
From Collision To Exploitation:
Unleashing Use-After-Free Vulnerabilities in Linux Kernel

Wen Xu, Juanru Li, Junliang Shu, Wenbo Yang
Tianyi Xie, Yuanyuan Zhang

∗
, Dawu Gu

Shanghai Jiao Tong University
800 Dongchuan Road, Shanghai, China

ABSTRACT
Since vulnerabilities in Linux kernel are on the increase, at-
tackers have turned their interests into related exploitation
techniques. However, compared with numerous researches
on exploiting use-after-free vulnerabilities in the user ap-
plications, few efforts studied how to exploit use-after-free
vulnerabilities in Linux kernel due to the difficulties that
mainly come from the uncertainty of the kernel memory lay-
out. Without specific information leakage, attackers could
only conduct a blind memory overwriting strategy trying to
corrupt the critical part of the kernel, for which the success
rate is negligible.

In this work, we present a novel memory collision strat-
egy to exploit the use-after-free vulnerabilities in Linux ker-
nel reliably. The insight of our exploit strategy is that a
probabilistic memory collision can be constructed according
to the widely deployed kernel memory reuse mechanisms,
which significantly increases the success rate of the attack.
Based on this insight, we present two practical memory
collision attacks: An object-based attack that leverages
the memory recycling mechanism of the kernel allocator to
achieve freed vulnerable object covering, and a physmap-
based attack that takes advantage of the overlap between
the physmap and the SLAB caches to achieve a more flex-
ible memory manipulation. Our proposed attacks are uni-
versal for various Linux kernels of different architectures
and could successfully exploit systems with use-after-free
vulnerabilities in kernel. Particularly, we achieve privilege
escalation on various popular Android devices (kernel ver-
sion>=4.3) including those with 64-bit processors by ex-
ploiting the CVE-2015-3636 use-after-free vulnerability in
Linux kernel. To our knowledge, this is the first generic
kernel exploit for the latest version of Android. Finally,
to defend this kind of memory collision, we propose two
corresponding mitigation schemes.

Categories and Subject Descriptors: D.4.6 [Operating
Systems]: Security and Protection

∗Corresponding author: yyjess@sjtu.edu.cn

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CCS’15, October 12-16, 2015, Denver, CO, USA.
c© 2015 ACM. ISBN 978-1-4503-3832-5/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2810103.2813637.

General Terms: Security.

Keywords: Memory Collision; User-after-free Vulnerabil-
ity; Linux Kernel Exploit

1. INTRODUCTION
Recent mitigation efforts such as DEP, ASLR, stack ca-

naries, and sandbox isolation significantly increase the cost
to compromise user level applications and thus attackers
turn their interests into OS kernels. Compared with user
applications, current OS kernels are of high interest to at-
tackers for two main reasons. First, attacking the core is
always more effective. If the sandbox of a user application
cannot be bypassed, attackers are not able to do anything
that causes real damage to the system or other applications,
especially on Android and iOS devices. However, if an at-
tacker was able to compromise the kernel and achieve code
execution in the kernel context, he could take the complete
control of the system and there would be no need to by-
pass the sandbox. Second, less protection and mitigation
schemes are applied to the OS kernel compared with that
for the applications.

With the improvement of security in Linux kernel, vulner-
abilities such as logical errors and checks missing on argu-
ments and privileges become rare. It is also hard for attack-
ers to exploit vulnerabilities like NULL pointer dereferences
as well as stack overflows due to the stack canary applied
in Linux kernel [7]. Thus the kernel heap related vulner-
abilities such as heap overflows and use-after-free become
significant targets for attackers to exploit nowadays. How-
ever, exploiting a heap vulnerability (e.g. use-after-free) in
the kernel is still non-trivial although there are fewer related
mitigation and protection schemes in action than with user
applications. A particular heap layout is hard to be con-
structed in Linux kernel since various tasks are running in
the kernel and have an impact on the kernel heap simulta-
neously. To effectively and efficiently exploit use-after-free
vulnerabilities in Linux kernel, the following challenges need
to be addressed:

Stability : As a modern operating system, Linux supports
multi-thread scheduling, which means that large amounts
of tasks may run on the system simultaneously. Every task
has the possibility to influence the kernel, which may lead
to the allocation or de-allocation of kernel objects at any
time. The behavior of the kernel allocator is unstable and
unpredictable under such circumstance, and this is the most
troublesome part for the kernel exploit. A successful at-
tack should overwrite the target kernel object without un-
expected corruption.

414

Separation: Due to the inner workings of Linux kernel’s
allocators (SLAB and SLUB allocator, described in Sec-
tion 3), different types of kernel objects cannot be stored in
the same memory region. The memory overwriting based
attack work needs to circumvent such restriction to fulfil
the target.

Data Control : When memory gets overwritten, the new
object appears at the location once occupied by the freed
object and fill the freed object with its data. The covering
data is crucial when exploiting a memory corruption bug
like use-after-free. Thus it is important for the collision
attack to not only occupy the space but also fully control
the filling data.

To address these challenges, we propose a novel memory
collision attack strategy to be universally applied to exploit
use-after-free vulnerabilities in Linux kernel. The basic in-
sight of our attack is that the memory allocation and reuse
mechanisms of the kernel expose certain patterns, which
can be leveraged to construct a memory collision (a prob-
abilistic memory overwriting) with high success rate. For
instance, due to physical memory limitation, the system al-
ways first recycles the recently freed memory for a future
allocation, in order to improve performance and save en-
ergy. Such behavior reduces the entropy of the memory
layout and leads to a high probability of a memory colli-
sion. Using this behavior in our attack allows us to exploit
these memory collision style vulnerabilities with a high rate
of appearance. That justifies why nowadays collision style
vulnerabilities are likely to be occur and attackers always
manage to exploit them.

As a proof of concept, two practical attacks are con-
structed based on our memory collision attack strategy:

Object-based attack : The first attack mainly uses the ker-
nel buffers created by calling kmalloc to create a collision
with the freed vulnerable object and fill it with the spe-
cific data. It is based on the observation that a successful
memory collision in kernel can be achieved with the size
separation provided by the SLUB allocator. Since objects
of different types might share the same size, they can be
arranged into one cache by the SLUB allocator with a well-
designed attack. We present two types of object-based at-
tacks. One is a collision attack between objects of the same
size, which is stable but comes with many restrictions. The
other is a collision attack between objects of different sizes,
which circumvents the object isolation provided by the ker-
nel allocator.

Physmap-based attack : The second attack mainly uses
the physmap in the kernel to achieve memory collision and
is more powerful. The physmap is a large virtual memory
region inside the kernel address space that contains a direct
mapping of all or a part of the physical memory. The usage
of the physmap to bypass application level protections is
first mentioned in [17]. And based on the previous work, we
discover an unexpected and powerful use of the physmap,
which is to re-fill the freed vulnerable objects. This leads to
a generic, stable and reliable exploitation of use-after-free
Linux kernel.

In short, our attack can completely bypass the separa-
tion provided by the SLAB/SLUB allocator. We find that
almost all the use-after-free vulnerabilities in Linux kernel
can be exploited by adopting our attack model. In fact, the
proposed physmap-based attack overcomes most difficulties
encountered while exploiting use-after-free bugs mentioned
above, and is universally applied for both 32-bit and 64-bit

versions of Linux on various architectures including the An-
droid kernel. To validate the effectiveness and wide appli-
cability of our attacks, a number of experiments are carried
out. Particularly, We demonstrate a generic Android ker-
nel exploit using CVE-2015-3636, a vulnerability cred-
ited to the author, to root most Android devices on the
market nowadays including the 64-bit ones. Furthermore,
two effective mitigation against the related attacks are also
presented in this paper.

2. A BIRD’S-EYE VIEW

2.1 Use-after-free Vulnerabilities in Linux Ker-
nel

When a use-after-free vulnerability is associated with a
kernel object, the memory it once occupied can be accessed
by attackers again after the de-allocation by kernel alloca-
tors. Considering the following code in Listing 1 as a typical
example. It is a vulnerable kernel module that introduces a
new syscall and one can allocate kernel objects of 512-byte
in a cache by option 1 and free the objects previously allo-
cated by option 2. When using option 3, a function pointer
stored in a specified kernel object is to be invoked. If the
object has been freed and then filled with data controlled by
attacker, the EIP/RIP register for x86/x64 architecture or
the PC register for ARM architecture is to be hijacked to
injected shellcode and an arbitrary code execution in kernel
context will be achieved.

Listing 1: Vulnerable Kernel Module
1 ...
2 asmlinkage int sys_vuln (int opt, int index) {
3 ...
4 switch (opt) {
5 case 1: // Allocate
6 ...
7 obj[total++] = kmem_cache_alloc(cachep,

GFP_KERNEL);
8 break;
9 case 2: // Free

10 ...
11 free(obj[index]);
12 ...
13 break;
14 case 3: // Use
15 ...
16 /* no status checking */
17 void (*fp)(void) = (void (*)(void))(*(

unsigned long *)obj[index]);
18 fp();
19 break;
20 }
21 ...
22 /* Return index of the allocated object */
23 return total - 1;
24 }
25

26 static int __init initmodule (void) {
27 ...
28 cachep = kmem_create_cache("vuln_cache", 512, 0,

SLAB_HWCACHE_ALIGN, NULL);
29 sct = (unsigned long **)SYS_CALL_TABLE;
30 sct[NR_SYS_UNUSED] = sys_vuln;
31 ...
32 }
33 ...

415

In fact, it is non-trivial to precisely re-occupy the mem-
ory once belonged to the vulnerable object when exploiting
such a kernel use-after-free vulnerability. The complexity
and diversity of memory layout of Linux kernel makes it
very difficult to arrange an exploit precisely. In contrast to
user programs, to achieve memory overwriting in OS ker-
nel is much harder. The hardness comes from the fact that
many tasks are scheduled concurrently on one core and all
of them may have impacts on the kernel heap. Thus attack-
ers can no longer predict the precise memory layout of the
kernel space. The working mechanisms of the kernel alloca-
tors may also sharply decrease the probability of a memory
overwriting in the kernel, including the randomness of allo-
cations, the separation of kernel objects of different types
and the support of per-CPU caches. Without specific infor-
mation leakage, attackers can only perform a blind memory
filling trying to overwrite the critical memory region with
slim probability of success.

2.2 Memory Collision Strategy
Our proposed attack introduces a novel memory collision

strategy, which guarantees that the memory region con-
trolled by attackers could overlap the critical memory region
with significant stability. We illustrate in Figure 1 the prin-
ciple of our proposed memory collision strategy. Basically,
in order to achieve a memory collision with a vulnerable
freed object, we expect the object to be allocated at the
place where some other critical kernel objects controlled by
us will be later placed. To reliably reach a memory col-
lision, our attack leverages a set of characteristics of ker-
nel operations (e.g., the style of object allocation). Since
Linux kernel always first recycles freed memory for a future
allocation due to physical memory limitation and for per-
formance enhancement, our proposed attack strategy lever-
ages this observation: Once an allocated vulnerable object
is freed, the kernel will recycle the space occupied by that
object for a recent allocation. The insight of our attack
strategy is that we always try to find a candidate which is
to be chosen by the kernel to reuse the freed memory once
occupied by a vulnerable object. The candidate could be an
object, a buffer or even a mapped area from the user space
(physmap). Based on a thorough understanding of the ker-
nel’s allocation mechanism, we select reasonable candidates
and intentionally arrange the attack by manipulating these
candidates to turn a blind memory overwriting into a stable
memory collision with high probability.

Specifically, in this paper we propose two concrete mem-
ory collision attacks with different attack surface respec-
tively. The first attack constructs memory collision by fol-
lowing the working mechanism of kernel allocators and con-
ducts an attack under several heap protections (e.g. the
separation among objects of different types). The second
attack relies on the fact that a vulnerable object can also
collide with a mapped area in kernel memory, where the
candidate is typically not a single kernel object. By utiliz-
ing mapped memory, the second attack becomes much more
universal since it does not concern the separation of itself
with other kernel objects. These two attacks can be widely
applied for exploiting use-after-free vulnerabilities in Linux
kernel and overcome most difficulties brought by kernel al-
locators. In the following, we detail the key part of these
two attacks.

3. OBJECT-BASED ATTACK
In this section, we present the details of object-based

memory collision attack in Linux kernel. Before discussing
the attack, we first introduce the working mechanism of
kernel allocators. Then we introduce two types of object-
based memory collision attacks: the memory collision hap-
pens between objects of the same size or between objects of
different sizes.

3.1 Memory Allocation of Linux Kernel
In Linux kernel, the SLAB/SLUB allocators are respon-

sible for allocations of kernel objects. For kernel objects of
a specific type, a corresponding storage unit is created by
the SLAB allocator as a container, which is called SLAB
cache. It contains the data associated to objects of the spe-
cific kind of the containing cache [18]. Moreover, there are
generally two interfaces to allocate objects in Linux kernel.
One is kmem cache alloc [25], for which a type of a SLAB
cache should be specified; The other one is kmalloc [25],
which only needs a allocation size without a cache type.
The objects created by invoking kmalloc are still classified
into different SLAB caches according to their sizes, These
SLAB caches are named as kmalloc-size SLAB caches. An-
other important kernel allocator called SLUB allocator has
been in use in Linux kernel in 2008 [10] and improves the
performance of the SLAB allocator.

The SLAB/SLUB allocators introduce mainly two re-
strictions to an attack. First, the heap management mech-
anism adopted by Linux kernel generally prevents attack-
ers from creating memory collisions between kernel objects.
SLAB caches separate kernel objects of one type from those
of another type. It is therefore impossible to insert a new
object into the free position of a SLAB cache and let the
objects of two different types to be stored in one cache at
the same time. When a use-after-free vulnerability in Linux
kernel is to be leveraged, such separation brings difficulties
for attackers to create memory collisions between kernel ob-
jects of different types. Second, considering a typical state
of the kernel heap, when an object is to be allocated, there
might exist several half-full SLAB caches which are able to
store it. The holes in these SLAB caches should be allo-
cated by kernel allocators with higher priority. To ensure
that vulnerable objects are allocated into recently created
SLAB caches instead of existing ones, a reliable attack must
consider this property and try to first fill every hole in these
half-full SLAB caches. This process is often referred to as
defragmentation.

3.2 Collision between Objects of the Same Size
We first present a memory collision applied without break-

ing the size rule provided by the SLUB allocator.
Objects have diverse sizes among various Linux kernels

due to different kernel sources and configurations during
the compilation. Figure 2 illustrates a part of the result
of executing slabinfo on a 32-bit Linux. In fact, the SLUB
allocator tries to merge kernel objects of the same size in-
stead of the same type into one cache, which helps to re-
duce overhead and increases cache hotness of kernel objects.
As shown in Figure 2, the kernel objects of different types
are classified into the same cache if they have an identical
size. For example, both the vm area struct object and the
kmalloc-96 object have a size of 96 bytes, which indicates
that these two objects have a high opportunity to be al-
located into the same cache in the kernel. This behavior

416

SLAB

SLAB

SLAB

SLAB

SLAB

SLAB

SLAB

SLAB

SLAB

SLAB

SLAB

SLAB

+0x00: 31 c9 |xor %ecx, %ecx

+0x02: 56 |push %esi

+0x03: 5b |pop %ebx

+0x04: 6a 3f |push $0x3f

+0x06: 58 |pop %eax

（shell code）

+0x00:.RefCount

+0x04:.Size

 …

+0x1c:.Function Pointer

 Userland Address

Defragmenting

Allocating

Bug freeing

Object-based covering

Map-based covering

Freed vulnearable

Object

Vulnerable object

Object for defragmenting

Allocated

Freed vulnearable object

Free

Figure 1: Memory Collision Attack

:t-0000096 vm_area_struct kmalloc-96

:t-0000128 bio_integrity_payload eventpoll_epi

:t-0000192 biovec-16 kmalloc-192

:t-0000256 pool_workqueue kmalloc-256

:t-0000288 fuse_request bsg_cmd

:t-0000384 dio sgpool-16

:t-0000448 mm_struct skbuff_fclone_cache

:t-0000576 ecryptfs_sb_cache

:t-0000640 RAW PING UNIX

:t-0000768 sgpool-32 biovec-64

:t-0000832 task_xstate RAWv6 PINGv6

:t-0001536 sgpool-64 biovec-128

:t-0003072 sgpool-128 biovec-256

:t-0004096 kmalloc-4096 names_cache

Figure 2: Partial result of executing slabinfo on 32-
bit Linux

allows attackers to create memory collisions between kernel
objects of the same size.

The vulnerable module introduced in 2.1 is used to illus-
trate how our attack fill freed objects with controlled data.
In that module, the size of every freed vulnerable object is
512 bytes. In order to introduce a collision, a candidate ob-
ject is selected to re-occupy a previously freed space which
has a different type but with the same size (512 bytes),
based on the size rule of the SLUB allocator. Meanwhile,
in order to control the content of freed space, the data of
a proper candidate object should also be assigned by an
attacker. Thus kmalloc-size buffer in kernel is the best
choice due to its easy allocation, diverse sizes and capabil-
ity of fully controlling the re-filling data. For example, a
transfer buffer will be allocated by kmalloc during the pro-
cess of sendmmsg. And attackers can set the buffer size as
it represents the length of the control message and can also
control the data in the buffer as it represents which control
message one wants to deliver.

The following code in Listing 2 leverages the use-after-free
vulnerability in the malicious kernel module in Section 2.1
to compromise the kernel and execute arbitrary kernel code
by applying object-based collision attack. The most impor-
tant part, exploiting, involves four essential steps including
allocating objects, freeing objects, overwriting freed objects
and re-using freed objects. Note that the length of the buffer
is 512 bytes, which is equal to the size of the vulnerable ob-

ject. And the parameters M and N can be specified by
attackers based on the actual situation.

Listing 2: Object-based Attack
1 /* setting up shellcode */
2 void *shellcode = mmap(addr, size, PROT_READ |

PROT_WRITE | PROT_EXEC, MAP_SHARED | MAP_FIXED
| MAP_ANONYMOUS, -1, 0);

3 ...
4

5 /* exploiting
6 D: Number of objects for defragmentation
7 M: Number of allocated vulnerable objects
8 N: Number of candidates to overwrite
9 */

10

11 /* Step 1: defragmenting and allocating objects */
12 for (int i = 0; i < D + M; i++)
13 index = syscall(NR_SYS_UNUSED, 1, 0);
14 /* Step 2: freeing objects */
15 for (int i = 0; i < M; i++)
16 syscall(NR_SYS_UNUSED, 2, i);
17 /* Step 3: creating collisions */
18 char buf[512];
19 for (int i = 0; i < 512; i += 4)
20 *(unsigned long *)(buf + i) = shellcode;
21 for (int i = 0; i < N; i++) {
22 struct mmsghdr msgvec[1];
23 msgvec[0].msg_hdr.msg_control = buf;
24 msgvec[0].msg_hdr.msg_controllen = 512;
25 ...
26 syscall(__NR_sendmmsg, sockfd, msgvec, 1, 0);
27 }
28 /* Step 4: using freed objects (executing shellcode)

*/
29 for (int i = 0; i < M; i++)
30 syscall(NR_SYS_UNUSED, 3, i);

3.3 Collision between Objects of Different Sizes
The attack described in Section 3.2 has an obvious weak-

ness: it can only be applied when the size of a vulnerable
object is aligned to one of possible kmalloc sizes, which
are mainly powers of 2. Considering such situation that a
vulnerable object has a size of 576 bytes, neither kmalloc-
512 nor kmalloc-1024 objects are able to make collisions
with the vulnerable object by the solution mentioned in

417

Section 3.2. Thus a more universal collision attack is re-
quired.

Assume that the vulnerable kernel module is modified on
Line-27 and the size property of the cache is changed from
512 bytes to 576 bytes, we present an advanced attack which
ignores the size of a target vulnerable object. And this time
the attack still adopts kernel buffers of kmalloc-size type
as candidates for memory collisions.

For the SLAB allocator in Linux kernel, if all objects in
one SLAB cache are freed, the entire SLAB cache is going
to be recycled for a future allocation. It reveals the fact
that freed SLAB caches can be later used to hold objects of
a completely different type, which allows to overcome size-
isolated barriers. Thus, for our new attack, several new
SLAB caches are created and filled with vulnerable objects
in the very beginning. Note that all of the objects stored
in these SLAB caches are the targets to collide with. Then
by triggering the use-after-free vulnerability, all of these
objects are released but still can be accessed by attackers.
When all the objects in these SLAB caches are freed, the
space of these SLAB caches previously created for vulner-
able objects is going to be recycled by the kernel. And
that freed space will be used later for kmalloc-size buffers
created by invoking sendmmsg.

In fact, we can still use the same code listed in Section 3.2
to exploit the modified vulnerable kernel module and exe-
cute kernel shellcode. Either kmalloc-256 or kmalloc-128
buffers can be chosen as candidates to overwrite freed mem-
ory. And we also need larger M and N parameters to guar-
antee the reliability in this attack.

4. PHYSMAP-BASED ATTACK
The object-based attack by memory collisions between

kernel objects of different sizes has an obvious weakness,
the uncertainty. In this section, we present a more uni-
versal attack which leverages a specific mapped area called
physmap in kernel memory without the weaknesses men-
tioned above. In fact, the physmap is originally used in
Ret2dir technique [17] to bypass currently applied protec-
tions in Linux kernel. Because the data crafted by attackers
in user space is directly mapped by the physmap into kernel
space, thus the physmap can be used to rewrite the kernel
memory previously occupied by freed vulnerable object and
exploit use-after-free vulnerabilities.

Once attackers call mmap with an expected virtual ad-
dress in user space and then call mlock on that virtual ad-
dress, these pages in user space may be directly mapped
into the physmap in kernel space. Therefore, the attack
is performed by repeatedly invoking mmap in user space
and spraying proper data in the physmap area. For the
sake of convenience, the physmap mentioned in the rest of
the paper represents the part of the directly mapped space
in kernel which has already been filled with the payload
sprayed by attackers.

Again, we illustrate our attack by exploiting the vulnera-
ble kernel module mentioned in Section 2.1. As the current
intended approach is to take advantage of the physmap to
make a collision attack and rewrite freed objects, all the
caches which contain target vulnerable objects should be
recycled by the kernel for future allocation because the
physmap never occupies the virtual memory in use. At
the beginning of a physmap-based attack, defragmentation
by certain kernel objects that have the same size of vulnera-
ble objects is conducted (as mentioned in Section 3). They

are used to pad free holes inside all half-full SLAB caches.
And then new and clean SLAB caches will be created by
kernel allocators when vulnerable objects are going to be
allocated.

SLAB

SLAB

SLAB

0xffffffff

0xc0000000

Physmap

Kernel

Address Space

FreeAllocated

Figure 3: Kernel Memory Layout

Later, after all of these vulnerable objects are released by
vulnerable syscalls, a certain amount of free SLAB caches
once storing these vulnerable objects are generated and re-
cycled by Linux kernel. They may be served as expanding
area of the physmap where memory collisions happen in the
future.

However, to improve the probability that memory colli-
sions happen between target objects and the physmap, the
location where kernel objects are allocated should be lift
up. The layout of the kernel memory including the SLAB
caches and the physmap is shown in Figure 3. It can be seen
that the physmap begins at a relatively low virtual address,
meanwhile SLAB caches usually gather at a higher address.
Our goal is to create memory collisions between these two
areas. Due to the capacity of physical memory, the total
size of data sprayed in the physmap has an upper bound.
Furthermore, the physmap always tends to require a piece
of complete free memory of a certain size for expansion.

If vulnerable objects are allocated immediately after de-
fragmentation, the physmap might not be able to expand
and eventually cover the SLAB caches where once target
objects are placed.

Thus our plan is to spray kernel objects in group. For
each group, a certain amount of kernel objects are sprayed
for padding and then several vulnerable kernel objects are
to be allocated, which is treated as the target to be collided
with. That makes these vulnerable objects dispersedly ap-
pear in kernel space, which sharply increase the probability
of memory collisions between the physmap and vulnerable
objects. In addition, if a target vulnerable object can be
easily allocated and de-allocated by attackers in their pro-
grams, a proper choice of the padding object is just the
vulnerable object itself.

Next, the objects for padding can be released through
the intended way, while those vulnerable objects should be
released by triggering a use-after-free vulnerability. After
de-allocating all allocated objects, the memory previously
occupied by these objects is released and small pieces of
continuous freed memory might be merged into a larger
piece, which is later provided for expansion of the physmap.

418

Note that the re-filling step should be conducted immedi-
ately to avoid freed memory to be corrupted by allocations
of kernel from some other active tasks running on the sys-
tem. And this time we use the physmap to introduce mem-
ory collisions with vulnerable kernel objects. In order to
fill the physmap in kernel space with data completely user-
controlled, mmap is repeatedly called with a large size as
many times as possible. And for every piece of virtual mem-
ory returned back from mmap, we fill that memory with
user-specified data and call mlock on it. As the physmap
filled with proper payload grows, the freed memory previ-
ously occupied by vulnerable objects is eventually covered
and memory collisions are successfully achieved.

The following code shows the exploiting part of the pro-
posed physmap-based attack against the malicious kernel
module.

Listing 3: Physmap-based Attack
1 /* exploiting
2 D: Number of objects for defragmentation
3 E: Iterations of object spraying
4 P: Number of objects for padding in one group
5 V: Number of allocated vulnerable objects in one

group
6 */
7

8 /* Step 1: defragmenting */
9 for (int i = 0; i < D; i++)

10 syscall(NR_SYS_UNUSED, 1, 0);
11 /* Step 2: object spraying */
12 p = 0; v = 0;
13 for (int i = 0; i < E; i++) {
14 for (int j = 0; j < P; j++)
15 pad[p++] = syscall(NR_SYS_UNUSED, 1, 0);
16 for (int j = 0; j < V; j++)
17 vuln[v++] = syscall(NR_SYS_UNUSED, 1, 0);
18 }
19 /* Step 3: freeing */
20 for (int i = 0; i < p; i++)
21 syscall(NR_SYS_UNUSED, 2, pad[i]);
22 for (int i = 0; i < v; i++)
23 syscall(NR_SYS_UNUSED, 2, vuln[i]);
24 /* Step 4: creating collisions */
25 unsigned long base = 0x10000000;
26 while (base < SPRAY_RANGE) {
27 unsigned long addr = (unsigned long)mmap((void

*)base, 0x10000000, PROT_READ | PROT_WRITE
| PROT_EXEC, MAP_SHARED | MAP_FIXED |
MAP_ANONYMOUS, -1, 0);

28 unsigned long i = addr;
29 for (; i < addr + 0x10000000; i += 4) *(unsigned

long *)(i) = shellcode;
30 mlock((void *)base, 0x10000000);
31 base += 0x10000000;
32 }
33 /* Step 5: using freed objects (executing shellcode)

*/
34 for (int i = 0; i < v; i++)
35 syscall(NR_SYS_UNUSED, 3, vuln[i]);

Note that if values stored inside target vulnerable objects
can be read out by specific syscalls, then an additional pro-
cess in step 4 can be used to improve the efficiency and
accuracy of physmap-based attack. First, besides some im-
portant values sprayed in the physmap to overwrite key
entries at certain offset of freed vulnerable objects to avoid
kernel crashes and execute kernel codes, we also spray a
specific magic value like 0xdeadbeef in the physmap. Then

for every vulnerable object, one value inside it is read out
at each stage after calling mmap. If it is directly equal to
that magic value or correctly reflects the magic value once
filled in, then a memory collision happens and the physmap
spraying should be stopped.

5. EFFECTIVENESS OF THE ATTACK
In this section, we evaluate the effectiveness of the pro-

posed object-based memory collision attack and physmap-
based memory collision attack.

5.1 Object-based Attack

5.1.1 Feasibility Analysis
For the attack based on memory collisions between the

kernel objects, the generated message of a custom kernel
module shown in Figure 4 illustrates the details. In the
module a specific cache which holds objects of size 576 is
created, then several kernel objects are allocated which be-
long to this cache and the virtual addresses of these objects
are recorded. Then the kernel module frees all the objects
in that cache and allocate 1024 buffers of size 512 by invok-
ing kmalloc and their virtual address are also recorded. By
viewing the kernel messages that the kernel module printed
out, it can be seen that a memory collision happens when
the 716th kmalloc-512 buffer is created because its virtual
address is the same as the virtual address of the first ob-
ject of size 576, which shows the feasibility of object-based
attack.

Kernel objects of size 576

[72.979750] (576)0: f2e0c000 [*]

[72.979752] (576)1: f2e0c240

[72.979753] (576)2: f2e0c480

[72.979754] (576)3: f2e0c6c0

...

Kernel objects of size 512

[72.980204] (512)0: f6b36200

[72.980205] (512)1: f6b36e00

[72.980205] (512)2: f6b34800

[72.980206] (512)3: f6b34000

...

[72.980771] (512)716: f2e0c000 [*]

[72.980772] (512)717: f2e0c200

[72.980773] (512)718: f2e0c400

...

Figure 4: Memory Collision between Kernel Ob-
jects

5.1.2 Advantages
The object-based attack described in Section 3 uses ob-

jects allocated by kmalloc to re-fill the memory of vulnera-
ble freed objects. Since hundreds of flows in Linux kernel in-
volve creating kmalloc-size buffers, objects of kmalloc-size
type are the most controllable candidates to make memory
collisions since it is easy for attackers to allocate in user
programs by syscalls. For example, a buffer is created by
kmalloc during the process of sendmmsg in kernel, which is
used to hold control messages during message passing. And
when one writes to one side of the pipe from the other side,
kmalloc-size buffers are allocated to hold temporary data.

419

The second advantage of these kmalloc-size buffers is
that both the content and the size are user-controlled. Since
target vulnerable objects have different sizes in different
cases, the size of a candidate object should be controlled to
follow the size of a vulnerable object. For many kinds of
kmalloc-size objects, they are often seen as buffers which
store data from user space. That brings the full control
of the overwriting content and thus attackers are able to
set addresses of their injected codes or kernel ROP gadgets
inside vulnerable objects.

5.1.3 Limitations
The object-based attack still faces some serious limita-

tions in practice.

• For the attack based on collisions between kernel ob-
jects of the same size, the size of a vulnerable object
has to be aligned to one possible kmalloc sizes, oth-
erwise no valid kmalloc buffers can be found to cover
that freed vulnerable object.

• For the attack based on collisions between kernel ob-
jects of different sizes, the main problem is its un-
certainty. Without information leakage, definitely at-
tackers do not clearly know whether target vulnera-
ble objects have been covered by other objects of dif-
ferent sizes, the probability of a successful overwrit-
ing sharply decreases compared to the former object-
based attack.

5.2 Physmap-based Attack

5.2.1 Feasibility Analysis
The feasibility of physmap-based attack depends on whether

the physmap could eventually cover the SLAB caches where
vulnerable objects store. It is discussed for two different
platforms as follows:

32-bit Linux kernel : For 32-bit Linux platforms on most
desktop PCs and Android devices nowadays, kernel space
starts at 0xc0000000 and ends at 0xffffffff as shown in
Figure 3. As described in [17], the physmap starts at
0xc0000000 and is supposed to have a size of 891MB on
x86 architecture and 760MB on ARM architecture, which
indicates that the physmap ends at 0xf7b00000 on x86 and
0xef800000 on Android (ARM). Based on the fact that ker-
nel objects start to be allocated at virtual addresses which
are in range of 0xd0000000 ∼ 0xf0000000 in SLAB caches
and after the object spraying step of physmap-based at-
tack, the vulnerable objects are supposed to be uniformly
allocated in kernel space. Thus when the physmap grows
through spraying, it has large probability to cover target
SLAB caches.

64-bit Linux kernel : For 64-bit Linux platforms, kernel
space starts at 0xffff880000000000 on x86 64 architecture
and for ARM architecture, it starts at 0xffffffc000000000.
As described in [17], the physmap starts at the location
where kernel space starts and is supposed to have a size of
64TB on x86 64 and 256GB on Android (ARM). Consider-
ing the fact that 64-bit systems only use 48 bits for address-
ing, the range of the physmap covers the entire kernel space.
Although allocations of kernel objects on 64-bit Linux plat-
forms behave more random than they do on 32-bit Linux
platforms, kernel objects are still placed in an area of certain
size in kernel space when no memory pressure exists. For
x86 64, kernel objects usually start to be allocated at vir-
tual addresses which are in range of 0xffff880000000000

∼ 0xffff8800ffffffff and for ARM, kernel objects start
to be allocated at virtual addresses which are in range
of 0xffffffc000000000 ∼ 0xffffffc0ffffffff. However,
for any device or PC which has a 64-bit kernel inside, it has
a relatively large RAM size which is commonly not less than
2GB. And after the object spraying step of our physmap-
based attack, there is a substantial probability that memory
collisions happens between the physmap and target SLAB
caches.

Generally speaking, physmap-based attack is considered
to be effective both for 32-bit kernel and 64-bit kernel. In
fact, the size of the entire kernel space is not the only fac-
tor to successful collisions. The size of the RAM size also
plays an important role. Low RAM size may hurt the ef-
fectiveness of physmap-based attack since it limits the total
amount of data an attacker is able to spray in the physmap.

5.2.2 Advantages
Stability : The attack through the physmap is much more

stable than object-based attack. In fact, the only thing
requiring an attacker to do is to repeatedly map memory
in user space and fill it with proper payload which can be
easily operated in the user program. Overwriting through
the physmap does not allocate any kernel object by kernel
allocators and attackers do not need to be informed of kernel
memory layout at any time.

Note that the physmap and all SLAB caches are stored
in kernel space simultaneously, and surly they do not have
their own private space due to limited virtual address space
for Linux kernel. Considering the certain distance between
initial locations of the SLAB caches storing vulnerable ker-
nel objects and the physmap, the object spraying step makes
the vulnerable objects not gather in one place but appear at
different places in the kernel. That also ensures the stability
of such a probabilistic attack strategy.

Finally, the additional step of physmap-based attack also
improves stability. When attackers can be informed that
vulnerable kernel objects have already been correctly over-
written then further kernel spraying which may bring un-
expected results is no longer needed.

Separation: The physmap is like a nightmare since it cir-
cumvents the separation of kernel objects provided by ker-
nel allocators not from the internal mechanism but from an
overall view on the memory management of Linux kernel.
The key point is that kernel needs to recycle freed memory
for future use and do not have the ability to divide the whole
kernel memory space into different parts for different uses
due to limited memory size and the efficiency requirement
of the kernel. That leaves the physmap, one of the best
candidates, an opportunity to overwrite the freed mem-
ory once occupied by vulnerable objects and create stable
memory collisions.

Note that physmap-based attack does not care about
whatever the size of a vulnerable object is and the type of
a vulnerable object is, which means a thorough bypassing
of the separation protection provided by Linux kernel.

Data control : Since the data sprayed in the physmap
all comes from the data filled in mmaped memory in user
space, it is for sure fully user-controlled. Any malicious
content attackers desire for is able to be filled into the freed
memory once occupied by a target vulnerable object.

Wide applicable scenarios: Although the physmap-based
attack is designed to achieve a generic approach to exploit-
ing use-after-free vulnerabilities, it can be applied to exploit

420

other types of vulnerabilities in Linux kernel based on the
fact that the physmap has the ability to cover nearly any
free space in kernel. One possible usage of physmap-based
attack is to exploit uninitialized memory vulnerabilities. In
fact, the physmap-based attack is definitely helpful and ef-
fective when a free space is needed to be occupied when
exploiting different kinds of kernel vulnerabilities.

5.2.3 Comparison with Previous Techniques
Previous techniques to achieve overwriting on kernel ob-

jects which have use-after-free vulnerabilities always try
to leverage the features of kernel allocators. For exam-
ple in [6], attackers manage to overwrite a specific kernel
object of size 224 with another kernel object of a close
size, 256. For this case, the stable overwriting can also
be achieved by physmap-based attack. However, previous
techniques become useless in the following situations mean-
while physmap-based attack keeps performing well:

Various sizes: Previous techniques always try to place
a different kernel object of similar size into the area once
occupied by a vulnerable object to exploit kernel use-after-
free vulnerabilities. However the size of a target vulnera-
ble object always varies. Take the CVE-2015-3636 as an
example (details are introduced in Section 6.2), vulnera-
ble PING socket objects may have at least four different
sizes on Android devices of different kinds of brands. And
also the sizes of a vulnerable kernel object are not identical
in 32-bit kernel and 64-bit kernel. Facing such situations,
previous techniques have to hard-code in exploit codes to
achieve stable overwriting for different kernels. Thus sev-
eral different versions of the attack programs are required.
If the size information cannot be known in advance, then
previous techniques become much less effective since what
types of kernel objects can be used to overwrite vulnerable
ones can no longer be determined. By contrast, physmap-
based attack is simple and intuitive. The only thing an
attacker needs to do is to iteratively calling mmap. One
generic exploit can be achieved by physmap-based attack.

Uncontrollable content : If a use-after-free vulnerability
is desired to be exploited, not only a vulnerable object is
needed to be overwritten but also the content of that object
has to be under control. Previous techniques may have lim-
ited choices of kernel objects to make collisions and at many
times these candidates may be the internal ones and attack-
ers cannot set proper payload they want in freed memory,
which makes an exploitation hard to complete afterwards.
When it comes to physmap-based attack, all these mem-
ory used to overwrite vulnerable objects are generated by
calling mmap in user programs and the content is naturally
under control.

Multi-threading support : Previous techniques may need
relatively accurate prediction on kernel heap layout. But
when an attack program is executing meanwhile many other
tasks scheduled on the core may influence memory layout
of the kernel heap, which brings much uncertainty. This
factor sharply decreases the success rate of kernel attacks
based on previous techniques. By contrast, with the help
of object spraying and physmap spraying in physmap-based
attack, large amount of instances are created and almost all
of the kernel space is occupied. That reduces the side effects
brought from other scheduled tasks to the lowest extent.

In a word, physmap-based attack is able to deal with
much more kinds of use-after-free vulnerabilities in Linux
kernel and have full control of data in freed memory. It

has a wider application and higher stability. Two unavoid-
able disadvantages it suffers are memory cost and time cost,
which can all be acceptable in practice.

5.2.4 Limitations
Not all the kernel objects which have use-after-free vul-

nerabilities are able to be overwritten by physmap-based
attack on various platforms due to several reasons. Firstly,
if a vulnerable object is going to be reused quickly after it
has already been freed, then it is hard to re-occupy the ob-
ject since the physmap spraying relatively takes time. And
the immediate re-use of that object before overwriting is
done may lead to kernel crashes. Secondly, if a vulnerable
object is for internal use in kernel and it is not easy for an
attacker to create a second instance of this kind of object,
then even if we spray these vulnerable objects and place
them uniformly in kernel space, the success rate of memory
collisions based on physmap-based attack still decreases.
Thirdly, when applying physmap-based attack, attackers
require a certain amount of directly mapped memory to do
spraying and make the physmap grow in order to touch vul-
nerable kernel objects. If the size of current usable physical
memory is not enough, then the success rate of the attack
goes down.

6. EVALUATION

6.1 Testing with Linux Kernel
In this section, we evaluate the performance of object-

based attack and physmap-based attack by applying them
to exploit our malicious kernel module mentioned in Sec-
tion 2.1 in Linux kernel. The experiments are carried out
on both 32-bit and 64-bit Ubuntu 14.04 with 2GB RAM.
Note that when testing object-based attack based on colli-
sions between objects of different sizes, the size of the vul-
nerable object in our module is set to be 576 as mentioned
in Section 3.3.

Table 1 shows the success rate of object-based attack and
physmap-based attack to compromise kernel by exploiting
the malicious kernel module with basic memory require-
ments for different steps. Note that object-based attack of
type 1 leverages memory collisions between objects of the
same size and object-based attack of type 2 leverages mem-
ory collisions between objects of different sizes.

As shown in the experimental results in Table 1, object-
based attack of type 1 performs better than object-based
attack of type 2 as expected. Object-based attack of type
2 cannot be applied for a stable kernel exploitation due to
its low success rate. And memory collision attack performs
worse on 64-bit Linux platforms since much more entropy
of the kernel memory layout is introduced. It can also be
seen that physmap-based attack cost most memory com-
pared to other types of attack in total. And it needs extra
memory for spraying vulnerable objects and making them
dispersedly allocated in kernel space.

As described before, object-based attack choose kernel
objects as candidates to overwrite vulnerable objects. How-
ever, due to the limitations on resources a user cannot create
too many kernel objects inside kernel. For example, a user
can only create certain amount of socket connections, which
means that limited kmalloc-size buffers during sendmmsg
can be created in one time. Thus the memory requirement
for kernel spraying in object-based attack has to in a certain

421

Attack Types System
Memory Req.
for Padding

Memory Req.
for Bug-freed Objects

Memory Req.
for Spraying

Success Rate

Object-based 1
32-bit NaN 64KB 64KB 99%
64-bit NaN 96MB 128KB 80%

Object-based 2
32-bit NaN 168KB 128KB 60%
64-bit NaN 160MB 256KB 40%

Physmap-based
32-bit 32MB 512KB 1536MB 99%
64-bit 32MB 512KB 1536MB 85%

Table 1: Memory Collisions Attack in Linux kernel

range as shown in Table 1, which decreases stability of an
attack.

Since the size of the vulnerable object in the malicious
kernel module remains the same, both object-based attack
and physmap-based attack take effect in the experiments.
However, the strong powerful of physmap-based attack can
be seen in the next section.

6.2 Testing with Android Kernel
In this section we evaluate our memory collision attack on

Android devices with a use-after-free vulnerability (CVE-
2015-3636) [4] which is credited to the author. We leverage
this vulnerability to implement PingPongRoot, a universal
exploit that achieves privilege escalation on most popular
Android devices (Android version >= 4.3) including those
with 64-bit processors.

6.2.1 PingPongRoot
PingPongRoot exploits the CVE-2015-3636 use-after-free

vulnerability, which is related to a vulnerable PING sock
object in the kernel. By specifying sa family as AP UNSPEC
and making connections to a PING socket twice, the refer-
ence count of that PING sock object becomes zero, and thus
the kernel frees it. However, that leads to a dangling file
descriptor related to the PING sock object in a user pro-
gram (The vulnerability can only be triggered on Android
devices. For Linux PC, a common user does not have the
privilege to create a PING socket). Therefore, attackers can
operate on this file descriptor in a user program and make
the kernel reuse the freed PING sock object, which leads to
code execution in the kernel.

The vulnerable PING sock object has different sizes on
different devices, thus PingPongRoot applies physmap-based
attack instead of object-based attack to exploit such a vul-
nerability with high reliability. We demonstrate the ex-
ploitation of PingPongRoot on a representative Android
device, Google Nexus 7 running Android Lollipop system.
The exploit is conducted by following the steps described
in Section 4. At first, D PING sockets are created for de-
fragmentation. Then we iteratively spray PING sockets in
group. For each group, every N PING sockets are allo-
cated in newly-created processes. Note that all of these N
PING sockets have to be created in other processes instead
of the current process because of the resources limitation
on each process. After these processes finish the allocat-
ing work, they hang up there not to cause kernel to release
these PING sockets. Then M (N � M) PING sockets are
created in the current process. These sockets are treated as
vulnerable targets and later memory collisions will happen
between these objects and the physmap.

According to physmap-based attack described in Section 4,
all M PING sockets are released by triggering the use-after-
free vulnerability. Then all the processes created at the be-
ginning of our exploit are terminated. That causes kernel

to recycle the resource of the terminated processes, thus all
N PING sockets are freed by kernel allocators.

After that, mmap is repeatedly invoked. Each mmap al-
locates 256MB memory in user space. For every 8 dwords of
the mmaped memory, the 7th dword is rewritten as a valid
address in user space. All the other dwords are overwritten
to be the magic values. By calling ioctl on those M vulner-
able PING sockets with the argument SIOCGSTAMPNS,
the member sk stamp of a PING socket object can be read
out to user space. Check it with pre-defined magic value to
see whether a PING sock object is covered by the physmap
or not. If no memory collision happens among those M
ones with the physmap, back to the beginning of the exploit
and spray more groups of padding objects with vulnerable
objects. Otherwise, a vulnerable kernel object successfully
covered by the physmap is achieved and the exploit contin-
ues.

In fact, the 7th dword of a PING socket object is the
member sk prot. It is a structure used to store the proper-
ties of PING protocol and it has a member which is a func-
tion pointer called close. When a PING socket is closed
in a user program, then this function pointer is to be in-
voked. Due to the re-filling of the vulnerable PING socket
object, the 7th dword of it is currently a virtual address in
user space. That means the whole sk prot structure is con-
trolled by the attacker. The function pointers in the fake
sk prot are set to the address of kernel shellcode placed in
user space. Then close is called on the dangling file descrip-
tor related with that vulnerable object. The fake function
pointer is invoked and our shellcode is executed in kernel
context, which leads to a temporary privilege escalation on
Android Lollipop.

6.2.2 Experimental Results
Our PingPongRoot exploit achieves privilege escalation

on hundreds of Android devices and the performance of our
attack is shown in Table 2.

The universal property and reliability of physmap-based
attack is verified based on the following observations from
Table 2. Firstly, most popular Android devices on market
of all kinds of brands including Samsung, SONY, Google
Nexus, HTC, Huawei, and Xiaomi are exploited by
physmap-based attack with high root success rates. Note
that the size of the vulnerable PING sock objects varies on
different phones and tablets, but our generic exploit does
not take that into considerations. Only RAM size affects
our exploit settings. Secondly, the exploit settings are not
changed much when attacking 64-bit Android kernel com-
pared with the settings applied for attacking 32-bit Android
kernel. Practically, physmap-based attack is verified to be
effective also in 64-bit Android kernel. In a word, physmap-
based attack is a universal and powerful solution to exploit-
ing use-after-free vulnerabilities in Linux-based kernel.

422

System RAM Size Device
Memory

for Padding
Memory

for Spraying
Memory

for Bug-freed Objects
Success Rate

Android 32-bit
1G

Huawei Honor 4
Xiaomi Hongmi Note

128MB 640MB 64KB 85%∼90%

2G

Google Nexus 5/7
Samsung Galaxy S4/S5

HTC One M8
Huawei Mate 7/Ascend P7

Xiaomi M3

128MB 1024MB 64KB 98%

3G

Samsung Galaxy Note 3
Sony Z2/Z3

Huawei Honor 6
Xiaomi M4

128MB 1536MB 64KB 98%

Android 64-bit
2G Google Nexus 9 128MB 1024MB 64KB 90%

3G
Samsung Galaxy S6/S6 Edge

HTC One M9
128MB 1536MB 64KB 85%∼90%

Table 2: Performance of Physmap-based Attack on Android Devices

7. DEFENDING AGAINST MEMORY COL-
LISION ATTACK

One notable advantage of the physmap-based attack is
that it firmly captures the inherent weakness of current ver-
sions of Linux kernel. Considering the direct mapping as a
fundamental feature of the system, it is not easy to build
highly effective mitigation against the physmap-based at-
tack scheme. Two considerable approaches to defending
against the attack model are presented as follows.

7.1 Bound for the Physmap
One effective way to defend against the memory collision

attack through the physmap is to restrict the percentage of
the total memory in use in the physmap for each user on
the system.

For a particular user, all of his active tasks scheduled by
Linux kernel are taken into consideration. And the sum of
the memory in the user space of every task which is directly
mapped by the physmap is recorded in the kernel. When
this value arrives at a threshold value predefined by the
kernel, then any more memory request for the physmap will
be refused by the kernel unless the some of his task releases
a certain amount of memory mapped by the physmap to
make the total occupation of the physmap in the kernel
lower than the threshold value.

Such an upper bound on the occupation of the physmap
for all the active tasks owned by a user is able to defend
against the memory collision attack through the physmap
to a certain extent. In fact, in order to cover the SLAB
caches storing the target kernel object, a large amount of
memory has to be mmaped in user space by the active tasks
of an attacker and sprayed with the data later used in the
exploitation. However due to the threshold predefined by
the kernel, such things cannot be achieved and it is not
likely for the physmap to reach the relatively high virtual
address where the target SLAB caches are allocated.

The restriction on the occupation of the physmap must
be set for every user instead for every active task. That
is because when attacking the core of the system, all the
active tasks can influence the kernel memory. If the limita-
tion on the occupation of the physmap is for every active
task, attackers can create many independent processes and
each of them follows the restriction but however the total
amount of the memory mapped by the physmap in these
processes is enough to cover the SLAB caches storing the
target vulnerable objects and the protection is bypassed by
the attacker. Thus, the attention should be put on the

memory usage of all the active tasks owned by every user
logging on the system.

As illustrated above, this protection can prevent attack-
ers from making the memory collision attack through the
physmap. And the effectiveness of this protection depends
on that predefined threshold value. A lower threshold value
providing more safety leads to the result that less directly
mapped memory can be achieved by the user programs,
thus a balance has to be found between the efficiency and
the security of Linux kernel.

7.2 Complete Separation
The main cause of the memory collision attack through

the physmap is that the directly mapped memory sourcing
from the user space covers the place where originally the
kernel objects are stored, a valid way to defend against the
memory collision attack is to apply the complete separation
between the physmap area and the SLAB caches.

The kernel specifies the memory of a fixed range to be
the appropriative memory for the physmap. Even if a large
part of the memory for special physmap use is free, it is
impossible for the SLAB caches to be located in that region.
Similarly, the physmap can never expand into the space
once the kernel objects are stored there. A legible border is
specified by this protection between the physmap area and
the area for allocating objects in the kernel.

This protection against the collision attack is effective
for sure since when it is on, there is no chance that a col-
lision will happens between the physmap and the target
vulnerable objects. However it is hard to be implemented
on 32-bit Linux kernel because the size of the kernel space
is too small to achieve a complete separation between the
physmap and the SLAB caches. But for the 64-bit Linux
kernel, the virtual address space is definitely enough for the
kernel to achieve this. And without doubt, for safety, there
will be more overhead and waste of the space.

8. RELATED WORK
In recent years, the use-after-free vulnerability become

the most popular and serious vulnerability in the applica-
tions both on the desktop PC and on the mobile devices.
In 2013, there were 129 CVEs for Microsoft Internet Ex-
plorer and most of them were use-after-free vulnerabilities,
and this number raised to 243 in year 2014 [9]. Due to
the various mitigations [34], exploiting other vulnerabilities
like stack overflows and heap overflows has become harder.
Taking advantage of the use-after-free vulnerability in the
web browsers or in the document viewers, attackers are able

423

to execute arbitrary code in the context of the applications
and eventually control your computer [3] or mobile phone [2]
remotely.

When exploiting a use-after-free vulnerability, the key
step is to re-occupy the memory of the freed object [29]
which means using some other objects to do the memory
collision with the vulnerable object. Thus, attackers should
carefully and accurately arrange the heap layout of the pro-
cess [28], [32], [12] before triggering the use-after-free vul-
nerability.

In order to defend against the use-after-free vulnerability,
numerous protection and mitigation schemes are proposed
to enforce the temporal safety [29]. Many of these protec-
tions employ special allocators. It is the basic approach
to protect against use-after-free exploits since it tries to
prohibit the memory collision happens thus no re-use of
the memory happens and the use-after-free vulnerability is
hard to exploit. Such protections include Cling [13] and
DieHarder [23]. In fact, almost all the current popular web
browsers have their own allocators. They are known as
Heap Arena [31] for WebKit in Safari on Mac OSX and iOS,
PartitionAlloc [8] in Google Chrome, Presentation Arena
and Frame Poisoning [21] in Mozilla Firefox and Isolated
Heap [30] in Microsoft Internet Explorer. However, based
on the rapid advancement of the exploit techniques, all of
these allocators are defeated during the Pwn2Own/Pwnium
hacking contests in the recent years due to their existed
weakness. The related exploit techniques targeting the heap
allocators of these web browsers include [15] for Safari, [5]
for Google Chrome, [16] for Mozilla Firefox and [20] for
Internet Explorer involving the well-designed heap layout
arrangement, misalignment of the objects on the heap and
utilizing the unique features of these private allocators.

Other protections against use-after-free include the ob-
ject based approaches and the pointer based approaches [29].
The former ones are widely use in practice to detect mem-
ory corruptions include the AddressSanitizer [26] and the
Valgrind Memcheck [11], trying to detect use-after-free by
marking the memory once de-allocated. The latter ones fo-
cus on whether the pointer to be used is valid or not to
detect use-after-free vulnerabilities. Such protections in-
clude [22, 19, 33].

By contrast, relatively fewer use-after-free vulnerabilities
are discovered in OS kernel and only a few related researches
are documented [24] [1]. Considering the requirement for
the efficiency of the OS kernel, the protections like marking
memory or checking dangling pointers cause an unaccept-
able overhead and cannot be adopted by the kernel. How-
ever, all the OS kernels have their special allocators. In
Linux kernel there are SLAB/SLUB allocators which pro-
vide a perfect isolation between the objects of different sizes
and different types. Thus it is difficult for an attacker to
take advantage of a use-after-free vulnerability in Linux ker-
nel and few exploit techniques attacking against the isola-
tion of the kernel heap are documented.

Additionally, several previous reliable probabilistic tech-
niques of exploiting the user application include [27] and [14].
These techniques also take advantage of the weakness of the
memory management of Linux as well as our collision attack
schemes do.

9. CONCLUSION
To reveal the universal exploiting solution for the use-

after-free vulnerabilities in Linux kernel and show the se-

curity threat to the core brought by the memory recycling,
in this paper a novel memory collision attack strategy is
constructed and two memory collision attacks, the object-
based attack and the physmap-based attack, are presented
based on it. The attack strategy is widely applied and fea-
tures the stability, complete bypassing the separation pro-
vided by the kernel allocator and the fully control of the
re-filling data, and is proved to be effective on x86/x64,
AArch32/AArch64 and Android Linux in practice. Partic-
ularly, a case study about rooting popular Android devices
by exploiting CVE-2015-3636 with the physmap-based at-
tack is detailed. Finally, two mitigation schemes are de-
signed to to counter such memory collision attacks against
Linux kernel with acceptable overhead.

10. ACKNOWLEDGEMENTS
We would like to thank our reviewers for valuable com-

ments to improve the manuscript. We would also like to
show our gratitude to Shi Wu, James Fang, Siji Feng, and
Yubin Fu of Keen Team for their inspirations and great con-
tributions to the development and related statistics of the
universal Android root solution mentioned in this paper.

This work was supported in part by the National Key
Technology Research and Development Program of China
under Grants No. 2012BAH46B02, the National Science
and Technology Major Projects of China under Grants No.
2012ZX03002011, and the Technology Project of Shang-
hai Science and Technology Commission under Grants No.
13511504000 and No. 15511103002.

References
[1] Attacking the Core: Kernel Exploiting Notes.

http://phrack.org/issues/64/6.html.

[2] CVE-2010-1807.
https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2010-1807.

[3] CVE-2014-1776. http://www.cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2014-1776.

[4] CVE-2015-3636.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2015-3636.

[5] Exploiting 64-bit Linux like a boss.
http://scarybeastsecurity.blogspot.com/2013/02/
exploiting-64-bit-linux-like-boss.html.

[6] Exploiting NVMAP to escape the Chrome
sandbox-CVE-2014-5332.
http://googleprojectzero.blogspot.com/2015/01/
exploiting-nvmap-to-escape-chrome.html.

[7] GCC stack protector support.
http://lxr.free-electrons.com/source/arch/x86/
include/asm/stackprotector.h.

[8] Google Chromium source.
https://chromium.googlesource.com/chromium/
blink/+/master/Source/wtf/PartitionAlloc.h.

[9] Microsoft Internet Explorer: CVE security
vulnerabilities, versions and detailed reports.

[10] Short users guide for SLUB. https:

//www.kernel.org/doc/Documentation/vm/slub.txt.

424

http://phrack.org/issues/64/6.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1807
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1807
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1776
http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1776
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3636
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3636
http://scarybeastsecurity.blogspot.com/2013/02/exploiting-64-bit-linux-like-boss.html
http://scarybeastsecurity.blogspot.com/2013/02/exploiting-64-bit-linux-like-boss.html
http://googleprojectzero.blogspot.com/2015/01/exploiting-nvmap-to-escape-chrome.html
http://googleprojectzero.blogspot.com/2015/01/exploiting-nvmap-to-escape-chrome.html
http://lxr.free-electrons.com/source/arch/x86/include/asm/stackprotector.h
http://lxr.free-electrons.com/source/arch/x86/include/asm/stackprotector.h
https://chromium.googlesource.com/chromium/blink/+/master/Source/wtf/PartitionAlloc.h
https://chromium.googlesource.com/chromium/blink/+/master/Source/wtf/PartitionAlloc.h
https://www.kernel.org/doc/Documentation/vm/slub.txt
https://www.kernel.org/doc/Documentation/vm/slub.txt

[11] Understanding Valgrind memory leak reports.
http://es.gnu.org/~aleksander/valgrind/
valgrind-memcheck.pdf.

[12] J. Afek and A. Sharabani. Dangling Pointer:
Smashing the Pointer for Fun and Profit. Black Hat
USA, 2007.

[13] P. Akritidis. Cling: A Memory Allocator to Mitigate
Dangling Pointers. In Proc. 19th USENIX Security
Symposium, 2010.

[14] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres,
and D. Boneh. Hacking blind. In Proc. 35th IEEE
Symposium on Security and Privacy, 2014.

[15] L. Chen. WebKit Everywhere: Secure Or Not? Black
Hat Europe, 2014.

[16] P. A. C. Karamitas. Exploiting the jemalloc Memory
Allocator: Owning Firefox’s Heap. Black Hat USA,
2012.

[17] V. P. Kemerlis, M. Polychronakis, and A. D.
Keromytis. ret2dir: Rethinking Kernel Isolation. In
Proc. 23rd USENIX Security Symposium, 2014.

[18] C. Lameter. Slab allocators in the Linux Kernel:
SLAB, SLOB, SLUB. LinuxCon, 2014.

[19] B. Lee, C. Song, Y. Jang, T. Wang, T. Kim, L. Lu,
and W. Lee. Preventing Use-after-free with Dangling
Pointers Nullification. In Proc. 2015 Annual Network
and Distributed System Security Symposium, 2015.

[20] J. Lu. New Exploit Mitigation In Internet Explorer.
HITCON, 2014.

[21] MWR Lab. Isolated Heap & Friends - Object
Allocation Hardening in Web Browsers.
https://labs.mwrinfosecurity.com/blog/2014/06/
20/isolated-heap-friends---object-allocation-

hardening-in-web-browsers/.

[22] S. Nagarakatte, J. Zhao, M. M. Martin, and
S. Zdancewic. CETS: Compiler Enforced Temporal
Safety for C. ACM Sigplan Notices, 2010.

[23] G. Novark and E. D. Berger. DieHarder: Securing the
Heap. In Proc. 17th ACM conference on Computer
and communications security, 2010.

[24] W. Robert. Exploiting Concurrency Vulnerabilities in
System Call Wrappers. In Proc. 1st USENIX
Workshop on Offensive Technologies, 2007.

[25] A. Rubini and J. Corbet. Linux device drivers.
O’Reilly Media, Inc., 2001.

[26] K. Serebryany, D. Bruening, A. Potapenko, and
D. Vyukov. AddressSanitizer: A Fast Address Sanity
Checker. In Proc. 2012 USENIX Annual Technical
Conference, 2012.

[27] H. Shacham, M. Page, B. Pfaff, E.-J. Goh,
N. Modadugu, and D. Boneh. On the effectiveness of
address-space randomization. In Proc. 11th ACM
conference on Computer and communications
security, 2004.

[28] A. Sotirov. Heap feng shui in Javascript. Black Hat
Europe, 2007.

[29] L. Szekeres, M. Payer, T. Wei, and D. Song. Sok:
Eternal War in Memory. In Proc. 34th IEEE
Symposium on Security and Privacy, 2013.

[30] TrendLabs. Isolated Heap for Internet Explorer Helps
Mitigate UAF Exploits.
http://blog.trendmicro.com/trendlabs-security-
intelligence/isolated-heap-for-internet-

explorer-helps-mitigate-uaf-exploits/.

[31] G. Wicherski. Exploiting A Coalmine. Hackito Ergo
Sum, 2012.

[32] T. Yan. The Art of Leaks: The Return of Heap Feng
Shui. CanSecWest, 2014.

[33] Y. Younan. FreeSentry: Protecting Against
Use-After-Free Vulnerabilities Due to Dangling
Pointers. 2015.

[34] Y. Younan, W. Joosen, and F. Piessens. Runtime
Countermeasures for Code Injection Attacks against
C and C++ programs. ACM Computing Surveys,
2012.

425

http://es.gnu.org/~aleksander/valgrind/valgrind-memcheck.pdf
http://es.gnu.org/~aleksander/valgrind/valgrind-memcheck.pdf
https://labs.mwrinfosecurity.com/blog/2014/06/20/isolated-heap-friends---object-allocation-hardening-in-web-browsers/
https://labs.mwrinfosecurity.com/blog/2014/06/20/isolated-heap-friends---object-allocation-hardening-in-web-browsers/
https://labs.mwrinfosecurity.com/blog/2014/06/20/isolated-heap-friends---object-allocation-hardening-in-web-browsers/
http://blog.trendmicro.com/trendlabs-security-intelligence/isolated-heap-for-internet-explorer-helps-mitigate-uaf-exploits/
http://blog.trendmicro.com/trendlabs-security-intelligence/isolated-heap-for-internet-explorer-helps-mitigate-uaf-exploits/
http://blog.trendmicro.com/trendlabs-security-intelligence/isolated-heap-for-internet-explorer-helps-mitigate-uaf-exploits/

	Introduction
	A Bird's-eye View
	Use-after-free Vulnerabilities in Linux Kernel
	Memory Collision Strategy

	Object-based Attack
	Memory Allocation of Linux Kernel
	Collision between Objects of the Same Size
	Collision between Objects of Different Sizes

	Physmap-based Attack
	Effectiveness of the Attack
	Object-based Attack
	Feasibility Analysis
	Advantages
	Limitations

	Physmap-based Attack
	Feasibility Analysis
	Advantages
	Comparison with Previous Techniques
	Limitations

	Evaluation
	Testing with Linux Kernel
	Testing with Android Kernel
	PingPongRoot
	Experimental Results

	Defending Against Memory Collision Attack
	Bound for the Physmap
	Complete Separation

	Related Work
	Conclusion
	Acknowledgements

