.

Symmetric key ciphers can be either block ciphers
which encrypt a block consisting of a fixed number of

plaintext bits at the same time, or stream ciphers which

encrypt one bit at a time. Stream ciphers are not as fre-

quently used as block ciphers, but still play a role in certain

applications as we will see below.

Some well-known block ciphers include the Data En-

cryption Standard (DES) and the more recent Advanced

Encryption Standard (AES). DES uses 64-b plaintext

blocks and a 56-b key, while AES uses 128-b blocks and

keys of size between 128 and 256 b. Longer secret keys are

obviously more secure, but the size of the data block also

plays a role in the cipher’s security. For example, smaller

blocks may allow frequency-based attacks, such as relying

on the higher frequency of the letter Be[ in an English text.

The encryption process for symmetric ciphers is de-

signed with the goal of scrambling the plaintext as much as

possible. This is done by repeating a computationally sim-

ple series of steps (called a round) several times to achieve

the desired scrambling. This process must still be rever-

sible so that the reverse process followed during decryp-

tion can generate the original plaintext using the same

secret key.

In contrast, asymmetric key (public key) ciphers allow

users to communicate securely without having access to a

shared secret key. Here, the sender and the recipient each

have two cryptographic keys called the public key and the

private key. The private key is kept secret, while the public

key may be widely distributed. In a way, one of the two

keys can be used to Block[ a safe, while the other key is

needed to unlock it. If a sender encrypts a message using

the recipient’s public key, only the recipient can decrypt it

using the corresponding private key.
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Another noteworthy application of public key ciphers is
sender authentication: the sender encrypts a message with

her own private key. By managing to decrypt the message

using the sender’s public key, the recipient is assured that

the sender (and no one else) has generated the message.

A. Simple Symmetric Key Stream Cipher: SNOW 3G
The simplest ciphers in use today are stream ciphers

that generate a pseudorandom stream of key bits that is
bitwise xor-ed with the plaintext to generate the cipher-

text. The main advantage of stream ciphers is that they can

be implemented using a small hardware circuit and can

operate at a high speed, making them extremely suitable

for power constrained devices such as mobile phones.

As an example of a lightweight stream cipher, we de-

scribe below SNOW 3G that has been chosen by the 3rd

Generation Partnership Project (3GPP) committee (of the
European Telecommunication Standards Institute) as one

of the data confidentiality standards for phone calls [11].

SNOW 3G is the third instance of the SNOW cipher

family proposed in [12]. It improves its predecessorVthe

SNOW 2.0 cipher, which was included in the ISO/IEC CD

18033-4 [13] standard, by enhancing robustness with re-

spect to algebraic cryptanalysis. The cipher generates a

sequence of 32-b words from a 128-b key and a 128-b
initialization variable following the scheme depicted in

Fig. 1. The circuit includes a shift register (composed of

sixteen 32-b-wide elements, s15 . . . s0) and a finite-state

machine (composed of three 32-b registers, R1, R2, and R3)

that is included to render the output highly nonlinear. The

+g symbol denotes addition modulo 232, while the � sym-

bol denotes a 32-b bitwise xor. The two boxes marked S1

and S2 are lookup tables implementing nonlinear map-
pings of the input four bytes into different output four

bytes, while a and a�1 denote multiplications over Z232 by

fixed coefficients.

The cipher is initialized by filling the state and the

three registers R1, R2, and R3 with material from the key

and the initialization vector. It is then updated for a num-

ber of cycles with no output produced. After this ini-

tialization phase, the circuit outputs 32 b of keystream
every cycle while updating the internal state as shown in

the block diagram.

B. Symmetric Key Block Ciphers: DES and AES
The more complex block ciphers like DES and AES can

provide high security levels when large amounts of data

must be encrypted and the available computing system is

not overly constrained.
Two crucial properties that every good block cipher

must have are called confusion and diffusion. Confusion

refers to establishing a complex relationship between the

ciphertext and the key, while diffusion implies that any

natural redundancy that exists in the plaintext (and can be

exploited by an adversary) will dissipate in the ciphertext.

DES has been the first official standard cipher for

commercial purposes [14]. In DES, most of the confusion is
provided by the SBoxes: lookup tables representing nonlin-

ear functions which are applied repeatedly to the input,

while bitwise expansions and permutations provide the

required diffusion.

In 1999, a specially designed circuit was successful in

breaking DES in less than 24 h [15], thus proving that the

security provided by a 56-b key is insufficient. Conse-

quently, a newer standard (AES) has been established in
2002 [16], [17] with key size between 128 and 256 b. The

use of DES is, however, still widespread either in its ori-

ginal form or, more frequently, in its more secure variation

called Triple DES. Triple DES applies DES three times

with different keys, and offers as a result a higher level of

security. One variation uses three different keys for a total

of 168 b instead of 56, while another variation uses only

two of them (112 b in total).
The new standard block cipher AES is widely used and

is now part of the IEEE P1619 standard for data encryption

[18] and of the IEEE 802.11i standard for network commu-

nication [19]. AES is realized as a sequence of substitutions

and permutations on a 128-b plaintext, interleaved with

the addition of the key through bitwise xor. These opera-

tions are organized in so-called rounds and the number of

these rounds, denoted by Nr, depends on the length of the
key, namely, Nr ¼10, 12, or 14 for a 128-, 192-, or 256-b

AES key, respectively. The 128-b data are usually repre-

sented as a 4 � 4 matrix of bytes called the state of the

cipher, and is denoted by S with the byte elements si;j

ð0 � i; j � 3Þ. The state S is modified during each encryp-

tion round, until the final 128-b ciphertext is produced.

Every round of the encryption process consists of the

following four steps.
1) SubBytesVEach state byte undergoes indepen-

dently (of other bytes) a nonlinear substitution of

the form Tðs�1
i;j Þ. Due to the complexity of this

transformation, the 256 possible outcomes of this

transformation are commonly precomputed and

stored in an 256 � 8 b lookup table called S-Box.

The nonlinear function tabulated in the S-Box hasFig. 1. SNOW 3G block diagram.
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been chosen in such a way that the distribution of
the output bytes is robust against statistical at-

tacks, i.e., small differences in the input will map

to an arbitrary difference in the output. This pro-

perty was explicitly required since the DES proved

to be vulnerable to this type of attacks.

2) ShiftRowsVThe bytes of the first, second, third,

and fourth rows of the state matrix are rotated by

0, 1, 2, and 3 bytes, respectively. The state after
this step is

S ¼

s0;0 s0;1 s0;2 s0;3

s1;1 s1;2 s1;3 s1;0

s2;2 s2;3 s2;0 s2;1

s3;3 s3;0 s3;1 s3;2

2
664

3
775: (1)

3) MixColumnsVThe four bytes in each column are
used to generate four new bytes through linear

transformations, as shown in ðj ¼ 0; 1; 2; 3Þ

s0;j ¼ð�� s0;jÞ � ð� � s1;jÞ � s2;j � s3;j

s1;j ¼ s0;j � ð�� s1;jÞ � ð� � s2;jÞ � s3;j

s2;j ¼ s0;j � s1;j � ð�� s2;jÞ � ð� � s3;jÞ
s3;j ¼ð� � s0;jÞ � s1;j � s2;j � ð�� s3;jÞ (2)

where � ¼ x (or 02 in hexadecimal notation),

� ¼ xþ 1 (or 03 in hexadecimal notation), � and

� are the modulo 2 multiply and add operations,

respectively, of the polynomial representations of
the state bytes, and the � and � coefficients per-

formed modulo the generator (irreducible) poly-

nomial of AES which is gðxÞ ¼ x8 þ x4 þ x3 þ
xþ 1. Polynomial presentations of binary numb-

ers and operations modulo a given generator

polynomial are described in [20].

4) AddRoundKeyVThe round subkey is added

through bitwise xor to the state. Separate round
subkeys are generated using a key schedule

process.

All four steps are performed at each round except the last

one, where the MixColumns step is omitted. In addition,

prior to the first round, the first subkey is added to the

original plaintext.

The individual round subkeys are generated using a key

schedule/expansion procedure that computes the 128-b
round keys kj, given the input key k that consists of l 32-b

words where l is equal to 4, 6, or 8. Thus, the key schedule

process generates a total of 4ðNr þ 1Þ 32-b words organized

as a linear array denoted by W½0; . . . ; 4ðNr þ 1Þ � 1�. The

first l words of W are loaded with the user supplied key.

The remaining words are generated according to Algo-

rithm II.1 where RCON is an array of predetermined

constants, SubByte is the byte substitution of AES, and
8 denotes a rotation of a word to the left by 8 bit

positions.

Algorithm II.1: The AES key schedule

Input: k: secret key, l: key length in words, Nr: number of

rounds

Output: W: array containing round keys
1 begin

2 for i ¼ l to 4ðNr þ 1Þ � 1 do

3 if i � 0 mod l then

4 W½i�¼W½i� l�� SubByte½W½i�1�8� � RCON½i=l�
5 else if l ¼ 8 and i � 4 mod l then

6 W½i� ¼ W½i� l� � S½W½i� 1��
7 else

8 W½i� ¼ W½i� l� �W½i� 1�
9 return W
10 end

C. Asymmetric Key Cipher: RSA
Although a number of asymmetric ciphers are in use,

the most well-known and widely deployed public key

cipher is the RSA algorithm named after its three inventors

Rivest, Shamir, and Adleman [21].
To employ the RSA cipher one must first generate a

pair of keys, each one of which is able to decrypt what has

been encrypted by the other one. One of these two keys

(henceforth called the public key) will be publicly disclosed

to everyone, thus allowing any person to encrypt a message

and send it to the owner of the key pair. This owner is the

only person able to decrypt the message, since the second

key (which is referred to as the private key and is never
disclosed) is the only one that will enable decrypting the

message encrypted with the public key.

The process required to generate the key pair consists

of the following steps.

1) Select two large prime numbers p and q and cal-

culate their product n ¼ pq.

2) Select a small odd integer e that is relatively

prime to

’ðnÞ ¼ ðp� 1Þðq� 1Þ:

Two numbers (not necessarily primes) are said

to be relatively prime if their only common

factor is 1. For example, 6 and 25 are relatively

prime although none of them is a prime number.

3) Find the integer d that satisfies the relationship

de ¼ 1 mod ’ðnÞ:
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d is thus the inverse of e if the calculations are
done mod ’ðnÞ.

ðe; nÞ constitutes the public key, while ðd; nÞ will serve

as the secret private key. The security provided by RSA

depends on the difficulty of factoring the large integer n
into its two prime factors. Since there is no known

polynomial time algorithm to factor a composite number,

it is sufficient to select two very large prime numbers p and

q to construct the modulus n in order to make the key
derivation extremely difficult. To make the factoring time

prohibitively large, each of the prime numbers p and q
must have at least hundreds of bits. The current practice,

after massive computational efforts proved the feasibility

of factoring a 768-b number, is that the required length of

the moduli, for civilian and military applications, are 1024

and 2048 b, respectively. For confidential data that must

be preserved for long time durations, 4096-b moduli are
recommended.

If a person wishes to send a message m to the owner of a

key pair, he uses the public key to compute the ciphertext as

c ¼ me mod n. Notice that this encryption scheme makes

it necessary to restrict the message size of m so that is

satisfies 0 G m G n. Upon receiving the encrypted message

c, the owner of the key pair will decrypt it using his private

key by calculating cd mod n ¼ mde mod n ¼ m mod n.
The most complex operation required when perform-

ing RSA encryption and decryption is exponentiation

modulo n. A number of techniques are being used to re-

duce the complexity of this operation. First, since the only

restriction on the choice of the exponent e is that it is

relatively prime with �ðnÞ, a small prime number is se-

lected, e.g., 3, 17, or 65 537, thus reducing the complexity

of encryption. Another speedup in the exponentiation is
achieved by employing a multiplication technique known

as Montgomery multiplication [22] that greatly simplifies

the required modular reductions. To speed up decryption,

for which the private exponent d cannot be chosen arbi-

trarily, the Chinese Remainder Theorem (CRT) is used

allowing to perform the computations modulo p and q se-

parately (and in parallel) and then recombine the two

results to obtain the final result modulo n. The separate
computations are performed modulo smaller numbers (half

the size of n), requiring less time and a smaller circuit.

D. Novel Asymmetric Algorithm: ECC
Elliptic curve ciphers are based on the use of points on

a cubic curve P over a finite field GFðpÞ where p is a prime

number. The main idea is that it is possible to define an

operation on the set points of an elliptic curve that behaves
exactly like addition (i.e., it has a neutral element and is

commutative and it is possible to find an inverse for every

point of the curve). By using points on a curve P it is

possible to obtain a trapdoor function akin to the one used

in common discrete logarithm cryptosystems. This trap-

door function relies on the ease of adding a point of the

curve k times to itself, a procedure known as point-scalar

multiplication. Given a point Q ¼ kP, it is computationally
very difficult to find k provided that the curve has a suffi-

ciently large number of points. A key feature of these

ciphers is the choice the curve. Thus, it is necessary to

select a curve that has a sufficiently large number of points

and has no special properties which could reduce the dif-

ficulty of solving the so-called elliptic curve discrete loga-

rithm problem.

The advantage of elliptic curve ciphers is the smaller
size of the numbers involved in the computations. Ty-

pically, safe sizes for the prime p so that the curve will have

a sufficient number of points range from 160 to 250 b. This

reduction in operand size is especially important for com-

putationally constrained devices such as smart cards [23],

or when a large number of encryptions/decryptions is ex-

pected, such as in protecting domain name system (DNS)

transactions [24].

III . FAULT INJECTION TECHNIQUES

The fault injection techniques that have been developed in

order to alter maliciously the correct functioning of a

computing device currently include: variations in the

power supply voltage level, injection of irregularities in the

clock signal, radiation or electromagnetic (EM) distur-
bances, overheating the device or exposing it to intense

light. Since the range of these techniques is wide and

getting wider, we first classify the methodologies used for

the attack according to their cost. We will also point out in

this section the degree of technical skill and knowledge of

the implementation required to perform the injection, and

characterize the achievable faults with respect to their

(temporal and spatial) precision and effectiveness. This
classification would allow circuit designers to determine

the possible threats to their secure implementation de-

pending on the skill and budget of the perceived attackers.

A. Low-Cost Fault Injection Techniques
We consider as low cost the injection methods requiring

less than $3000 of equipment in order to set up the attack.

This cost is well within the means of a single motivated
attacker, and thus, these fault injection techniques should

be considered as a serious threat to the implementations of

secure chips that may be subjected to them.

The first fault injection technique we describe is the

underpowering of the device. Through running the chip

with a depleted power supply, the attacker is able to

insert transient faults starting from single bit errors and

becoming more invasive as the supply voltage gets lower.
Since this technique does not require precise timing, the

faults tend to occur uniformly throughout the computa-

tion, thus requiring the attacker to be able to discard

results that are not fit to lead an attack. This meth-

odology, reported to be effective on large integrated

circuits such as the ARM9 processor [25], [26], as well

as on small application-specific integrated circuit (ASIC)
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implementations of the ciphers [27], [28], results in delay-
ing the correct setup for the logic gates of the circuit. The

voltage underfeeding, achieved by employing a precise

power supply unit, requires the attacker to be able to tap

into the power supply line of the device and connect his

power supply unit. This requires only basic skills and can be

easily achieved in practice without leaving evidence of

tampering. Moreover, no knowledge of the implementa-

tion details of the device is needed.
One refinement of the aforementioned technique is the

injection of well-timed power spikes or temporary brown-

outs into the supply line of the circuit. Using this tech-

nique, it is possible to skip the execution of a single

instruction in a software implementation of the cipher by

reducing the feeding voltage for the duration of a single

clock cycle. Schmidt and Herbst [29] report a successful

application of this technique to an 8-b microcontroller and
over-voltage spikes have been successfully applied to de-

packaged radio-frequency identification (RFID) tags in

[30]. In order to inject a timed voltage lapse the attacker

needs a custom circuit capable of dropping the feeding

voltage below a certain threshold. This custom circuit

should be supplied with the same clock that drives the

microcontroller allowing it to correctly time the injection

of the spike. The temporal precision of the fault injection is
directly dependent on the accuracy of the voltage drop

both in terms of duration and synchronization with the

target device. The difficulties in applying this technique

increase with the clock rate of the attacked circuit due to

the mutual induction of the feeding line.

Another viable option for an attacker is to tamper with

the clock signal. For example, it is possible to shorten the

length of a single cycle through forcing a premature tog-
gling of the clock signal. Such shortening, according to

[31], causes multiple errors corrupting a stored byte or

multiple bytes. These errors are transient and thus it is

possible to induce such faults without leaving any tamper

evidence. To alter the length of the clock cycle, the at-

tacker needs to have direct control over the clock line,

which is the typical case when smart cards are targeted

[31]. It is not possible to attack chips that generate their
own clock signal since disconnecting the clock line from

the circuit is difficult. The attack mentioned in [31] in-

volves a modified smart card reader that is capable of

shortening the duration of a specific clock cycle through

either forcing the raising edge to occur earlier or delaying

the falling edge, depending on the kind of driven smart

card. The modification to the card reader is not trivial but

can still be performed without any special and expensive
tools. Clock alteration techniques are hindered by the need

to supply a regular clock within the working range of the

device, while retaining the ability of altering a single clock

edge. This implies that the equipment inducing the alter-

ation must be working at a higher clock frequency than the

attacked device, and this is intrinsically more difficult as

the target device working frequency increases.

Another possibility for an attacker is to alter the envi-
ronmental conditions, for instance, by causing the temper-

ature to rise. A temperature rise has been reported to cause

multiple multibit errors in dynamic random-access mem-

ories (DRAM) [32]. The authors report a thermal fault

injection attack against the DRAM chips of a common

desktop computer. The reported number of flipped bits is

around ten per 32-b word, when the working temperature

of the DRAM is brought up to 100 	C. The number of faulty
words is also reported to be in the range of tenths. The

equipment used included a 50-W light bulb and a thermo-

meter. The level of heating was tuned through modifying the

distance from the chip. The setup thus requires minimal

technical knowledge, and the equipment is readily available.

One drawback of this technique is that it tends to cause

invasive faults in sensitive devices. Another downside is that

the circuit may be destroyed through excessive heating.
A practical way to induce faults without having to tap

into the device is to cause strong EM disturbances near it.

The eddy currents induced in the circuit by strong EM

pulses cause temporary alterations of the level of a signal,

which may be recorded by a latch. Since the EM pulse is

affecting uniformly the entire attacked device, it is neces-

sary to shield the components which should not be subject

to faults using a properly grounded metal plate or mesh.
This technique has been shown to be effective against an

8-b microcontroller [33] by employing, as a source of EM

disturbances, a spark generator and placing it very close to

the attacked chip. The authors have also demonstrated that

a more efficient fault injection can be achieved by first

removing the plastic package of the chip. Their spark gene-

rator consisted of a simple piezoelectric gas lighter that was

held directly above the device. All the parts of the circuit
which did not need to be disturbed were properly shielded

through grounded aluminium plates. The above technique

cannot be applied to chips that have a grounded metal

packaging (usually as a heat sink) that acts as an EM shield,

unless the chip is decapsulated, adding a step that requires

an uncommon technical skill. Still, decapsulation can be

performed with low-cost equipment (nitric acid and com-

mon glassware), thus not raising the cost of the attack
considerably.

Assuming the attacker is able to successfully decapsu-

late a chip, he can perform fault injection attacks by illu-

minating the die with a high energy light source such as an

ultraviolet (UV) lamp or a camera flash. The strong radia-

tion directed at the silicon surface can cause the blanking

of erasable EPROM and FLASH memory cells where con-

stants needed for an algorithm execution are kept (e.g., the
AES S-Boxes). Depending on the duration of the radiation

process, Schmidt et al. [34] report a progressive blanking of

all the memory cells as well as resetting the internal

protection fuses of the microcontroller that was targeted.

The authors also show that it is possible to selectively wipe

out a part of the stored data in the memory by exposing

only a part of the die to UV radiation. The required
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equipment consists only of an UV lamp that is placed
closely to the exposed die. To shield the circuit parts which

need not be exposed, they can be covered with a readily

available UV-resistant dye. This technique is applicable

only if the memory cells have not been covered by a

metallic layer. For example, metal wires placed above the

memory cells may provide a shield against radiation.

B. High-Cost Fault Injection Techniques
A class of threats which cannot be ignored if the at-

tackers have access to a larger budget (above the aforemen-

tioned $3000 and up to millions of dollars) includes fault

injection techniques that rely on having a direct access to
the silicon die and the ability to target individual circuits in

a very precise manner. These techniques, albeit leaving

evident traces of tampering, are very powerful and can

considerably increase the probability of a successful attack.

A simple example of these techniques is based on the

use of a strong and precisely focused light beam to induce

alterations in the behavior of one or more logic gates of a

circuit. A strong radiation of a transistor may form a tem-
porary conductive channel in the dielectric, which, in turn,

may cause the logic circuit to switch state in a precise and

controlled manner (provided that the used etching tech-

nology is not too fine). For instance, it is possible, through

targeting one of the transistors of a static random-access

memory (SRAM) cell (in the memory of a microcon-

troller), to flip it up or down at will [35], [36]. In order to

obtain a sufficiently focused light beam from a camera
flash, a precision microscope must be used. The main

limitation of this technique is the nonpolarized nature of

the white light emitted by the camera flash resulting in

scattering of the light when focused through nonperfect

lenses. Moreover, it is no longer possible to hit a single

SRAM cell with the current etching technologies, since the

width of the gate dielectric is now more than ten times

smaller than the shortest wavelength of visible light.
The most straightforward refinement of the previous

technique is to employ a laser beam instead of a camera

flash. The injected fault model is similar to that obtained

when using a concentrated light beam [35], except for the

fact that the laser beam is capable of always inducing faults.

Near-infrared (NIR) lasers can also radiate the silicon die

from the back allowing the attacker to hit circuits which are

in the bottom layers of the chip although with a lower
precision since the silicon substrate scatters the beam (a

reduction in the scattering may be obtained by applying

antireflective coatings). It is worth noting that the inability

to hit only a single-bit memory cell (due to the size of the

concentrated beam) does not necessarily imply inability to

inject a single-bit fault. In [37], Agoyan et al. demonstrated

how to inject single-bit fault in a reproducible way, despite

the fact that the optical precision of the equipment was not
able to target the smallest features of the target chip.

Currently, commercially available fault injection work-

stations are composed of a laser emitter, focusing lens, and

a placement surface with stepper motors to achieve a very

precise targeting of the beam. The main foreseen limita-

tion of this fault injection technique is the fact that it is not

possible to achieve subwavelength precision thus limiting

the smallest number of gates hit by the radiation depend-
ing on the etching technology and the laser wavelength.

The most accurate and powerful fault injection tech-

nique uses focused ion beam (FIB) that enables an attacker

to arbitrarily modify the structure of a circuit, reconstruct

missing buses, cut existing wires, mill through layers, and

rebuild them. Such FIB workstations are commonly used

to debug and patch chip prototypes, or to reverse engineer

unknown designs through adding probing wires to
otherwise inaccessible parts of the circuit. For instance,

Torrance and James [38] report a successful reconstruction

of an entire read bus of a memory containing a cryptogra-

phic key without damaging the contents of the memory.

State-of-the-art FIBs can operate at a precision of 2.5 nm,

i.e., less than a tenth of the gate width of the smallest

etchable transistor. FIB workstations require very expen-

sive consumables and a strong technical background to
fully exploit their capabilities. The only limit to the FIB

technology is the diameter of the atoms whose ions are

used as a scalpel. Currently, the most common choice is

Gallium, which sets the lower bound to roughly 0.135 nm.

Table 1 summarizes the important characteristics of the

previously described fault injection techniques.

IV. FAULT INJECTION ATTACKS

The variety of known attacks is already large and keeps on

growing, as several new successful ones are demonstrated

Table 1 Fault Injection Techniques Summary
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yearly. We first describe a few simple fault attacks on the
SNOW 3G cipher to illustrate the DFA methodology and

show some practical implementations thereof. Then, we

list and discuss several more complex fault attacks target-

ing the commonly used AES cipher, and several targeting

RSA, exploiting different vulnerabilities. Next, the few

available attacks targeting elliptic curve cryptography

(ECC) are briefly presented, with some comparison to

RSA.

A. Simple Attacks on 3G-SNOW
A fault attack against SNOW 3G has been proposed by

Debraize et al. [39]. Their technique enhances the one

proposed in [40] against SNOW 2.0 proving that the attack

can be successfully extended despite the tweaks applied to

the cipher to raise its security level. In this attack, the

cryptanalysis is based on viewing the output of the cipher
as a nonlinear function of the inner state, and the shift

register is seen as a generator of a series of outputs which

are dependent on the state of the three finite state machine

(FSM) registers. The proposed approach assumes that the

attacker is able to introduce a fault into a specific 32-b cell

of the shift register, without a precise control on the timing

of the fault. Since the target of the fault is a part of a shift

register, the fault model may be expressed also through its
dual, i.e., a fault injected with a clock accurate timing but

without proper control on the location of the injected fault

in the shift register. After injecting the fault, the attacker

analyzes the faulty output differences with respect to a

correct key stream and can deduce the position of the fault

in the shift register based on the position of the 32-b words

which are different in the two key streams. Once the po-

sition of the fault has been determined, the attack conti-
nues by constructing an equation expressing the difference

in the inner state as an unknown, while the difference

between the fault and correct output word is the known

term. After collecting a sufficient number of equations it is

possible to remove the terms dependent on the registers

and, in the best case, obtain a set of linear equations which

can be solved through common Gaussian elimination. The

authors have also proposed an alternative to Gaussian
elimination (for the case where a complete linear set of

equations cannot be obtained using the above technique)

that is based on Gröbner bases. Through decomposition in

a Gröbner basis of a equation system, it is possible to solve

a small set of nonlinear equations, but since the algorithm

has exponential complexity, the problem may become

computationally intractable. The authors report that their

attack was successful with as few as 22 injected faults in
the inner state, regardless of the value of the 32-b register

after the fault injection (i.e., no assumptions were made on

how many bits were flipped or their positions).

B. Attacks on AES
This section provides an insight into the most common

fault attacks on AES. These attacks attempt to exploit the

byte-wise processing of the state by inserting either single-
bit or single-byte faults during the computation.

A simple and straightforward attack on the AES cipher

has been proposed by Bloemer et al. [41] and aims to

change a single bit right after the first key addition. The

objective is to reset a single bit in the internal state Sð0Þ (in

general, SðiÞ denotes the state at the beginning of the ith
round) and observe whether the value of the ciphertext has

changed. If the ciphertext has either changed or was de-
tected as faulty by a fault detection circuit, the attacker

knows that the correct value of the bit is 1, otherwise it is

0. Since the altered bit is the result of a xor between the

known plaintext and the key, the attacker is able to recover

the key one bit at a time. Although this attack can, in

principle, recover any length of the cipher key, it has been

deemed practically infeasible due to the very precise

timing required of the fault injection and the strict re-
quirement on the position of the injected fault.

The most straightforward attack, among the practically

feasible ones, has been presented by Giraud [42] and tar-

gets directly the state SðiÞ during the last round. The attack

assumes that the injected fault only alters a single bit of the

state, prior to the last SubBytes operation. The modified bit

then propagates through the last round and results in a

single-byte corruption in the computed ciphertext. Once
the attacker obtains a pair of correct and wrong ciphertext c
and ~c, respectively, he can reduce the number of possible

key bytes employed to encrypt the corrupted byte by in-

verting the effect of the last round and checking whether

the difference between the two values (obtained with a

single-byte key hypothesis) is a single byte prior to the

SubBytes operation. This kind of attack is thus applicable

only to the last AES round that does not include the
MixColumns operation, and therefore, a single-byte differ-

ence in the state will not spread to other bytes.

A limitation to the practical instantiation of this attack

is the requirement of a very strict time frame in which the

fault must be injected. Giraud [42] was able to achieve the

required precise timing while attacking an 8-b smart card,

by focusing the light emitted by a camera flash through a

microscope. His apparatus was synchronized to the smart
card clock and was able to inject correctly timed faults into

the device. Note that the attacker can always determine

whether the injected fault has hit the correct point in the

circuit, since the fault would corrupt only a single byte.

The attack by Giraud has been successfully extended by

Barenghi et al. [43] allowing the exploitation of a single-bit

fault corrupting the state even in a regular round of the

cipher. The diffusion of the fault caused by the MixCol-
umns operation may be coped with by hypothesizing a

larger part of the key (namely, a whole 32-b word) and

trying all the possible hypotheses. This is still computa-

tionally feasible even with a common desktop. This ex-

tended attack is able to reconstruct the full key schedule,

thus recovering all the round keys, provided enough faulty

ciphertexts are available. Barenghi et al. [43] report a
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practical application of this attack against a software im-
plementation of AES running on an ARM926-based

system.

Dusart et al. [44] have presented an attack on AES that is

based on a more general fault model: it assumes that the

injected fault alters the value of a single byte between the

ðNr � 1Þth and ðNr � 2Þth rounds of the encryption primi-

tive, where Nr is the total number of rounds. This attack is

able to obtain the last round key, and relies on the key
schedule properties to reconstruct the entire AES-128 ci-

pher key. To exploit the injected fault, a hypothesis on a

single word of the last round key is made in order to invert

the last round and obtain the state right before the last

MixColumns operation. After the removal of the last round,

the algorithm checks if the key hypothesis made is com-

patible with a single-byte difference in the state through

inverting the MixColumns operation (which is linear with
respect to the xor-based key addition) and checking

whether the difference between the faulty and correct va-

lues of the state SðNr�2Þ is a single byte. This method of

paring down the candidate keys is quite efficient and yields

a single candidate with as few as three faulty ciphertexts per

key word, thus enabling an attacker to retrieve the complete

AES 128-b key with only 12 injected faults. This attack has

been practically carried out against a hardware implemen-
tation of AES on a smart card in [27] and against a software

implementation running on an ARM926 system in [26].

It is possible to further generalize the fault model of the

above attack to a faulty word in the same position assumed

by Dusart et al. This extension, proposed by Moradi et al.
[45], considers the possible faults occurring in a single

word through splitting them into two categories: the ones

affecting all four bytes of a word and those that affect fewer
than four bytes. For each category the authors provide a

bound on how fast they were able to reduce the keyspace.

They show that it is possible to recover the key with around

1500 faulty ciphertexts. This key recovery method assumes

that the attacker knows to which of the two categories the

fault belongs, since having a generic word sized fault,

without any hypothesis on the structure, yields no infor-

mation for the attacker. Moreover, it is impossible to
distinguish a posteriori if the injected fault complies with

the model needed to perform the key extraction, thus in-

sisting on the fault injection method to be reliable in terms

of the kind of fault induced. Although relying on quite

reasonable fault injection hypotheses, this attack has not

yet been validated in practice.

Another possible extension of the attack presented by

Dusart et al. has been proposed in [26] and aims at over-
coming the limitation of the attack that allows to retrieve

only the last round key. The main difficulty of retrieving a

round key before the last one is due to the effect of the

MixColumns operation which is present in all the rounds

of the cipher except for the last, and provides full diffusion

of the injected fault over the whole cipher state after two

applications. The key to work around this issue is to com-

pute the difference between the correct and faulty cipher
state at the end of the Nr � 1 round (thus eliminating the

effect of the Nr � 1 key), and then invert the effect of the

MixColumns on the differential value (which is not diffi-

cult since MixColumns is linear with respect to the xor

operation). After obtaining the difference between the

faulty and correct states right before the SubBytes step of

the Nr � 1 round, a guess is made on the correct value of a

single word of the state, deriving the value of the faulty
word from the difference. After obtaining both values, it is

possible to roll back the SubBytes operation, which was not

possible while holding only differential information due to

the nonlinear nature of the SubBytes. The last step of the

attack checks whether the predicted fault fits the fault

model, and consequently, discards the inner state hypoth-

esis if it does not. This allows the attacker to fully recover

the internal state of the cipher before adding the last key,
thus enabling the recovery of this round key. In [26], the

authors provide a practical validation of the proposed at-

tack technique against a software implementation of the

AES cipher.

A practically feasible attack worth mentioning is the

one involving the complete blanking of the S-Box lookup

tables of the cipher, achievable through resetting the mem-

ory where they are stored. This attack effectively reduces
the whole AES cipher to the last AddRoundKey operation,

which is performed on a known cipher state, i.e., the null

values fetched from the blanked S-Box. This in turn allows

the immediate recovery of the last round key by the at-

tacker, although it does not allow to recover the other

round keys thus limiting the effectiveness of the attack to

AES-128. This attack has been proved to be feasible on a

number of microcontrollers where the S-Box was stored in
the internal flash memory. The devices had to be decap-

sulated before being radiated with ultraviolet light in order

to wipe clean the memory. Proper targeting of the memory

locations which had to be blanked was achieved using a UV-

resistant dye to cover the parts which needed to be

protected.

A number of fault injection attacks targeting the key

scheduling algorithm (employed to generate round keys
from the user supplied key) have been developed. These

attacks exploit the highly regular structure of the AES key

schedule in order to infer bytes of the key through cor-

rupting one or more bytes during the expansion of the last

round key bits. In particular, the attacks proposed by

Giraud et al. [42] and Chen et al. [46] exploit a single-byte

corruption introduced after the key schedule procedure

has been performed, and are thus able to obtain a precise
fault that does not propagate to the keys which are derived

from it. While this fault model is reasonable whenever the

key schedule is precomputed and its result stored in some

kind of permanent memory, it is not possible to attack AES

implementations which perform key expansion on the fly.

In [47], Peacham et al. proposed an attack which takes

into account not only a single fault injection in the cipher,
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but also its effect on the computation of the following parts

of the key. This can be done by propagating the fault

through the xor and the SubBytes steps since their struc-

ture is not dependent on the employed key. The fault

model employed by the attack is a single 32-b word cor-
ruption during the computation of the penultimate round

key, thus it is employable also in the practical scenario

where the key expansion is computed on the fly, even if the

attacker is not able to inject a precise fault into a single

byte. Peacham and Thomas [47] describe a successful at-

tack mounted using laser induced fault injection on a

commercial grade secure implementation of AES that did

not include any countermeasures against fault attacks, and
employed an all-at-once key scheduling strategy. This at-

tack was further enhanced in [48] to reduce the number of

faults required to deduce the entire last round key to four

instead of more than ten.

Table 2 summarizes the key characteristics of different

faulty injection attacks on AES that were described in this

section.

C. Attacks on RSA
Due to the asymmetric nature of the RSA cipher two

kinds of attacks are possible. The first one attempts to

recover either the factorization of the public modulus n or

the secret exponent d. The second one tries to decrypt the

ciphertext c with no knowledge of the secret key whatso-
ever. This section starts with a description of the former,

which can only be applied during the phase that uses the

secret exponent d. This can be either the decryption phase

of a message that has been encrypted with the public key or

the signature phase of a message sent by the private key

owner for sender authentication purposes.

The first attack which has been proposed to factor the

RSA secret modulus, and actually the very first fault attack
technique to be developed, is the so-called Bellcore attack

[5]. This technique enables the attacker to factor the mo-

dulus n through inducing an error during the computation

of the exponentiation phase of an RSA implemented using

the CRT.

Consider, for example, the signature phase where the

signature s is computed as s ¼ md mod n using a CRT

recombination of the two values sp ¼ md mod p and sq ¼
md mod q. The recombination, denoted by CRTðsp; sqÞ, is

accomplished using the so-called Garner method

s ¼ sp þ p ðsq � spÞðp�1 mod qÞ mod q
� �� �

mod n:

The main benefit of this method is that it achieves signi-

ficant time and area savings by performing the exponen-

tiations with smaller exponents. Since sp ¼ md mod p¼
md mod ðp�1Þmod p and sq¼md mod q¼md mod ðq�1Þmod q,
the exponents to be used are dp ¼ d mod ðp� 1Þ and

dq ¼ d mod ðq� 1Þ, which are of order p and q, respec-

tively, instead of n.

Unfortunately, this simpler way to compute the signa-

ture also yields an easy path for attackers. The main idea

behind the Bellcore attack is to corrupt only one of the two

computations, i.e., either sp or sq. If, for example, a fault is

injected during the computation of sq while the compu-
tation of sp remains error free, the faulty result may be

used to successfully factor the modulus n. Denoting the

faulty value of sq by esq ¼ sq þ�, we can rewrite the faulty

result of the CRT recombination as es ¼ CRTðsp; esqÞ, which

is equal to

es ¼ sþ p �ðp�1 mod qÞ mod q
� �

mod n:

One can now compute the quantityes� s that shares the

factor p with the modulus n. Therefore, it is possible to

extract p ¼ gcdðes� s; nÞ efficiently using Euclid’s algo-

rithm, thus factoring n.

Moreover, as shown in [7], the modulus factorization is

feasible using only the message m and one faulty compu-
tation of the signaturees by exploiting the knowledge of the

public exponent e to calculate p ¼ gcdðese � m; nÞ. This

allows an attacker to factor the modulus even in the case

the value of the correct signature s is not available.

The simplicity of the fault model assumed by this attack

is the most important property of this technique: any

random fault perturbing one part of the computation is

Table 2 AES Attacks Summary (KS Is the Key Schedule)
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able to break the cipher. A number of practical implemen-
tations of this attack have been attempted. For example,

Aumüller et al. [49] have induced errors into a smart card

through voltage spikes injected into the power supply line

of the device. Even with such a simple setup, the attack

was successful in more than 90% of the attempts, further

proving the serious threat posed by this attack technique.

The second way to attack RSA is to retrieve the private

exponent d while the device is signing messages. This at-
tack is applicable when the RSA implementation performs

the exponentiation through a sequence of square-and-

multiply steps. In this attack scenario, the attacker has free

access to the device and is allowed to choose arbitrary

ciphertexts to be fed while injecting faults. It is also as-

sumed that there is no limit to the number of fault injec-

tion experiments that the attacker can perform. This

assumption restricts the technique to nondestructive fault
injections.

The key point of the secret exponent recovery attack,

first proposed in [6], is to induce a number of faults during

the signature process, with each fault leaking the value of a

single bit of the exponent. Two types of injected faults can

achieve the desired outcome. One is a single transient flip

of a bit in d during the computation of the RSA signature.

Another way to achieve an analogous effect is to induce a
fault that will result in skipping the condition check which

determines whether the current intermediate value must

be multiplied by the base in a common left-to-right square-

and-multiply exponentiation procedure. As a result of

either fault, the corrupted signature es may assume one of

the following two possible values: es ¼ sd�2i

mod n or es ¼
sdþ2i

mod n depending on whether the value of the single

bit in position i was flipped up or down. Consequently,
either s=es mod n or es=s mod n would be equal to

m2i
mod n, where i 2 ½0; v� 1� and v is the bit size of

the secret exponent d.

To simplify the attack, all the possible values of m2i
(for

i 2 ½0; v� 1�) can be precomputed and stored in a lookup

table A. After a fault has been injected and the faulty

signature es observed, the lookup table A is searched for a

match with either s=es mod n or es=s mod n. If the first
value matches an entry in the table, the attacker knows

that the ith bit value is 1 and was changed to 0 by the fault,

while if the second value produces a match, the original

value of the ith exponent bit was 0. This procedure can be

iterated as necessary.

This attack can also be successful if the injected fault

hits two bits of the secret key d. The main difference would

be that a bigger lookup table would need to be prepared
with v2 instead of v entries.

To estimate the number of randomly positioned single-

bit faults needed to discover the values of v unknown key

bits define a random variable X counting the number of

faults injected until all the bits have been hit. Assume that j
key bits have already been hit and denote by Xj the random

variable indicating the number of faults that should be

injected in order to increase the number of bit hits to jþ 1.
Xj follows a geometric distribution with parameter

ðv� jÞ=v. Therefore, the probability that after k injections

a yet untouched (single) bit gets hit is given by

ProbðXj ¼ kÞ ¼ ððv� jÞ=vÞðj=vÞk�1. The expected value

of Xj is E½Xj� ¼ v=ðv� jÞ. Since the random variable X
satisfies X ¼

Pv�1
j¼0 Xj, its expected value is E½X� ¼

v
Pv

j¼1ð1=jÞ � v lnðvþ 1Þ.
This implies that on the average R ¼ v lnðvþ 1Þ single-

bit faults should be injected in order to retrieve all the bits

of the secret key. For example, if the RSA implementation

uses a 1024-b key, the attacker will need approximately

R ¼ 1024 lnð1024Þ ffi 3083 restarts of the device and suc-

cessful fault injections in order to extract the entire secret

exponent. As in any such attack, the attacker can stop the

fault injections when a brute force search of the remaining

key bits becomes feasible.
A variant of this attack has been proposed and applied

in practice by Schmidt et al. [29]. The authors caused the

skipping of the squaring step in the square-and-multiply

algorithm by introducing glitches into the clock signal of

the attacked microcontroller. The employed methodology

allows a very precise control of which instruction is

skipped and the authors were, therefore, successful in re-

covering all the bits of secret exponent d one bit at a time.
An example of applying the technique proposed by

Bao [6] that is worth mentioning is the one reported in [50].

Yen et al. have used the technique under a safe error as-

sumption. An error is injected into a single multiply ope-

ration during a square-and-multiply-always algorithm and

the attacker needs only to observe whether the device is

behaving correctly. Any misbehavior (e.g., producing a faulty

output value or no output at all) indicates to the attacker that
the injected fault has hit a useful multiplication, implying

that the bit (of d) driving that multiplication was equal to

one. This technique has allowed to bypass all the counter-

measures which were known at that time, since the actual

faulty output was not needed.

A third way to attack the RSA cryptosystem is to devise

a way to extract the eth root of a number modulo n in a

reasonable time. This has been shown to be feasible in
[25], by exploiting the knowledge of another power of the

same number. This technique can be used in order to

recover the plaintext message without the need to obtain

the secret key.

The fault model assumed by this attack is a modifica-

tion to the value of the public exponent e, leading to two

encryptions of the same message sharing the same mod-

ulus n. While this does never happen due to an incorrect
generation of two public–private key pairs (otherwise the

two key holders would be able to mutually read each

other’s messages), the encryption of the same message

through exponentiation by two different public exponents

e1 and e2 may be forced through proper fault injection.

Once the values of the two different ciphertext result-

ing from the encryption of the same message are obtained,
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it is possible to efficiently extract the eth root by exploit-
ing the following observation. Assuming that e1 > e2, the

value of

me3 ¼ ðme1Þ � ðme2Þ�1

can be easily computed. The value of e3 is lower than that

of e1 and it is possible to lower it further until it becomes

lower than e2. Notice that the attacker knows the values of

e1 and e2 since they are public, so he knows exactly the
value of e3. In order to further lower the value of the

exponent it is possible to compute the value of

me4 ¼ ðme2Þ � ðme3Þ�1

and repeat the procedure until either enþ1 ¼ en or en ¼ 1.

This procedure amounts to computing the greatest com-

mon divisor of e1 and e2 and employs the descending se-

quence of remainders as a pivot for the divisions among the

two encrypted messages.
Algorithm IV.1 describes an efficient method to re-

trieve the plaintext of an RSA encryption using Euclid’s

greatest common divisor algorithm as a pivot to perform

operations on the two known ciphertexts.

Algorithm IV.1: eth Root Extraction

Input: e1; e2 2 f1; . . . ; ’ðnÞ � 1g, e1 � e2, c1¼me1 mod n,

c2 ¼ me2 mod n
Output: ðm; nÞ: either ðm;?Þ if the eth root may be

extracted, ðp; qÞ if the modulus can be factored or

ð?;?Þ otherwise

1 begin

2 �  gcdðc1; nÞ
3 if � 6¼ 1 then

4 return ð�; n=�Þ
5 �  gcdðc2; nÞ
6 if � 6¼ 1 then

7 return ð�; n=�Þ
8 if gcdðe1; e2Þ 6¼ 1 then

9 return ð?;?Þ
10 �1; �2  c1; c2

11 "1; "2  e1; e2

/ /
12 [h]Integer division
13 � b"1="2c, � "1 mod "2

14 �3  �1�
��
2 mod n

15 while � 6¼ 0 do

16 �1; �2  �2; �3

17 "1; "2  "2; "1 � �"2

/ /
18 [h]Integer division

19 � b"1="2c, � "1 mod "2

20 �3  �1�
��
2 mod n

21 return ð�2;?Þ
22 end

In order to compute the value of m�e2 from me2 as

required by the algorithm, it is necessary that gcdðm; nÞ ¼ 1;

if this is not the case, it is possible to use me2 to factor n by

simply computing their greatest common divisor. This

implies that if the root extraction attack is not applicable,
the system may be easily broken otherwise.

Algorithm IV.1 computes gcdðe1; e2Þ following Euclid’s

algorithm and calculates at each step the value of

me1 mod e2 mod n using the values c1 ¼ me1 mod n and

c2 ¼ me2 mod n (lines 13 and 18). This, under the

assumption that e1 and e2 are coprime, will lead to the

computation of m1.

If e1 and e2 are randomly chosen, a known result in
number theory [51] states that, provided that two numbers

are randomly chosen from a large enough range, the pro-

bability of them being coprime approaches 6=	2 � 0:61.

This implies that, on average, two fault injections will be

sufficient to successfully extract the encrypted message.

We next estimate the computational complexity of the

algorithm. Assuming that e1 � e2, the number of steps that

Euclid’s algorithm must perform is of the order of
Oðlogðe1ÞÞ that is equal to Oðlog’ðnÞÞ (Lamé’s Theorem

[52]). Thus, taking into account the fact that the

complexity of performing modular multiplication, expo-

nentiation, and inversion is Oðlog3 nÞ, the complexity of

the whole algorithm is Oðlog4 nÞ, and therefore, tractable

even for large values of n.

In order to employ Algorithm IV.1 in a fault attack

scenario, the values of e1 and e2 must be known: this is
equivalent to a precise fault injection assumption regard-

ing the number of faulty exponent bits and their positions.

This assumption may be relaxed, at the cost of computing

the algorithm for each fault hypothesis and then checking

if the recovered plaintext is the correct one through re-

encrypting it and comparing it with the correct ciphertext.

Table 3 summarizes the properties of the attacks on

RSA indicating the required precision of the fault injection
and the practical applicability of the techniques. Many of

the proposed attacks on RSA have been implemented and

successfully mounted against real-world devices, thus

mandating proper incorporation of countermeasures into

RSA implementations.

D. Attacks on ECC
Developing fault injection techniques to attack ECC-

based ciphers proved to be more difficult than attacking

RSA-based ciphers due to the higher complexity of the

mathematical operations involved.

Most of the attacks on ECC that have been proposed

exploit the structural similarity between the exponentiation
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through square-and-multiply algorithm used in RSA and the

point-scalar multiplication through the double-and-add

method used in ECC. Both ciphers have a common struc-

ture where, at each step, an operation (or a set of operations)
is executed depending on the value of a single bit of the

secret key.

This, in turn, implies that it is possible to apply the

same bit flip and check attack which was suggested by

Bao et al. [6] to recover the secret RSA exponent during

the signature operation. Alongside the same attack strat-

egies, also safe error attacks may be employed if a double-

and-add-always (the ECC’s analog to the RSA’s square-and-

multiply-always) algorithm is employed. A variation of the

safe error attack, relying on the fact that all the compu-

tations on elliptic curves are performed on signed values, is

the so-called sign flip attack [53]. Through flipping the sign

bit of the exponent digit being operated on by the point

multiplication algorithm, it is possible to successfully alter

the final result, and recover which bit had been flipped.

In addition to the attack techniques that are similar to

their RSA counterparts, there are attacks whose goal is

lowering the security of the ECC cipher through changing

the group of points on which it works. In [54], Biehl et al.
propose injecting a fault into the base point which gets

multiplied k times. This way, the point will no longer be-

long to the curve selected by the designer, but possibly to

another one whose number of points is lower, thus making

it possible to attempt a brute force attack on the scheme.
Another attack, directly targeted at the ECC structure,

is described in [55], where Fouque et al. notice that a fault

injected into the point coordinates during the scalar multi-

plication may move the point into a subgroup of the main

group of curve points (called a twist of the curve), which has

a smaller number of points. The authors show that their

attack technique is able to successfully break curves stan-

dardized by both the National Institute of Standards and
Technology (NIST) [56] and IEEE [57] up to a security level

equivalent to the one provided by the AES with a 128-b key.

A different approach to attack the elliptic curve signa-

ture algorithm has been proposed in [58]. The key point is

to alter one bit of the inputs of a single-word multiplication

during the final multiword multiplication employed to

produce the signature value. The value of the wrong sig-

nature is exploited to retrieve one word of the secret key;

the attack retrieves the full value of the secret key word by

word. This fault attack technique has been extended to

multiple bit faults in [59].

V. COUNTERMEASURES

This section describes the basic principles underlying the

countermeasures against fault attacks: intrusion detection,

algorithmic resistance, and error detection and possibly

correction techniques, and will attempt to systematically

classify the currently known countermeasures.

One approach to protect an implementation of a cryp-

tographic algorithm against fault attacks relies on making
the implementation physically inaccessible. This requires

encasing the device in a tamper-proof box and including

sensors to detect any attempted tampering with the device.

This method has been applied in high-end cryptographic

coprocessors such as the IBM 4764 [60].

Other, more cost-effective, approaches to protect

against fault injection attacks modify the design of the

cryptographic device to allow the detection of the injected
faults. One such approach relies on duplicating the encryp-

tion or decryption process (using either hardware or time

redundancy) and comparing the two results. This approach

assumes that the injected faults are transient and will not

manifest themselves in exactly the same time in these two

executions. Although easy to apply, this approach may

often impose a overhead too high to be practical. Another

approach is based on error detection codes which usually
require a smaller overhead compared to straightforward

duplication, although possibly at the cost of a lower fault

coverage. Thus, a tradeoff between the fault coverage and

the (hardware and/or time) overhead should be expected.

When using error detecting codes (EDCs) for detecting

faults during the encryption/decryption process, check bits

are first generated for the input, then, for each opera-

tion(s) that the data bits undergo, the check bits of the
expected result are predicted. Periodically, check bits for

the actual result are generated and compared to the pre-

dicted check bits: a fault is detected if the two sets do not

match.

The validation checks can be scheduled at various gra-

nularities of the cipher, be it after every operation applied

to the data, following each round, or only once at the end

of the encryption process.
The first step, that of generating the check bits for the

input, is straightforward. The nontrivial part is devising

the prediction rules for the new values of the check bits

following each transformation that the data bits undergo

during the encryption/decryption process. The complexity

of these prediction rules, combined with the frequency at

which the comparison is made, determine the overhead of

Table 3 RSA Attacks Summary
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applying the EDC, rather than duplication, as a protection
against fault attacks.

A. Suggestions for SNOW 3G
Providing fault attack protection in stream ciphers is

particularly challenging due to the fact that these ciphers

are commonly used in devices with strict timing and cir-

cuit size constraints. This, in turn, excludes the use of high

overhead techniques. A viable approach to providing mod-

erate error checking capabilities is to employ nonlinear

error detecting codes, like the ones described in [61].

These codes check the integrity of the state and provide a
moderate error correction capabilities thus enabling a

reliable functioning of the circuit even when under attack.

B. Protection Options for AES and DES
The countermeasures that have been proposed to pro-

tect symmetric block ciphers mainly rely on the introduc-

tion of redundancy in the execution, either in the form of

error detecting codes (information redundancy) or

through duplicated execution (time or hardware redun-

dancy). These schemes are similar to the conventional

redundancy techniques that are described in [20].

With temporal duplication, the encryption (or decryp-
tion) algorithm is executed twice on the same hardware,

while with hardware (spatial) duplication, the algorithm is

executed on two separate circuits. In both cases, the two

results are compared and any mismatch indicates an error

which may be the result of a maliciously injected fault.

These schemes work under the assumption that injecting

identical faults during the two independent executions is

extremely difficult. Temporal redundancy incurs a perfor-
mance penalty while spatial redundancy results in a bigger

circuit with higher power consumption.

A variation of the above duplication techniques can be

applied if the system has a separate hardware unit or soft-

ware program for executing the inverse of the crypto-

graphic primitive that should be protected. For example, if

a device that encrypts a symmetric block cipher also in-

cludes an implementation (in hardware or software) of the
decryption algorithm, then the calculated ciphertext can

be decrypted and if the result of this decryption matches

the original plaintext, the ciphertext is considered fault

free and safe to output. In [62], Karri et al. described the

application of the above technique at different levels of

granularity, i.e., checking against the inverse operation at

the operation, round or full cipher level. The proposed

scheme allows a precise and early identification of the step
during which the fault occurred.

A technique to mask the high latency introduced when

temporal duplication is applied to the execution of a cipher

has been proposed in [63]. Maistri et al. developed a dual

data rate (DDR) architecture for AES, allowing to compute

twice the same cipher with negligible time overhead by ope-

rating at double the frequency of the remaining circuit. The

area overhead is reasonable, since the only parts which must
be duplicated are the registers holding the cipher state.

Parity-based EDCs were proposed as an effective way to

detect faults in AES in [64] and [65] and were previously

shown to be useful also for DES [66].

Parity bits can be associated with entire 32-b words,

with individual bytes or even with nibbles (sets of 4 b),

with each such scheme providing a different fault coverage

and entailing a different overhead in terms of extra hard-
ware and delay.

As an example, we illustrate the procedure for develop-

ing parity prediction rules when using a parity bit for each

byte of the AES state. We discuss next the prediction rules

for the four steps included in each round.

The prediction of the output parity bits for the

ShiftRows transformation is straightforward: it is a rotated

version of the input parity bits. Equally simple is the pre-
diction of the output parity bits of the AddRoundKey step:

it consists of adding the input parity matrix associated with

the state to the parity matrix associated with the current

round key.

The SubBytes step commonly uses SBoxes which are

256� 8 b lookup tables. The input to the SBox will already

have an associated parity bit. To generate the outgoing

parity, a parity bit can be stored with each data byte, in-
creasing the number of bits in each location in the SBox to

nine. To make sure that input parity errors are not dis-

carded, we will have to check the parity of the input data,

and if an error is detected, stop the encryption process.

A lower overhead solution would be to propagate the

input parity errors so that they can be detected later on.

This can be achieved by including the incoming parity bit

when addressing the SBox, thus further increasing the
table size to 512 � 9. The entries that correspond to

input bytes with correct parity will include the appro-

priate SubBytes transformation result with a correct

parity bit. The other entries will contain a deliberately

incorrect result, such as an all-zeros byte with an incorrect

parity bit.

If fault attacks on the SBox address decoder can be

expected, the above scheme is insufficient. Adding a small
table that will include the predicted parity bit and one (or

more) correct output data bits, as suggested in [64], will

allow the detection of most of the addressing circuitry faults.

The prediction of the output parity bits of the

MixColumns step is the most complex one. Equations for

predicting the parity bits have been derived in [64] and are

shown in

p0;j ¼ p0;j � p2;j � p3;j � s
ð7Þ
0;j � s

ð7Þ
1;j

p1;j ¼ p0;j � p1;j � p3;j � s
ð7Þ
1;j � s

ð7Þ
2;j

p2;j ¼ p0;j � p1;j � p2;j � s
ð7Þ
2;j � s

ð7Þ
3;j

p3;j ¼ p1;j � p2;j � p3;j � s
ð7Þ
3;j � s

ð7Þ
0;j (3)
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where pi;j is the parity bit associated with state byte si;j, and
s
ð7Þ
i;j is the most significant bit of si;j.

The question that remains is the granularity at which

the comparisons between the generated and predicted

parity bits will be made. Scheduling one validation check

at the end of the whole encryption process has the ob-

vious advantage of having the lowest overhead in terms of

hardware and extra delay. Theoretically, this could result

in the error indication being masked during the encryp-
tion procedure, yielding a match between the gene-

rated and predicted parity bits in spite of the ciphertext

being erroneous. It can be shown, however, that errors

injected at any step of the AES encryption procedure will

not be masked, and therefore, a single validation check of

the final ciphertext is sufficient for error detection

purposes.

Still, not every combination of errors can be detected
by this scheme. Parity-based EDCs are capable of

detecting any fault that consists of an odd number of bit

errors. However, an even number of bit errors occurring

in a single byte will not be detected. Moreover, if errors

are injected in both the state and the round key, some

data faults of odd cardinality will not be detected.

Although we cannot expect a 100% fault coverage when

using a parity-based EDC, the fault coverage has been
shown to be very high, even when multiple faults are

considered.

In a similar way, EDCs can be developed for other

symmetric key ciphers. Several such ciphers which rely on

modular addition and multiplication will better match

residue codes. Other symmetric ciphers have been shown

to require a very expensive implementations of EDCs,

leading to the conclusion that the brute force duplication is
probably a more suitable solution. The cost of providing

protection against fault-based attacks should be taken into

account when selecting a cipher for a device.

C. Protection of RSA
Protecting the RSA encryption and decryption primi-

tives without introducing significant overheads proved to

be a challenging task for researchers. The high complexity
of the required calculations (relative to those for symme-

tric block ciphers) results in bigger circuits and/or higher

latency, making full temporal or spatial redundancy too

costly, especially for resource constrained devices such as

smart cards. On the other hand, RSA proved to be very

vulnerable to fault attacks, especially when a CRT-based

implementation is used.

A lower overhead can be achieved if an EDC is used.
Since the RSA cipher is based on modular arithmetic ope-

rations, residue codes are a natural choice. At the begin-

ning of the execution, the check bits for the input are

generated based on the selected modulus c for the residue

check (m mod c where m is the original message). Then,

the operations performed during the RSA algorithm can be

applied to the input check bits to obtain the predicted

output check bits. The residue check will fail to detect an
error when the faulty ciphertext has the same residue

check as the correct one. Assuming that the fault injected

is random, this match will happen with a probability of 1=c
and thus, a higher value of c will result in a higher fault

coverage (but also a higher overhead).

Another approach, proposed by Shamir [67], is based

on randomizing the computation every time the RSA

algorithm is executed. Randomization can serve as a coun-
termeasure not only against fault injection attacks, but also

against timing and power attacks since the latency and

power profile would depend on some randomly chosen

parameters. The proposed scheme targets CRT-based im-

plementations. A random integer r is selected and the fol-

lowing two computations are performed: srp ¼ md mod rp
and srq ¼ md mod rq. Then, the correctness of the compu-

tations is checked by verifying that srp ¼ srq mod r. Only if
no error is detected the final result s ¼ CRTðsrp; srqÞ is

produced. This scheme however, may be subject to a

Bellcore-type attack by injecting a fault into either srp or srq

after the above check has been done but prior to the CRT

recombination.

To overcome the above vulnerability, a variation of

Shamir’s scheme was proposed by Ciet et al. [68] em-

ploying two different random values which are multiplied
with the two prime moduli of the CRT computation. The

effect of the random numbers is removed only after the

CRT recombination has been performed, thus preventing

the Bellcore-type attack.

A generic approach to detecting faults during decryp-

tion by executing the inverse process (i.e., encryption) is a

viable countermeasure for RSA since the public exponent e
is often very small, and consequently, the cost of perform-
ing the encryption is negligible. There are, however, two

issues to be resolved if this countermeasure is to be de-

ployed. The first is that the public exponent e is not always

available in the decryption device (e.g., in a smart card).

This issue was resolved by Joye [69] who proposed the

embedding of the public exponent into the modulus n, thus

making it available to the device. The second problem

arises when the decrypting device employs the CRT-based
algorithm. Such devices are often designed to only perform

operations with small moduli rather than the full RSA

module n. Since the checking involves a modulo n compu-

tation, this may cause a significant slowdown of the

process. To solve this problem, Boscher et al. [70] proposed

a way to employ a CRT-based scheme for the checking thus

avoiding the potential slowdown.

To protect RSA encryption and implementations of
RSA decryption that are not CRT-based, a strategy to

check errors during modular exponentiation is neces-

sary. Modular exponentiation is frequently executed

using a Bsquare-and-multiply[ sequence described in

Algorithm V.1. The inputs to this algorithm are the en-

crypted message c, the modulus n, and the k-bit private key

d ¼ dk�1; dk�2; � � � ; d0.
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Algorithm V.1: A straightforward decryption algorithm for

RSA

Input: c; n; d ¼ ½dk�1; dk�2; � � � ; d0�: secret exponent

Output: m: plaintext
1 begin

2 a s
3 for i k� 2 to 0 do

4 a a2 mod n
5 if di ¼ 1 then

6 a c � a mod n
7 return m
8 end

This algorithm correctly produces the desired result in

k steps, where a squaring operation is always performed,

and a multiplication operation is performed only if the
corresponding bit of the private exponent d is equal to one.

Unfortunately, this algorithm is vulnerable to simple

power analysis techniques, which rely on the different

power consumption caused by the presence or lack of the

multiplication, to infer the value of the private exponent

bits. The most straightforward solution to this issue is to

follow a Bsquare-and-multiply-always[ strategy, such as

the one described in Algorithm V.2.

Algorithm V.2: A modified decryption algorithm for RSA

Input: c; n; d ¼ ½dk�1; dk�2; � � � ; d0�: secret exponent

Output: m: plaintext

1 begin

2 a s
3 for i k� 2 to 0 do

4 a a2 mod n
5 b c � a mod n
6 if di ¼ 1 then

7 a b
8 else

9 a a
10 return m
11 end

This strategy always performs the multiplication, thus

equalizing the power consumption of the otherwise

different iterations. Although this strategy is effective in

preventing power-analysis-based attacks, it is possible to

attack the aforementioned algorithm through an easy safe

error attack. By disturbing the multiplication, through

fault injection, it is possible to deduce the corresponding

bit of the secret exponent in the following way. If, de-
spite the injection of a fault, the output is correct, then

the multiplication was unnecessary while if the output is

incorrect (or no output is produced due to the fault

being internally detected), then the multiplication was

needed.

These safe error attacks can be prevented, as was
pointed out in [71], by computing the exponentiation using

the Montgomery laddering technique depicted in Algo-

rithm V.3. The technique uses two temporary values a and

b whose values are recomputed every iteration, and as a

result, any fault injected during an inner operation will be

detected. This technique has the added benefit that makes

it possible to check at each iteration whether the

relationship ma ¼ b holds [72]. The number and positions
of such checks may be determined by the designer,

according to a tradeoff between the computation time and

the security level.

Algorithm V.3: A Montgomery ladder algorithm for RSA

decryption

Input: c; n; d ¼ ½dk�1; dk�2; � � � ; d0�: secret exponent

Output: m: plaintext

1 begin

2 a s
3 for i k� 2 to 0 do

4 a a2 mod n
5 b c � a mod n
6 if di ¼ 1 then

7 a a2 mod n
8 b a � b mod n
9 else

10 a a2 mod n
11 b a � b mod n
12 return m
13 end

Unfortunately, this technique increases the vulnera-

bility to power attacks since the computation now includes

a conditional construct that results in an imbalance, albeit

slight, in the power consumption. To overcome this prob-

lem and obtain a fault and power analysis resistant expo-

nentiation algorithm, Fumaroli et al. [73] proposed a

variant of the Montgomery laddering technique that em-

ploys a randomization scheme and substitutes the condi-
tional instruction in the previous algorithm by a fast

multiplication of the temporary values of the Montgomery

ladder with the bit of the exponent. The randomization of

the encrypted message is performed through exponentiat-

ing rm instead of m, where r is a small random number. In

parallel to the exponentiation, r�e is computed and then

used to remove the randomization (also known as blind-

ing) effect after the computation.
The randomization introduced by Fumaroli prevents an

attacker from knowing the actual result of the exponen-

tiation, and provides a way to check if the computation

proceeds properly using the same relationship which held

for the original Montgomery ladder. Still, as was later

pointed out in [74], it is possible to inject an undetected

error in the result, if the attacker only corrupts the calcu-

lation of the blinding removal value r�e. Such a fault may
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constitute a security risk if the above technique is em-
ployed in the computation of one of the two halves of the

CRT-based decryption. If the undetected faulty value is

employed in the CRT reconstruction, it leads to the same

scenario as in the Bellcore attack.

To obtain a protected CRT-based low overhead decryp-

tion algorithm, Boscher et al. [75] combined a checking

strategy for the CRT recombination with a fully protected

exponentiation.
An alternate strategy to hinder attacks on RSA relies on

propagating the effects of the injected fault on the whole

computation, leading to a faulty output which is not ex-

ploitable by the attacker. This strategy, denominated fault
infective computation in [76], shifts the focus of the coun-

termeasure from detecting the faults, to directly hindering

the attacker without altering the computation flow, thus

implicitly preventing safe error attacks. A generalization of
this concept, denominated fault resilient computation, has

been presented in [77], focusing on the design of a circuit

which relies on dual-rail logic to implement the same key

concept.

D. Protection of ECC
Elliptic curve cryptosystems can be protected by ex-

tending some of countermeasures that were developed for
RSA and adapting them to the different group operations

performed during ECC encryption/decryption. In [78],

Ciet and Joye present a list of countermeasures for ECC

taking into account all the previously proposed attacks. In

particular, the authors suggest, as a practical defense

against safe error and bit flipping attacks on the double-

and-add ladder, to compute the kP through splitting k into

two values. Furthermore, to avoid exploitable determi-
nistic behavior, a random number r (smaller than k) should

be selected leading to the computation of ½k mod r�P þ
½bk=rc�P. A second suggested guideline is to avoid deci-

sion checks in the same way they are avoided in the

Montgomery laddering during RSA exponentiation. This

way, an error during the double-and-add ladder will yield a

random result avoiding information leakage. Another in-

formation leakage prevention approach, proposed in [79],
involves randomizing the base point P used in the kP
operation. This countermeasure introduces further ran-

domness into the scheme hindering the recovery of the

value of k regardless of the faults induced during the

computation.

VI. POWER AND FAULT
ATTACKS SYNERGIES

Although we have focused in this paper on fault injection

attacks, we must keep in mind that there are other types of

side channel attacks that a possible attacker may follow in

an attempt to breach the security of a system. A commonly

used approach is through power analysis attacks, which

measure the amount of power consumed while performing

encryption or decryption during the normal (fault-free)
operation of the attacked device.

An example of these attacks is the differential power

attack whose goal is to construct a key-dependent model of

power consumption that depends on the switching activity

of the circuit, and try to find which one fits best the actual

measurements taken on the device. The most common way

to protect against this kind of attacks is to design the device

such that it has a constant power consumption regardless
of the ongoing computation.

Traditionally, fault attacks and power analysis attacks

were considered disjoint attack methodologies. This led to

the assumption that protecting the device against each one

of these two possible attacks individually, the device is

consequently protected against any combination of these

two types of attacks. This assumption, however, proved to

be false, and it has been shown that it is possible to exploit
fault attacks in order to enhance the efficiency of power

attacks. The key idea behind the combined attack is that a

fault induced during a computation can alter, in addition

to the result of the computation, also the power consumed

by the device due to a change in the switching activity of

the circuit.

The first combined attack technique was reported by

Amiel et al. [80]. In this work, the authors showed that it is
possible to attack an RSA exponentiation that was pro-

tected against power analysis attacks using a balanced

algorithm with message randomization, by inducing ad hoc
faults. The technique involves the partial or total blanking

of the contents of the register holding the base value of the

message m, which, in turn, reduces the power consump-

tion of the multiplication by m. Since this multiplication is

performed only when the current bit of the secret expo-
nent d is 1, the authors were able to obtain the secret key

simply by observing which operations did consume less

power after the fault injection. The authors have also

pointed out that this kind of attack cannot be prevented by

simple countermeasures against faults such as checking

the signature at the end of the computation. This is due to

the fact that the information leakage happens during the

computation and a posteriori checks cannot prevent it.
One way to protect against these attacks is to detect the

injected fault immediately, rather than wait until the

computation of the signature is completed, and upon de-

tection, abort the process and thus avoid generating the

power profile that divulges the secret key. Well-known

examples of this type of countermeasures are the error

detection codes based on either parity or residue checking.

These codes, through adding redundant check bits to the
data processed, are able to detect on the fly an invalid

alteration of the data. However, the addition of circuitry to

process the added check bits may help differential power

analysis attacks since the check bits are highly correlated

to the data bits being processed.

In [81] and [82], Regazzoni et al. reported the results of

correlation power analysis attacks (that are more powerful
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than differential power analysis) on an implementation of
AES where the output buffer of the S-Box has been ex-

tended to include an error detection circuit. The consid-

ered error detection codes were parity, residue modulo 3

and residue modulo 7. The results of this study showed

that the introduction of error checking circuits would help

the attacker by reducing the number of power traces

needed to discover the bits of the secret key. The expe-

riments in this study were performed with an added mea-
surement noise that must be expected during any practical

power analysis attack. A reduction in the required number

of traces has been observed even if the attacker is unaware

of the presence of check bits in the attacked implemen-

tation. Furthermore, the authors observed that the higher

the number of check bits is, the easier the power attack

becomes.

These observations suggest that, albeit targeting
different side channels, substantial synergies between

active and passive attacks exist and these may be ex-

ploited by a malicious attacker. This, in turn, implies that

novel countermeasures against either power or fault at-

tacks should always take into consideration their impact

on the robustness against the other type of side channel

attacks.

VII. FUTURE RESEARCH DIRECTIONS

We conclude this survey with a brief description of possi-

ble new research directions in the field of fault injection

attacks. One such direction will focus on establishing

formal models for fault injection attacks and exploring

their effectiveness. This will allow a top–down analysis of

possible fault attacks instead of the current bottom–up
approach.

The number and types of fault attacks that are being

developed for the various ciphers is steadily increasing but

no clear classification has emerged. The current trend is to

model the injected faults as errors in the underlying

mathematical formulas rather than mistakes in the compu-

tations performed by a certain computer model. This ap-

proach makes it difficult to establish a relationship
between the fault model and the existing technology,

and consequently, its practical relevance is becoming

questionable. An alternative approach might be the

development of a scientifically rigorous quantification of

the robustness of an implementation of a cryptographic

primitive (e.g., RSA encryption) against fault attacks by

modeling the primitive as a program that runs on a given

virtual machine model. One can then determine the fault
resilience and cost of the cryptographic primitive imple-

mentation where the resilience can be defined in one of

the following ways:

• being able to return the correct result despite a

fault;

• detecting the fault and discontinuing the

process;

• returning an incorrect result making it difficult for
the attacker to recover either the secret key or the

plaintext.

The overhead (cost) of the given implementation can

be measured in terms of the execution time or the code

size of the program implementing the primitive. A number

of possible virtual machines can serve as a framework for

the above model ranging from the theoretical Turing

machine to more practical ones.
Clearly, exploring the solution space with respect to

these resilience and cost parameters for cryptoprimitives

implementations that incorporate countermeasures would

have theoretical and practical significance. Such analysis

can then be extended to complete implementations of

cryptographic protocols consisting of a set of cryptoprimi-

tives (e.g., transport layer security [83]).

Determining the resilience versus cost tradeoffs in a
theoretical way may prove to be difficult. Instead, succes-

sive approximations can be obtained by using known

attacks procedures. Such procedures could be used to

compare primitives and different virtual machine models,

and thus progressively refine the analysis.

Besides the above described new research direction,

there is still a need to keep developing countermeasures

against fault attacks and new ways to make implementa-
tions more immune to attacks, and improve the techniques

to test the robustness of cryptographic primitives and the

robustness provided by technological advancements.

To illustrate the need for the development of new

countermeasure consider the following scenario. Assume a

message m1 is encrypted into a ciphertext c1 using RSA.

Injecting a 1-b fault into m1 during a second encryption will

result in the encryption of the message m2 ¼ m1 xor

2i ¼ m� 2i ¼ mþ b, for a b predictable by the attacker;

hence z ¼ m1 is a common root of

ze � c1 ¼ 0 mod n

ðzþ bÞe � c2 ¼ 0 mod n:

Thus, m1 will be retrieved with a high probability by the

following operation:

gcd ze � c1; ðzþ bÞe � c2ð Þ ¼ z� m1 mod n:

The complexity is quadratic in e and the attack will hence

work only for small public exponents. This attack is de-

rived from a nonfault (i.e., algorithmic) attack on RSA [84]

and uncovers an unexpected relationship.

In addition, a number of recently developed crypto-

primitives deserve more extensive theoretical and practical

investigations. Examples include elliptic curve pairing or
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lattice-based operations, which are currently of consider-
able interest.

Furthermore, the number of known countermeasures

is as large as the number of different fault attacks that have

been developed, and quite often, a countermeasure has

been finely tuned to a specific attack. There is a need to

design more general countermeasures that will be effective

against many fault attacks and yet be inexpensive. Devel-

oping theoretical generic countermeasures may be too
ambitious, and a more promising approach seems to be

that of unifying the existing ones (e.g., [70] and [85]). The

results in this field are still limited to a couple of primi-

tives, thus a deeper insight is required.

A further research direction is represented by the ad-
vent of multicore processors in mobile environments.

Since cryptoprimitives have been mainly designed and

implemented on serial processors, there is an ongoing

transition to their implementation on multicore platforms.

Currently, it is unclear how to extend the known fault

attack methodologies and techniques to a parallel algo-

rithm, which may be processing several keys simulta-

neously or several plaintexts using one key. Another
related question is whether fault injection attacks (and

more generally, side-channel attacks) on parallel imple-

mentations will retain their feasibility on these modern

platforms. h
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