
Hacking Blind

Andrea Bittau, Adam Belay, Ali Mashtizadeh, David Mazières, Dan Boneh

Stanford University

Abstract—We show that it is possible to write remote stack
buffer overflow exploits without possessing a copy of the target
binary or source code, against services that restart after a crash.
This makes it possible to hack proprietary closed-binary services,
or open-source servers manually compiled and installed from
source where the binary remains unknown to the attacker. Tra-
ditional techniques are usually paired against a particular binary
and distribution where the hacker knows the location of useful
gadgets for Return Oriented Programming (ROP). Our Blind
ROP (BROP) attack instead remotely finds enough ROP gadgets
to perform a write system call and transfers the vulnerable
binary over the network, after which an exploit can be completed
using known techniques. This is accomplished by leaking a
single bit of information based on whether a process crashed
or not when given a particular input string. BROP requires a
stack vulnerability and a service that restarts after a crash. We
implemented Braille, a fully automated exploit that yielded a shell
in under 4,000 requests (20 minutes) against a contemporary
nginx vulnerability, yaSSL + MySQL, and a toy proprietary
server written by a colleague. The attack works against modern
64-bit Linux with address space layout randomization (ASLR),
no-execute page protection (NX) and stack canaries.

I. INTRODUCTION

Attackers have been highly successful in building exploits
with varying degrees of information on the target. Open-source
software is most within reach since attackers can audit the code
to find vulnerabilities. Hacking closed-source software is also
possible for more motivated attackers through the use of fuzz
testing and reverse engineering. In an effort to understand an
attacker’s limits, we pose the following question: is it possible
for attackers to extend their reach and create exploits for
proprietary services when neither the source nor binary code
is available? At first sight this goal may seem unattainable
because today’s exploits rely on having a copy of the target
binary for use in Return Oriented Programming (ROP) [1].
ROP is necessary because, on modern systems, non-executable
(NX) memory protection has largely prevented code injection
attacks.

To answer this question we start with the simplest possible
vulnerability: stack buffer overflows. Unfortunately these are
still present today in popular software (e.g., nginx CVE-2013-
2028 [2]). One can only speculate that bugs such as these
go unnoticed in proprietary software, where the source (and
binary) has not been under the heavy scrutiny of the public
and security specialists. However, it is certainly possible for
an attacker to use fuzz testing to find potential bugs through
known or reverse engineered service interfaces. Alternatively,
attackers can target known vulnerabilities in popular open-
source libraries (e.g., SSL or a PNG parser) that may be used
by proprietary services. The challenge is developing a method-
ology for exploiting these vulnerabilities when information
about the target binary is limited.

One advantage attackers often have is that many servers
restart their worker processes after a crash for robustness. No-
table examples include Apache, nginx, Samba and OpenSSH.
Wrapper scripts like mysqld_safe.sh or daemons like
systemd provide this functionality even if it is not baked into
the application. Load balancers are also increasingly common
and often distribute connections to large numbers of identically
configured hosts executing identical program binaries. Thus,
there are many situations where an attacker has potentially
infinite tries (until detected) to build an exploit.

We present a new attack, Blind Return Oriented Program-
ming (BROP), that takes advantage of these situations to build
exploits for proprietary services for which both the binary
and source are unknown. The BROP attack assumes a server
application with a stack vulnerability and one that is restarted
after a crash. The attack works against modern 64-bit Linux
with ASLR (Address Space Layout Randomization), non-
executable (NX) memory, and stack canaries enabled. While
this covers a large number of servers, we can not currently
target Windows systems because we have yet to adapt the
attack to the Windows ABI. The attack is enabled by two new
techniques:

1) Generalized stack reading: this generalizes a known
technique, used to leak canaries, to also leak saved
return addresses in order to defeat ASLR on 64-bit
even when Position Independent Executables (PIE)
are used.

2) Blind ROP: this technique remotely locates ROP
gadgets.

Both techniques share the idea of using a single stack
vulnerability to leak information based on whether a server
process crashes or not. The stack reading technique overwrites
the stack byte-by-byte with possible guess values, until the
correct one is found and the server does not crash, effectively
reading (by overwriting) the stack. The Blind ROP attack
remotely finds enough gadgets to perform the write system
call, after which the server’s binary can be transferred from
memory to the attacker’s socket. At this point, canaries, ASLR
and NX have been defeated and the exploit can proceed using
known techniques.

The BROP attack enables robust, general-purpose exploits
for three new scenarios:

1) Hacking proprietary closed-binary services. One may
notice a crash when using a remote service or dis-
cover one through remote fuzz testing.

2) Hacking a vulnerability in an open-source library
thought to be used in a proprietary closed-binary
service. A popular SSL library for example may have

2014 IEEE Symposium on Security and Privacy

© 2014, Andrea Bittau. Under license to IEEE.

DOI 10.1109/SP.2014.22

227

a stack vulnerability and one may speculate that it is
being used by a proprietary service.

3) Hacking an open-source server for which the binary is
unknown. This applies to manually compiled instal-
lations or source-based distributions such as Gentoo.

We evaluate all three scenarios. Ideally, for the first sce-
nario we would test our techniques against production services
for which we hold no information about the software, but we
are constrained for obvious legal reasons. To simulate such a
scenario, we tested against a toy proprietary service a colleague
of ours wrote for which we had no information about source,
binary, or functionality. For the second scenario, we target a
real vulnerability in the yaSSL library [3]. This library was
used by MySQL in past and we use that as the host application.
For the third scenario, we target a recent (2013) vulnerability
in nginx [2] and write a generic exploit that does not depend
on a particular binary. This is particularly useful as the exploit
will work on any distribution and vulnerable nginx version
without requiring an attacker to write a specific exploit for
each distribution and version combination (as is done today).

We implemented a new security tool, Braille, that makes
BROP attacks highly automated. Braille can yield a shell on
a vulnerable server in approximately 4,000 requests, a process
that completes in under 20 minutes and, in some situations, in
just a few minutes. An attacker need only provide a function
that constructs a request of a minimum length to crash the
server and append a string provided by Braille. The function
must also return a single bit based on whether the server
crashes or not.

Our contributions are:

1) A technique to defeat ASLR on servers (generalized
stack reading).

2) A technique to remotely find ROP gadgets (BROP)
so that software can be attacked when the binary is
unknown.

3) Braille: a tool that automatically constructs an exploit
given input on how to trigger a stack overflow on a
server.

4) The first (to our knowledge) public exploit for ng-
inx’s recent vulnerability, that is generic, 64-bit, and
defeats (full/PIE) ASLR, canaries and NX.

5) Suggestions for defending against BROP attacks. In
summary, ASLR must be applied to all executable
segments (PIE) and re-randomization must occur after
each crash (at odds with fork-only servers). Holding
the binary from the attacker or purposefully altering
it may not be an effective security countermeasure.

II. BRIEF HISTORY OF BUFFER OVERFLOWS

Buffer overflows are a classic vulnerability with a long
history of exploits [4]. Conceptually, they are relatively easy
to attack. For instance, a vulnerable program might read data
from the network into a buffer. Then, assuming the program
lacks sufficient bounds checks to limit the size of the incoming
data, an attacker could overwrite memory beyond the end of
the buffer. As a result, critical control-flow state, such as return
addresses or function pointers, could be manipulated. Stack
buffer overflows tend to be especially dangerous because return
addresses are implicitly nearby in memory due to function

calling conventions. However, attacks that target buffers on
the heap are also viable [5].

In the early days of stack buffer overflows, it was common
for an attacker to include malicious code as part of the payload
used to overflow the buffer. As a result, the attacker could
simply set the return address to a known location on the
stack and execute the instructions that were provided in the
buffer. Such “code injection” attacks are no longer possible
on contemporary machines because modern processors and
operating systems now have the ability to mark data memory
pages as non-executable (e.g., NX on x86). As a result, if an
attacker tries to run code on the stack, it would only cause an
exception.

An innovative technique, known as return-oriented pro-
gramming (ROP) [1], was developed to defeat defenses based
on non-executable memory. It works by linking together short
code snippets already present in the program’s address space.
Such code snippets, called gadgets, can be combined to form
arbitrary computation. As a result, attackers can use ROP to
gain control of programs without any dependence on code
injection. Simpler variations of ROP are sometimes possible.
For example, with return-to-libc attacks, a high-level library
function can be used as the return address. In particular, the
system() function is useful for attackers because it can
run arbitrary shell code with only a single argument [6].
These attacks were very effective on 32-bit systems where
arguments were passed on the stack, already under control
of the attacker. On 64-bit systems, arguments are passed in
registers, so additional gadgets are needed to populate registers.

Address space layout randomization (ASLR) [7], [8] was
introduced as an additional defense against buffer overflow
attacks. It works by randomizing the location of code and data
memory segments in the process address space. In many im-
plementations code segment randomization is only applied to
libraries, but full address space randomization is also possible.
ASLR creates a major challenge for attackers because it makes
the address locations of code (or even the stack) impossible to
predict in advance. Unfortunately, on 32-bit platforms, ASLR
is constrained by the number of available bits (usually 16) for
randomization. As a result, brute-force attacks can be quite
effective [9]. However, on 64-bit platforms there are typically
too many random bits for brute-forcing to be feasible. In
such cases, ASLR can still be circumvented, but only when
combined with a vulnerability that leaks information about the
address space layout, such as a format string [10].

In addition to the larger address space for ASLR and the
need to locate additional gadgets to fill argument registers, 64-
bit systems present a third complication for attackers. Because
the architecture limits virtual addresses to 48-bits, user-level
memory pointers are required to contain zero-valued bytes.
These zeros cause early termination of overflows relying on
string operations such as strcpy().

Canaries [11] are another common defense against buffer
overflow attacks. Canaries cannot prevent buffer overflows, but
they can detect them retroactively and terminate the program
before an attacker can influence control flow. For example,
with stack canaries, a secret value that was determined in
advance is placed just before each saved frame pointer and
return address. Then, when a function returns, the secret

228

dup2(s, 0);
dup2(s, 1);
dup2(s, 2);
execve("/bin/sh", 0, 0);

Figure 1. Socket reuse shellcode. It redirects stdin, stdout and stderr to the
socket, and executes a shell.

Buffer
AAAAA

return address
0x400100

dup2(s, 0);
return;

dup2(s, 1);
return;

dup2(s, 2);
return;

execve(“/bin/sh”, 0, 0);
return;

0x400200 0x400300 0x400400

Stack

Gadgets

Figure 2. ROP version of the socket reuse shellcode. Gadgets are chained
by placing their addresses on the stack.

value is checked to make sure it has not changed. This can
prevent stack buffer overflows from being exploited because
an attacker must correctly overwrite the secret value in order
for the program to actually use an overwritten return address.
However, just as with ASLR, canaries can be defeated through
an additional vulnerability that leaks information about the
secret value. The layout of stack memory can be an impor-
tant consideration for canary implementations. One common
approach is to place all buffers at the top of the frame so
that if they overflow it will not be possible to overwrite other
variables before corrupting the canary [12]. The motivation
is to protect pointers because sometimes they can be used to
overwrite arbitrary memory [13]. Unfortunately, canaries are
not a perfect solution, as even with layout precautions, the
structure of a buffer overflow can sometimes permit an attacker
to bypass canary words and access critical state directly, as
happened with unsafe pointer arithmetic in yaSSL [3].

III. ROP TUTORIAL

Before discussing the Blind ROP technique, we first famil-
iarize the reader with ROP. Modern exploits rely heavily on
ROP. The goal of ROP is to build an instruction sequence that
typically spawns a shell (shellcode) based on existing code
fragments (gadgets). Once a shell is executed, the attacker can
execute more commands to continue the attack. Traditionally,
exploits would inject off-the-shelf shellcode into the process
and execute it. Figure 1 shows typical shellcode that pipes
the attacker’s socket to standard input, output and error and
executes a shell.

Of course injecting shellcode is no longer possible because
these days writable memory (e.g., the stack) is non-executable,
and so ROP must be used instead. Figure 2 shows how ROP
can in principle be used to create the shellcode previously
shown in Figure 1. The stack is overflowed so that the
addresses of all the gadgets are present in sequence. Each
gadget ends with a return so that the next gadget can execute.

In practice, each ROP gadget will be a short sequence
of machine instructions terminated by a return. Executing a

return address
0x400100

pop rdi
ret

pop rsi
ret

pop rax
ret

syscall
ret

0x400200

Stack

Gadgets

(rdi)
s

(rsi)
0 0x400300

(rax)
33 0x400400

Figure 3. ROP chain for dup2(s, 0). The system call number needs to be in
rax and dup2 is system call #33. Arguments are passed in rdi and rsi.
Because the attacker already controls the stack, pop gadgets are used to load
registers from values on the stack.

simple system call like dup2 will require multiple gadgets be-
cause arguments are passed in registers so gadgets to populate
these will be needed. Figure 3 shows the required gadgets for
dup2. Registers rdi and rsi control the first two arguments
to system calls, and rax controls the system call number.
Registers can be controlled by using pop gadgets and placing
the value to load on the stack. By chaining enough gadgets,
complete shellcode can eventually be built.

IV. BUFFER OVERFLOWS TODAY

On most contemporary operating systems, where NX and
ASLR are common, an attacker must fulfill at least two
requirements in order to gain full control of a remote program’s
execution:

1) To defeat NX, the attacker must know where gadgets
reside inside the program executable.

2) To defeat ASLR, the attacker must derandomize the
location at which the executable’s text segment is
actually loaded in memory.

These requirements can easily be brute-forced on 32-bit
systems [9], [14] through simple guessing. This is not practical
for 64-bit systems; in fact, most public exploits target 32-bit
systems only. The purpose of the BROP attack is to circumvent
these requirements on 64-bit systems. Hence, the rest of this
discussion exclusively considers 64-bit attacks.

The first requirement in practice means that the attacker
must have a copy of the vulnerable binary to disassemble and
find gadgets. To our knowledge, our proposed BROP attack is
the first general-purpose technique that can be used to defeat
NX when the binary code is completely unavailable.

Defeating ASLR is also a significant challenge without
BROP, but there are some possible strategies. Firstly, an
information leak might reveal the address location of a code
segment. Secondly, it may be possible to exploit any code that
remains statically positioned across executions. For example,
on Linux it is usually the case that the executable’s code is
mapped to a fixed address even though dynamic libraries and
other data memory regions are randomized with ASLR. As a
result, an attacker could simply apply ROP to the program’s
text segment directly. Additionally, on some platforms, such as
Windows, there are shared libraries that are incompatible with
ASLR, and thus such libraries are mapped to static locations.

On Linux, it is possible to apply ASLR to the entire address
space, including the program’s text segment, by enabling PIE.

229

Binary available

PIE PIE

rerand rerand

BROP
Stack read

BROP ?
Stack read

ROP ?

YN

Y

YY

Y

N

NN

N

ROP

Figure 4. Techniques needed to attack different 64-bit scenarios. BROP and
stack read are our contributions.

With GCC, this is achieved through the -pie flag. Using
PIE has been recommended in previous studies [15], but
unfortunately, it has not been widely deployed to date. When
PIE is enabled, there are no known general-purpose 64-bit
techniques, outside of our proposed generalized stack reading
attack, that can be used to defeat ASLR.

Figure 4 shows how our BROP attack improves the state
of the art in 64-bit exploit techniques. Today there are general
techniques (ROP) to attack 64-bit servers only when the
exact binary is available to the attacker and PIE is not used.
Our stack reading technique makes it possible to attack PIE
servers that do not rerandomize after a crash (i.e., fork-only
without execve). The BROP attack additionally opens up the
possibility of hacking systems where the binary is unknown.
In all cases, the BROP attack cannot target PIE servers that
rerandomize (e.g., execve) after a crash.

Hacking without binary knowledge is useful even in the
not-completely-blind case (e.g., open-source) because it makes
it possible to write generic, robust exploits that work against
all distributions and are agnostic to a specific version of the
binary. Today, attackers need to gather exact information (e.g.,
binaries) for all possible combinations of distribution versions
and vulnerable software versions, and build an exploit for each.
One might assume attackers would only bother with the most
popular combinations. An implication of our work is that more
obscure distributions offer little protection (through obscurity)
against buffer overflows.

V. BROP ENVIRONMENT

The Blind Remote Oriented Programming (BROP) attack
makes the following assumptions and requires the following
environment:

• A stack vulnerability and knowledge of how to trigger
it.

• A server application that restarts after a crash.

The threat model for a BROP attack is an attacker that
knows an input string that crashes a server due to a stack
overflow bug. The attacker must be able to overwrite a variable
length of bytes including a return instruction pointer. The
attacker need not know the source or binary of the server.
The attacker is able to crash the server as many times as he
wishes while conducting the attack, and the server must restart.

buffer canary
11 22 33 44 55 66 77 88

AAAAAAAAAA 00 22 33 44 55 66 77 88 crash

AAAAAAAAAA 01 22 33 44 55 66 77 88 crash

...

AAAAAAAAAA 11 22 33 44 55 66 77 88 no crash

Figure 5. Stack reading. A single byte on the stack is overwritten with guess
X. If the service crashes, the wrong value was guessed. Otherwise, the stack
is overwritten with the same value and no crash occurs. After at most 256
attempts, the correct value will be guessed. The process is then repeated for
subsequent bytes on the stack.

If the server is compiled with the PIE flag, the server must be a
forking daemon and must restart without using execve. The
same is true for overflows where the canary must be modified
by the exploit. The attacker is also able to distinguish when
a server crashes prematurely, e.g., by noticing that the socket
closes without receiving a response.

VI. ATTACK OUTLINE

The BROP attack has the following phases:

1) Stack reading: read the stack to leak canaries and a
return address to defeat ASLR.

2) Blind ROP: find enough gadgets to invoke write
and control its arguments.

3) Build the exploit: dump enough of the binary to find
enough gadgets to build a shellcode, and launch the
final exploit.

The first phase is needed so that a starting point address for
scanning gadgets is found. Gadgets are then searched for until
enough are found to invoke write. After that, the binary is
transferred over the network from memory, enabling known
techniques to be applied toward building the final exploit.

VII. STACK READING: ASLR DE-RANDOMIZATION

Exploits must have a method of defeating ASLR for
configurations where PIE is used. We present a new stack
reading technique that generalizes a known technique used for
leaking canaries. It is useful even in cases where the binary is
known and a full BROP attack is not required. The basic idea
in leaking canaries is to overflow a single byte, overwriting a
single byte of the canary with value x. If x was correct, the
server does not crash. The algorithm is repeated for all possible
256 byte values until it is found (128 tries on average). The
attack continues for the next byte until all 8 canary bytes (on
64-bit) are leaked. Figure 5 illustrates the attack. We generalize
the attack to leak more words from the stack (“stack reading”).
After the canary, one typically finds the saved frame pointer
and then the saved return address, so three words need to be
read. Figure 6 shows a typical stack layout.

There are a few subtleties that apply to generalized stack
reading but not to reading canaries. With canaries, exact values

230

buffer canary saved frame
pointer

saved return
address

Figure 6. Typical stack layout. The canary protects saved registers. If it is
overwritten (by an overflow) then the program aborts prior to returning to the
saved return address.

TABLE I. AVERAGE REQUESTS NEEDED TO BRUTE-FORCE ASLR
VERSUS OUR STACK READING TECHNIQUE.

Platform Entropy Brute Force Stack Reading
32-bit Linux 16-bits 215 512

64-bit Linux 28-bits 227 640

64-bit Mac OS X 16-bits 215 640

will always be returned because there is only one value canary
that is correct. In general though, stack reading will not
necessarily return the exact saved instruction pointer present on
the stack. It is possible that a slightly different value is returned
depending on whether another value still resumes program
execution without causing a crash. For example, suppose that
0x400010 was stored on the stack and the value 0x400007 is
currently being tested. It is possible that the program keeps
executing without crashing and 0x400007 is obtained from
stack reading. This is OK as the attacker is searching for any
valid value in the .text segment range and not for a specific
one.

It is possible that stack reading does not return an address
in the application’s own .text segment, but rather a return
address in a library. This can happen, for example, when the
vulnerability lies in a library, or a callback happens. This is
fine because gadgets can be found in the library instead. One
can also stack read further to find more return addresses, if
needed.

On 64-bit x86 systems only a portion of the address space
is made available to the operating system (canonical form
addresses). This allows us to skip several bytes when reading
pointers. For user space processes the top two bytes are always
zero. In fact, on Linux the third byte is 0x7f for libraries
and the stack. The main binary and heap are usually stored at
0x00 for executables compiled without the PIE flag. Thus we
can skip on average three bytes (384 requests) when reading
addresses.

Table I shows the complexity of using stack reading versus
standard brute-force attacks. We compare 32-bit and 64-bit
systems across several operating systems. Clearly the brute-
force attack on 64-bit Linux is not practical and attackers
have resorted to other techniques to circumvent ASLR. Many
attacks have depended on non-randomized (without PIE) bi-
naries that are common on Linux. Similarly Windows exploits
have also resorted to attacking binaries that have opted out
of randomization, or libraries that randomize once per reboot.
Other attacks have used leaked pointers sometimes requiring
another vulnerability.

The fact that stack reading succeeds tells the attacker that
the BROP environment exists and that a stack overflow, rather
than some random bug, is being triggered. A bug like a null
pointer dereference may cause a crash for all possible byte
values being probed, or a no crash for multiple possible values

pop rbx
pop rbp
pop r12
pop r13
pop r14
pop r15

ret pop rdi
ret

pop rsi
pop r15

ret

0x0

0x7

0x9

Figure 7. The BROP gadget. If parsed at offset 0x7, it yields a pop rsi
gadget, and at offset 0x9, it yields a pop rdi gadget. These two gadgets
control the first two arguments to calls. By finding a single gadget (the BROP
gadget) one actually finds two useful gadgets.

(as opposed to one only). The words returned by stack reading
give further evidence of the BROP attack working because
the values can be somewhat sanitized: e.g., a random canary
(which always starts with zero on Linux), a frame pointer, and
a return address with known upper bits (0x40 for non-PIE or
0x7f).

VIII. BROP ATTACK

The BROP attack allows writing exploits without pos-
sessing the target binary. It introduces techniques to find
ROP gadgets remotely and optimizations to make the attack
practical.

A. The pieces of the puzzle

The goal is to find enough gadgets to invoke write. After
that, the binary can be dumped from memory to the network
to find more gadgets. The write system call takes three
arguments: a socket, a buffer and a length. Arguments are
passed in rdi, rsi and rdx registers, and the system call
number is stored in the rax register. The following gadgets
are therefore needed:

1) pop rdi; ret (socket)
2) pop rsi; ret (buffer)
3) pop rdx; ret (length)
4) pop rax; ret (write syscall number)
5) syscall

While an attack that finds all these gadgets is possible (see
Section VIII-I) we first describe an optimized version that
makes the attack more practical.

The first optimization is the BROP gadget. Shown in
Figure 7, the BROP gadget is very common as it restores all
callee saved registers. Misaligned parses of it yield a pop
rdi and pop rsi. So by finding a single gadget, we find
two gadgets that control the first two arguments of a call.

The second optimization is finding a call write.
Instead of finding two gadgets (pop rax; ret and
syscall) we can find a single call write instruction.
One convenient place to find call write is the program’s
Procedure Linking Table (PLT). The PLT is a jump table used
for dynamic linking containing all external library calls made
by the application. Figure 8 shows the structure of an ELF
binary; the PLT is the first region to contain valid executable
code.

231

ELF header

symbol table

PLT

.text

GOT

0x400000

Read
Execute

Read
Write

Figure 8. ELF loaded in memory. The PLT contains a jump table to external
functions (e.g., libc calls).

The problem is now reduced to finding the BROP gadget,
write’s entry in the PLT and a way to control rdx for the length
of the write. Any greater than zero length for write will do as
one can leak the binary in multiple small chunks by chaining
writes. We note that at the time of exploit, rdx may have a
sane (greater than zero) value so having to control rdx may be
unnecessary, but for the general case it is. Unfortunately pop
rdx; ret gadgets are rare, so an optimization is to find a
call to strcmp instead (again in the PLT) which sets rdx to
the length of the string being compared. The optimized attack
therefore requires:

1) Finding the BROP gadget.
2) Finding the PLT.

• Finding the entry for write.
• Finding the entry for strcmp.

B. Finding gadgets and the stop gadget

The basic idea in finding gadgets remotely is to scan the
application’s text segment by overwriting the saved return ad-
dress with an address pointing to text and inspecting program
behavior. A starting address can be found from the initial stack
reading phase or 0x400000 can be used on default non-PIE
Linux. Generally speaking two things will occur: the program
will crash or it will hang, and in turn the connection will close
or stay open. Most of the time the program will crash, but
when it does not, a gadget is found. For example, 0x400000
may point to code with a null pointer dereference and cause a
crash. The next address, 0x400001, may point to code which
causes an infinite loop and keeps the connection open. These
latter gadgets that stop program execution are fundamental to
finding other gadgets: we call these stop gadgets.

A problem with using this technique naively for finding
gadgets is that even if the return address is overwritten with
the address of a useful gadget like pop rdi; ret, the
application will still likely crash because it will eventually
attempt to return to the next word on the stack, likely an
invalid address. The crash would cause us to discard the gadget
classifying it as uninteresting. Figure 9 shows this. To find
gadgets we need to stop the ROP chain execution. This is
where stop gadgets come in. A stop gadget is anything that
would cause the program to block, like an infinite loop or a
blocking system call (like sleep). To scan for useful gadgets,
one places the address being probed in the return address,

Buffer
AAAAA

return address
0x400000 0xdead 0xdead

pop rdi
ret

0xdead

Crash

Buffer
AAAAA

return address
0x400000

(stop)
0x400100

(stop)
0x400100 0xdead

pop rdi
ret

no crash

sleep(10);

Figure 9. Scanning for gadgets and the use of stop gadgets. To scan for
gadgets one overwrites the return address with a candidate .text address (e.g.,
0x400000). If a gadget is found, it will return, so one must add “stop gadgets”
to the stack to stop the ROP chain execution so that a return does not cause
a crash, making it possible to detect gadgets.

followed by a number of stop gadgets. Note that a pop rdi;
ret gadget would pop the next item from the stack into rdi
so two stop gadgets would be needed in this case. Each time
a useful gadget that does not cause a program crash is found,
the stop gadget will run, blocking the program and leaving the
socket open (instead of causing a crash). One can now scan
the entire .text segment to compile a list of gadgets. The next
section describes how the attacker can identify the instructions
of a gadget—e.g., differentiate between pop rdi; ret and
pop rsi; ret.

Stop gadgets need not necessarily be gadgets that “stop”
the program. They are merely a signaling mechanism. For
example, a stop gadget could be one that forces a particular
write to the network so the attacker can tell whether the stop
gadget executed. Another scenario is one in which a stop
gadget is already present in the stack frame. The stack will
indeed already have multiple return addresses in it, and one
of them may act as a stop gadget. For example a server may
handle requests in a while-true loop, so returning to that loop
may “resume” program execution and another request can be
handled. This can be used to signal whether a program crashed
or is still alive (i.e., the stop gadget ran). The attacker in this
case would populate the stack with the addresses of enough
ret instructions to “eat up” enough stack until the next word
on the stack is a return address of a previous stack frame that
acts as a stop gadget (e.g., returns to the main program loop).
This particular optimization is useful for preventing situations
where worker processes are limited and infinite loop-type stop
gadgets cause all workers to become stuck, making it possible
to continue the attack (as is the case with nginx). Section VIII-J
describes in more detail how one can attack systems with few
worker processes.

C. Identifying gadgets

We now discuss how to classify gadgets. This can be
done by controlling the stack layout and inspecting program
behavior. We define three values that the attacker can place on
the stack:

Probe The address of the gadget being scanned.
Stop The address of a stop gadget that will not crash.

232

(probe)
0x400000

(trap)
0x0

(stop)
0x500000

pop rax
ret

no crash

(probe)
0x400001

(trap)
0x0

(stop)
0x500000

xor rax, rax
ret

Crash

sleep(10);

Figure 10. Scanning for pop gadgets. By changing the stack layout, one
can fingerprint gadgets that pop words from the stack. For example, if a “trap
gadget” is executed rather than popped, the program will crash.

Trap The address of non-executable memory that will
cause a crash (e.g., 0x0).

The idea is that by varying the position of the stop and trap on
the stack, one can deduce the instructions being executed by
the gadget, either because the trap or stop will execute, causing
a crash or no crash respectively. Here are some examples and
possible stack layouts:

• probe, stop, traps (trap, trap, . . .). Will find gadgets
that do not pop the stack like ret or xor rax,
rax; ret.

• probe, trap, stop, traps. Will find gadgets that pop
exactly one stack word like pop rax; ret or pop
rdi; ret. Figure 10 shows an illustration of this.

• probe, stop, stop, stop, stop, stop, stop, stop, traps.
Will find gadgets that pop up to six words (e.g., the
BROP gadget).

The traps at the end of each sequence ensure that if a gadget
skips over the stop gadgets, a crash will occur. In practice only
a few traps (if any) will be necessary because the stack will
likely already contain values (e.g., strings, integers) that will
cause crashes when interpreted as return addresses.

By using the second stack layout one can build a list of
pop x gadgets. One still does not know whether a pop rdi
or pop rsi was found. At this point the attack diverges: one
can either conduct a “first principles” attack that identifies pop
gadgets based on system call behavior, or an optimized version
of the attack that relies on the BROP gadget.

The BROP gadget has a very unique signature. It pops six
items from the stack and landing in other parts of it pops fewer
items from the stack so one can verify a candidate by laying out
traps and stop gadgets in different combinations and checking
behavior. A misaligned parse in the middle yields a pop rsp
which will cause a crash and can be used to verify the gadget
and further eliminate false positives. The gadget is 11 bytes
long so one can skip up to 7 bytes when scanning the .text
segment to find it more efficiently, landing somewhere in the
middle of it. If more than 7 bytes are skipped one risks landing
on pop rsp and thus not finding a copy of the gadget. After
the BROP gadget is found, the attacker can control the first
two arguments (rdi and rsi) to any call.

call write
...

call write
...

call write

jmp [write]
push 0
jmp dlresolve

jmp [strcmp]
push 1
jmp dlresolve

jmp [sleep]
push 2
jmp dlresolve

0x7fff400

0x7fff500

0x7fff600

write:
...

strcmp:
...

sleep:
...

.text PLT GOT libc

6 bytes

11 bytes
16 bytes

Figure 11. PLT structure and operation. All external calls in a binary go
through the PLT. The PLT dereferences the GOT (populated by the dynamic
linker) to find the final address to use in a library.

D. Finding the Procedure Linking Table

To control the third argument (rdx) one needs to find a
call to strcmp, which sets rdx to the length of the string
compared. The PLT is a jump table at the beginning of the
executable used for all external calls (e.g., libc). For example,
a call to strcmp will actually be a call to the PLT. The PLT
will then dereference the Global Offset Table (GOT) and jump
to the address stored in it. The GOT will be populated by the
dynamic loader with the addresses of library calls depending
on where in memory the library got loaded. The GOT is
populated lazily, so the first time each PLT entry is called, it
will take a slow path via dlresolve to resolve the symbol
location and populate the GOT entry for the next time. The
structure of the PLT is shown in Figure 11. It has a very unique
signature: each entry is 16 bytes apart (16 bytes aligned) and
the slow path for each entry can be run at an offset of 6 bytes.

Most of the PLT entries will not cause a crash regardless of
arguments because they are system calls that return EFAULT
on invalid parameters. One can therefore find the PLT with
great confidence if a couple of addresses 16 bytes apart do
not cause a crash, and can verify that the same addresses plus
six do not cause a crash. These addresses are also the first to
have valid code as they are early on in the executable’s address
space.

The PLT can therefore be found by scanning from the
program’s origin (0x400000) or backwards from the address
leaked through stack reading if the PIE flag was used. Each
address must be 16 bytes aligned and 16 bytes can be skipped
per probe for efficiency. We note that PLTs are often pretty
large (200 entries) so one can skip even more bytes (thus
skipping PLT entries) when looking for it to optimize for
speed, hoping that a function that will not crash will still be
hit.

The stack layout to find a PLT entry will be: probe, stop,
trap. The PLT can then be verified by seeing if neighboring
entries do not crash, and if offsets of six bytes (the PLT
slowpath) still do not cause a crash.

E. Controlling rdx via strcmp

Once the attacker finds the PLT, the question is what
function calls do various entries correspond to? One of them

233

will be strcmp, unless the program or one of its libraries does
not use that function in which case the attacker can perform
a “first principles” attack described later to find pop rdx;
ret. We note that there is nothing particular to strcmp apart
from it being commonly used and it setting rdx to a greater
than zero value. Any other function that does the same will
work.

The attacker can identify PLT entries by exercising each
entry with different arguments and seeing how the function
performs. The first two arguments can be controlled thanks
to the BROP gadget. strcmp for example has the following
behavior and signature, where “bad” is an invalid memory
location (e.g., 0x0) and “readable” is a readable pointer (e.g.,
an address in .text):

• strcmp(bad, bad): crash

• strcmp(bad, readable): crash

• strcmp(readable, bad): crash

• strcmp(readable, readable): no crash

The attacker finds strcmp by finding an entry that re-
sponds to the previously mentioned signature. The PLT can be
scanned in two ways. The attacker will have the address of a
valid PLT entry, found previously. The naive technique is to
probe addresses ± 0x10 bytes. A more effective technique that
avoids running off either end of the PLT is using the PLT’s
slow path. The PLT slow path pushes the PLT entry number on
the stack and then calls dlresolve. This call is present in
each PLT entry at offset 0xb. One can therefore overwrite the
saved return address with the PLT entry found + 0xb, followed
by the entry number one wishes to probe (starting at zero) to
systematically scan all PLT entries from the first one.

Once strcmp is found, the attacker can set rdx to a
non-zero value by just supplying a pointer to either a PLT
entry (non-zero code sequence) or the start of the ELF header
(0x400000) which has seven non-zero bytes.

False positives can be found when searching for strcmp.
Interestingly though, in all our tests we found that strncmp
and strcasecmp were found instead, and all had the effect
of setting rdx to a value greater than zero, thereby fulfilling
the same purpose.

F. Finding write

The attacker so far can control the first three arguments to
any call: the first two via the BROP gadget, and the third one
indirectly via strcmp. write can now trivially be found by
scanning each PLT entry and forcing a write to the socket and
checking whether the write occurred. The only complication is
figuring out the file descriptor number for the socket. There are
two approaches: chaining multiple writes each with different
file descriptor numbers in a single ROP chain, or opening
multiple connections and using a relatively high file descriptor
number in hope that it will match one of the connections. We
use both techniques in combination.

Linux restricts processes to a maximum of 1024 simulta-
neously open file descriptors by default, making the search
space small. Further, POSIX requires that new file descriptors
use the lowest number available, so in practice searching the
first few file descriptors works well.

G. Concluding the attack

At this point the attacker can write the entire .text segment
from memory to the attacker’s socket, disassemble it, and find
more gadgets. The attacker can also dump the symbol table
and find useful functions in the PLT like dup2 and execve.
Generally speaking the attacker will need to:

1) Redirect the socket to standard input / output. The
attacker can use dup2 or close, followed by either
dup or fcntl(F_DUPFD). These are often in the
PLT.

2) Find “/bin/sh” in memory. An effective technique is
to find a writable memory region like the environ-
ment, environ, from the symbol table, and read
“/bin/sh” from the attacker’s socket to that address.

3) execve the shell. If execve is not in the PLT, the
attacker will need to transfer more of the binary to
find a pop rax; ret and syscall gadget.

Dumping the symbol table is not as straightforward as one
might hope. While the ELF header is loaded in memory, the
section table (at the end of the binary) is not. The section
header contains information about the start of the symbol table.
In order to find the symbol table without this information, the
attacker must start dumping the binary from the start until
ASCII strings (function names) are found (which is the dynstr
section). Based on the dynstr section, other adjacent sections
containing symbol table information can be found.

H. Attack summary

The optimized BROP attack is as follows:

1) Find where the executable is loaded. Either 0x400000
for non-PIE executables (default) or stack read a
saved return address.

2) Find a stop gadget. This is typically a blocking
system call (like sleep or read) in the PLT. The
attacker finds the PLT in this step too.

3) Find the BROP gadget. The attacker can now control
the first two arguments to calls.

4) Find strcmp in the PLT. The attacker can now
control the first three arguments to calls.

5) Find write in the PLT. The attacker can now dump
the entire binary to find more gadgets.

6) Build a shellcode and exploit the server.

The attack requires a single (partial) scan of the executable.
The PLT is the first part of an executable and is also the first
item the attacker needs to bootstrap (i.e., finding a stop gadget).
The BROP gadget is found in the .text segment, which lives
just after the PLT, streamlining the attack. After the BROP
gadget, the attack is very efficient because it’s a matter of
scanning the PLT (relatively few entries) for two functions.
The attack complexity is therefore based on the density of
BROP gadgets and how long it takes to find the PLT.

I. First principles attack

One may think that eliminating BROP gadgets from exe-
cutables or making the PLT difficult to find will stop BROP
attacks. This is not the case and we present a less efficient

234

version of the attack that relies neither on the BROP gad-
get nor the PLT. The attack finds all the gadgets listed in
Section VIII-A, namely the register pops and syscall. The
attack outline is:

1) Find all pop x; ret gadgets.
2) Find a syscall gadget.
3) Identify the pop gadgets previously found.

The attacker starts by finding a stop gadget and all pop
x; ret instructions. The difficulty is now in identifying the
pop instructions and finding a syscall gadget. The idea is
to identify the pop instructions based on system call behavior
after tweaking system call arguments, in a similar way as to
how strcmp was found in the optimized attack. There is a
bootstrap problem, however, because to find syscall one
must control the system call number (rax), so one must have
a priori identified pop rax; ret.

The solution is to chain all pop instructions found by the
attacker, popping the desired system call number, and one of
them will likely be rax. The system call to use is pause()
which takes no arguments and so ignores all other registers. It
also stops program execution until a signal is raised and so it
acts as a stop gadget, making it identifiable. The attacker can
now append the probe address for syscall to the pop chain
to find a system call gadget. Once an address that makes the
program pause is found, the attacker can eliminate the pops
one by one to find which one controls rax.

At this point the attacker has the address of a syscall
gadget and a pop rax; ret gadget. The attacker also holds
a list of unidentified pops. These are identified by using the
following system calls:

1) First argument (pop rdi): nanosleep(len,
rem). This will cause a sleep of len nanoseconds
(no crash). rem is populated if the sleep is inter-
rupted, and it can be an invalid address as it is
checked only after the sleep.

2) Second argument (pop rsi): kill(pid, sig).
If sig is zero, no signal is sent, otherwise one is sent
(causing a crash). The pid need not be known: it can
be zero which sends the signal to all the processes
in the process group. To verify whether the signal
is sent, the attacker can open multiple connections
(going to different worker processes) to see if those
connections are killed or not.

3) Third argument (pop rdx): clock_nano-
sleep(clock, flags, len, rem). Similar
to nanosleep but takes two additional arguments,
making the third argument control the sleep length.

One can now call write and continue the attack by
dumping the .text segment and finding more gadgets. While
this attack is more general, it is more complex to perform
because it requires two scans of the .text segment: one to find
a list of pop gadgets, and one to find a syscall gadget.

A significant optimization is that all pop rax; ret gad-
gets we found were misaligned parses of add rsp, 0x58;
ret. This information can be used to classify pop rax
gadgets independently of syscall gadgets and significantly
speed up the attack—one no longer needs to scan the entire

.text segment twice. One can scan for the add rsp, 0x58
gadget by setting up the stack with 11 traps followed by the
stop gadget. To verify the gadget, the attacker jumps to the
misaligned parse that yields pop rax, verifying that only one
word is popped, which can be done by setting up the stack with
a single trap followed by the stop gadget.

J. Other low-level details

In this section we list a number of not so obvious low-level
attack details, many of which added to the attack’s stability.

a) Stack reading with zeros: We found that an effective
way to stack read is placing zeros in words like the saved
frame pointer. It is likely to find an instruction pointer that
does not crash the program regardless of the frame pointer. It
also makes stack reading more robust when different worker
processes are being used, each with a slightly different frame
pointer. It may be impossible to finish reading a partially read
frame pointer when being sent to a different worker process
since all values will cause a crash. Forcing a zero word in this
case will eliminate this problem.

b) Further strcmp verification: To further verify
strcmp, we run it against the last byte of the vsyscall page,
which is mapped at a static location. strcmp will terminate
prior to reaching the end of vsyscall, not causing a crash. Most
other functions instead will attempt to read past the vsyscall
page causing a crash. This will prune functions that do not
normally crash when supplied two readable arguments.

c) Dealing with small buffers: Sometimes attackers
must minimize the length of ROP chains and be able to exploit
small buffers. This situation occurs, for example, due to short
reads or having to keep some memory intact (e.g., not touching
a canary), which limits the length of the overflow and the
buffer space available. The yaSSL+MySQL exploit requires
this optimization in order to avoid corrupting a canary. This is
a checklist for conducting BROP with short ROP chains of at
most 8 words (64 bytes):

• Find actual PLT entries based on their address, not
based on their push number and slow path. This will
make PLT invocation a shorter ROP chain.

• Dump the binary with a minimal ROP chain: strcmp
address to dump, do not set rsi again (already set
for strcmp), and call write. If zero is read, the dumped
address contained a zero. Otherwise a small amount
of the binary (up to a zero) will be read. Continue this
until a pop rdx is found. After that use pop rdx
to control the length rather than strcmp (shorter ROP
chain).

• Create the shellcode environment in multiple stages:
one connection to dup the attacker’s socket, one to
read “/bin/sh” into memory, and one to execve.
All these connections (apart from execve) must
terminate the ROP chain with a stop gadget to prevent
a crash since the worker process is being prepared
incrementally.

d) Dealing with few event-based workers: There are sit-
uations where an application is configured with very few event-
based workers which can all become unresponsive during the

235

BROP attack, as they are all running the stop gadget (e.g.,
an infinite loop) making it impossible to continue the attack.
nginx is such an example and is configured with four workers
by default. This is not a problem with applications that fork per
connection or multi-threaded workers. In the latter case, one
can connect and be handled by a new thread, and then send
an exploit that causes a crash to kill any stuck threads in that
process. Our general solution however is to try and use a stop
gadget that returns to a higher call frame (stack-based stop
gadget) rather than an infinite-loop-based one when possible.
Our implementation uses the following algorithm, which works
when at least three worker processes exist:

1) Find a PLT-based stop gadget (e.g., sleep).
2) Find a PLT entry that returns. This is any PLT

function that does not crash and does not cause an
infinite loop (i.e., does not act as a stop gadget). This
function is useful because it mimics a ret instruction,
allowing us to pop individual words from the stack
(effectively acting as a nop in ROP). We will call
this the “return gadget”.

3) The first two steps of this algorithm will cause two
workers to hang. Further hanging can now be avoided
and the goal is to find a stack-based stop gadget
by incrementally populating the stack with return
gadgets. That is: attempt an exploit with a single
return gadget. Then repeat with two, then three, and
so on. Eventually, if a stack-based stop gadget is
present, the application will not crash. The algorithm
should give up if such gadget is not found after a
certain depth, and if so, the PLT-based stop gadget
must be used. If the gadget is found, however, the
stack setup for the continuation of the attack will
now be the ROP chain being probed, followed by
a number of return gadgets to pad up to the depth
found, which will then be followed by the stack-based
stop gadget (not overwritten by the attacker).

The most conservative implementation that will work with
even a single worker processes, stack reads higher stack frames
to leak more return addresses, and attempts to return to those
to see if program resumption occurs. This is rather inefficient,
however, as a lot of stack may have to be read.

IX. IMPLEMENTATION

We implemented the BROP attack in a tool called “Braille”
that automatically goes from a crash to a remote shell. It is
written in 2,000 lines of Ruby code. Braille is essentially a
meta-exploit that takes a driver function that can crash a server,
and figures out all the information needed to build an exploit.
The interface is as simple as:

try_exp(data) -> CRASH, NO_CRASH, INF

The driver needs to implement the try_exp() function and
guarantee that when given enough “data” bytes it will end up
overwriting a saved return address on the stack. The function
returns CRASH if the socket closes after sending the data,
NO CRASH if the application appears to behave normally,
or INF if the socket stays open for longer than a timeout.
The timeout is automatically determined by the framework
based on how quickly a crash is detected. The NO CRASH

def try_exp(data)
s = TCPSocket.new($victim, 80)

req = "GET / HTTP/1.1\r\n"
req << "Host: site.com\r\n"
req << "Transfer-Encoding: Chunked\r\n"
req << "Connection: Keep-Alive\r\n"
req << "\r\n"
req << "#{0xdeadbeefdead.to_s(16)}\r\n"
req << "#{data}"

s.write(req)

if s.read() == nil
return RC_CRASH

else
return RC_NOCRASH

end
end

Figure 12. nginx exploit driver code. It merely wraps the input string provided
by Braille into an HTTP chunked request and returns a CRASH signal if the
connection closes.

return code is useful for probing the length of the buffer
being overflowed or when stack reading. This return code is
expected when no overflow occurs or when the same value
was overwritten on the stack. The INF return code is expected
when looking for gadgets as it indicates that the stop gadget
ran (“infinite loop”). In later phases of the attack where data is
expected from the socket, for example after write has been
found and the binary is being dumped, a raw flag can be passed
to return the actual socket instead of the CRASH / INF result
code.

The driver code can be as simple as opening a socket to
the server, and sending the data over the socket, raw. Often
however, services expect data to be in a certain format. For
example, HTTP headers may need to be present. The driver is
responsible for this formatting. We wrote three drivers, all of
which were under 100 lines of code. One passed data raw, one
constructed an SSL packet and another one a chunked HTTP
request. Figure 12 shows the code of a basic version of the
nginx driver.

We also implemented a generic IP fragmentation router
which is useful in cases where a single large TCP read
is needed to overflow a buffer. For example overflowing a
4096-byte buffer with a single non-blocking read may be
impossible with an MTU of 1500, as there may not be enough
data queued, making the exploit unreliable. Our router instead
sends large TCP segments as multiple IP fragments so that
read is guaranteed to return a large packet, triggering the
overflow reliably. We implemented it in 300 lines of C code.
It creates a virtual tun interface where no TCP segmentation
occurs—a single write is sent as multiple IP fragments and
as a single TCP packet. This router was needed for nginx, for
example.

Sending TCP segments out of order would be an alternative
approach which may work and be more robust to firewalls.

236

ClientHello ch;

for (uint16 i = 0; i < ch.suite_len_; i += 3) {
input.read(&ch.cipher_suites_[j], SUITE_LEN);
j += SUITE_LEN;

}

input.read(ch.session_id_, ch.id_len_);

if (randomLen < RAN_LEN)
memset(ch.random_, 0, RAN_LEN - randomLen);

input.read(&ch.random_[RAN_LEN - randomLen],
randomLen);

Figure 13. Vulnerable code in yaSSL. The attacker controls suite_len_,
id_len_ and randomLen. The ClientHello buffers are fixed sized, on
the stack. Using randomLen as an attack vector lets an attacker overwrite,
via pointer arithmetic, a return address without having to touch the canary.
randomLen cannot be too large or it will hit the canary, and so only a small
buffer is available for the exploit in this condition.

X. EVALUATION

We tested the BROP attack in three scenarios:

1) An open-source SSL library with a known stack vul-
nerability (yaSSL). This mimics the scenario where
one is attacking a proprietary service that is believed
to use a vulnerable open-source component. As a
sample target we used an older version of MySQL
that used yaSSL.

2) An open-source software with a known stack vulnera-
bility (nginx), manually compiled from source. In this
scenario the attacker knows the source of the entire
server but does not hold the binary.

3) A toy closed-binary proprietary service with a stack
vulnerability. This was written by a colleague and
both the binary and source were kept secret. Ideally
we would have tested this against a real-world pro-
prietary service but it would have been difficult to do
so legally.

The vulnerabilities were as follows.

a) yaSSL: Figure 13 shows the vulnerable code in
yaSSL. The SSL hello packet has variable length values for
the cipher-suite, session id, and client random. The lengths
are specified in the packet, and yaSSL copies these values
into fixed sized buffers on the stack. This makes it possible to
exploit the program in three ways by overflowing any of the
buffers. Interestingly, the copy for the client random contains
pointer arithmetic which makes it possible to write on the stack
starting from the saved return address instead of being forced
to overwrite the canary. This is important for MySQL where
the server is re-executed after a crash and so stack reading
for canaries would not work because the canary will have
changed. The caveat of using this approach is that the size
of the overflow is small in practice: if a large buffer is used
(large randomLen) then the canary will be overwritten. One
is therefore forced to use short buffers. Braille is implemented
carefully to support short buffers by using short ROP chains.

b) nginx: HTTP requests can be sent as chunks, where
each chunk has a length, followed by the chunk data. If a large
chunk value is supplied, it will be stored in a signed variable

typedef struct {
...
off_t content_length_n;

} ngx_http_headers_in_t;

u_char buffer[NGX_HTTP_DISCARD_BUFFER_SIZE];

size = (size_t) ngx_min(
r->headers_in.content_length_n,
NGX_HTTP_DISCARD_BUFFER_SIZE);

n = r->connection->recv(r->connection, buffer, size);

Figure 14. Vulnerable code in nginx. The attacker controls
content_length_n (signed) and can supply a negative value. size
will be unsigned, resulting in a large number if content_length_n is
negative. buffer is 4096 bytes long, on the stack.

TABLE II. CUMULATIVE NUMBER OF REQUESTS PER BROP ATTACK

PHASE.

Attack phase Proprietary server yaSSL + MySQL nginx
Stack reading 1028 406 846

find PLT 1394 1454 1548

find BROP gadget 1565 1481 2017

find strcmp 1614 1545 2079

find write 1624 1602 2179

dump bin & exploit 1950 3851 2401

Time (min) 5 20 1

resulting in a negative number. A check is performed if the
size (now negative) is smaller than the buffer size. The size is
then cast to an unsigned value passed as the length parameter
to read, making it possible to read a large chunk into a 4096-
byte buffer on the stack. Figure 14 shows the vulnerable code
in nginx.

c) Proprietary service: When sending a short string,
“OK” was read from the server. On a very long string, the
connection closed.

We ran Braille against all three attack scenarios, without
any application-specific optimizations, and the attack suc-
ceeded in all cases. We evaluate the following aspects:

1) Performance: number of requests and time.
2) Stability: how robust the attack is.
3) Attack paired with source-code knowledge: whether

having access to the source code (but not the binary)
can make the attack better.

A. Performance

Table II shows the cumulative number of requests needed
for each attack phase. The attack can complete in under
4,000 requests, or 20 minutes. This is acceptable given that in
the past attacks on 32-bit ASLR required on average 32,768
requests [9]. In all cases, in about 1,500 requests the attack is
able to defeat canaries, ASLR and find a stop gadget. That’s
how long it takes to go from zero knowledge to being able to
execute a useful code fragment. From then on, it’s a matter of
finding the BROP gadget which, depending on its popularity,
can take between 27 to 467 requests.

Table III shows how popular the BROP gadget is and how
many probes are expected to find it in a sample set of binaries.

237

TABLE III. BROP GADGET FREQUENCY.

Binary BROP count expected scan length (density)
proprietary service 194 154

MySQL 639 501

nginx 130 566

Apache 65 860

OpenSSH 78 972

dump bin
2222222

find write
101

find strcmp
61

find BROP gadget
469

find PLT
702

stack reading
846

Figure 15. Attack complexity for nginx. The number of requests needed
for each phase are shown. Broadly speaking, the attack’s complexity is split
in four parts: stack reading, finding the PLT, finding the BROP gadget, and
dumping the binary to finish the attack.

The data shows the number of BROP gadgets present, and
their density: .text size

7×BROPcount (recall that 7 bytes can be skipped

per probe due to the size of the gadget). The BROP gadgets
appears very popular and can be found in under 1,000 address
probes. Note that in practice more requests will needed to
verify the gadget and weed out false positives.

After the BROP gadget is found, finding write takes
only a few additional requests, and can usually be found in
approximately 2,000 requests total. At this point the attack
is almost complete. One may choose to manually write
very specific parts of the binary to minimize the number of
requests based on the information learned. Otherwise, our
Braille tool starts dumping the binary from its start, until
the entire symbol table is dumped so that a shellcode can
be constructed. The attack typically completes within 500
additional requests (about 2,500 total). In the case of yaSSL, it
took many more requests to dump the binary because the buffer
being overflowed was very short and so Braille was limited in
how long the ROP chain could be. Braille was forced to dump
the binary in small chunks to find a pop rdx; ret (a rare
gadget) before the rest of the binary could be downloaded in
larger chunks.

Figure 15 shows the complexity of the attack for nginx.
The attack’s overhead can be split into four parts: stack reading
(35%), finding the PLT (29%), finding the BROP gadget (20%)
and finishing off (16%). Note that if canaries are not used
(or can be bypassed, like in yaSSL) and the PIE flag is not
used (the default) then stack reading can be avoided altogether.
Finding the PLT largely depends on the size of the executable
and how many PLT entries are skipped during a scan. The
BROP gadget scan will depend on its frequency, as previously
mentioned.

The attack can complete within 20 minutes. MySQL took
a long time because it took a while for it to restart after each

crash. nginx was fastest (only one minute) because a non-time
based stop gadget was used. An HTTP keep-alive connection
was used and so after the exploit request, a normal request was
sent to check if the connection was still alive. In the proprietary
server case instead, a timeout had to be used to determine if
the server was still alive which made the attack slower.

The attack clearly is noisy but we argue that if it executes
fast enough, the attacker may be able to perform whatever
activity he needs to do before getting caught. nginx for
example logs each crash, in a file owned by root. The server
runs as nobody so the attacker would not be able to erase
the logs. We notice, however, that the worker processes keep
file descriptors to the logs open, making it possible to write a
shellcode to call ftruncate to erase traces of the attack.

B. Stability

The three servers use worker processes very differently,
exercising BROP in different ways. In all cases the BROP
attack was reliable and completed unassisted without hanging
or causing denial-of-service.

MySQL is (typically) single process, multi-threaded. On a
crash, a script (mysqld safe) reexecutes the server. The BROP
attack works under the default configuration (no PIE, but
canaries) despite the re-execution because the canary is never
hit thanks to how the bug is being exercised. If compiled with
the PIE flag, the attack would not work as one couldn’t read
a (changing) return address from the stack to defeat ASLR.
This does not apply to nginx and the toy proprietary service
where due to their forking nature, the attack would succeed
even when PIE is used.

nginx has multiple worker processes and has a single-
threaded, event-based architecture. Most distributions config-
ure four worker processes by default. This makes it a tricky
scenario because an infinite loop based stop gadget would hog
the worker completely, and one gets only four shots by default.
The stop gadget here was returning to a higher stack frame,
which avoided any blocking. With a specialized exploit, we
are able to exploit nginx even when configured to use a single
worker.

The proprietary server forked once per connection. This
makes the attack very reliable as there is a virtually infinite
number of worker processes available. We did not know a
priori about the details of the server but it contained a few
unique things. The stack overflow was one stack frame above
the actual bug as there was a function that wrapped the read
system call. The server also contained a single loop, dependent
on a variable used to exit the loop when shutting the service
down. This created the additional challenge that the loop was
not easily usable as an infinite loop gadget.

The stop gadgets for yaSSL+MySQL, nginx and the pro-
prietary server respectively were: futex, returning to a higher
call frame, and sleep.

The yaSSL+MySQL scenario offered a very small overflow
buffer and shows that BROP can work even with small buffers
(64 bytes are sufficient).

The key to the success and stability of the BROP attack is
that the attacker needs to scan for a single item at any given

238

time. There are no dependencies between the items required for
the attack. Also, the items that are being looked for have very
prominent signatures (e.g., the PLT and BROP gadget) and no
false positives were found during the attack. The attack also
gets more robust as it progresses.

C. Source-code aid

If the attacker has some knowledge of the server (e.g.,
source code) the number of requests may be brought down.
In nginx for example, the attacker does not need to find a
stop gadget because one is already present in a higher stack
frame. The attacker also has an idea of how large the binary
is and how many PLT entries there should be, making the
PLT scanning faster, e.g., by skipping more entries and starting
closer to the PLT. In the case of nginx, the overflow happens
right after a read call so rdi (the first argument) has the socket
number. The attacker can exploit this fact by calling write
without setting rdi or calling dup2 to copy the file descriptor
to a fixed number; by comparison the generic attack must
brute-force the file descriptor number. Knowing that reads are
non-blocking is also useful so that the IP fragmentation router
is used to trigger the overflow. With all this in mind, we wrote
an nginx optimized version of the BROP attack that took under
1,000 requests on a default Debian install (no canary or PIE).
This exploit should work on any distribution as it is not binary-
specific.

Source knowledge helped in the yaSSL case too. The
bug could be exploited in three ways, but only one allowed
circumventing canaries. All three vulnerabilities would have
to be revealed through remote fuzz testing and triggered
independently. BROP would only then succeed on the single
vulnerability where stack reading succeeds: the one where
canaries are not touched.

Based on source information, an attacker may determine
whether rdx has a sane value at the time of exploit. If so, the
attacker may skip having to find strcmp to control rdx and
proceed with a more optimal attack.

We made some discoveries while blindly hacking the toy
proprietary service that would have been apparent upfront
given the source code and simplified the attack. During the
stack reading phase, we noticed that the number 4 was present
on the stack. This indeed was the socket number and the attack
could have avoided a file descriptor brute-force later on. Also,
when attempting to read the saved return address, a particular
return address was found that would force “OK” to be written
to the network. This could have been used as a stop gadget
avoiding having to scan for one.

Stack reading is a very useful tool when hacking blind. It
reveals whether canaries are used, frame pointers are enabled,
and possibly more. This helps in fingerprinting the distribution
(based on defaults) or the environment being hacked. Stack
reading in the yaSSL case also noted revealed that the overflow
was occurring in the “opposite” direction due to pointer
arithmetic—the first byte of the data being sent, rather than
the last one, was affecting whether the program crashed or
not.

XI. LIMITATIONS

The BROP attack has its limitations. We applied it only to
simple stack overflows. While it is a good starting point, many
vulnerabilities are more complex and heap-based.

Stack reading assumes that the attacker can overflow at
a byte granularity and controls the last byte being overflown
(e.g., a zero is not appended by the server).

The attack assumes that the same machine and process can
be hit after each attempt. Load balancers can cause the attack
to fail when PIE is used and canaries cannot be circumvented.

The attack also relies on a number of workers being
available and not ending up in a situation where all workers
become “stuck” in an infinite loop. This makes the stop gadget
selection very important. Returning to a higher stack frame
is a key optimization here, where the worker is “resumed”
rather than caused to hang. If this cannot be done and there
are a limited number of worker processes, and the stop gadget
hangs them indefinitely, the attack may not complete. nginx
is an example where this can happen as it can be configured
with a single worker and is event-based. However, BROP still
succeeds here because it is possible to return to a higher stack
frame.

XII. DISCUSSION

A. BROP in different OSes

Windows lacks a fork-like API (it has only
CreateProcess) so canaries and the text segment’s
base address are guaranteed to be rerandomized after a crash,
making the system more robust against BROP-like attacks.
The Windows ABI also passes arguments in scratch registers
(e.g., rcx, rdx) making pop gadgets for them harder to find.
Gadgets involving scratch registers are rare because they are
not preserved across function calls, so the compiler does not
need to save them to the stack. Such gadgets will likely only
exist as misaligned parses, making them less likely.

ASLR implementations vary by OS. Windows 8.1 and Mac
OS X randomize everything by default. Unfortunately, both
systems rerandomize system libraries only at reboot time. This
can create a BROP-like environment for leaking pointers to
system libraries. Reboots can be rare, especially on clients and
laptop systems where users may suspend and resume more
often than reboot. Mac OS X also only supports 16-bits of
entropy for ASLR, placing it far behind other 64-bit operating
systems. On Linux, the effectiveness of ASLR depends on the
distribution and its PIE configuration. For example, Ubuntu
does not enable PIE by default, but has enabled it on a per-
application basis based on risk [16].

B. BROP beyond stack overflows

The BROP attack focuses on stack attacks, the simplest
possible scenario. We did not consider heap exploits, though
these might be possible. The bootstrap, for example, would
be different, as a stack pivot gadget would have to be found
after the stop gadget. A useful stack pivot gadget would be, for
example, mov rax, rsp; ret assuming that rax points
to an attacker-controlled buffer at the time of exploit. The
attacker can now set up a stack and ROP chains in that buffer.

239

TABLE IV. CODE DIVERSITY WHEN THE SAME VERSION OF NGINX

(1.4.0) IS COMPILED WITH DIFFERENT DEBIAN LINUX VERSIONS.

Text Size Text Start # of Gadgets
Squeeze 0x5fc58 0x4031e0 206

Wheezy 0x61f0c 0x4032f0 255

Jessie (testing) 0x5fbd2 0x402ee0 323

C. Client-side vs. server-side

It may be possible to launch a BROP-like attack on
clients. Browsers like Chrome, for example, launch plugins
in a separate process for robustness. JavaScript can be used to
create multiple vulnerable plugin objects, attempt an exploit,
and detect whether they have crashed or not without user
interaction. We note, however, that there is typically lower
hanging fruit on the client-side. Having the execution power
of JavaScript available can offer more signaling mechanisms
to the attacker compared to a coarse-grained crash / no-crash
as used in server-side BROP.

An interesting distinction between client-side and server-
side is that often client-side attacks are less targeted. For
example, an attacker may want to own any given number of
clients to steal information or construct a botnet. This makes
exploits for older targets with fewer protections (e.g., Windows
XP) still valuable, as there still are people running those
configurations. Server-side attacks instead are often targeted as
one wants to attack a particular site. Relying on 32-bit targets
or specific binary installations, or simply moving on to the next
victim may not be an option. This makes BROP very valuable
on the server-side as it gives an attacker a larger hammer when
needed.

D. Variance in binaries

Counterintuitively, closed-source systems (though open-
binary) make writing exploits simpler. Many exploits that
target Windows are very robust as they build ROP chains
on DLLs that seldom change, and so only a few versions
exist. In an open-source setting, there are multiple binary
variants and the attacker must build a different ROP chain for
each. Table IV shows the size and start address of different
distributions of the exact same nginx version. As we see there
is a lot of variability based on the build environment, the
version of the libraries it was linked against, and the compiler
version, even though the same Linux distribution was being
used. Even a single byte difference or offset will defeat a
statically precomputed ROP chain.

Worse for the attacker, a system may be manually compiled
by the end user, making it impossible for the attacker to build
a ROP chain offline as the binary is unknown. In such cases
BROP is a necessity. Even if a server uses a precompiled
binary, it can be difficult to determine which particular one is
being used: remote OS fingerprinting reveals an approximate
kernel version, not a distribution. BROP in fact can be used
to fingerprint distributions and applications (e.g., based on
whether canaries are present, vsyscall behavior, etc.).

E. Remote fuzz testing

The BROP attack could be a powerful tool for hacking
proprietary closed-binary services when coupled with a remote

fuzz tester. We note that in two of the example applications
we targeted, the overflow occurred because a length was
specified in the packet but a larger value was sent. It certainly
is possible to write a fuzz tester that has knowledge about
a protocol and attempts to overflow by supplying incorrect
lengths [17]. Interestingly, pretty much the same chunked
encoding vulnerability that appeared in nginx has already
appeared in Apache in the past [18]. It may be possible to
write fuzz testers for particular protocol conditions that are
known to be hard to implement correctly, or that have been
known to be exploited in the past.

XIII. BROP PREVENTION

The following is a discussion of defense mechanisms that
will prevent the BROP attack, including two precautions we
suggest server developers use. There is a lot of prior research in
ROP attack defense mechanisms, and many of those techniques
are applicable to defending against BROP. Thus, this list is by
no means comprehensive.

A. Rerandomization

The most basic protection against the BROP attack is to
rerandomize canaries and ASLR as often as possible. These
protection mechanisms are effective, but server developers
undermine them by not rerandomizing when worker processes
crash. The simplest method is to fork and exec the process
on a crash or spawn, which rerandomizes both the canary
and ASLR. It is important that any child processes forked
are randomized independently so that any information learned
from one child cannot be used against another one.

There has been research on rerandomizing binaries at
runtime. One such technique is work by Giuffrida et al. that
uses a modified compiler to migrate the running state between
two instances (with a different ASLR randomization) [19].
We also prototyped a re-randomization technique that moves a
binary’s text segment to a new location using mmap/munmap,
and uses a page fault handler to determine whether pointers
should be rewritten as they are faulted on.

An even simpler improvement we developed is to reran-
domize the canary on a per-user or per-request basis. We
suggest servers write a new canary before entering a per-
request function. On the return through that function the old
canary should be restored so that execution can continue
normally. While this protects against the bugs in nginx and
our proprietary server, the particular attack against yaSSL can
avoid the canary entirely.

B. Sleep on crash

Systems like NetBSD’s segvguard [20] and grsec’s
deter_bruteforce for Linux [21] propose delaying a
fork after a segmentation fault. This technique can slow down
attacks such that an administrator can notice something is
wrong and address the problem. The downside of this approach
is that bugs now can become easy denial of service attacks.
It is also unclear what a good value for the delay is. grsec
proposes a 30 second delay. While this is sufficient for most
setups, overnight attacks on a small site might go unnoticed:
our optimized BROP attack for nginx can complete in 1,000
requests, making the attack time roughly 8 hours.

240

While denial of service attacks are serious, leaking private
data can be even worse. In some situations, servers should
not respawn, but in practice users and developers find this an
unacceptable solution. Modern Linux desktops use systemd to
monitor services and automatically restart services on failures.
Developers should be cautious about which remote services
they really need or want to restart automatically to reduce the
attack surface.

C. ROP protections

Another class of defense mechanisms is protections that
defend against ROP attacks. Firstly, Control Flow Integrity
(CFI) [22] prevents return oriented programming in general
by enforcing the control flow graph. There are many other
similar techniques.

Another approach developed by Pappas et al. is to enforce
control flow inside the system call handler by comparing the
stack against last branch record (LBR) facility available in
Intel processors [23]. This can be used to verify that the stack
has not been tampered with. The main limitation is the depth
of the stack that can be checked is as small as four entries
depending on the processor model.

There are solutions that propose adding randomness to
binaries [24]. While these are effective against ROP they are
not in a BROP setting. Additional techniques exist to try to
randomize gadget locations on a per instance run, but these
offer no defense against BROP unless the binary is fully
restarted (fork and exec) [25], [26]. There are also techniques
to remove or reduce the number of available gadgets [27] that
could protect effectively against ROP attacks in general.

D. Compiler Techniques

Many modern compilers support inserting runtime bounds
checks on buffers. This prevents a class of bugs, unlike canaries
that detect corruption after the fact or not at all if a suc-
cessfully hacker brute-forces the secret value. LLVM contains
AddressSanitizer, a tool for bounds checks, and use after free
bugs [28]. The SafeCode framework is built on LLVM and
also enforces bounds checks among other things [29]. Intel
compilers also provide support for runtime bounds checking.

The main problem with all these solutions is that they
may suffer as much as a 2x performance slowdown, and as
such they are used mostly for testing. One bright spot to make
these solutions practical is that Intel has announced a set of
instruction extensions to reduce the cost of bounds checking
variables [30].

XIV. RELATED WORK

Prior work exists on scanning for a single ROP gadget.
Goodspeed’s half-blind attack against microcontrollers [31] re-
lies on knowledge of (common) bootloader code, and scanning
for a single gadget in an unknown portion of memory to con-
struct an attack used for firmware extraction. The BROP attack
is more generic as it is fully blind and presents techniques to
find and chain multiple, different, gadgets.

There has been work on attacking instruction set random-
ization [32] that uses similar techniques to the BROP attack.
In that work, signaling for correct/incorrect guesses was based

on whether an application crashes or not. The goal, however,
was to leak an encryption key, and the method assumes that
a code injection exploit can be carried out in the first place:
i.e., no ASLR and no NX were in place.

Stack reading to determine canaries is a well known
technique [33]. Researchers as well as attackers have shown
how to brute-force 32-bit ASLR [9], but this approach was not
feasible on 64-bit machines as it brute-forced the entire word
at once. We generalize the stack reading technique to reading
off the saved return address and frame pointer to break 64-bit
ASLR.

Many have noted that exploits today are multistage and
require leaking information. Kingcope’s 32-bit nginx exploit
for example brute-forces the location of write in the PLT
to leak the binary to find gadgets and construct a binary-
agnostic exploit [14], [34]. This technique falls short on 64-bit
because multiple items need to be brute-forced at once: the
location of write and all the gadgets needed to populate
the arguments to write (the latter was not needed on 32-
bit). This makes a BROP-like attack a necessity on 64-bit;
even Kingcope admits difficulty in generalizing his approach
to these platforms. The author also admits that the exploit
does not work on WANs due to nginx’s non-blocking read.
The missing link was IP fragmentation. The nginx exploit is a
great case study showing the problems involved when writing
modern server-side exploits end-to-end.

Client-side exploit writers have had more luck with 64-
bit and ASLR, at least publicly, possibly due to contests that
highly reward participants and force them to publish their
work [35]. This year’s pwn2own exploit uses a JavaScript
vulnerability to leak a pointer, and then uses the same vulner-
ability to leak the entire contents of the chrome.dll library
to build a ROP chain. Again, this shows how exploits are
moving toward being binary-independent for robustness. This
made a difference even in closed-source systems where there
are relatively fewer versions of the binary, because Chrome
released a new version of the DLL shortly prior to the contest
demo, which would have stopped any exploit based on a
specific binary.

XV. CONCLUSION

We show that, under the right conditions, it is possible to
write exploits without any knowledge of the target binary or
source code. This works for stack vulnerabilities where the
server process restarts after a crash. Our attack is able to
defeat ASLR, NX and stack canaries on modern 64-bit Linux
servers. We present two new techniques: generalized stack
reading, which defeats full ASLR on 64-bit systems, and the
BROP attack, which is able to remotely find ROP gadgets. Our
fully automated tool, Braille, can take under 4,000 requests to
spawn a shell, under 20 minutes, tested against real versions
of yaSSL+MySQL and nginx with known vulnerabilities, and
a toy proprietary service running an unknown binary.

We show that design patterns like forking servers with
multiple worker processes can be at odds with ASLR, and
that ASLR is only effective when it is applied to all code
segments in the binary (including PIE). Moreover, security
through obscurity, where the binary is unknown or randomized,
can only slow but not prevent buffer overflow attacks. In order

241

to defend against our attack, we suggest that systems should
rerandomize ASLR and canaries after any crash, and that no
library or executable should be exempt from ASLR.

Braille is available at: http://www.scs.stanford.edu/brop/.

ACKNOWLEDGMENTS

We thank our anonymous reviewers and Elad Efrat for their
feedback. We also thank Mark Handley and Brad Karp who
helped shape early versions of this work. Eric Smith suggested
using out-of-order TCP segments instead of IP fragmentation.
This work was funded by DARPA CRASH and a gift from
Google.

REFERENCES

[1] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented
programming: Systems, languages, and applications,” ACM Trans. Inf.
Syst. Secur., vol. 15, no. 1, pp. 2:1–2:34, Mar. 2012. [Online].
Available: http://doi.acm.org/10.1145/2133375.2133377

[2] mitre. Cve-2013-2028. [Online]. Available: http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2013-2028

[3] ——. Cve-2008-0226. [Online]. Available: http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2008-0226

[4] A. One, “Smashing The Stack For Fun And Profit,” Phrack, vol. 7,
no. 49, Nov. 1996. [Online]. Available: http://phrack.com/issues.html?
issue=49&id=14#article

[5] M. Kaempf. Vudo malloc tricks by maxx. [Online]. Available:
http://www.phrack.org/issues.html?issue=57&id=8&mode=txt

[6] S. Designer. Getting around non-executable stack (and fix). [Online].
Available: http://seclists.org/bugtraq/1997/Aug/63

[7] P. Team. Pax address space layout randomization (aslr). [Online].
Available: http://pax.grsecurity.net/docs/aslr.txt

[8] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Address obfuscation:
an efficient approach to combat a board range of memory error
exploits,” in Proceedings of the 12th conference on USENIX
Security Symposium - Volume 12, ser. SSYM’03. Berkeley, CA,
USA: USENIX Association, 2003, pp. 8–8. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251353.1251361

[9] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh,
“On the effectiveness of address-space randomization,” in Proceedings
of the 11th ACM conference on Computer and communications security,
ser. CCS ’04. New York, NY, USA: ACM, 2004, pp. 298–307.
[Online]. Available: http://doi.acm.org/10.1145/1030083.1030124

[10] gera and riq. Advances in format string exploitation. [Online].
Available: http://www.phrack.org/archives/59/p59 0x07 Advances%
20in%20format%20string%20exploitation by riq%20&%20gera.txt

[11] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang, “Stackguard: automatic adaptive
detection and prevention of buffer-overflow attacks,” in Proceedings of
the 7th conference on USENIX Security Symposium - Volume 7, ser.
SSYM’98. Berkeley, CA, USA: USENIX Association, 1998, pp. 5–5.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1267549.1267554

[12] H. Etoh, “GCC extension for protecting applications from stack-
smashing attacks (ProPolice),” 2003, http://www.trl.ibm.com/projects/
security/ssp/. [Online]. Available: http://www.trl.ibm.com/projects/
security/ssp/

[13] Bulba and Kil3r, “Bypassing stackguard and stackshield,” Phrack
Magazine, May 2000. [Online]. Available: http://phrack.org/issues.
html?issue=56&id=5#article

[14] Kingcope. About a generic way to exploit linux targets. [Online].
Available: http://www.exploit-db.com/wp-content/themes/exploit/docs/
27074.pdf

[15] G. F. Roglia, L. Martignoni, R. Paleari, and D. Bruschi, “Surgically
returning to randomized lib(c),” in Proceedings of the 2009
Annual Computer Security Applications Conference, ser. ACSAC ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 60–69.
[Online]. Available: http://dx.doi.org/10.1109/ACSAC.2009.16

[16] Ubuntu security features. [Online]. Available: https://wiki.ubuntu.com/
Security/Features

[17] Peach fuzzer. [Online]. Available: http://peachfuzzer.com/

[18] mitre. Cve-2002-0392. [Online]. Available: http://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2002-0392

[19] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “Enhanced operating
system security through efficient and fine-grained address space
randomization,” in Proceedings of the 21st USENIX conference
on Security symposium, ser. Security’12. Berkeley, CA, USA:
USENIX Association, 2012, pp. 40–40. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2362793.2362833

[20] E. Efrat. Segvguard. [Online]. Available: http://www.netbsd.org/∼elad/
recent/man/security.8.html

[21] grsecurity. Deter exploit bruteforcing. [Online]. Avail-
able: http://en.wikibooks.org/wiki/Grsecurity/Appendix/Grsecurity
and PaX Configuration Options#Deter exploit bruteforcing

[22] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-
flow integrity,” in Proceedings of the 12th ACM Conference on
Computer and Communications Security, ser. CCS ’05. New
York, NY, USA: ACM, 2005, pp. 340–353. [Online]. Available:
http://doi.acm.org/10.1145/1102120.1102165

[23] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Transparent ROP
exploit mitigation using indirect branch tracing,” in Proceedings of the
22nd USENIX conference on Security, ser. SEC’13. Berkeley, CA,
USA: USENIX Association, 2013, pp. 447–462. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2534766.2534805

[24] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary stirring:
Self-randomizing instruction addresses of legacy x86 binary code,”
in Proceedings of the 2012 ACM Conference on Computer and
Communications Security, ser. CCS ’12. New York, NY, USA: ACM,
2012, pp. 157–168. [Online]. Available: http://doi.acm.org/10.1145/
2382196.2382216

[25] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson,
“Ilr: Where’d my gadgets go?” in Proceedings of the 2012 IEEE
Symposium on Security and Privacy, ser. SP ’12. Washington, DC,
USA: IEEE Computer Society, 2012, pp. 571–585. [Online]. Available:
http://dx.doi.org/10.1109/SP.2012.39

[26] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing
the gadgets: Hindering return-oriented programming using in-place
code randomization,” in Proceedings of the 2012 IEEE Symposium
on Security and Privacy, ser. SP ’12. Washington, DC, USA:
IEEE Computer Society, 2012, pp. 601–615. [Online]. Available:
http://dx.doi.org/10.1109/SP.2012.41

[27] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda, “G-free:
defeating return-oriented programming through gadget-less binaries,”
in Proceedings of the 26th Annual Computer Security Applications
Conference. ACM, 2010, pp. 49–58.

[28] T. C. Team. Addresssanitizer - clang 3.4 documentation. [Online].
Available: http://clang.llvm.org/docs/AddressSanitizer.html

[29] D. Dhurjati, S. Kowshik, and V. Adve, “SAFECode: Enforcing alias
analysis for weakly typed languages,” in Proceedings of the 2006
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’06. New York, NY, USA: ACM, 2006,
pp. 144–157. [Online]. Available: http://doi.acm.org/10.1145/1133981.
1133999

[30] Intel. Introduction to intel memory protection exten-
sions. [Online]. Available: http://software.intel.com/en-us/articles/
introduction-to-intel-memory-protection-extensions

[31] T. Goodspeed and A. Francillon, “Half-Blind Attacks: Mask ROM
Bootloaders are Dangerous,” in WOOT, 2009.

[32] A. N. Sovarel, D. Evans, and N. Paul, “Where’s the feeb?: The
effectiveness of instruction set randomization,” in Usenix Security, 2005.

[33] A. Zabrocki. Scraps of notes on remote stack overflow exploitation.
[Online]. Available: http://www.phrack.org/issues.html?issue=67&id=
13#article

[34] Kingcope. nginx 1.3.9/1.4.0 x86 brute force remote exploit. [Online].
Available: http://www.exploit-db.com/exploits/26737/

[35] M. Labes. Mwr labs pwn2own 2013 write-up - webkit exploit.
[Online]. Available: https://labs.mwrinfosecurity.com/blog/2013/04/19/
mwr-labs-pwn2own-2013-write-up---webkit-exploit/

242

