
XNU: a security evaluation

XNU: a security evaluation

D Keuper (s1019775)
University of Twente and Certified Secure

December 13, 2012

Abstract

The XNU kernel is the kernel that powers Apple’s OS X and iOS operating
system. Originally developed by Next, but later acquired by Apple it has been
around for more then twenty years. It is only since the introduction of code
signing on iOS that hackers have developed a real interest in XNU. Prior to iOS
2.0 only a handful of articles were published on XNU in the context of security.
In the past few years the interest of hackers increased by the popularity of
jailbreaking (the process of removing the security restrictions of iOS) and iOS
security is often discussed at the various security conferences. The interest of
hackers in the XNU kernel has not gone unnoticed by Apple, which started to
harden the security of their XNU kernel. In the latest releases of their operating
systems they added different mitigation techniques such as kernel ASLR.

The latest release of OS X (Mountain Lion) and iOS (6) are hardened with new
protection mechanisms, which should reduce the risk of successful exploitation.
In this thesis we describe all techniques that are meant to protect the kernel
from attackers and their implementation. We argue the effectiveness of those
techniques and how an attacker might try to circumvent them. We conclude
this thesis with a comparison with other kernels, our opinion on the current
security state of the XNU kernel and some recommendations on how to further
improve the security.

We state that the XNU kernel has many protection mechanisms in place, but
that they could be improved to better protect against exploitation. Furthermore
we state that the current design of XNU, which consists of two separate compo-
nents that heavily interact, is error prone and would benefit from refactoring.

Contents

I Introduction 4

1 Introduction 5
1.1 Introduction . 5
1.2 The history of XNU . 5
1.3 Kernel security and exploitation 7
1.4 Contents . 8

1.4.1 Purpose of our research 8
1.4.2 Research questions . 8
1.4.3 Versions and source code 9
1.4.4 Outline . 9

2 General design 11
2.1 Introduction . 11
2.2 The design of the XNU kernel . 11

2.2.1 General overview . 11
2.2.2 The different components 12

2.3 Syscalls . 13
2.3.1 Syscalls in XNU . 13
2.3.2 BSD syscalls . 14
2.3.3 Mach Traps . 15
2.3.4 Moving data from user to kernel space 16

2.4 Memory management . 16
2.4.1 Virtual memory . 16
2.4.2 Process stack . 17
2.4.3 The heap allocators . 17

2.5 Conclusion . 18

II XNU security features 20

3 Memory protection 21
3.1 Introduction . 21
3.2 WˆX protection . 21
3.3 NULL pointer dereference protection 23
3.4 Kernel ASLR . 25
3.5 Heap protection . 27
3.6 Stack canaries . 28
3.7 Conclusion . 29

1

4 Code signing and sandboxing 30
4.1 Introduction . 30
4.2 Code signing . 30

4.2.1 The iOS secure boot chain 30
4.2.2 Application code signing 32

4.3 Sandboxing . 35
4.4 iOS jailbreaks . 35

4.4.1 Tethered versus untethered jailbreaks 35
4.4.2 Tethered jailbreaks . 36
4.4.3 Untethered jailbreaks . 38

4.5 Conclusion . 38

III Exploitation techniques 39

5 Security research 40
5.1 Introduction . 40
5.2 Strategy . 40

5.2.1 OS X . 40
5.2.2 iOS . 40

5.3 Attack vectors . 41
5.3.1 Syscalls . 41
5.3.2 I/O Kit . 41
5.3.3 ioctl calls . 42
5.3.4 File systems . 42

5.4 Conclusion . 42

6 Exploitation 43
6.1 Introduction . 43
6.2 Bypassing the mitigation techniques 43

6.2.1 Kernel ALSR . 43
6.2.2 Stack canaries . 46
6.2.3 WˆX protection . 47
6.2.4 Code signing . 48
6.2.5 Sandboxing . 48

6.3 Exploitation . 49
6.3.1 Attacking the zone allocator 49
6.3.2 The post-exploitation step 51

6.4 Conclusion . 52

IV Evaluation and comparison 54

7 Comparison 55
7.1 Introduction . 55
7.2 FreeBSD . 56

7.2.1 Memory protection . 56
7.2.2 Advanced mitigation techniques 56
7.2.3 Security research . 58

7.3 Linux . 58

2

7.3.1 Memory protection . 58
7.3.2 Advanced mitigation techniques 59
7.3.3 Research . 60

7.4 Windows . 60
7.4.1 Memory protection . 60
7.4.2 Advanced mitigation techniques 61
7.4.3 Secure development practices 62
7.4.4 Research . 62

7.5 Conclusion . 63

8 Conclusion and discussion 65
8.1 Introduction . 65
8.2 Research questions . 65
8.3 Discussion . 73

A Toolchain 75
A.1 Introduction . 75
A.2 OS X . 75
A.3 iOS . 77

A.3.1 Extracting kernel images 77
A.3.2 Static analysis . 78
A.3.3 Debugging the kernel . 79

A.4 Conclusion . 82

3

Part I

Introduction

4

1
Introduction

1.1 Introduction

XNU, which is an acronym for X is Not Unix, is the kernel used by Apple
in its OS X and iOS operating system. It has been the default kernel for
Apple’s operating systems since the first release of Mac OS X in 2001. Originally
developed by NeXT for their NeXTSTEP operating system (which was later
acquired by Apple), the XNU kernel has a long history with its first public
release in 1989.

For this thesis we investigated the current state of the XNU kernel in the context
of security. We try to answer the question ’how secure is the XNU kernel?’.

1.2 The history of XNU

The Mach kernel project was started in 1985 at the Carnegie Mellon University
in Pittsburgh. Its goal was to build a true micro kernel which could act as a
replacement for the BSD kernel. At the time the generally accepted theory was
that micro kernels would eventually replace the monolithic kernels used at the
time. In a micro kernel design as much code as possible is moved from kernel
space to user space in so called services, making the kernel a message parsing
service between the different services and between the hardware and its drivers
in user space. This design should improve the overall stability since crashed
user space services could be restarted without panicking the kernel, as well as
offer a better security model by running services, such as drivers, under a less
privileged account.

While the design of a micro kernel is favorable, there were considerable perfor-
mance issues. The first versions of the Mach kernel still contained the entire
BSD kernel and was thus far from being micro. The idea was to slowly phase out
the BSD kernel components and move them to user space, in separated services.
Since the different services should be able to communicate with each other, Mach
implemented a Inter Process Communication (or IPC) system, which allowed
user space applications to send messages to each other. However, because for
each message multiple context switches were needed (from user space to kernel
space and back to user space) and the access rights had to be checked, perfor-
mance were poor. For instance, a dummy syscall on BSD would take 40 µs where
its Mach counterpart would take nearly 500 µs[20]. Due to these performance
problems the project was canceled in 1994.

5

Despite the performance problems the Open Software Foundation (OSF) an-
nounced they would use the Mach 2.5 kernel in their OSF/1 operating system
and NeXT adopted the Mach 2.5 kernel for their NeXTSTEP operating system.
However, the Mach kernel was not yet finished, it was lacking some important
features like a virtual file system and a network stack. Therefore NeXT copied
these features from the BSD kernel. This mixture of Mach and BSD was called
XNU. Since the BSD components also run in kernel space, the XNU kernel is
not a micro kernel but a monolithic kernel.

In the nineties Apple had to admit that their Mac OS operating system was
missing some important features which were needed to be able to compete with
their competitors at the time, most notably Microsoft who had just released
their Windows 95 operating system. Apple’s current operating system at the
time, called System 7, had no support for protected memory and preemptive
multitasking. For this reason Apple started a new research project called Cop-
land. Copland was intended to become the successor of System 7, but the release
date kept slipping into the future. It became clear to Apple that Copland would
never see a final release, so Apple decided to buy an existing operating system
instead, and cancel the development of Copland.

There were two candidates at the time for an acquisition by Apple. Both can-
didates were founded by ex employees of Apple. The first option was Be which
developed BeOS and was founded by Jean-Luis Gassée. The other was NeXT,
which was founded by Steve Jobs, with their NeXTSTEP operating system.
Apple chose for NeXT and announced the acquisition of NeXT on December
20, 1996.

Ever since the acquisition of NeXT, Apple continued working on their new
operating system under the code name Rhapsody, which would eventually be
released as Mac OS X (which was renamed to just OS X with the release of
Mountain Lion). Before the consumer version was released, Apple first released
Mac OS X Server 1.0 on March 16, 1999. This server OS contained components
from all of the operating systems Apple owned at the time (Mac OS, NeXTSTEP
and Mac OS X). The consumer edition, called Mac OS X 10.0, was released on
March 24, 2001, more then four years after the acquisition of NeXT. Mac OS X
was the first operating system by Apple that featured the XNU kernel, and it has
been the OS X kernel ever since. Apple made some changes to the original XNU
kernel over time, most notably the additions of I/O Kit for driver development,
the update of the Mach component from version 2.5 to version 3.0 and the
porting of XNU to the Intel and ARM processors as well as the transition from
32-bits to 64-bits.

In 2007 Apple released the first iPhone, which ran on Apple’s iOS operating
system (previously named iPhone OS, but renamed to iOS since version 4.0).
The iOS operating system is in its core equal to OS X with a different graphical
interface to support the multi touch interface. The core of iOS is almost equal
to that of OS X, meaning it also runs on the XNU kernel. Apple made some
additions to the XNU kernel to support code signing, a feature that would later
see the light in OS X as Gatekeeper.

6

1.3 Kernel security and exploitation

Kernel exploitation is the art of exploiting a vulnerability in kernel space. It is
no new technique and kernel exploits have been seen for all major platforms.
Nonetheless they are less common than exploits for user space applications,
which can be devoted to the fact that kernel exploits often require a higher
skilled attacker due to the added complexity in kernel space, by for example
concurrency and a less sophisticated debug setup.

The performance of today’s computers allows us to implement more advanced
exploitation mitigation techniques. Modern operating systems are equipped
with multiple techniques in order to prevent successful user space exploitation,
such as NX protection, ASLR and stack canaries. While many of those tech-
niques are provided by the kernel, it is interesting to note that they are often
not used to protect the kernel itself. This can be because the impact on per-
formance would be too large, or because of implementation difficulties in kernel
space. This makes the kernel an interesting target for attackers and protecting
the kernel against those attackers is critical. The kernel runs at the highest
privilege level available and exploiting the kernel gives the attacker full system
privileges. As ‘a chain is only as strong as its weakest link, which will become
the target for attackers’[36]. If user space applications are protected by ad-
vanced exploitation mitigation techniques, it is only natural that attackers will
focus on the kernel instead.

Figure 1.1: a crashed XNU kernel

The downside of kernel exploitation is stability. Since the system only runs be-
cause of the kernel, crashing it is not an option. This is different from user space
exploitation, where brute forcing is sometimes used to bypass one of the security
mitigation techniques, since restarting the application is often not a problem.
Brute forcing in kernel space often means leaving the kernel in an unstable state
which could lead to a panic. All memory that an attacker overwrites during ex-
ploitation has to be restored afterwards, otherwise the kernel could crash at a
later point in time. This requires a reliable exploit which, depending on the
vulnerability, is not always possible.

7

Because the kernel should remain in a stable state, the attacker should have a
deep understanding of some of the kernel internals. There are more processes
that require kernel resources at the same time. Therefore a solid understanding
of the kernel scheduler and virtual memory system is required for writing a
reliable kernel exploit.

1.4 Contents

1.4.1 Purpose of our research

Millions of people use the XNU kernel everyday without knowing. The XNU
kernel is used to power almost all hardware platforms from Apple. All OS
X devices like the MacBook and iMac are powered by XNU, but also all iOS
powered devices, such as the iPhone, iPad and the Apple TV, run on the XNU
kernel. During the lifetime of XNU it has powered numerous operating systems
and got ported to multiple architectures like the PowerPC, Intel and ARM.

While the XNU kernel is roughly twenty years old and is used on so many devices
in today’s world, it never received much attention from the security scene. It is
only since the release of iOS 2.0, which featured code signing, that hackers (or
for iOS often referred to as jailbreakers) started investigating and exploiting the
XNU kernel. Because the jailbreaking scene is playing a cat and mouse game
with Apple by breaking the security model of iOS, Apple is starting to invest
into kernel security.

Since the XNU kernel was long time ignored by the security field a lot of in-
formation about XNU in the context of security is either missing, incomplete
or outdated. With our research we hope to close this gap and provide other
researchers with a current list of security features in the XNU kernel and new
insights about exploiting it. Our research is threefold, first we will discuss some
of the current features of the XNU kernel in the context of security. This covers
both the implementation details of certain components as well as the currently
active mitigation techniques. Secondly we will discuss what attackers can do to
gain code execution in kernel space and thus circumvent the present mitigation
techniques. Lastly we compare the XNU kernel with other kernels and their
mitigation techniques.

1.4.2 Research questions

We try to answer the following research questions:

1. What security mechanisms are currently implemented and how
effective are they against exploitation?
Questions like how effective is the XNU kernel ASLR implementation,
is the kernel also protected by NX etc. are currently left unanswered.
Answers to those questions are of great influence of the level of protection
a kernel has against attackers.

8

2. How much protection does the XNU kernel offer when compar-
ing it to other kernels?
By comparing the answer of the first research question with that of other
mainstream kernels, we can say something about the level of security the
XNU kernel offers to its users, as well as pointing out some points of
improvement.

3. Which exploitation techniques can be used under XNU?
When looking at other kernels there are a lot of public exploits available
together with presentations that cover the topic of exploitation. This not
only makes the life of exploit developers a little easier, but this information
is also useful for further protecting a kernel against attackers. By investi-
gating these techniques, developers can focus on disarming the commonly
used tricks.

4. How can we harden the security of the XNU kernel?
By answering the three research questions above we should have a solid
understanding of the current state of security in kernels and the XNU
kernel in specific. Based on those findings we should be able to make
some specific recommendations for further enhancing the security of the
XNU kernel.

1.4.3 Versions and source code

This research is based on the latest version of OS X and iOS at the time of
writing. For OS X this is version 10.8.2 (Mountain Lion) and for iOS this is
version 6.0.1.

Throughout this thesis numerous source code examples are listed from the XNU
source tree, these were taken from XNU version 2050.18.24. A local copy can
be obtained from opensource.apple.com/tarballs/xnu/xnu-2050.18.24.tar.gz or
be viewed on line at opensource.apple.com/source/xnu/xnu-2050.18.24/. The
XNU source is released under the BSD1 and APSL2 license.

The core component of OS X and iOS is called the Darwin operating system
and is maintained by Apple under an open source license. Darwin is POSIX
compliant and contains the XNU kernel as well as many system libraries and
system utilities. Darwin does not contain the graphic components that are used
in OS X and iOS. More information about Darwin and its source code can be
found at Apple’s open source website at opensource.apple.com.

1.4.4 Outline

We start with describing the design an implementation of the XNU kernel in
Chapter 2. This includes a description of the different components of XNU, the
syscall calling mechanisms and how XNU manages memory allocations. This
chapter concludes the introduction part of his thesis.

1opensource.apple.com/license/bsd/
2opensource.apple.com/license/apsl/

9

http://opensource.apple.com/tarballs/xnu/xnu-2050.18.24.tar.gz
http://opensource.apple.com/source/xnu/xnu-2050.18.24/
http://opensoure.apple.com
http://opensource.apple.com/license/bsd/
http://opensource.apple.com/license/apsl/

The next part focuses on the security mechanisms present in todays XNU re-
lease. In Chapter 3 we describe all techniques that should mitigate the risk of
memory corruption in kernel space (e.g. kernel ASLR and heap protection).
Chapter 4 describes the more advanced protection mechanisms, that not only
protect the kernel but the whole system (i.e. code signing and sandboxing).
This part will only describe the implemented techniques, but not how an at-
tacker might bypass them. Note that we can only see the protection mechanisms
that should prevent exploitation at runtime. It is unknown if Apple also uses
some form of static or dynamic source code analyzer to detect vulnerabilities
before compilation.

Part III focuses on security research and exploitation. We start this part with
Chapter 5, which describes the techniques that can be used to find new vulner-
abilities as well as possible attack vectors. Chapter 6 goes into greater detail on
how to bypass the mitigation techniques and exploit certain vulnerabilities (such
as exploiting the zone allocator). Knowing where and how an attacker might
strike, helps in forming the recommendations to increase the level of protection
the XNU kernel can offer.

In the final part we compare and conclude our research. Chapter 7 compares the
security features of XNU with that of other kernels. In the final chapter (Chapter
8) we answer our research questions and give our opinion and recommendations
about the security of XNU.

A toolchain for kernel research is described in Appendix A. This appendix will
cover both the steps required for debugging a live kernel as well as the tools
required for vulnerability research.

10

2
General design

2.1 Introduction

The XNU kernel is a hybrid of the Mach kernel and the BSD kernel. There are
no user space services (for the file system or network stack for example) like in
the design of the original Mach kernel. This has its implications for security,
since the attack surface for the kernel is much larger in a monolithic design.
Kernel services that would run in user space could run as a less privileged user,
something which is not possible in a monolithic design.

This chapter should give the reader a basic understanding of the design of the
XNU kernel, as well as some more in depth insights in the way XNU handles
memory management and syscalls. This chapter details how the different com-
ponents of XNU interact with each other, which is a necessary precondition
when doing security research in XNU. The rest of this thesis assumes that the
technical details presented in this chapter are known to the reader.

2.2 The design of the XNU kernel

2.2.1 General overview

The XNU kernel is separated into three core components that heavily interact.
Each component has its own origin and a specific task and reason to be included
into the XNU kernel. The components are: the original Mach kernel, specific
parts of the FreeBSD kernel and Apple’s own I/O Kit framework for drivers.

At the basis of XNU lies the Mach kernel. The Mach kernel was developed
by Carnegie Mellon University from 1985 until 1994. Mach is one of the few
true micro kernels, which means that things like a network stack or a virtual
file system are not included. To add those features, NeXT copied them from
the BSD kernel. In a true micro kernel concept, such as Mach, these functions
should run in user space, but in the XNU kernel the BSD component also runs
in kernel space.

When Apple adopted the XNU kernel, the Mach kernel was upgraded from
version 2.5 to 3.0. Apple also added the I/O Kit framework. I/O Kit enables
hardware manufactures to easily develop drivers for the OS X platform. I/O Kit
offers a stable kernel framework and base classes for a wide spectrum of different

11

Memory
management Scheduler Interupt

Task Thread Exception

Process POSIX
thread Signal

IPC

Mach
message

Syscall

BSD

Mach

Syscall

VFS, /dev,
network

Figure 2.1: XNU design overview as sketched by Lucy[21]

hardware devices, such that hardware manufactures only have to implement a
communication channel to the actual hardware.

In figure 2.1 one can see that BSD extends many of the Mach concepts. Where
Mach introduces the concept of tasks, BSD extends this concept with its defini-
tion of processes, which adds things like a user ID and terminal to a task. Both
Mach and BSD provide user space applications with various syscalls. BSD
syscalls work by invoking the syscall handler with a syscall number, whereas
Mach syscalls work by sending IPC messages to the kernel.

2.2.2 The different components

Mach

Being a micro kernel, Mach is responsible for all low level hardware interaction,
the scheduler and the memory management. The Mach component can be found
under osfmk/ in the XNU source tree.

Mach is designed as a message passing service. Rather than invoking func-
tions, Mach enables applications to send messages back and forth in order to
communicate. The idea of message passing is widespread in the design and
implementation of OS X and iOS.

BSD

The current BSD component is based on the FreeBSD kernel and can be found
under bsd/ in the XNU source tree. BSD is responsible for higher level con-
structs in the kernel, such as the network stack and the virtual file system. It
also introduces the concept of user id’s and UNIX file permissions. Beside these
components it also extends many of the normal Mach concepts. It adds a BSD
process to a Mach task, POSIX threads to Mach threads and signals where
Mach uses exceptions.

12

As an example we look at the implementation of the Mach task struct, which
has its BSD counterpart in a process struct. In listing 1 we can see that a Mach
task has a pointer to its process struct and vice versa.

// osfmk/kern/task.h

struct task {

...

void* bsd_info;

...

};

// bsd/sys/proc_internal.h

struct proc {

...

void* task;

...

};

Listing 1: the task and process struct with a pointer to each other

I/O Kit

To reduce the complexity of driver development for XNU, Apple added a driver
framework called I/O Kit. I/O Kit uses a minimal version of C++, called
Embedded C++, which misses features that are, accordingly to Apple, unsafe
for usage in a kernel, like multiple inheritance, templates and exceptions[4].

I/O Kit contains base classes for many different hardware types. Meaning that
hardware vendors can focus on implementing hardware specific features, instead
of writing an entire device driver from scratch. Base classes are called families in
I/O Kit, for example there is a com.apple.iokit.IOUSBFamily family for USB
and a family for human input devices called com.apple.iokit.IOHIDFamily.
The I/O Kit source can been found under iokit/ in the XNU source tree.

2.3 Syscalls

2.3.1 Syscalls in XNU

Syscalls are the main entry point to kernel space for user space applications.
Syscalls cover a large portion of the kernel source and, because they can be
called from user space, are a large attack vector. In this section we describe the
calling mechanism for syscalls in the XNU kernel.

The XNU kernel has two separated systems for calling kernel functions, one
for calling the BSD syscalls and one for the Mach syscalls (which are called
Mach Traps). Each syscall is assigned a unique number, which is used by
user space application by invoking the syscall handler with the number of the
requested syscall. The BSD syscalls have positive syscall numbers to stay POSIX

13

compliant and are equal to that of FreeBSD. The Mach syscalls have a negative
number so that they don’t interfere with the BSD syscalls.

Calling a syscall on OS X follows the System V ABI[23]. A syscall is invoked by
the syscall[16] instruction. The syscall number is passed in the rax register,
which will also hold the return value upon return. Syscalls normally support up
to six arguments which are passed through using the rdi, rsi, rdx, r10, r8 and
r9 registers respectably. If a syscall requires more than six arguments it will
copy the arguments from the user space stack, pointed to by the rsp register,
using the copyin() method (described in 2.3.4). As an example, the assembly
code below will call exit(42) under OS X:

mov rax, 0x2000001 ; exit has syscall number 1

mov rdi, 0x2a ; give 42 as argument

syscall ; invoke the syscall handler

Listing 2: calling exit() on OS X

On iOS the calling convention is similar, but adapted for the ARM architec-
ture. The arguments for syscalls are passed through the R0, R1, R2, and R3

registers as defined in the ARM ABI[6]. When requiring more arguments the
data is copied in from the user space stack. The syscall number is passed in
the R12 register, which is also called the Intra-Procedure-call scratch register or
IP register for short (not to be mistaken with the Instruction Pointer, which is
stored in R15). The syscall is invoked using the svc 0x80[7] call, which raises a
software interrupt. As an example, the assembly code below will call exit(42)
under iOS:

mov r12, 0x1 ; exit has syscall number 1

mov r0, 0x2a ; give 42 as argument

svc 0x80 ; invoke the syscall handler

Listing 3: calling exit() on iOS

2.3.2 BSD syscalls

All BSD syscalls ends up in the so called sysent table, defined in bsd/kern/

init_sysent.c (the file can be generated by running bsd/kern/makesyscalls.

sh syscalls.master). The sysent table holds a sysent struct for each syscall,
which is shown in listing 4.

The BSD syscalls are handled by the unix_syscall64() method for 64-bits
applications and the unix_syscall() method for 32-bits applications. Both are
defined in bsd/dev/i386/systemcalls.c. The methods have one argument: a
pointer to a so called saved state struct. The saved state struct holds the value
of all CPU registers at the moment of kernel entry. The unix_syscal[64]()

methods obtains the appropriate sysent struct based on the syscall number, they
will then check if the number of arguments is higher than the maximum amount
that can be passed through the CPU registers. If the number of arguments is

14

bsd/sys/sysent.h

struct sysent { /* system call table */

int16_t sy_narg; // number of args

int8_t sy_resv; // reserved

int8_t sy_flags; // flags

sy_call_t *sy_call; // implementing function

sy_munge_t *sy_arg_munge32; // system call arguments

// munger for 32-bit process

sy_munge_t *sy_arg_munge64; // system call arguments

// munger for 64-bit process

int32_t sy_return_type; // system call return types

uint16_t sy_arg_bytes; // Total size of arguments in

// bytes for 32-bit syscalls

};

Listing 4: the sysent struct

too high they will invoke the copyin() method to copy the arguments to kernel
space. In the end they will call the syscall by the sy_call function pointer in
the sysent struct.

2.3.3 Mach Traps

The Mach syscalls are called through the IPC subsystem, but behind the scenes
it uses the syscall mechanism. The various Mach Traps are combined in a large
table called the mach_trap_table, similar to the BSD sysent table. There
are currently a little over 30 active traps, much less than the number of BSD
syscalls (more than 300). Each trap in the mach_trap_table has a mach_trap_t

structure, which is shown in listing 5.

osfmk/kern/syscall sw.h

typedef struct {

int mach_trap_arg_count;

int (*mach_trap_function)(void);

...

#if MACH_ASSERT

const char* mach_trap_name;

#endif /* MACH_ASSERT */

} mach_trap_t;

Listing 5: the mach trap t structure

The mach_trap_table is defined in osfmk/kern/syscall_sw.c. A trap is in-
voked by the kernel_trap() macro, which is machine dependent (the x86 64
version is defined in osfmk/mach/i386/syscall_sw.h). The kernel_trap()

macro will lookup the syscall number in the mach_trap_table and call the
appropriate method.

15

2.3.4 Moving data from user to kernel space

If a syscall has to many arguments, or the arguments cannot be stored in a CPU
register (like a string for instance) the data must be copied from user space into
kernel space. In XNU the copyin() method is used to copy data from user space
to kernel space, whereas the copyout() method works the other way around
by coping data from kernel space to user space. Both the copyin() and the
copyout() method are wrappers around the copyio() method, which is defined
in osfmk/x86_64/copyio.c (for the x86 64 architecture).

In the old 32-bit version of XNU, used in Mac OS X until Snow Leopard, XNU
did not share its address space with user space. Instead the kernel had its own
virtual address space, requiring a context switch on every call to the kernel.
Nowadays the XNU kernel shares its address space with the user space appli-
cation. This allows a much simpler implementation of the copyin() function
(before a special copy window had to be created with a shared memory seg-
ment). The copyio() function will do some initial checking before invoking the
_bcopy() function, which is defined in osfmk/x86_64/locore.s for the x86 64
architecture. The _bcopy() function will copy the data directly from user space
based on a source and destination address and a length parameter.

2.4 Memory management

2.4.1 Virtual memory

In modern operating systems memory is virtual, just like the file system. For
each process it will look like he owns the entire address space. The memory
manager is responsible for mapping virtual memory to physical memory. Un-
der XNU a virtual memory map is represented by a _vm_map struct, defined
in osfmk/vm/vm_map.h. Because not the entire virtual memory address space
is mapped at any given moment, the virtual memory map is divided in sev-
eral entries, each representing a continuous block of mapped memory which
share common properties. Each entry is represented by a vm_map_entry struct
(also defined in osfmk/vm/vm_map.h), which holds access rights information for
example. Figure 2.2 illustrates the concepts of the virtual memory map.

Entries are added to the map by the vm_map_enter() method (osfmk/vm/vm_
map.c). An entry can span multiple pages, but always has a single backing store
(such as physical memory or a hard drive). The backing store is represented by
a vm_object struct (osfmk/vm/vm_object.h), which is included in every entry.

The virtual memory map is used by all other memory allocators in the kernel,
as well as in all user space applications. All allocators described next work on
virtual memory.

16

vm_map

vm_map_entries

Figure 2.2: the vm map with multiple entries

2.4.2 Process stack

Each user space thread has a corresponding stack in kernel space, which is
used whenever code gets executed in kernel space (when calling a syscall for
example). The kernel stack base pointer is declared in the thread struct, which
is defined in osfmk/kern/thread.h. The kernel stack works just like its user
space equivalence and follows the platforms ABI convention.

Whenever a thread gets started, the kernel_thread_create() function will
invoke stack_alloc(), which is defined in osfmk/kern/stack.c. The stack_

alloc() method will allocate a new stack and attach it to the specified thread.
Stacks are stored in a stack free list, which is a single linked list. If the list is
empty a new memory page is requested which will form the new stack for the
thread. This means that kernel stacks are not necessarily adjacent in XNU.

2.4.3 The heap allocators

Allocating kernel memory on the heap is required when data should be preserved
even when the current method returns and the current stack frame is removed
from the stack. For this the XNU kernel provides multiple routines to choose
from, depending on the location and requirements of the calling method. There
are routines that will return aligned or wired memory for example, or routines
that should only be called from the BSD or I/O Kit sections of the kernel. Some
methods store meta information in- or outbound, others leave bookkeeping to
the calling method. This section will give an overview of most common routines
for allocating memory in the kernel. Figure 2.3 shows the most common path
for allocating kernel memory.

In practice there are two allocators being used: the zone allocator (invoked by
calling zalloc()) and the kmem_alloc() routine. The zone allocator is used
for allocations up to 8 KB, whereas for larger allocations the kmem_alloc()

routine is used. The kmem_alloc() routine will return a newly mapped page,

17

_MALLOC kern_os_mallocIOMalloc

kalloc

zallockmem_alloc

kernel_memory_allocate

Figure 2.3: overview of heap allocating functions

whereas zalloc() manages its own pages and keeps track of free blocks. Because
allocations rarely exceed the 8 KB mark, most allocations end up in the zone
allocator.

The allocation routines, except for the zone allocator, require no further ex-
planation. Reading the source when needed should provide the reader with all
necessary information. The zone allocator is a notable exception because of its
size and frequent usage. The rest of this section will therefore focus on the zone
allocator.

The zone allocator (which is defined in osfmk/kern/zalloc.c), divides its mem-
ory in zones. A zone has one or more associate pages which are divided into
multiple blocks of the same size. Each zone has a name and is represented in
the zone struct which is defined in osfmk/kern/zalloc.h. The current list of
defined zones can be printed with the zprint command, which is shown in 2.4.
A calling function will request a free block from a specified zone.

A zone keeps track of its free slots by an inbound single linked list. Each free
block holds a pointer to the next free block, as can be seen in figure 2.5. When
a new block is requested the allocator will pop the head of the free list for
allocation. If a block gets freed its free pointer will point to the current head of
the free list and the freed block will become the new head of the free list. The
free list works on a ”first in, last out” bases.

The different zones are maintained by zalloc(). For the allocation of new
memory it will invoke the kernel_memory_allocate() function. At boot time
the kernel will create a list of default zones which are used by the kalloc()

routine, called kalloc.* for all powers of two starting at 16.

2.5 Conclusion

The XNU kernel is special in a way that it consists of multiple components, each
with their own background and design philosophy. Despite their differences,
they are adapted in such a way they can communicate in order to make one

18

Figure 2.4: overview of defined zones

4
3
2
1

head of freelist

2
1

head of freelist

4

2
1

head of freelist

Free zone After two allocations After one free

Figure 2.5: example of zone allocations

working kernel. Each component has a specific list of tasks within the the
overall design of the kernel.

This concludes the introduction material for this thesis. The next part will
describe all security mechanisms present in todays version of XNU. We start
this part with an overview of memory protection mechanisms in the kernel.
Because most kernel vulnerabilities will trigger some sort of memory overwrite,
memory protection is of great importance.

19

Part II

XNU security features

20

3
Memory protection

3.1 Introduction

Memory protection works on the premises that applications (and thus the ker-
nel) will always contain vulnerabilities that will allow an attacker to alter mem-
ory of some sort. Rather than trying to find and fix the vulnerabilities itself,
nowadays protection mechanisms try to limit the damage that can be done.
Most kernel vulnerabilities concern some sort of memory overwrite. By care-
fully corrupting memory an attacker could gain code execution in kernel space.
There are many different types of memory corruption vulnerabilities, like for ex-
ample a stack based buffer overflow, double free or write anywhere. Therefore,
a single mitigation technique that can withstand all different attacks cannot
exist. Modern operating systems implement different techniques that combined
should prevent memory corruption vulnerabilities from becoming exploitable.

User space applications nowadays come with a whole arsenal of techniques which
try to protect them against attackers. This has resulted in vulnerabilities that
require either a higher skilled attacker or even have become unexploitable. After
user space, manufacturers started to implement the same mechanisms in kernel
space. Not all mechanisms have been implemented with the same level of effec-
tiveness, due to the strict performance rules that apply in kernel space. A kernel
that operates a few percent slower due to security checks has its effect on the
performance of the entire operating system. Therefore protection mechanisms
in kernel space must be low in required resources.

Apple only recently started with the implementation of protection mechanisms
in kernel space. OS X Mountain Lion and iOS 6 contain new mechanisms (such
as kernel ALSR) and others have been greatly improved (such as WˆX). This
shows that Apple is actively trying to harden its kernel against attackers. In
this chapter we describe the techniques present in todays release.

3.2 WˆX protection

WˆX, which stands for Write XOR eXecute, is a technique which marks a
memory page either writable or executable, but never both. WˆX, sometimes
referred to as NX (Never eXecute), XD (eXecute Disable) or DEP (Data Ex-
ecution Prevention), is already widespread in user space applications. It was
first implemented on OpenBSD[13] and currently supported by hardware and all
other mainstream operating systems. WˆX protection is twofold. It prevents

21

the patching of code in memory, by marking the code pages executable but
not writable. It also protects against the execution of code from user controlled
memory (such as the stack or the heap), a common used trick where the attacker
would use a vulnerability to set the program counter to user controlled memory,
to gain arbitrary code execution. WˆX prevents this attack by marking the
pages that hold user controlled information as non executable.

For user space applications one can use the vmmap command to print the cur-
rently mapped memory pages and their permissions. Figure 3.1 shows some of
the output of vmmap of a running process. The red bordered column shows the
current page permissions. In this example the first _TEXT section (holding pro-
gram code) is executable, but not writable and the first _DATA section (holding
initialized global and local static variables) is writable, but not executable.

Figure 3.1: vmmap output of a SSH process

In OS X Mountain Lion and iOS 6, Apple improved the number of pages that
are WˆX protected in the kernel. The stack and the heap are marked non-
executable, as it can contain user controlled data. This prevents the execution
of code from user controlled data, meaning the attacker has to find new ways
of executing code in kernel space.

Besides the non-executable heap and stack the code section can no longer be
altered. Altering the code pages is used by the jailbreaking community to patch
certain routings in kernel space. Most notably the disabling of the code signing
enforcement, so that iOS will run custom signed binaries.

Important kernel structs such as the sysent struct (see Chapter 2 for more
information about the sysent struct) are placed in read-only memory. It was a
common trick used to inject a new syscall into the syscall table, and then call
this syscall from user space. This gives the attacker control over the instruction
pointer.

Because of the more strict WˆX implementation, the old kernel exploitation
techniques, where the attacker would run his shellcode from stack or heap mem-
ory, no longer work. The patching of program code or in memory stored structs
is also mitigated. Attackers now need to find ways to disable the WˆX protec-

22

tion or to find a way around it, for example by chaining existing code chucks. A
technique commonly referred to as Return Oriented Programming (ROP)[18].

3.3 NULL pointer dereference protection

struct ucred* test = 0;

test->cr_uid = 0;

int (*ptr)() = 0;

ptr();

Listing 6: NULL pointer dereference

Consider the code of listing 6 in kernel space. Here two pointers are set to
zero after which they are either dereferenced or called. Since there is nothing
mapped at this location, the kernel will crash. The attacker can use this to its
advantage by mapping a memory page at address 0 (using the mmap() syscall).
A precondition for this attack is that the kernels shares its address space with
user space and that user space has control over the first page of virtual memory.
In case of a function pointer the kernel will execute the attackers payload with
kernel privileges. When the pointer points to a variable or struct, the attacker
can try to change the program flow by altering the values to its advantage. Such
a vulnerability is referred to as a NULL pointer dereference vulnerability.

#include <stdio.h>

#include <unistd.h>

#include <sys/mman.h>

#include <fcntl.h>

int main(int argc, char **argv) {

void* page = mmap((void*)0x0, 4096, PROT_READ

| PROT_WRITE | PROT_EXEC, MAP_PRIVATE

| MAP_ANON | MAP_FIXED, -1, 0);

if ((long)page < 0) {

perror("mmap");

} else {

printf("page mapped at %p\n", (void*)page);

}

return 0;

}

Listing 7: mapping a memory page at address 0

The exploitability of such vulnerability depends on whether the attack can map
memory on address 0. Listing 7 shows a piece of code which tries to allocate a
memory page at address 0. The success depends on the architecture. On OS X

23

this code will succeed if it runs in 32 bit mode, for this the application needs
to be compiled as a 32-bits executable (llvm-gcc -m32). Since in 32-bit mode
the kernel does not share its address space with user space there is no harm in
allocating a memory region at address 0, thus NULL pointer deferences are not
exploitable.

OS X applications that are compiled as 64-bits applications share their virtual
address space with the kernel. The bottom 128 TB can be used by the applica-
tion as the top 128 TB is marked as kernel memory. Trying to access memory
above the 128 TB border would raise an access violation error. When loading
the Mach-O binary a special memory page is added, the so called page zero.
This page is not actually mapped in memory, but prohibits the mapping of an-
other page at address 0. The page zero page is 4GB in size by default, meaning
the first 4 GB of memory in a 64 bits application cannot be mapped by the ap-
plication. This effectively protects the kernel against NULL pointer dereferences.
The implementation of the page zero mapping in kernel can be seen in listing 8.

bsd/kern/mach loader.c

static

load_return_t

load_segment(

...

)

{

...

/*

* This is a "page zero" segment: it starts at address

* 0, is not mapped from the binary file and is not

* accessible. User-space should never be able to access

* that memory, so make it completely off limits by

* raising the VM map’s minimum offset.

*/

ret = vm_map_raise_min_offset(map, seg_size);

if (ret != KERN_SUCCESS) {

return (LOAD_FAILURE);

}

return (LOAD_SUCCESS);

...

}

Listing 8: part of the page zero implementation

As we will describe in Chapter 4, mapping a new memory page under iOS
(either writable or executable) would violate the code signing restrictions and
is therefore not possible. Furthermore mapping a memory page with both write
and execute permissions is forbidden and enforced by the kernel. Mapping
a page with such wide permissions will halt execution, leaving NULL pointer
dereference bugs unexploitable on iOS.

To conclude, NULL pointer dereference vulnerabilities are not exploitable on OS
X nor iOS. Either because mapping a page on address 0 is not possible or

24

harmless.

3.4 Kernel ASLR

Address Space Layout Randomization (ASLR) is a familiar technique to prevent
exploitation in user spaces, by loading memory pages on a random offset in
memory for each new process. Which memory pages are randomized depends
on the implementation. For iOS 6 and OS X Mountain Lion this means that
the stack and heap are randomized each time an application starts. However
the libraries are only randomized after each reboot, this is different from Linux
for example where library randomization is done for each new process. The
current ASLR implementation for user space is therefore easy to bypass for
local attackers, as the attacker can determine the random offset (with gdb or
vmmap for example) before starting his exploit.

In iOS 6 and OS X Mountain Lion Apple implemented ASLR in the kernel.
Prior to those releases the kernel was mapped at a deterministic location. Kernel
ASLR should prevent exploitation as for attackers precise knowledge of parts
of the memory map is required. For kernel ASLR the kernel is compiled as a
position independent executable, which can be seen by executing otool -hv /

mach_kernel. Meaning that all calls, jumps and references are relative in the
binary. No absolute addresses are used.

Randomization is done by the addition of two random offsets. The first random
offset is generated by the boot loader and is used to slide the entire kernel image
in memory. The second random offset is generated in the early boot process of
the kernel and is used to slide the kernel_map, which holds the heap and stack.
Two random offsets are used so that if the attacker can leak a stack or heap
address, he or she gains no extra information on where the code segment lies in
memory.

The boot loader (iBoot for iOS and boot.efi for OS X) will generate a random
number and pass this to the kernel in the boot-args struct. For OS X the
random number is generated by using the rdrand instruction[34], on iOS the
current tick counter is used. The random number is then used in the formula
0x010000000 + (random_number * 0x00200000), giving the slide offset. The
kernel base will slide into higher addresses using the slide offset. The slide offset
has an entropy of 8 bits, with gaps of 2 megabyte.

Apart from the kernel base offset an extra random value is generated to which
the kernel_map will slide in memory. The kernel_map will hold the heap
and stack during execution. For the kernel_map a 9 bits random number is
generated in vm_mem_bootstrap() (osfmk/vm/vm_init.c), which is multiplied
by the page size (shown in listing 9). This gives 512 possible addresses in a 2
MB range.

ASLR is only effective if the attacker is unable to obtain any information about
the memory map. Prior to the release of iOS 6 and Mountain Lion many
syscalls returned kernel addresses as part of their specification. An example is
the copyLoadedKextInfo() call, which is used by the kextstat utility. It will

25

osfmk/vm/vm init.c

/*

* Eat a random amount of kernel_map to fuzz subsequent heap,

* zone and stack addresses. (With a 4K page and 9 bits of

* randomness, this eats at most 2M of VA from the map.)

*/

if (!PE_parse_boot_argn("kmapoff", &kmapoff_pgcnt,

sizeof (kmapoff_pgcnt)))

kmapoff_pgcnt = early_random() & 0x1ff; /* 9 bits */

if (kmapoff_pgcnt > 0 &&

vm_allocate(kernel_map, &kmapoff_kaddr,

kmapoff_pgcnt * PAGE_SIZE_64, VM_FLAGS_ANYWHERE) !=

KERN_SUCCESS)

panic("cannot vm_allocate %u kernel_map pages",

kmapoff_pgcnt);

Listing 9: calculating the kernel map randomization

return a list with information about the loaded kernel extensions, including the
loading address. Apple tried to obfuscate all kernel pointers that leak to user
space, by unsliding them, picking a random offset or by just setting the pointer
to 0. An example is shown in listing 10, where the kernel extension load address
is being unslide. As a result the kextstat utility shows invalid kernel addresses
on OS X Mountain Lion.

libkern/c++/OSKext.cpp

// osfmk/mach/vm_param.h

#define VM_KERNEL_UNSLIDE(_v) \

((VM_KERNEL_IS_SLID(_v) || \

VM_KERNEL_IS_KEXT(_v)) ? \

(vm_offset_t)(_v) - vm_kernel_slide : \

(vm_offset_t)(_v))

OSDictionary *

OSKext::copyInfo(OSArray * infoKeys)

{

...

loadAddress = VM_KERNEL_UNSLIDE(loadAddress);

...

}

Listing 10: unsliding the load address

26

3.5 Heap protection

Corrupting the heap’s internal state is a common attack technique for gaining
code execution, for example the kernel exploit used to jailbreak iOS 5.0.1[27]
was a heap based overflow in mounting a corrupted HFS+ image. But also in
user space heap based vulnerabilities are common[37][2]. Due to the rise of stack
protection mechanisms, heap exploits gain popularity.

We can classify different heap based vulnerabilities such as a double free, where
a block of heap memory is freed twice or a use-after-free where a memory block
is used after is was already freed. Heap exploits tend to overwrite either the
contents of an allocated block or some inbound meta information. Heap allo-
cators often store heap state information inbound, which also is the case with
most heap allocators in the XNU kernel (which can be seen in Chapter 2.4).
Corrupting the inbound meta data is a common technique which could lead to
code execution[10].

Most user space heap allocators try to protect themselves against attackers
by checking the heap state before each (de)allocation[29]. In the XNU kernel
the _MALLOC(), kern_os_malloc() and zalloc() all store meta information
inbound. The integrity of the inbound meta data gets compromised if the at-
tacker is able to overflow an allocation, or access an already freed block. Due
to the fact that performance is of such importance in kernel space, only basic
checking is done at this moment. Most checks are not meant for withstanding
attacks, but merely try to detect bugs in an early stage before harm can be
done.

The kalloc() function will keep track of its largest allocated block by storing
its size in kalloc_largest_allocated. When freeing a memory block the size
is compared to that of the largest allocated block at the time and halts execution
if the size is larger, which offers some protections against unwanted frees. If an
exceptionally large size would be freed, blocks that are still in use would also
be return to the system. This would leave the system in an unpredictable state.
However scenarios where the freed length is invalid but smaller than the largest
allocation go unnoticed, which would still result in unwanted frees.

The zone allocator has an inbound free list which could give an attacker control
over where newly allocated blocks are allocated in memory. For OS X the zone
leak detector is enabled, which tries to detect overflows in a basic manner. On
deallocation a block will be marked either poisoned or non poisoned (currently
every 16th deallocation will be poisoned), by placing a marker behind the next
pointer. A poisoned block has the magic marker 0xfeedface and a non poi-
soned block uses 0xbaddecaf. If the block is poisoned its content will also be
overwritten with the magic marker 0xdeadbeef and a clean copy of the next
pointer will be added at the end of the block. The difference between a poisoned
and non poisoned block is shown in figure 3.2.

On allocation it will be determined if the block was poisoned, and if so the
content will be checked for containing only the 0xdeadbeef value. The next
pointer is also compared to the one stored at the end of the block. This is
done to detect small overflows. Suppose the attacker is able to overflow into the
adjacent heap block, which is unallocated. The first few bytes will contain the

27

previous
content

next pointer

next pointer

next pointer

0xbaddecaf0xfeedface

0xdeadbeef

0xdeadbeef

0xdeadbeef

poisoned non poisoned

Figure 3.2: the contents of a free poisoned and non poisoned zone block

next pointer. Without the next pointer at the end the attacker would be able
to overflow only the next pointer, leaving the rest of the block untouched.

The leak protector is implemented by alloc_from_zone() and free_to_zone(),
both inline functions defined in osfmk/kern/zalloc.c.

3.6 Stack canaries

Cowan et al.[11] presented a way to protect the stack as exploitation target,
which led to multiple implementations in compilers, such as GCC’s Stack-
Smashing Protector (SSP) and Microsoft’s /GS.

Stack protection uses a canary value (or sometimes called stack cookie) to detect
stack based buffer overflows. A stack canary is a random value that is placed
on the stack before the stored CPU registers, as shown in figure 3.3.

stored rbp

stored rip

canary

local vars

Figure 3.3: canary value on the stack

Before returning to the calling function, the canary value on the stack is com-
pared to a known good backup. If the two do not match, the canary value on

28

the stack has been altered and execution is halted as can been seen in listing
11. Stack canaries protect the stack against scenarios where the attacker is able
to overflow any of the local variables. Without stack canaries the attacker can
overwrite the stored instruction pointer, giving him control over the execution
flow.

mov rax, qword [ds:rax] ; load known good backup

mov rdx, qword [ss:rbp-8] ; load stack canary

cmp rax, rdx ; compare the two

mov qword [ss:rbp-16], rcx ; if the two are not equal,

jne 0xffffff8000269929 ; jump to -

mov rax, qword [ss:rbp-16] ; |

add rsp, 0x10 ; |

pop rbp ; |

ret ; |

call ___stack_chk_fail ; <--------

nop ; ___stack_chk_fail will

endp ; cause a kernel panic

Listing 11: checking of the stack canary at the end of a function

During boot the canary value is randomly generated in osfmk/x86_64/start.s

and the second byte is set to zero as seen in listing 12. This is done to break
the various string functions, as C-style strings are 0 terminated. Meaning that
the stored CPU registers can never be overwritten by the attacker. Even if he
or she would be able to determined the canary value in advance.

osfmk/x86 64/start.s

Lstore_random_guard:

xor %ah, %ah //Security: zero second byte of

// stack canary

movq %rax, ___stack_chk_guard(%rip)

Listing 12: zero the second byte of the stack canary

3.7 Conclusion

XNU is feature rich when it comes to memory protection mechanisms All tech-
niques combined raise the bar for attackers to develop a reliable exploit for a
vulnerability in XNU. Attackers now might need to chain multiple vulnerabili-
ties in order to bypass all memory protection mechanisms.

Memory protection is not the only way the XNU kernel tries to protect the
integrity of the system. Under iOS and OS X Mountain Lion code signing and
sandboxing try to limit the attack surface by only loading trusted applications
and limit their resources. Code signing and sandboxing are discussed in the
next chapter.

29

4
Code signing and sandboxing

4.1 Introduction

Code signing is an important security concept in iOS, which now also has been
ported to OS X Mountain Lion. By adding a digital signature to applications
their integrity can be assured and the identity of the developer can be verified.
This should reduce the risk of malware infections, since malware would not pass
Apple’s strict App policy and will, as a result, lack the required signature. This
design only works if code signing is actually enforced by the operating system.
For iOS this enforcement is enabled by default without a way to disable this
for the end user. OS X Mountain Lion introduces Gatekeeper which brings the
concept of code signing to the Mac, but can, at least for now, be disabled by
the user.

Code signing is implemented by adding a signature for each segment in a Mach-
O binary. The loader of the binary will check the signature for each segment
before loading it into memory. The application may only run if it has valid
signatures for each segment. For checking the signatures the loader has a copy
of Apple’s public key.

Besides code signing, applications also run inside a sandbox, restricting file,
network and syscalls access. For example the PDF renderer in Preview.app
does not allow file access. This limits the possibilities of an attacker whenever
he gains code execution by abusing a vulnerability in the PDF render engine.

This chapter will look into the implementation of code signing and sandboxing
and how this is used to protect the kernel. We start with the description of code
signing. Since there are differences between code signing in iOS and OS X this
section will describe both implementations. In the second part of this chapter
the sandbox implementation will be discussed. In the conclusion we discuss the
impact these features have on kernel exploitation.

4.2 Code signing

4.2.1 The iOS secure boot chain

Apple tries its best to ensure the integrity of the iOS operating system. This
integrity checking is done by code signing and starts as soon as the device is
turned on. The entire process of booting an iOS device is subjected to code

30

signing such that only firmware images from Apple can be booted. This process
is described below.

Boot ROM

The Boot ROM is the first stage in booting an iOS device. The Boot ROM is
stored on a piece of read-only memory, which is embedded in the system chip
(like the A5 chip which is used in the iPhone 4S and iPad 2). Programming
the Boot ROM in read-only flash memory eliminates the risk of tampering, and
ensured its integrity. The Boot ROM contains Apple’s root CA, which is used
for signature verification during the rest of the boot chain. The Boot ROM is
also handles the DFU mode (device firmware upgrade) for flashing new firmware
images on the device.

The Boot ROM will decrypt the Low-Level Boot loader (LLB), which is en-
crypted with the so called GID key. The GID key is embedded in the hardware
and equal for all devices with the same type of system chip. It cannot be ex-
tracted via software. After decryption the Boot ROM will verify the signature
of the LLB before loading it into memory and handing over the execution. The
LLB is the first application that is loaded from writable flash memory and is
therefore susceptible to tampering. Code signing prevents tampering by halting
execution when a invalid signed binary is provided.

Since the Boot ROM is embedded into the hardware of the device, Boot ROM
updates require a new hardware revision. This makes Boot ROM exploits valu-
able, since Apple is unable to provide a fix for already released devices. There
have been several Boot ROM exploits in the past, such as the 0x24000 seg-
ment overflow for the iPhone 3GS1 and the Limera1n exploit for the A4 devices
(iPhone 4, iPad 1, iPod 4G)2, allowing to break the secure boot chain by booting
an unsigned LLB.

Low-Level Boot loader

The Low-Level Boot loader is the first stage in the iOS boot process that uses
code signing. Replacing the LLB with an unsigned patched version will fail to
boot because the signature check done by the Boot ROM will fail. The LLB will
do some initial setup and initialization after which it will read the iBoot boot
loader from memory and decrypt the image using the GID key. It will check
the signature of iBoot before handing over the boot process.

The LLB is stored in Firmware/all_flash/all_flash.*.production/LLB.*.

RELEASE.img3 inside the IPSW firmware file. Decryption keys can be found on
the iPhone Wiki3 for the appropriate firmware version.

1theiphonewiki.com/wiki/index.php?title=0x24000 Segment Overflow
2theiphonewiki.com/wiki/index.php?title=Limera1n Exploit
3theiphonewiki.com/wiki/index.php?title=Firmware

31

http://theiphonewiki.com/wiki/index.php?title=0x24000_Segment_Overflow
http://theiphonewiki.com/wiki/index.php?title=Limera1n_Exploit
http://theiphonewiki.com/wiki/index.php?title=Firmware

iBoot

iBoot is the second stage boot loader. It supports USB and serial for recovery
purposes. During a normal boot process iBoot will load the kernel from memory,
decrypt the image using the GID key and check its signature. If the signature
is valid, iBoot will disable all access to the GID key until the next reboot before
handing over the boot process to the kernel. Because of this restriction it is only
possible to decrypt kernel image from devices that are vulnerable for a Boot
ROM vulnerability, so that the decrypted kernel image can be dumped before
the access is restricted. There are currently no known Boot ROM vulnerabilities
for the newer devices (with an A5 or A6 chip).

The iBoot firmware image is stored in Firmware/all_flash/all_flash.*.

production/iBoot.*.RELEASE.img3 inside the IPSW firmware file. Decryp-
tion keys can be found on the iPhone Wiki for the appropriate firmware version.

XNU kernel

The kernel will mount the system partition as read-only file system on the /

mount point. Making this partition read-only will make sure that all system
files stay intact after a forced shutdown of the device. It will also mount a
data partition with write privileges under the /private/var mount point. This
partition is used for storing user applications and data. After loading the file
system all system daemons will start. The kernel checks the signatures of each
loaded binary. This ensures that no unsigned binaries are able to run on iOS.
Mandatory code signing such as on iOS cannot be disabled from user space,
but only by patching the kernel in memory. Since kernel extensions from the
attacker will also be unsigned, this patching has to be done via a kernel exploit.

The entire boot chain is shown in figure 4.1. In section 4.2.2 we show how
application code signing is enforced by the kernel.

Bootrom LLB iBoot XNU Apps

Figure 4.1: iOS boot process

4.2.2 Application code signing

Apple adopted the TrustedBSD project[38] in XNU, which implements a Manda-
tory Access Control (MAC) framework. The MAC framework allows custom
policies to be registered. Both code signing and sandboxing are registered MAC
policies in the XNU kernel.

For iOS all applications have to be signed since the launch of the App Store
(iOS 2.0), this includes all system binaries that come with iOS. For the end user

32

this code signing enforcement cannot be disabled, which makes that an end user
can only install applications from the App Store.

Figure 4.2: the option menu for Gatekeeper

On OS X the user can optionally enable code signing, where it is called Gate-
keeper. Enabling Gatekeeper should reduce the risk of malware infections,
though its implementation is not as strict as on iOS. For example it is possible
on OS X for a signed application to introduce new unsigned code by mapping a
page with rwx permissions. Currently the user has three options: disable Gate-
keeper, only allow signed applications and only allow signed application from
the Mac App Store, as can be seen in figure 4.2.

osfmk/vm/vm page.h

struct vm_page {

...

cs_validated:1, // code-signing: page was checked

cs_tainted:1, // code-signing: page is tainted

...

}

Listing 13: code signing field in the vm page struct

Code signatures are checked by vm_fault_enter() in the kernel, which is called
every time a page fault occurs (including if the page is initially loaded into

33

memory). The vm_page struct stores the current code signing state of the page,
if it needs checking (tained) or has been validated (as can been seen in listing 13).
The vm_fault_enter() function will request a check of the signature if needed.
Signatures are stored inside the Mach-O binary, in the the LC_CODE_SIGNATURE

section. They can be viewed using otool.

osfmk/vm/vm page.h

kern_return_t

vm_map_enter(...) {

...

#if CONFIG_EMBEDDED

if (cur_protection & VM_PROT_WRITE){

if ((cur_protection & VM_PROT_EXECUTE) && \

!entry_for_jit){

printf("EMBEDDED: %s curprot cannot be \

write+execute. turning off execute\n", \

__PRETTY_FUNCTION__);

cur_protection &= ~VM_PROT_EXECUTE;

}

}

#endif /* CONFIG_EMBEDDED */

...

}

kern_return_t

vm_map_protect(...) {

...

#if CONFIG_EMBEDDED

if (new_prot & VM_PROT_WRITE) {

if ((new_prot & VM_PROT_EXECUTE) && \

!(current->used_for_jit)) {

printf("EMBEDDED: %s can’t have both \

write and exec at the same time\n", \

__FUNCTION__);

new_prot &= ~VM_PROT_EXECUTE;

}

}

#endif

...

}

Listing 14: enforcing the strict no rwx page policy

On iOS a memory page may also not be mapped with rwx permissions, which
is enforced by both vm_map_enter() and vm_map_protect(). The vm_map_

enter() function is called when the page is first allocated, vm_map_protect()
when the page protection is changed. Having a rwx mapped page is forbidden
as it would allow for new unsigned code to be introduced on the device. This
rule was strictly enforced until iOS 4.3 where Apple chose performance over
security with the introduction of a JIT compiler for Mobile Safari. The JIT

34

compiler can compile JavaScript to native byte code, allowing faster execution
of JavaScript. JIT implies introducing new code in memory, which breaks the
mandatory code signing requirement, therefore Apple restrictes the use of JIT
to Mobile Safari. Mobile Safari is the only process that is allowed to have a
single rwx page in memory, trying to map a second rwx page in Mobile Safari
will fail. Page permissions enforcing is currently only enabled on iOS, and not
on OS X. The implementation can been seen in listing 14.

4.3 Sandboxing

Each application installed from the (Mac) App Store comes with a sandbox
profile, designed to protect the system after exploitation. The sandbox not
only limits file access and network capabilities, but also limits the syscalls a
process is allowed to call. On iOS and on OS X with Gatekeeper enabled an
attacker cannot run its own code due to the code signing restrictions, and thus
the attacker can only achieve arbitrary code execution by exploiting an already
signed application, meaning that the attacker is bound to the sandbox profile
of the exploited process.

Just as code signing, the sandbox is implemented as a TrustedBSD policy in the
closed sourced com.apple.security.sandbox kernel extension. The sandbox
profiles are defined in the Scheme language and are compiled and delivered to
the kernel by the libsandbox.dylib library, through the mac_syscall trap.
An example sandbox profile is shown in listing 15.

The sandbox implementation is already covered by others[9][19], we will briefly
discuss the implementation in kernel space. Most syscalls in the kernel have
support for the sandbox policy. For example listing 16 shows the connect()

syscall asking the TrustedBSD framework for permission.

The mac_socket_check_connect() function uses the MAC_CHECK() macro (de-
fined in security/mac_internal.h), which iterates over all registered policies
of the TrustedBSD framework, to ask for permission.

4.4 iOS jailbreaks

4.4.1 Tethered versus untethered jailbreaks

Jailbreaking is the process of removing the code signing enforcements from an
iOS device. This allows for custom binaries to be installed on the device which
have not been verified or approved by Apple. Because the kernel enforces the
signing of binaries a kernel exploit is required in the jailbreaking process.

Because the entire boot process of iOS is also signed, the kernel image can not
be overwritten with a version which has the code signing functionality removed.
This patched kernel would not be boot by iBoot because of the invalid signature.
This makes the difference between an tethered and untethered jailbreak. A
tethered jailbreak means the jailbreak does not survive a reboot and needs to

35

/usr/share/sandbox/named.sb

;;

;; named - sandbox profile

;; Copyright (c) 2006-2007 Apple Inc. All Rights reserved.

;;

;; WARNING: The sandbox rules in this file currently

;; constitute Apple System Private Interface and are subject

;; to change at any time and without notice. The contents of

;; this file are also auto-generated and not user editable;

;; it may be overwritten at any time.

;;

(version 1)

(debug deny)

(import "bsd.sb")

(deny default)

(allow process*)

(deny signal)

(allow sysctl-read)

(allow network*)

;; Allow named-specific files

(allow file-write* file-read-data file-read-metadata

(regex "^(/private)?/var/run/named\\.pid$"

"^/Library/Logs/named\\.log$"))

(allow file-read-data file-read-metadata

(regex "^(/private)?/etc/rndc\\.key$"

"^(/private)?/etc/resolv\\.conf$"

"^(/private)?/etc/named\\.conf$"

"^(/private)?/var/named/"))

Listing 15: an example sandbox profile

be jailbroken after each reboot. An untethered jailbreak is able to survive a
reboot.

4.4.2 Tethered jailbreaks

Because of the code signing enforcement attackers cannot upload a kernel exploit
to the device. The exploit would be unable to load. This means that attackers
first need to take control over a validly signed application, from which they
can stage their kernel exploit. The steps for a tethered jailbreaks are described
below:

1. Gain initial code execution
The first step in a jailbreak, gaining initial code execution in a user process.

36

bsd/kern/uipc syscalls.c

int

connect_nocancel(__unused proc_t p, struct

connect_nocancel_args *uap,

__unused int32_t *retval)

{

...

#if CONFIG_MACF_SOCKET_SUBSET

if ((error = mac_socket_check_connect(

kauth_cred_get(), so, sa)) != 0) {

if (want_free)

FREE(sa, M_SONAME);

goto out;

}

#endif /* MAC_SOCKET_SUBSET */

...

out:

file_drop(fd);

return (error);

}

Listing 16: checking the sandbox policy

This can be done by exploiting a vulnerability in Apple’s Mobile Safari
browser, document viewer or any other service.

2. Break out of the sandbox
The exploited process runs within a sandbox and unless the attacker has
a kernel exploit that falls within the sandbox profile he or she first needs
to break out of the sandbox. Because the attacker cannot introduce new
code onto the device, this step has to be done using a 100% ROP payload.
Unless the entry point in the previous step was Mobile Safari which has a
JIT page which can be abused.

3. Elevate privileges
Depending on the kernel vulnerability, it might be that the attacker needs
to elevate privileges to those of the root user. If the kernel vulnerability
can be triggered by the current user, this step can be omitted. If root
privileges are required, a root process needs to be exploited.

4. Run the kernel exploit
Only now the attacker has met all preconditions for his or her kernel
exploit. The kernel exploit needs to be written by using ROP in the
current process. The kernel exploit should allow the attacker to write in
kernel memory.

5. Patch kernel memory
After the kernel exploit, specific kernel routines have to be patched to
disable the code signing restriction. Custom, unsigned, binaries can now
be installed on the device. Because the kernel patches can only be done
in memory, they will all vanish after a reboot.

37

4.4.3 Untethered jailbreaks

All kernel patches of a tethered jailbreak will be gone after a reboot, effectively
meaning an iOS device always boots in a clean state. An untethered jailbreak
should be able to make these patches persistent trough reboots. Because the
kernel image cannot be altered due to the secure boot chain, an untethered
jailbreak re-exploits the kernel after each reboot.

Untethered jailbreaks work by finding a vulnerability in one of the services that
will be loaded at boot time (such as the VPN service). It should be possible
to trigger this vulnerability by overwriting a configuration file, as they do not
need a valid signature.

For example, for the jailbreak of iOS 5.1.1 a vulnerability in the mobile backup
service was exploited that allowed the attackers to write outside the chrooted
environment. This vulnerability was used to overwrite the default configuration
file for the VPN service. Whenever the device was rebooted the VPN service
would load the configuration file, containing an exploit for a vulnerability in the
VPN service. After the attackers have control over the VPN service, a kernel
exploit is staged. The kernel exploit allows the attackers to overwrite arbitrary
kernel memory, which is used to patch the code signing routines.

4.5 Conclusion

The strict code signing enforcement on iOS means that kernel exploits has to be
staged from a 100% ROP exploit in user space. This makes exploiting consider-
ably more difficult as things like branching and looping are difficult to achieve
using ROP. Under OS X, where code signing is less strict, this is generally less
of an issue.

Sandboxing limits the attack surface, which might mean that a vulnerability
cannot be triggered from within the application sandbox. The attacker is limited
to the attack surface available from within the sandbox, or the attacker requires
an extra vulnerability to establish a sandbox break.

Code signing and sandboxing are generally much harder to defeat than the
memory protection mechanisms described in the previous chapter. Having a
closed platform like iOS where only applications that have been reviewed and
approved by Apple are allowed, require a much higher skilled attacker than on
an open platform like OS X. The attackers require multiple exploits, for both
user space and kernel space, in order to completely compromise a system.

The next part will cover steps an attacker can take to exploit the XNU kernel
and how he or she might bypass the security mechanisms just presented. This
part will start with an introduction on attack vectors in XNU and the techniques
a attacker might use to find a vulnerability.

38

Part III

Exploitation techniques

39

5
Security research

5.1 Introduction

We have described the architecture of XNU and its protection mechanisms. In
this chapter we focus on the threats of XNU and why attackers target the XNU
kernel. There is a clear distinction between XNU exploitation on OS X and
iOS. This will be described in the first section of this chapter.

The previous two chapters described the way XNU tries to protect itself and
the rest of the system against attackers. The mechanisms do not close vulner-
abilities, but raise the bar for exploitation. In the second part of this chapter
we will discuss which parts of XNU are worth investigating and which approach
should be used.

5.2 Strategy

5.2.1 OS X

An attacker would typically target OS X to gain root privileges. For this the
attacker is bound to attack surface that is accessible for an unprivileged user.
The XNU kernel is rarely targeted on OS X. Malware infections are slowly
becoming more of a threat on OS X, but until now they run under a unprivileged
user account. Or use traditional social engineering techniques, such as disguising
themselves as a software updates, to obtain the system password[15].

Attackers are currently no real threat of the XNU kernel on the OS X operating
system. This might also be because if the attacker gains access to a user’s Mac,
he already has full access to all its personal files, and thus has less need for root
privileges.

5.2.2 iOS

The XNU kernel has existed for more than twenty years. Twenty years in which
multiple people have done security research of some sort on XNU, either through
fuzzing, source code auditing or any other technique. Almost all of that research
was focused on attack surface that required no additional privileges, because the
highest goal was, and for OS X still is, gaining a shell with root privileges.

40

This goal has changed since the introduction of code signing for iOS. Suddenly
attackers require a kernel exploit for disabling code signing, so that custom
binaries can be run. Often the attacker already has root privileges on the
device, but cannot leverage from this because of the code signing enforcement.
With the introduction of the strict code signing requirement, vulnerabilities that
can only be triggered by the root user are suddenly valuable. If the attacker is
targeting iOS he should focus on attack surface that is only accessible to the
root user as this attack vector has been less researched.

An iOS attacker should take into account that code signing will limit the pos-
sibility of implementing complex kernel exploits, and that sandboxing might
make certain attach surface unaccessible to the attacker.

Attackers on iOS are a threat to XNU. The so called jailbreaking is popular
under iOS users, as it allows them to use applications that are unavailable on
a non-jailbroken device. Looking at the list of public kernel exploits from the
past few year we see that they are all found and used by jailbreakers.

5.3 Attack vectors

5.3.1 Syscalls

Syscalls are the most common way of interacting with the kernel. There are
more than 300 BSD syscalls and another 45 Mach traps. Chapter 2 contains
more information on syscalls.

Besides auditing rarely used syscalls, it is also interesting to see how syscalls
interact with other syscalls, with respect to locking for example. The scheduler
might choose to schedule out a syscall mid execution, which can lead to locking
issues and/or race conditions. There are also syscalls that operate on base of a
large switch block, such as fcntl() for example. Syscalls which contain a lot
of code, specially ones with do a lot of branching, are interesting to audit. It is
easy for a programmer to loose sight in all those code, which can lead to edge
cases that have not been unaccounted for.

5.3.2 I/O Kit

Both OS X and iOS only run on specific hardware. This makes that many
drivers are shared among different Apple hardware revisions. Drivers are usually
written for the I/O Kit framework in the embedded C++ language. Most drivers
are closed source, so the attacker is bound to reverse engineering or fuzzing.
Besides looking for C++ specific vulnerabilities, I/O Kit also offers multiple
ways drivers can communicate with user space applications. Either to set driver
specific options, but also to allow helper applications in user space. I/O Kit in
the context of security was previously discussed by Van Sprundel[35] and Miller
et al.[25]. Because I/O Kit drivers are not as deeply audited as the open source
components of XNU there are still a lot of vulnerabilities there.

41

5.3.3 ioctl calls

The ioctl call is a special syscall, as its implementation reaches out to many
different kernel components. Being an abbreviation of input/output control,
ioctl() is a single syscall used for setting or retrieving control variables of
devices or components in kernel space. For example a call to ioctl() could be
used to eject a DVD drive or add a rule in the packet filtering chain.

Many ioctl calls require moving data from and to kernel space and because
so much functionality is added into a single syscall it is error prone, examples
are CVE-2009-1235 and CVE-2012-3728. The ioctl() system works by calling
the fo_ioctl function pointer in fileproc->fg_ops->fo_ioctl, defined in
bsd/sys/file_internal.h. Each device has its own method responsible for
handling the ioctl calls, for example the TTY driver defines ttioctl() as his
ioctl method in bsd/kern/tty.c.

5.3.4 File systems

File systems are complex data structures which usually contain many header
fields, header fields with variable sizes and pointers to other data structures.
Because file systems are complex but have a fixed data structure, they can
automatically be tested by using fuzzing. Creating a valid image of a supported
file system and start flipping bits until the kernel crashes is proven to be an
effective technique.

A good example of fuzzing is CVE-2012-0642, which is a vulnerability found in
the XNU kernel by mounting a corrupted HFS+ image. The vulnerability was
found by fuzzing the HFS+ file system by automatically flipping bits in a valid
HFS+ image. This eventually led to an image that would consistently crash the
kernel.

5.4 Conclusion

There are great differences between targeting XNU on OS X and iOS. Not only
the reasons for targeting the XNU kernel differ, but also the attack strategy.
Code signing and sandboxing should be taken into account under iOS, where
on OS X the attack surface is limited to that of an unprivileged user.

The next chapter will focus on the exploitation techniques an attacker can use
after he or she has found a vulnerability. This chapter describes the steps re-
quired for bypassing the different mitigation techniques, as well as some specific
techniques an attacker can use to gain arbitrary code execution.

42

6
Exploitation

6.1 Introduction

Chapter 3 and 4 described the different mitigation techniques used by XNU
to protect itself as well as the entire operating system against attackers. The
XNU kernel features many of those techniques, such as stack canaries and kernel
ASLR. But as already stated in those chapters, they can never fully protect the
system against an attack. In this chapter we look how an attacker might bypass
the mitigation techniques.

In the first section we will show the general steps an attacker might take to
bypass the mitigation techniques. In section 6.3 we propose steps an attacker
can take to exploit heap vulnerabilities and how an attacker would go from code
execution to root privileges.

Based on this chapter we make recommendations on improving the current
protection mechanisms. This will be done in Chapter 8, where we discuss the
security of XNU.

6.2 Bypassing the mitigation techniques

6.2.1 Kernel ALSR

The need to bypass kernel ALSR can have multiple reasons. Perhaps the at-
tacker needs absolute addresses for his vulnerability, or he needs to find a func-
tion or data structure in memory. In order to bypass kernel ASLR the attacker
will either need to leak some kernel memory to determine the slide offsets (called
an information leak vulnerability), or be able to use a relative offset from his
current control point. We describe both methods.

Information leaks

Sources that can leak information about the memory layout are for example log
messages and syscalls. The kernel log messages end up in /var/log/system.log

which is readable for users in the admin group. In listing 17 we show that kernel
addresses do end up in the log file. If an attacker can determine the base address
for one of those addresses, he or she can calculate the slide offset. This attack
only works if the attacker is already a member of the admin group. Listing 17

43

also shows that %p (used to print pointer addresses) is still used in the XNU
kernel.

$ grep kernel /var/log/system.log | \

grep -E "[[:xdigit:]]{16}" | wc -l

225

$ grep -R %p xnu-2050.18.24/ | grep -v panic | wc -l

953

Listing 17: leaking kernel addresses

The attacker can also find and use an information leak vulnerability. Three
examples are shown in listing 18, 19 and 20.

#include <stdio.h>

void secret() {

int secret = 0xdeadbeef;

}

void leak() {

int i;

// will print the secret 0xdeadbeef

printf("infoleak: 0x%x\n", i);

}

int main() {

secret();

leak();

return 0;

}

Listing 18: an example of an uninitialized variable

The leak() function of listing 18 forgets to set the i integer before it gets
printed. Because i has no defined value, i will hold whatever lies on the stack
at that moment. Before the leak() function gets called, the secret() function
gets executed. The secret() function will place one secret value onto the stack,
which happens to be on the same location as i will later be. This is a common
type of vulnerability, often seen in syscalls that return a struct to user space
where not all struct members get initialized. When looking for an information
leak, search for a syscall that returns a struct, which lacks a call to bzero() or
memset().

The bug in listing 19 is a type confusion bug. The printf() method expects
an integer, where the second argument is actually a pointer to an integer. This
will print the address of where i is stored in memory, rather than the value of
i. The bug in listing 20 let the attacker read arbitrary memory by choosing an
index outside the array boundary.

44

#include <stdio.h>

int main() {

int i = 0xdeadbeef;

int* j = &i;

printf("infoleak: 0x%x\n", j);

return 0;

}

Listing 19: type confusion example

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char** argv) {

int array[] = {1, 2, 3, 4, 5};

int i = atoi(argv[1]);

printf("info leak: 0x%x\n", array[i]);

return 0;

}

Listing 20: read anywhere example

Information leak vulnerabilities are valuable now that the kernel uses ASLR.
Before ASLR leaking kernel addresses was not considered harmful and no one
payed attention to this type of vulnerability. Many syscalls even returned kernel
addresses as part of their specification. For example the kextstat utility printed
the base address for all kernel extensions. With the release of kernel ASLR Apple
tried to close all known address leaks. In the case of kextstat this is done by
unsliding the address before returning, so no useful information leaks to the user.
However we expect to see a lot more patches for information leaks in the future.
The first information leak vulnerability is already a fact (CVE-2012-3749).

Using a relative offset

The attacker might be able to overwrite anything relative from his location to
gain control. An example is shown in listing 21. The attacker can overflow the
function pointer relative from its location, giving him control over the instruction
pointer. He or she can use this to point the instruction pointer to a mapped
memory page in user space for example.

Once the attacker has gained arbitrary code execution he or she can use the val-
ues stored in the CPU registers to leak the slide offset, for example by searching
for a return address on the kernel stack (which should be located on rbp + 0x8).
This address can be compared to the address in the kernel binary to calculate

45

$ cat example.c

#include <stdio.h>

void test() {

printf("hello!\n");

}

int main(int argc, char** argv) {

void (*funcptr)() = &test;

int list[1];

list[atoi(argv[1])] = atoi(argv[2]);

funcptr();

return 0;

}

$./example 0 0

hello!

$ gdb -q ./example

Reading symbols for shared libraries .. done

(gdb) r 1 1094795585

Starting program: /Users/user/example 1 1094795585

...

Reason: KERN_INVALID_ADDRESS at address: 0x0000000141414141

0x0000000141414141 in ?? ()

(gdb)

Listing 21: a relative overwrite

the slide offset. In section 6.3.2 we propose a method to find the proc struct in
memory using a relative offset.

6.2.2 Stack canaries

Stack canaries offer protection against basic stack smashing, where the attacker
would overwrite the stored instruction or frame pointer. The attacker cannot
brute force the cookie (which is a technique used in threaded user space applica-
tions), since the kernel will panic immediately. Turning a stack buffer overflow
into successful code execution is now limited to two options, described below.

The first method for exploiting a stack based buffer overflow is overwriting any
local variable on the stack, instead of the stored instruction pointer. As can be
seen in figure 6.1, overflowing the buffer would first overwrite a function pointer
before reaching the canary value. This attack depends on the local variables
that are located below the vulnerable buffer on the stack. There might be a
function pointer, or any other variable that, when altered, gives the attacker
new possibilities.

46

buffer

function
pointer

canary

stored rbp

stored rip

integer

Figure 6.1: overflowing buffer will give control over the function pointer

The second method is to first find an arbitrary read vulnerability, which allows
the attacker to first read the stack cookie so that the attacker can overwrite the
cookie with the right value. Since the second byte of the stack cookie is always
0, this technique will fail if the vulnerability is caused by a string function.

6.2.3 WˆX protection

We work on the assumption that the attacker is able to control the instruction
pointer in kernel space, by exploiting any vulnerability.

WˆX protection in user space is typically bypassed by using Return-Oriented
Programming (ROP). Because building a ROP stack is a difficult and time
consuming task, the exploit is often divided into multiple stages. The first ROP
stage is used to map a new page into kernel memory with write and execute
permissions, after which shellcode from a known location is copied into the new
page. Then execution is continued from the newly created page. This technique
requires only a few function calls using ROP.

Another option is to reroute execution to an already write and executable page
in memory. On OS X the attacker can map its own page with shellcode in user
space memory and reroute execution to user space. For iOS this technique is
probably not possible, since the attacker cannot map a new page due to the code
signing enforcement. This technique would only work on iOS if the attacker has
control over the JIT page of the Mobile Safari browser.

47

6.2.4 Code signing

Kernel exploits are typically complex and large in size. On iOS, where code
signing is always enabled, this can become a problem when exploiting a kernel
vulnerability. Strict code signing restrictions leave the attacker with no other
option than using ROP for his attack. Staging an entire kernel exploit using
only ROP gadgets might not be possible. Exploits that require branching and
looping are difficult to implement using only ROP gadgets.

If an attacker targets the iOS version of XNU, having a vulnerability that is
easy to trigger and can have a payload in an external data format can have
considerable advantages. An example is the jailbreak for iOS 5.0.1 which used a
vulnerability in the HFS+ file system format. Triggering this vulnerability was
done by a sequence of mount() and umount() calls using ROP. The mounted
images contained the payload for the exploit.

On OS X with Gatekeeper enabled the attacker could map a memory page with
rwx permissions inside another application by exploiting it. From here a normal
kernel exploit can be launched.

6.2.5 Sandboxing

Sandboxing can limit the syscalls an application is allowed to call. In such a
situation the attacker has two options, either break out of the sandbox or find
a vulnerability he or she can exploit from within the sandbox.

Breaking out of the sandbox can be done by taking over a process with more
privileges than the current process. This can for instance be done by drop-
ping a file that another process will read later or sending an IPC message to
a vulnerable service. On OS X and iOS all applications have access to the
Mach Bootstrap port, which is used as a lookup service for other Mach RPC
services. There are more than 140 RPC servers providing various services such
as a pastebord. All services are accessible for every applications. The attacker
could exploit one of those services that has a less strict sandbox.

Some vulnerabilities can be exploited without the need to break out of the
sandbox. This can be because the vulnerability is in a syscall that is allowed in
the current sandbox profile, or access to the syscall cannot be restricted by the
sandbox. Each syscall has to explicitly call the MAC framework by calling the
MAC_CHECK() macro, which some syscalls neglect. An example is the ptrace()

syscall. A sandboxed process that runs as root, was allowed to ptrace another
non sandboxed root process.

The sandbox implementation is effective in reducing the attack surface. How-
ever its effectiveness depends entirely on the sandbox profile thats being used,
which has to be as strict as possible. Our Pwn2Own submission illustrates this:
a single WebKit vulnerability was sufficient to extract near all personal infor-
mation from the device (photo, video’s, browsing history and the address book).
To be effective, the sandbox profile needs to prohibit all access to disk, network
and syscalls that are not required by the application.

48

6.3 Exploitation

6.3.1 Attacking the zone allocator

Debugging the zone allocator

Sometimes the origin of a heap corruption is uknown, for example if the attacker
used fuzzing to find the vulnerability. The first step in exploitation is to find
the origin of the corrupted allocation. The XNU kernel has two mechanisms to
debug the zone allocator, which can lead to the origin of a corruption. The mech-
anisms can be enabled by setting a boot argument: sudo nvram boot-args="".

Adding the boot parameter -zp will poison (fill) each zone element with the
magic marker 0xdeadbeef when it is freed. When printing the free elements,
the corrupted zone element can be detected by having an corrupt magic marker.
This method will not show the allocation who was responsible for the corruption,
but does show in which block the corruption takes place. It can be that the
previous block has overflown, or that there was still a reference to the freed
block (a use-after-free situation).

The zone allocator also support zone corruption logging, which is enabled by
the boot parameter -zc. The -zc parameter should be combined with the
zlog=<zone_name> parameter. Zone corruption logging will keep a back trace
of all allocation and deallocations in the specified zone. The macro script for
gdb, which is included in the kernel debugging kit, can be used for printing
the logged information. Such as zstack for showing the zone call stack and
showzalloc for a list of allocations in the zalloc table. Use help kgm for a
list of all available commands.

Heap Feng Shui

In a typical heap buffer overflow the attacker can overflow a buffer stored on the
heap into an adjacent heap block. To do anything more than just crashing the
kernel, the attack needs to be able to control which data will lie in the adjacent
block. Normally the adjacent block is difficult to predict, since the heap gets
fragmented after a while. Therefore the attacker needs a method which will
increase hiss odds on successfully predicting the next allocation. A common
used technique for controlling the contents of the adjacent block is Heap Feng
Shui presented by Sotirov[33]. While his work covered the heap allocator used
by Internet Explorer, we show that the techniques can also be applied to the
zone allocator, due to its deterministic allocation algorithm.

Figure 6.2 shows the involved steps for a successful Heap Feng Shui attack in
the zone allocator, with the description below:

1. The initial state. Over time the zone has been fragmented. The attacker
has no information on where the free blocks lie in the zone, nor which
block is on the top of the free list.

2. The attacker first has to fill the zone with allocations. It is important that
these allocations will end up in the same zone as the zone of the vulnerable

49

allocated
element

free
element overflow target

1

2

3

4

5

6

7

Figure 6.2: Heap Feng Shui illustrated

allocation. Since zones are shared between kernel threads, using a quiet
zone is recommended if the vulnerability allows this. Picking a quit zone
will reduce the risk of interference of other threads.

For example an exploit for CVE-2012-0642 (a HFS+ vulnerability) used a
HFS+ image with a block size of 512 bytes, instead of the default of 4096
bytes. The 512 bytes zone is much quieter than the 4096 bytes zone since
this one is also used by other file systems on the system.

3. After the zone is filled with allocations under control of the attacker,
the next step is to punch a hole in the zone by freeing one of the later
allocations. The later allocations will be more likely to be adjacent to
each other, as fragmentation is more likely to occur at the beginning of
the zone.

4. A second block is freed, which was allocated right after the block of the
previous step. This will give two free blocks that are adjacent to each
other. This block will form the top of the free list.

5. The target block is allocated. This block will hold something valuable to
overflow in, such as a function pointer.

50

6. The following allocation will be right before the target block. This allo-
cation will hold the element that will overflow.

7. The final step. The attacker triggers his vulnerability, overflowing in the
adjacent block holding the target element.

(Ab)using the next pointer

Besides overflowing in an adjacent allocated block, the attacker could also over-
write the next pointer of an free block. This will give the attacker control over
a pointer that is returned by zalloc(). The zalloc() function will pick the
current head of the free list, which is the address of an free block in the zone.
From this free block zalloc() will read the first 4 or 8 bytes (depending on
the architecture), which holds a pointer to the next free block. The old head of
the free list is returned, and the pointer that was just retrieved from the free
block is the new head of the free list. If the attacker can control a next pointer,
this pointer will be returned by zalloc() at some point. The calling function
will start writing data to this location. The attacker should make sure that he
controls the data that is written.

If the attacker is able to both overwrite the next pointer and controls the data
that is written to the corrupted block, he can write to arbitrary memory loca-
tion. Because the next pointer is an absolute address, precise knowledge of the
memory layout is needed, meaning the attacker needs to bypass ASLR before
this attack.

6.3.2 The post-exploitation step

An attacker that targets the kernel has a certain goal in mind. This goal might
vary depending on the platform. For OS X this might be gaining root privileges,
where for iOS it might be to disable the security restrictions. After the attacker
has a stable exploit, he needs to patch relevant kernel memory to achieve his
goal. We call this the post-exploitation step. In the following section we propose
a way the attacker can elevate his privileges and briefly describe the technique
used by jailbreakers.

OS X

On OS X an attacker would target the kernel to gain root privileges. If the
attacker manages to successfully stage his attack to the point he has full control
over the program flow, the next step would be to locate the ucred struct for
the current process.

The ucred struct holds the user ID, changing the user ID for the current process
to 0 will give it root privileges. The ucred struct is embedded in the proc struct
of the current process. The attacker will first need to find his current proc struct
in memory.

51

When a new process is created, for example by the fork() or vfork() syscall,
the cloneproc() routine is called (defined in bsd/kern/kern_fork.c) for the
actual process creation. The cloneproc() routine will first call forkproc(),
who is in charge of creating the new proc struct (but not create the actual pro-
cess). The proc struct gets stored in a zone which is created by MALLOC_ZONE().
After forkproc() is done, cloneproc() will call fork_create_child(), who
will create a Mach task and thread for the new process. The newly created
task and thread struct will be stored in the task_zone and thread_zone re-
spectively.

All structs that are directly relevant to the attacker are placed in a specific zone
of the zone allocator. The memory offsets of the allocations are unknown to the
attacker due to both ASLR and the fragmentation of the zone.

To find its proc struct the attacker could use a BSD sycall, as each BSD syscall
receives a pointer to the proc struct of the calling process as its first argument.
This means that if a BSD syscall is used, a pointer to the current proc struct
will be somewhere on the kernel’s process stack. The offset from a CPU register
pointing to the stack, and the location of the pointer to the proc struct will be
a fixed value and can thus be used. An example is shown in listing 22.

; obtain the proc struct (first argument)

mov rcx, [rbp + 0x10]

; obtain the ucred struct

mov rax, [rcx + 0x64]

; set cr_uid

mov [rax + 0x8], 0

Listing 22: setting uid to 0

iOS

On iOS the attacker wants to disable the code signing enforcements in the
kernel. This can be done by patching pieces of the source code in memory to
remove the checks that are done regarding the signatures. Before the attacker
can overwrite the code section he first needs to add write permissions to the
memory page by for example calling vm_protect(). To be able to patch kernel
memory the attacker needs to be able to write to arbitrary places in memory.

In the previous jailbreaks the attackers would use an write primitive to patch
the sysent table to add an additional syscall. Calling the syscall from user
space would trigger the payload, which patched the necessary kernel routines.
The patches that are needed for a jailbreak are described by Miller at al.[25].

6.4 Conclusion

In this chapter we showed how an attacker might bypass the active mitigation
techniques. Based on this knowledge we form our recommendations on further

52

hardening the kernel. As we have shown, depending on the situation, the mit-
igation techniques can be bypassed by an attacker. Mitigation techniques that
can fully eliminate a certain vulnerability class is rare. An example in XNU
is NULL pointer dereference protection, which completely mitigates the risk of
exploitation for this vulnerability class.

We proposed concrete ways to determine the slide offset, attacks against the
zone allocator and ways to locate the proc struct in memory.

This was the final chapter about the security of XNU. We discussed the archi-
tecture of XNU and its mitigation techniques. In this chapter we described the
steps an attacker might take to attack the kernel. The next chapter we will
compare the XNU kernel with other kernels and the mitigation techniques they
implement.

53

Part IV

Evaluation and comparison

54

7
Comparison

7.1 Introduction

In the previous chapters we looked at the implementation of security features in
the XNU kernel. We stated that the XNU kernel has effective hardening features
such as kernel ASLR and WˆX protection, which require a higher skilled attacker
to bypass. In this chapter we compare XNU with other kernels in the context of
security, to compare the effort Apple has invested into kernel hardening but also
to see if there are other hardening techniques from which XNU could benefit.

For the comparison three kernels were chosen: the FreeBSD, Windows an Linux
kernel. The FreeBSD kernel because a large portion of the XNU kernel was
originally build from FreeBSD kernel code. Hardening techniques in todays
FreeBSD version might be easy to adapt and implement in the XNU kernel or
the other way around. XNU has benefit from FreeBSD hardening projects in
the past, for example the TrustedBSD project, which is used for code signing
and sandboxing in XNU, was originally started as a FreeBSD hardening project.

The second kernel we compare XNU to is the Windows kernel. Windows is
Apple’s largest competitor on the desktop market where it also has the highest
market share. Windows and OS X have a completely different architecture as
Windows does not follow the UNIX philosophy. However, most exploitation
techniques are used across different platforms (such as ROP for example). Mi-
crosoft was forced to improve the overall security of their operating system as
they are frequently targeted by malware, this has resulted in a secure operat-
ing system. XNU could benefit from the hardening techniques developed by
Microsoft.

Lastly we compare XNU with the Linux kernel. The Linux kernel is, apart from
the different desktop distributions, used to power the Android operating system,
the biggest player in the mobile device market. Linux is based on the UNIX
operating system, which makes that it has a lot in common with the FreeBSD
and XNU kernel, although they don’t share a code base.

For the comparison we look at the implemented protection mechanisms for each
kernel. Do they use the same techniques as XNU, such as stack canaries and ker-
nel ASLR, or do they also use additional techniques and could they be relevant
for XNU.

55

7.2 FreeBSD

The development of the FreeBSD operating system started in 1993 as a fork
of 386BSD. The operating system rapidly gained success, especially under hi-
traffic websites such as Yahoo! and Hotmail. Version 2.0 featured the virtual
memory system from Mach, which is also used in XNU. The latest release at
the time of writing is version 9.0 with version 9.1 awaiting its release.

7.2.1 Memory protection

System hardening is no priority for FreeBSD. Not only does FreeBSD has limited
kernel protection mechanisms, but also user space is missing many protection
mechanisms that are common on other operating systems for years. For ex-
ample, user space applications have an executable stack, because it must hold
trampoline code for calling and returning from a signal handler (this is fixed in
the yet to be released version 9.1). Currently there is no ASLR implementation
and all applications outside the base system are compiled without GCC’s stack
protector. The lack of hardening techniques led to the implementation of cus-
tom patches by FreeBSD users, but they are yet to be merged with the main
source tree.

User space is missing most of the memory protection mechanisms that we find
common on other operating systems, and the same is true for the kernel. Until
the release of FreeBSD 8 (in 2009), the kernel had no hardening techniques that
should protect memory from corruption. With the release of FreeBSD 8 stack
and NULL pointer dereference protection was added.

The FreeBSD kernel is compiled using the GCC compiler (although effort is be-
ing made to switch to the Clang compiler instead), which comes with ProPolice
for stack smashing detection. ProPolice will protect all stored CPU registers
(such as the stored instruction and base pointer) by placing a canary value be-
tween local variables and stored CPU registers on the stack. The canary value
is generated by using arc4rand() (libkern/arc4random.c), which is called by
__stack_chk_init() in kern/stack_protector.c. It will generate an 8 byte
random number by using the tick counter as seeding value. The canary value
does not necessarily contain a 0 byte (except when the random function will
generate a 0 byte). ProPolice will also try to reshuffle variables on the stack,
such that arrays will be located on higher addresses than local variables of an-
other type. This should prevent the possibility of overwriting important local
variables with an stack based overflow.

The risk of NULL pointer dereferences is mitigated by disallowing the mapping
of the first page of memory. It is enabled by default, but can be disabled at will
by setting the security.bsd.map_at_zero sysctl value.

7.2.2 Advanced mitigation techniques

For hardening the overall system security, a system administrator can enable
FreeBSD’s secure level. Secure level does not protect against memory corruption

56

but restricts some of the core components when set. The secure level is disabled
by default, but can be assigned a number between -1 (disabled) and 3 (the
most strict). The restrictions that apply are (taken from the security(7) man
page):

-1. Permanently insecure mode - always run the system in insecure mode.
This is the default initial value.

0. Insecure mode - immutable and append-only flags may be turned off. All
devices may be read or written subject to their permissions.

1. Secure mode - the system immutable and system append-only flags may
not be turned off; disks for mounted file systems, /dev/mem and /dev/kmem

may not be opened for writing; /dev/io (if your platform has it) may not be
opened at all; kernel modules (see kld(4)) may not be loaded or unloaded.

2. Highly secure mode - same as secure mode, plus disks may not be opened
for writing (except by mount(2)) whether mounted or not. This level pre-
cludes tampering with file systems by unmounting them, but also inhibits
running newfs(8) while the system is multi-user.

In addition, kernel time changes are restricted to less than or equal to
one second. Attempts to change the time by more than this will log the
message “Time adjustment clamped to +1 second”.

3. Network secure mode - same as highly secure mode, plus IP packet filter
rules (see ipfw(8), ipfirewall(4) and pfctl(8)) cannot be changed
and dummynet(4) or pf(4) configuration cannot be adjusted.

Enabling secure level goes by setting the sysctl kern.securelevel value. The
security level cannot be altered by the root user without rebooting in single
user mode, and since loading kernel extensions is disabled after setting, a kernel
exploit is needed when an attacker needs to lower the security level on a remote
system.

An external project which tries to improve FreeBSD’s security is the TrustedBSD
project1. the TrustedBSD MAC framework is used for code signing and sand-
boxing in XNU, but was originally developed for FreeBSD. TrustedBSD is an on-
going effort to bring advanced security modules to FreeBSD. Not all TrustedBSD
patches are adopted by the FreeBSD kernel, but most patches will find their way
to the main source tree. Examples are the SYN cookies, GEOM and the security
audit system.

With the release of FreeBSD 9.0 (in 2012) experimental support for the Cap-
sicum framework2 was added. The Capsicum framework is a sandbox framework
developed by the University of Cambridge and supported by Google. The Cap-
sicum framework is capable to limit access rights of a process, such as syscalls,
similar to that of XNU.

FreeBSD has, with secure level, TrustedBSD and the Capsicum framework some
interesting hardening techniques. Though they are not meant to protect the
kernel, but rather the system as a whole. If we focus on memory protection

1trustedbsd.org
2cl.cam.ac.uk/research/security/capsicum

57

http://trustedbsd.org
http://www.cl.cam.ac.uk/research/security/capsicum/

we have to conclude that FreeBSD is missing many of the techniques that are
standard today.

7.2.3 Security research

FreeBSD is a small player compared to the other operating systems. It is mostly
used to power servers, where it seems to loose market share to Linux based
system. It is not used in any popular mobile operating system. Its small user
base has its effect on the level of security research. The FreeBSD kernel has a
low number of vulnerability reports, with only a couple of advisories each year.
Documentation about the FreeBSD in the context of security is outdated.

However there are some community projects that try to improve the level of
security the FreeBSD kernel has to offer. The TrustedBSD and Capsicum
frameworks are examples of this. By sandboxing all high risk applications (ap-
plications that listen on an external interface for example) the system is well
protected against most attackers, despite the lack of memory protection mech-
anisms.

7.3 Linux

Linux is an open source clone of the UNIX kernel. Strictly speaking Linux is
only the kernel, though the term Linux is often used to refer to a complete
operating system. The Linux kernel is ported to many different platforms, with
currently supporting eighteen different architectures. At the time of writing
the current stable release is 3.6, though most distributions will run on an older
release.

7.3.1 Memory protection

The Linux kernel shares its virtual address space with a user process, just as
the newer OS X releases. Sharing the address space with user space processes
enables a commonly used exploitation technique, where the attacker would use a
kernel vulnerability to let the the program counter point to user space memory,
continuing execution with kernel privileges from attacker controlled memory.
Intel has implemented a CPU feature called Supervisor Mode Execution Pro-
tection (SMEP)3, which eliminates this technique by preventing the execution
of kernel code from use space memory. The Linux kernel supports this new
feature, which means the attacker has to find a way to copy its shellcode into
kernel space in an executable page, or use ROP instead[30].

The kernel map is protected by WˆX, which protects the execution from code
on the stack and heap, as well as the alteration of important structs and kernel
code. The NX feature is enabled if it is supported by the CPU, otherwise a
software NX implementation is used. To defeat a system with both SMEP and
WˆX enabled the attacker could use a newly described technique which uses

3intel.com/idf/library/pdf/sf 2011/SF11 SPCS005 101F.pdf

58

http://www.intel.com/idf/library/pdf/sf_2011/SF11_SPCS005_101F.pdf

the JIT compiler feature of the Berkeley Packet Filter (BFP), as described by
K. McAllister[24]. Filters of the BFP run inside a virtual machine in kernel
space, for performance reasons. User space applications can supply their own
filter which will get executed, making that the attacker can use traditional JIT
spraying techniques[8] to gain code execution without the need for ROP.

Stored CPU registers on the stack are protected by GCC’s stack protector,
which also shuffles variables to protect local variables. The stack canary is
generated during boot which is architecture specific. For ARM processors (the
main architecture for Android), the canary is generated in arch/arm/include/

asm/stackprotector.h. It will generate a 4 byte canary, with no 0 bytes. The
random entropy is proved by various sources (such as network packets).

Kernel heap allocations are handled by the SLUB allocator, which is a descen-
dant of the SLAB allocator. Currently the SLUB allocator offers no decent
protection against attackers. The SLUB allocator had an inbound free list, like
XNU’s zone allocator which can be tampered with by an attacker. The free
list is not protected by for example a canary value. Furthermore there is no
protection for overflowing in adjacent allocated blocks.

NULL pointer dereference vulnerabilities are mitigated by disallowing allocations
of the first 64 KB of memory. This value is controlled by the vm.mmap_min_addr
sysctl, and can be changed by an administrative user to a higher value (or
lower, but this is highly discouraged).

7.3.2 Advanced mitigation techniques

The Linux kernel has an extension mechanisms called Linux Security Modules
(LSM)[40], which allows a module to hook into important kernel event where
user data might influence important internal kernel structures. Linux Security
Modules act as an access control mechanisms in these situations. Examples of
LSM modules are SELinux and AppArmor, which implement a sandbox model
for applications.

Some security frameworks decide to patch the kernel instead of using the LSM
framework. This might be necessary when the LSM framework does not support
all the required features. The grsecurity project4 is an example of this. The
grsecurity project tries to harden the overall security by applying patches to the
Linux kernel. For example, grsecurity restricts access to the proc file system,
which is otherwise used by attackers to gain information about the memory lay-
out for example. But also various kernel hardening techniques are implemented,
such as kernel stack ASLR.

Which protection mechanisms are enabled, depends greatly on the chosen Linux
distribution. Some distribution ship an older version of the kernel, which has
less available security features, where other distributions might choose to disable
them for various reasons. The Ubuntu Linux distribution has a special website
dedicated to kernel security and all hardening techniques they support5.

4grsecurity.net
5wiki.ubuntu.com/Security/Features

59

http://grsecurity.net
https://wiki.ubuntu.com/Security/Features

7.3.3 Research

The Linux kernel is a true open source development project, which gives users
full read access to the latest development tree. There is an active community in-
vestigating the security of the Linux kernel. This research has not only resolved
vulnerabilities, but has also brought some new mitigation techniques, such as
the grsecurity project from the previous section.

Others have presented their work on bypassing the mitigation techniques in
the Linux kernel. So is the article by K. McAllister[24] an investigation on
bypassing SMEP and WˆX. D. Rosenberg gave numerous presentations about
the security of the Linux kernel, for example on the topic of exploiting the SLOB
allocator[31] and how to bypass the restrictions posed by grsecurity[32].

7.4 Windows

The first version of Windows was released in 1985, as an add-on for Microsoft’s
MS-DOS operating system. It soon became the largest operating system on the
desktop market. At the time of writing Windows 8 has just been released. Due
to the high market share Windows is a beloved target of malware writers. This
has led to the implementation of many mitigation techniques in the Windows
operating system, both in user space as well as in kernel space.

7.4.1 Memory protection

Visual Studio comes with a stack protection features called /GS, which is not
only enabled for user space but also for the kernel. Windows 8 is build using
Visual Studio 2010, which brings several enhancements to the old /GS imple-
mentation. A random canary is generated and for the 64-bits kernel the most
significant two bytes will be set to NULL to stop the various string functions.
Local variables are reordered and the compiler inserts automatic array bound
checks to completely mitigate certain vulnerabilities. The compiler will try to
detect the use of insecure copy functions, and replace them with copy functions
that do bounds checking.

The kernel pool is the heap allocator used in the Windows kernel. It stores meta
data inbound, and thus vulnerable for tampering. The kernel pool implemen-
tation is discussed in depth by others[22][28][5]. With the release of Windows 7
and 8 Microsoft tries to protect the integrity of the inbound stored meta data.
Pointers are now protected by canaries, similar to stack canaries. Furthermore
pointers are verified to be located inside the heaps memory map and some in-
bound stored meta information is moved to a look-a-side buffer. This has led
to a much more secure heap implementation in Windows 8. The design of the
kernel pool differs greatly from that of the zone allocator, making it difficult to
compare the two. The kernel pool makes extensive use of canaries to protect
against attackers. Though the kernel pool is still vulnerable to some attacks as
shown by Mandt[1].

60

All memory pages of the Windows kernel are protected by WˆX. Windows
refuses to install on machine’s without support for hardware NX (which is a
CPU feature). Just as in XNU, the Windows kernel shares its virtual memory
space with user space processes. To make jumping to user space from kernel
context (to circumvent WˆX) impossible, support for Intel’s SMEP architecture
was added.

Just as XNU, the Windows kernel uses ASLR. Under Windows 7 the entropy
for ASLR was 5 bits. Under Windows 8 this has been increased to 22 bits of
entropy obtained by the rdrand instruction when possible. Windows 8 also fixes
some known information leaks in various syscalls, so attackers have to find new
ways of leaking kernel memory to defeat ASLR.

NULL pointer dereference vulnerabilities are now also mitigated by prohibiting
the mapping of the first memory page. This is similar to the mitigation found
in other operating systems.

7.4.2 Advanced mitigation techniques

When looking at the more advanced mitigation techniques we see support for
several techniques that try to keep the integrity of the kernel, with support for
UEFI’s secure boot option, driver code signing and patch protection.

The secure boot option is similar to that of iOS. The UEFI is shipped with a list
of accepted signing keys and checks the boot loaders signature before handing
over the boot process. This should limit the risk of bootkits infecting machines.
Secure boot is a new technique which will have to prove itself. Unlike iOS a PC
can boot multiple operating systems, as a result there can be multiple signing
keys. To prevent attackers to use stolen signing keys, keys can be placed on a
revocation list. This revocation list however needs to be updated by the UEFI
on a regular basis, otherwise stolen keys can be used to boot an infected kernel.

After the kernel is loaded it only accepts signed kernel extension. For sign-
ing an extension a developer needs to request a code signing certificate from
an approved certificate authority. Developers with a valid certificate can sign
their own extensions, without approval from Microsoft. This enforcement has
led to attackers stealing valid signing certificates from hardware manufactures.
The Stuxnet virus for example used two stolen signing keys from RealTek and
JMicron to infect systems[12]. The code signing enforcement can be disabled
by an administrative user for testing purposes (which is not recommended for
production machines).

Kernel Patch Protection (KPP) should reduce the risk of rootkits compromising
a machine. It was first introduced in the x64 version of Windows XP. KPP
works by periodically check protected structs for tampering. Upon detection
the kernel will panic. Attackers who use a kernel exploit to gain administrative
access might have no problems with KPP, as it is meant to prevent rootkits. If
an attacker restores all his alteration to kernel memory after a successful exploit,
it might go unnoticed by KPP. To prevent attackers from simply disabling KPP
it is highly obfuscated and nested deeply into the roots of the kernel. An in
depth description of KPP was given by Gupta et al.[3].

61

7.4.3 Secure development practices

Microsoft has clear guidelines on secure development, which they call the Se-
curity Development Lifecycle (SDL). During the development of Windows 8
Microsoft used SDL on all development projects. SDL is a seven phase devel-
opment process which should reduce the number of vulnerabilities by making
security an integrated part in each step of the development process. The seven
phases in SDL are:

1. Training
Train developers about secure programming.

2. Requirements
Define the minimum security and privacy criteria, this includes a risk
assessment.

3. Design
Analyze the attack surface and threat model of the application. Design
the application with security in mind.

4. Implementation
Use static analysis to detect vulnerabilities before compilation. Only use
approved tools and deprecate unsafe functions.

5. Verification
Review the attack surface and perform automatic testing by using fuzzing
and dynamic analysis.

6. Release
Create an incident report plan and perform a final security review.

7. Response
Respond to reported vulnerabilities.

The Windows kernel was designed before the introduction of SDL, but some
steps can be done retroactively on older kernel code, such as static and dynamic
analysis. For new or refactored components of the kernel the SDL practices
apply. More information about SDL can be found on Microsoft’s website6

7.4.4 Research

Windows is entirely closed source, so enhancing the security by patches (such
as TrustedBSD on FreeBSD and grsecurity on Linux) is difficult. Furthermore
the signing requirements of kernel extensions and the implemented patch pro-
tection limits the possibility for security enthusiasts of implementing additional
hardening techniques. Hardening techniques are likely to be implemented in
user space under Windows, rather than in kernel space.

Examples of additional hardening techniques are the sandbox implementations
of Google Chrome7 and Sandboxie8. They both don’t rely on an additional

6microsoft.com/security/sdl
7dev.chromium.org/developers/design-documents/sandbox
8sandboxie.com

62

http://microsoft.com/security/sdl
http://dev.chromium.org/developers/design-documents/sandbox
http://sandboxie.com

kernel extension, but run entirely in user space.

The security of Windows is well researched. Numerous presentations cover the
topic of Windows kernel security[22][1]. Microsoft also informs the security
industry with information about new hardening techniques implemented in the
latest version of Windows[17].

7.5 Conclusion

Currently Windows has the most implemented mitigation techniques. But it is
not only the number of mitigation techniques that make that Windows stands
out from the rest. Microsoft has clear guidelines for secure developments which
include static and dynamic analysis of the source and making security an integral
part of the development process. Adding security at the end of a development
project is costly as it often requires refactoring of the code base. That security
has to be a part of the design process is something the security industry has
known for years, but is still being ignored in most development projects. Mi-
crosoft takes a stand by enforcing in house development projects to adopt their
SDL practices.

XNU Linux Windows FreeBSD
WˆX X X X -
Stack canaries X X X X
Heap protection X X1 X -
Kernel ASLR X - X -
NULL pointer protection X X X X
Patch protection - - X -
SMEP - X X -
Code signing X - X2 -
Sandboxing X X3 - X4

1 though it is more meant for detecting bugs than actual hardening
2 only for kernel extensions
3 by using AppArmor or SELinux
4 by using Capsicum or TrustedBSD

Table 7.1: comparison of protection mechanisms

A comparison of all mitigation techniques for each operating system is shown in
table 7.1. Windows has implemented most of the hardening features, whereas
FreeBSD has almost no mitigation techniques in its kernel (nor in user space
for that matter).

Comparing XNU to other kernels shows that XNU has most of the mitigation
techniques in place. It lacks SMEP support for OS X, which is a new technique.
It might be possible that Apple will add this feature in the future. Active
heap protection as Windows might be possible, but has a performance impact
that might prevent Apple from enabling it right now, where Microsoft chose
security over performance. As for patch protection, this might be a appropriate
technique for preventing the jailbreaking of iOS, as jailbreakers patch various

63

kernel routines to disable code signing. Patch protection will have its impact
on performance however, as kernel memory has to be inspected for evidence of
tampering on a regular basis.

Following a clear set of guidelines for secure development may be the most
beneficial for XNU. Microsoft SDL practices include fuzz testing for example,
which can prevent a lot of security vulnerabilities to be found by outsiders. The
kernel often operates on large data sets, such as file systems, which would be
ideal for fuzz testing.

64

8
Conclusion and discussion

8.1 Introduction

We presented the current security state of XNU, which protection mechanisms
are in place and how they are implemented. We see that Apple started with
adding hardening features to XNU in the later version of their operating systems.
Looking at the industry we see a trend in the interest in iOS security. Since 2011
numerous talks about iOS security were given at the various security conferences,
not only covering XNU but the entire iOS operating system. The same trend we
see in public XNU exploits, which for the past few years all require root privileges
for triggering, meaning they are only of interest for attackers targeting iOS. It
might be that jailbreaking is the reason Apple started to harden the XNU kernel.

For OS X we see no such trend, nor in OS X security in general. Except
for the Flashback malware outbreak in April 2012. Flashback infected over
550,000 machines[39], by exploiting a vulnerability in the Java Applet plugin.
The vulnerability was patched by Oracle in February 2012. Apple, until then,
distributed its own version of Java, which was not patched until after the out-
break. Flashback did not use any privileged escalation vulnerability, and thus
other users on the same system were not infected. We are unaware of any recent
research on local exploitation of OS X.

In section 1.4.2 we presented our four research questions. We start this chapter
with answering those questions. Or opinion on the security of XNU is left for
the discussion in section 8.3.

8.2 Research questions

1. What security mechanisms are currently implemented and how
effective are they against exploitation?

Both the iOS and OS X version of XNU come with kernel ASLR, WˆX pro-
tection, stack cookies, NULL pointer dereference protection and limited heap
protection. Those techniques try to prevent successful exploitation by either
detect memory corruption before the attacker could gain control (stack cookies
and heap protection are an example of this), or by making the process from
control to code execution difficult (examples are kernel ASLR and WˆX protec-
tion). These techniques do not try to close existing vulnerabilities, but rather
to make exploiting them harder or impossible.

65

code execution

ASLR

overwriting
stored CPU

registers
overwriting local

variables
overflow heap

meta data
overflow

allocated heap
block

arbitrary write

stack cookies

heap protection

use after free

W^X

Figure 8.1: protection mechanisms and the bugs they try to prevent

Figure 8.1 gives an overview of the most common type of attacks and the pro-
tection mechanisms that have to be bypassed in order to gain arbitrary code
execution. As can be seen, half of the attacks are only mitigated by ASLR
and WˆX protection. The memory protection mechanisms in todays version
of XNU will not stop a motivated attacker, though in some situations multi-
ple vulnerabilities might have to be chained together to bypass all mitigation
techniques.

The stored CPU registers on the stack are protected by a random canary value.
Stack canaries can prevent a stack based vulnerability from being exploitable
and thus is an effective mechanisms. This has manifested in more heap based
exploits if we look at the recently used kernel exploits in the jailbreak scene.
If the attacker is unable to overwrite a local variable that gives control, the
stack canary protection can only be bypassed if the attacker is able to read
and write the canary value. This requires both a read vulnerability and a stack
vulnerability which does not include a string function (since the canary value
will always contain a 0 byte).

The zone allocator uses an inbound free list. To protect the free block from
tampering a poison value is added to a free block, and occasionally a copy
of the next pointer is added to the end of a block. The effectiveness of heap
protection depends on the freedom a vulnerability gives to the attacker. A free
block is now filled with a magic marker, and an optional safe copy of the next
pointer at the end of a block. The attacker must be able to write those values.
Though the attacker will in most situation be able to exploit the vulnerability
in some other way, for example by overwriting an allocated block instead of
altering the next pointer of a non allocated block.

The ASLR implementation is new and only effective if the attacker can not ob-

66

tain any information about the current memory layout of the kernel. Because
this is a new feature and the leaking of kernel addresses was no issue before this
feature (some syscalls even returned kernel addresses as part of their specifica-
tions), the kernel will still leak addresses on many places. Apple already tried
to patch all known leaks by obfuscating pointers returned by the kernel, but the
first CVE (CVE-2012-3749) for an information leak in XNU is already a fact.

XNU sets strict permissions on memory pages to prohibit tampering and ex-
ecution from pages that control user data, called WˆX protection. To bypass
WˆX the attacker can fall back to a traditional ROP exploit in kernel space or
reroute the execution to a user space memory page which is under control of
the attacker. We see no situation in which WˆX would prevent a vulnerability
from being exploitable. It does require a more sophisticated exploit from the
attacker.

IOS has a strict code signing enforcement. On OS X code signing can also
be enabled, but is less strict than the iOS version. By enforcing code signing
the attacker cannot introduce new code, such as a kernel exploit. As a result a
kernel exploit needs to be staged using existing code from a signed binary (ROP).
Converting a kernel exploit to a ROP version takes time and the resulting exploit
is specific for a binary. Code signing is an effective measure for protecting both
the integrity of the system as well as protecting the kernel.

Sandboxing user space applications reduces the risk of an attacker compromising
an entire system remotely. Because the attacker is unable to read and write
arbitrary files, or to call arbitrary syscalls the attack surface of the system
is smaller. To be of the most effect all applications on a system should be
sandboxed as strict as possible. Sandboxing is an effective technique for both
hardening the kernel and the rest of the system.

A sandbox in only effective if the attacker is unable to obtain any useful infor-
mation from within the sandbox. For our Pwn2Own submission we exploited
the Mobile Safari browser and extracted all photo’s from the device. This could
be easily prevented by using a more strict sandbox profile.

2. How much protection does the XNU kernel offer when comparing
it to other kernels?

In Chapter 7 we made a comparison between the different hardening techniques
used by different kernels. The comparison showed that the XNU kernel has in-
vested more time in system hardening that its ancestor, the FreeBSD kernel. It
has more mitigation techniques than the Linux kernel and defeats the Windows
kernel with its build-in support for code signing and sandboxing. Though Win-
dows has more effective heap hardening, patch protection and follows a clear
set of secure development guidelines.

Looking at the memory protection techniques we conclude that XNU would
benefit from the heap hardening techniques that have been implemented in the
Windows kernel. Though the allocators are completely different, the implemen-
tation of canary values and pointer validation would help the zone allocator
against tampering by attackers. Kernel Patch Protection would help against

67

the jailbreaking of iOS. Here the kernel is patched in memory, something that
patch protection should protect against.

The XNU kernel has with code signing and sandboxing effective measures to
protect a system from tampering. Other kernels cannot provide a system with
this level of protection. The iOS operating system is hardened is such a way
that attackers need multiple vulnerabilities to be able to run custom binaries
on the device. This level of hardening makes that the risk of malware infection
can be neglected for iOS, something that is of growing concern on the Android
platform1.

If we look at OS X the story is different. OS X is an open platform, much
like Windows and Linux. If the user does not have Gatekeeper enabled the
attacker can install and run custom binaries. As we presented in Chapter 6,
the mitigation techniques can be bypassed by the attacker. In such a situation
the quality of the kernel is of a greater importance. The current design of the
XNU kernel has not changed since its first release. The micro kernel concept
was never actually realized and as a result the Mach and BSD component are
still both present in kernel space. Structs have pointers to similar structs in the
other component and functionality is implemented twice. This makes an error
prone design, regarding locking and overlapping functionality for example. This,
combined with the low level of security research on the XNU kernel before the
release of iOS, makes that the Windows and Linux kernel are better protected
against a direct attack in our opinion. The Windows and Linux kernel are well
researched and targeted. Furthermore their design is less prone to errors.

3. Which exploitation techniques can be used under XNU?

Apart from the added complexity due to concurrency and debug possibilities,
kernel exploits used to be less complex than user land exploits. For a long
time the mitigation techniques that were already common in user land did not
exist in kernel space. Addresses were equal across systems and reboots and
all memory pages were writable and executable for example. With the current
enabled protection mechanisms exploiting the XNU kernel is similar to that of
user space, as the protection mechanisms find their origin in user space.

Apart from NULL pointer dereference vulnerabilities, no vulnerability classes
have been closed by the current mitigation techniques. For all mitigation tech-
niques the attacker must met certain preconditions to bypass them, but gaining
arbitrary code execution is possible.

Depending on the target, the attacker might choose to concentrate on specific
parts of the kernel. Due to sandboxing a vulnerability that can be triggered
from within the sandbox would be preferred, as escaping the sandbox would
require at least one extra vulnerability. If code signing is enabled the attacker
would benefit from a vulnerability that can be triggered in a few lines. A
reference counter overflow vulnerability for example is not ideal on a platform
with mandatory code signing.

1blog.trendmicro.com/trendlabs-security-intelligence/infographic-behind-the-android-
menace-malicious-apps/

68

http://blog.trendmicro.com/trendlabs-security-intelligence/infographic-behind-the-android-menace-malicious-apps/
http://blog.trendmicro.com/trendlabs-security-intelligence/infographic-behind-the-android-menace-malicious-apps/

4. How can we harden the security of the XNU kernel?

As was shown in figure 8.1, some attack vectors are only protected by kernel
ALSR and WˆX. This could be improved by extending the implementation of
the current heap and stack protector. Performance is critical in kernel space,
something that was taken into account when we formed our recommendations.

The heap protector would benefit from pointer verification with random ca-
naries, which would prevent the attack scenario of an attacker overwriting the
next pointer. Listing 23 shows a possible implementation, with a random ca-
nary for each zone. For each allocation the two pointers are compared, to detect
tampering. Bypassing would require that the attacker is able to read the two
pointers, such that he or she can calculate the canary. Preferably the inbound
meta data would be removed from the zone and be placed in a look-a-side buffer.
This however requires more storage resources and introduces extra complexity
to the allocator.

static inline void

free_to_zone(zone_t zone, void *elem) {

...

elem[0] = zone->free_elements;

elem[1] = zone->free_elements ^ zone->canary;

...

}

static inline void

alloc_from_zone(zone_t zone, void **ret) {

...

if (elem[0] ^ zone->canary != elem[1]) {

panic("corrupted next pointer");

}

...

}

Listing 23: adding a canary value

Protecting the next pointer does not protect against the overflowing in an adja-
cent allocated block. This attack could be partially mitigated by the introduc-
tion of red zones between allocations, a shown in figure 8.2. A red zone could be
set to 0, which will break all string functions which can mitigate an attack. A
red zone is otherwise useful to stop off-by-one vulnerabilities, where the attacker
can overflow into the first byte of the adjacent heap block. Depending on the
content of the adjacent block, this might allow the attacker to de- or increment
an integer or control the lower byte of a pointer.

For heap exploitation precise knowledge of the heap layout is often required.
Depending on the vulnerability the attacker needs to know the contents of the
adjacent block or the block that is currently on the top of the freelist. The
current zone allocator has a deterministic algorithm for handing out free blocks.
The allocator can be forced in a predictable state using techniques as Heap Feng
Shui. This deterministic property could be altered in a random algorithm which

69

block block

Figure 8.2: a red zone between two allocations

would randomly select a free block upon request, as shown in figure 8.3. Handing
out free blocks at random would give the attacker no control over the free list.
The attacker might try to use more aggressive heap spraying to bypass this
mitigation, but this would increase the chance of a kernel panic.

1 2 3

12 3

allocated block free block top of freelist

Figure 8.3: random allocations inside a zone

The current stack protector adds a canary value to the stack, to protect stored
CPU registers from overwriting. Local variables are normally stored on the
stack in the order as they are defined in the source code. This gives the attacker
the possibility of overwriting local variables between the buffer and the canary.
GCC’s stack protector also shuffles local variables such that arrays are stored
below other types of local variables, as can be seen in figure 8.4. The compiler of
XNU does not reorder local variables at this time. Stack reordering is a compile
time option and has no performance impact.

For OS X, support for Intel’s SMEP feature could be added. By disallowing the
execution of ring 0 code from memory belonging to a higher ring, the attackers
are forced into using more complex techniques for gaining code execution.

By extending the security mechanisms as suggested the attack graph from figure
8.1 changes into that of figure 8.5. This graph takes the assumption the attacker
can trigger the vulnerability, and is thus not restricted by either code signing
or a sandbox.

Even if all suggested mitigation techniques were to be implemented, it would
be unable to withstand all attacks. Given an arbitrary read/write primitive for
example, the mitigation techniques cannot prevent an attacker from execution
arbitrary code. This illustrates the limitations of todays mitigation techniques.

To improve the security of the XNU kernel, and not just mitigate, Apple would

70

buffer

function
pointer

canary

stored rbp

stored rip

buffer

function
pointer

canary

stored rbp

stored rip

integerinteger

Figure 8.4: a non-reordered stack (left) and a reordered stack (right)

code execution

ASLR

overwriting
stored CPU

registers
overwriting local

variables
overflow heap

meta data
overflow

allocated heap
block

arbitrary write

stack protection

heap protection

use after free

W^X

Figure 8.5: situation with extra added protection mechanisms

benefit from a development process that includes security, such as Microsoft’s
SDL. The latest vulnerabilities in XNU are vulnerabilities that should have been
detected (by fuzzing or auditing). This gives the impression that Apple, at least
for now, does not maintain a secure development practice.

A final recommendation is the back porting of security fixes to older but still
sported releases. For example the vulnerability in listing 24 in _MALLOC() is
fixed in Mountain Lion since the first beta release (early 2012), but is still
present in the latest Lion release (released in September 2012). One can clearly
see the integer overflow in the calculation of memsize. This makes Mac OS X
Lion unnecessary vulnerable, which could be prevented by a single check. Under
OS X Mountain Lion the overflow is detected by checking if size > memsize,
after which NULL is returned.

71

bsd/kern/kern ;malloc.c

void *

_MALLOC(

size_t size,

int type,

int flags)

{

struct _mhead *hdr;

size_t memsize = sizeof (*hdr) + size;

...

if (flags & M_NOWAIT) {

hdr = (void *)kalloc_noblock(memsize);

} else {

hdr = (void *)kalloc(memsize);

...

Listing 24: an integer overflow in the calculation of memsize

A summary of the recommendations is listed below:

• Memory protection

– Improved heap protection:

∗ XOR a local copy of the next pointer with a canary value;

∗ introduce a red zone between zone blocks to protect against off-
by-one vulnerabilities and to stop string functions from overflow-
ing;

∗ return a random block on allocation, so that allocations are no
longer deterministic.

– Improved stack protection:

∗ reorder local variables, so that stack based buffer overflows are
less likely to be exploitable.

– Implement SMEP support on OS X to prevent execution of kernel
space code from a memory page in user space.

• Secure development practices

– Adopt a secure development practice that makes security part of the
design process and forces regular security tests.

– Back port security fixes to older but still supported versions.

72

8.3 Discussion

Our research shows that Apple is working hard on securing the XNU kernel
in the past few years, starting with the release of OS X Lion. Looking at the
threats of OS X and iOS it is most likely that Apple tries to protect iOS against
jailbreakers. OS X is rarely targeted by attackers and malware either uses social
engineering (by disguising themselves as an software update for example) or runs
under an unprivileged user account.

XNU is mostly targeted on iOS, where the attacker often already has root
privileges. This greatly increases the possible attack surface for the attacker, as
he or she is able to access all components of the kernel that are accessible from
user space. This attack scenario is different from all other operating systems
where the attacker is generally an unprivileged user, who is looking to elevate
his or her privileges. The iOS specific attack scenario means that Apple has
much more attack surface it has to protect. Code signing is only used since
iOS 2.0 (2008), meaning security researchers only just started investigating the
security of XNU from a fully privileged user point of view.

The XNU kernel of today still consists out of a separate Mach and BSD compo-
nent. The design philosophies behind these two kernels are the exact opposites
of each other, the one is a full fledged UNIX kernel with processes, terminals
and user ID’s where the other is a micro kernel using message passing and tasks.
Even today, after more then twenty years of development, the two kernels are
clearly distinguishable by looking at the source code. This has resulted in many
structs that hold pointers to structs used by the other kernel component, as well
as functionality that is implemented twice for each component.

Having two separate components in one address space that must heavily interact
is an error prone situation. Developers have to pay close attention to locking
and the creation and deletion of overlapping data structures for example. It is
easy to make a mistake, or having functionality that interferes with functionality
that is present in the other component.

As outsiders it is hard to tell if Apple enforces secure development practices of
some sort to its developers, but looking at the current state of the XNU kernel
we doubt that this is the case. The current state of XNU make it hard to enforce
secure design principles, as new features are required to adopt the design choices
of XNU, making a secure design for new features impossible.

We see the result in the list of public vulnerabilities, which are often vulnerabil-
ities that are easy to trigger and should normally be found and patched before
a public release. As an example we take CVE-2009-1235 in which the kernel
incorrectly treats a user provided pointer as a kernel pointer in the fnctl()

syscall, allowing an attacker to write to arbitrary memory. At the time of dis-
covery XNU did not share its virtual address space with user space (as they do
today), meaning the fnctl() syscall was never functional. This vulnerability
shows that Apple did not, or maybe still doesn’t, perform automatic testing on
the kernel.

A good example of logic bugs between the Mach and BSD component was pre-
sented by Nemo[26], who showed that the root user is able to abuse Mach Traps

73

to write arbitrary kernel memory. This operation is no direct security threat, as
the functionality was only accessible for the root user, who could otherwise load
a kernel extension with the same results, Though this trick interferes with the
secure level protection of the BSD component, which should bring the system
in a consistent state (by disallowing the mounting of file systems or the loading
of additional kernel extensions for example).

A problem every kernel (or software project) faces is the handling of old, obsolete
code. XNU is no exception, as shown by the iOS 5.0.1 jailbreak, which used
the obsolete (and non working) ptrace() functionality for a sandbox breakout.
The sandbox implementation requires that every syscall routine calls the MAC
framework, which some syscalls neglect, something that should have been caught
in the design stage.

In our opinion the current state of XNU would benefit from the refactoring of
the current design. To improve the overall security of the XNU kernel we would
recommend to phase out the Mach component of XNU and completely switch
to the BSD component, as this components contains most of the features and
is a monolithic kernel by design. Furthermore the XNU kernel would benefit
from a set of secure development principles, which would include performing
regular security tests to eliminate the vulnerabilities that attackers currently
use to attack XNU.

74

A
Toolchain

A.1 Introduction

For security research debugging an application is required to see the current
heap layout. This information cannot be obtained from static analysis of the
binary. Attaching a debugger at runtime is supported by XNU. We will describe
the setup in this chatper.

Large parts of XNU are distributed under an open source license. This is how-
ever only true for the OS X version of XNU, for now the iOS version of XNU
remains proprietary software. Most parts will be equal across both versions,
however there can be slight differences in implementation. Research on closed
source components is done by reverse engineering the binary. This chapter will
describe the tools that can be used.

The first part of this chapter will describe the steps required for creating a debug
environment for the OS X version of XNU. For this a virtual machine is used,
which can be controlled by the gdb debugger over Ethernet. The second part
of this chapter will focus on kernel research for the iOS version of XNU. This
section will discuss reverse engineering the kernel binary, as well as enabling
kernel debugging using an iPod.

A.2 OS X

The XNU kernels supports a kernel debugging protocol, which allows remote
debugging on a running kernel by connecting two Mac’s together. With the
upcome of different virtualization solutions it is no longer required to have two
OS X capable machine’s for this, a single OS X capable device with an OS
X virtual machine is sufficient. There are multiple applications that support
virtualizing OS X, such as VMware Fusion1 and Parallels Desktop2 (in our
environment VMware Fusion was unable to boot from a debug kernel however).
One machine (the virtual machine) is setup to run XNU in debug mode, the
host will then attach using Apple’s version of the gdb debugger. A schematic
overview of this setup is shown in figure A.1.

Since the kernel debugging protocol (KDP) uses UDP it should be able to find
the connecting gdb client. At such low level ARP resolution is unavailable so a

1vmware.com/products/fusion
2parallels.com/products/desktop

75

http://vmware.com/products/fusion
http://parallels.com/products/desktop

IP: 192.168.44.1
Mac: 00:50:56:c0:00:08

IP: 192.168.44.2
Mac: 00:0c:29:c9:cf:2b

GDB

Kernel in debug mode

Figure A.1: a remote debugging setup

static ARP entry at both sides is required for the machine’s to be able to find
each other. Next the kernel should be booted in debug mode, this is done by
placing a debug value in nvram. The process for enabling kernel debugging is
shown in listing 25. Both the boot-args value in nvram and the static ARP
entry will survive a reboot.

$ sudo arp -s 192.168.44.1 00:50:56:c0:00:08

$ sudo nvram boot-args="-v debug=0x1"

$ sudo reboot

Listing 25: enabling kernel debugging

To connect to the debug kernel we need to point gdb to the right host and start
the debug session. Apple maintains a kernel debugging kit which is available at
the developers download page (developer.apple.com/downloads) for registered
ADC members (free subscription required). Besides a kernel with debug symbols
this also contains a gdb script with useful debugging macros. The command
help kgm gives an overview of the available macros provided by the debugging
kit. The process of loading the debug macros and connecting to the debug
kernel is shown in listing 26.

In the setup above we set the debug value in nvram to 0x1, which will halt
execution at boot and wait for a debugger to attach. After a debugger is at-
tached and execution is continued there is no way to return to the debugging
session, since execution will never be halted. A possibility is to set a breakpoint
on a rarely used syscall (fileport_makeport() for example) and creating a
dummy program that will call this function. This will halt execution, allowing
the debugger to take control. Waiting on boot for a debugger to attach is the
only possibility when the debugging kernel runs inside a virtual machine. If a
physical Mac is used, setting the debug value to 0x4 is a better option. This
will allow a debugger to attach when a non maskable interrupt is raised (by

76

https://developer.apple.com/downloads

$ sudo arp -s 192.168.44.2 00:0c:29:c9:cf:2b

$ gdb -q /mach_kernel

(gdb) source kgmacros

(gdb) target remote-kdp

(gdb) attach 192.168.44.2

Kernel is located in memory at 0xffffff801e400000 with uuid \

of 8D5F8EF3-9D12-384B-8070-EF2A49C45D24

Kernel slid 0x1e200000 in memory.

Connected.

(gdb) break fileport_makeport

Breakpoint 1 at 0xffffff800054cf60

(gdb) continue

Listing 26: connecting to a remote kernel

pressing –). Virtualization applications are unable to send a non-maskable
interrupt at this time.

Kernel memory can also be made available for user space by enabling the /dev/

kmem device. This can be done by setting the kmem kernel flag in /Library/

Preferences/SystemConfiguration/com.apple.Boot.plist, as shown in list-
ing 27. After this, kernel memory can be accessed by using dd on /dev/kmem.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD ...">

<plist version="1.0">

<dict>

<key>Kernel Flags</key>

<string>kmem=1</string>

</dict>

plist>

Listing 27: enabling /dev/kmem

A.3 iOS

A.3.1 Extracting kernel images

Firmware files for iOS come as IPSW files, which is actually a ZIP file and
can be unzipped using a standard unzipper. Inside an IPSW file there is a file
called kernelcache.release.*, which is an encrypted IMG3 file containing the
kernel image. The image is encrypted using AES and the decryption key and
initialization vector are stored within the IMG3 image but encrypted with the
device’s GID key. The GID key is equal across devices with the same processor
class (such as the iPhone 4, iPod 4G and iPad 1). Embedded in the hardware,
the GID key cannot be extracted, furthermore access tot the GID key is disabled
right before the execution is handed over to the kernel. Meaning that it is only
possible to decrypt kernel images from devices that are vulnerable for a boot

77

time vulnerability, so that decrypted images can be extracted before access to
the GID key is disabled. At the time of writing there are no known boot time
vulnerabilities for the newer devices (iPhone 4S, iPad 2 and newer) and thus
firmware images for those devices cannot be decrypted.

The decryption keys for the kernel images can be found on The iPhone Wiki3

or in the Key.plist file included with redsn0w4. The iphone-dataprotection
project5 has a tool which is capable of decrypting kernel images by using
redsn0w’s Key.plist file. The steps required for decrypting a kernel image
are shown in listing 28.

$ hg clone https://code.google.com/p/iphone-dataprotection/

$ cd iphone-dataprotection/

$ sudo port install py27-crypto py27-m2crypto

$ sudo port select --set python python27

$ cp redsn0w.app/Contents/MacOS/Keys.plist .

$ python python_scripts/kernel_patcher.py \

iPod4,1_5.1.1_9B206_Restore.ipsw

$ file kernelcache.release.n81.patched

kernelcache.release.n81.patched: Mach-O executable arm

Listing 28: installing prerequisites and decrypt kernel

A.3.2 Static analysis

Static analysis is a form of reverse engineering, to determine the functionality
of an application without running it. This is mostly done by disassembling the
application. For disassembling an iOS kernel image the disassembler should
support the ARMv7 architecture and the Mach-O file format, for example Hop-
per Disassembler6 and Hex-Ray’s IDA Pro7 are capable of this. For IDA Pro
a version of 6.2 or higher is recommended, as previous versions are unable to
correctly analyzing the kernel image. Older version of IDA Pro mistakenly mark
code as data sections and vice versa.

A problem when reverse engineering the iOS kernel is the lack of symbols in
the kernel image, as shown in listing 29. The iOS kernel has less than 4 times
the number of symbols as the OS X kernel. Without symbols it is difficult to
distinguish the different functions and determine their functionality, which can
otherwise be done by name. For example all syscall functions have no symbols
on iOS.

It is possible to match the symbols of the OS X version of XNU with those
of the iOS version. Zynamic’s BindDiff8 is capable of porting symbols across
platforms. For syscalls one could also use fingerprinting on the kernel binary

3theiphonewiki.com
4iphone-dev.org
5code.google.com/p/iphone-dataprotection/source/checkout
6hopperapp.com
7hex-rays.com/products/ida
8zynamics.com/bindiff.html

78

http://theiphonewiki.com
http://iphone-dev.org
http://code.google.com/p/iphone-dataprotection/source/checkout
http://hopperapp.com
http://hex-rays.com/products/ida
http://www.zynamics.com/bindiff.html

$ nm /mach_kernel | wc -l

16790

$ nm kernelcache.release.n81.decrypted | wc -l

4047

Listing 29: symbol differences between OS X and iOS

for the sysent struct and mach_trap_table, which hold a function pointer to
all syscalls (this will be described more in depth in chapter 2). The number of
arguments for each syscall are also stored in these tables, on a fixed offset from
each other which can be used for fingerprinting. A tool that is capable of this
is called joker9, as shown in listing 30.

$./joker kernelcache.release.n81.decrypted

This is an ARM binary. Applying iOS kernel signatures

Entry point is 0x80085084....This appears to be XNU 2107.2.33

mach_trap_table offset in file/memory (for patching purposes):

0x2ec4a0/0x802ed4a0

Kern invalid should be 0x80028495. Ignoring those

10 _kernelrpc_mach_vm_allocate_trap 80014608 T

12 _kernelrpc_mach_vm_deallocate_trap 80014674 T

14 _kernelrpc_mach_vm_protect_trap 800146b8 T

16 _kernelrpc_mach_port_allocate_trap 8001470c T

17 _kernelrpc_mach_port_destroy_trap 8001475c T

...

Listing 30: fingerprinting

Static analysis based on its disassembly is still a time consuming task. De-
compiling the kernel to pseudo code decreases the time required to determine
a methods functionality. Decompilation of the ARM architecture is supported
by the Hex-Ray’s Decompiler10, and produces well readable pseudo code in a C
like language. Decompilation is especially useful when analyzing large and/or
multiple functions at once.

Analyzing the kernel image takes time due to the missing source code and
symbols, debugging can safe time in this situation (sometimes this is referred
to as dynamic analysis). By attaching a debugger to a running kernel we can
break on functions to get a grip on when it gets called and which arguments
it receives. For a solid understanding both static analysis and debugging are
combined. In the next section we will see how we can attach a debugger to iOS.

A.3.3 Debugging the kernel

9newosxbook.com/files/joker
10hex-rays.com/products/decompiler

79

http://www.newosxbook.com/files/joker
http://www.hex-rays.com/products/decompiler/index.shtml

Prerequisites

For attaching a kernel debugger to an iOS device it is required that the device is
already jailbroken, since an additional boot parameter is required, as well as a
patched kernel. The iOS version of XNU has a function called PE_i_can_has_

debugger which holds a variable debug_enable which should be set to true in
order to enable debugging. For debugging an iPod or iPad with only Wi-Fi is
recommended, since those have no baseband chip. The presence of a baseband
chip prevents downgrading of the firmware, as the baseband and the kernel are
closely coupled.

Furthermore it should be noted that there is no guarantee that kernel debugging
will keep working in later iOS versions. For now the kernel debugging protocol
(KDP) is compiled into the iOS version of XNU, but there is no guarantee that
Apple will not remove or disable this in a later stage.

The kernel debugging protocol works over UDP and iOS devices do not have an
Ethernet interface, some tricks are required to enable kernel debugging. First of
all a special cable has to be made that allows kernel debugging over a serial line.
Next the iOS kernel should be booted with a special debugging argument such
that an OS X machine can connect.For the rest of this section we we used an
iPod 4G, however all the steps should also be applicable to other iOS devices.

Building a debug cable

The old iPhone connector is a 30 pins connector, which features not only USB
but also a serial connection, which is used for kernel debugging. The new 9
pins Lightning connector, which is used in the new iOS devices, also features
a serial connector. We will not cover Lightning in this section due to the lack
on a Lightning device. Because Apple does not ship serial capable cables, this
cable needs to be custom build as described by Esser[14].

During kernel debugging the Wi-Fi connection can drop. Because we want to
control the device over SSH during research it is better is to tunnel SSH traffic
over USB, which is more stable. Therefore the debug cable will have two USB
connectors, the first connector will connect the iPod over USB, the other will
simulate a serial connection. For building the debug cable the following items
are required:

• 1 PodBreakout11

• 1 Breakout Board for FT232RL USB to Serial12

• 2 USB type-A to USB mini type-B cables

• 1 470kΩ resistor

Strip the micro connector of one of the cables, so that the wires can be soldered
on the PodBreakout. The resistor has to be soldered on the PodBreakout to
enable the serial connection on the iPod. Figure A.2 gives the soldering scheme
and figure A.3 shows the final product.

11shop.kineteka.com/p/92/
12shop.kineteka.com/p/155

80

http://shop.kineteka.com/p/92/
http://shop.kineteka.com/p/155

1 12 13 21 23

470kΩ

25 2716

GND RX-I TX-O GND VBUS D- D+

USBFT232R

PodBreakout

Figure A.2: electrical schema for the debug cable

Figure A.3: an iOS debug cable

Setting up iOS

Ideally the device is vulnerable for a Boot ROM exploit. This enables the
possibility of passing a boot argument which will allow a debugger to attach.
For the newer devices this is not possible so only already jailbroken releases can
be debugged by using the jailbreak to alter kernel memory, allowing a debugger
to attach after the device has already booted.

Redsn0w is an application used to jailbreak iOS devices. It is build and main-
tained by the iPhone Dev Team. Besides jailbreaking the application is also
capable of passing a boot argument to the iPod (Extras → Even more → Pref-
erences→ Boot args). This requires a device that is vulnerable for a Boot ROM
exploit (any device with an A4 chip, such as the iPod 4G). Setting the boot ar-
gument value to 0x9 will enable kernel debugging (0x1) and print kprintf()

81

output over the serial line (0x8). After setting the boot argument, booting
the iPod using redsn0w should make the iPod halt during boot, waiting for a
debugger to connect.

Setting up OS X

The FT232RL USB to Serial breakout board requires a driver which can be
found at ftdichip.com/Drivers/VCP.htm. This will create a special tty device
under /dev/tty.usbserial*, which can be used to access the iPod. The ker-
nel debugger on iOS uses the UDP protocol to talk with the attached debugger.
Since the iPod is connected via a serial connection, a serial to UDP proxy
is required. David Elliott wrote a proxy for this purpose called SerialKDP-
Proxy, which was later updated by Stefan Esser to make it compatible with the
later OS X releases. The updated SerialKDPProxy can be downloaded from
github.com/stefanesser/serialKDPproxy.

Xcode comes with an ARM capable gdb version, which can connect with the
iPod. The whole process is listed in listing 31. After the debugger is attached
breakpoints can be added and registers and memory can be inspected. Since
most symbols are lacking the backtraces will be unreadable.

$ SerialKDPProxy /dev/tty.usbserial*

$ /Applications/Xcode.app/Contents/Developer/Platforms \

/iPhoneOS.platform/Developer/usr/bin/gdb -q \

-arch armv7 kernelcache.release.n81.patched

(gdb) target remote-kdp

(gdb) attach 127.0.0.1

Connected.

Listing 31: connecting gdb to iOS

After the kernel has booted we can login using SSH via USB. For Multiplexing
SSH over USB we use a TCP proxy, such as written by the iphone-dataprotection
project13. This process in shown in listing 32. It requires for an SSH server to
be installed on the iPod.

$ python python-client/tcprelay.py -t 22:2222

$ ssh -p 2222 root@localhost

Listing 32: connecting using SSH over USB

A.4 Conclusion

Due to the fact that the OS X version of XNU is largely open source makes
kernel research much easier. The parts that are not open source (most kernel

13code.google.com/p/iphone-dataprotection/

82

http://ftdichip.com/Drivers/VCP.htm
https://github.com/stefanesser/serialKDPproxy
http://code.google.com/p/iphone-dataprotection/

extensions are closed source) can be disassembled and decompiled with the same
tools as for iOS (Hopper and IDA Pro).

For iOS the research possibilities are much smaller. Bootloader vulnerabilities
are patched by Apple. Meaning kernel images can no longer be decrypted, as
access to the required GID key is disabled. This makes kernel research on iOS
harder as researchers cannot use any form of static of dynamic analysis on the
newer iOS kernels.

Now we have created an efficient toolchain for doing kernel research, we dive
deeper into the design of the XNU kernel in the next chapter. This describes
the core components of XNU and how they interact.

83

Bibliography

[1] Tarjei Mandt Chris Valasek. Windows 8 heap internals. In Black Hat USA,
2012.

[2] Jorge Lucangeli Obes Justin Schuh. A tale of two pwnies. http://blog.

chromium.org/2012/05/tale-of-two-pwnies-part-1.html.

[3] Deepak Gupta Xiaoning Li. Defeating patchguard. 2012.

[4] Apple. I/O Kit Fundamentals, March 2007.

[5] P. Argyroudis and D. Glynos. Protecting the core kernel exploitation mit-
igations.

[6] ARM. Procedure Call Standard for ARM Architecture, October 2009.

[7] ARM. ARM Architecture Reference Manual, December 2011.

[8] D. Blazakis. Interpreter exploitation: Pointer inference and jit spraying.
Blackhat, USA, 2010.

[9] D. Blazakis. The Apple Sandbox. In Black Hat DC, 2011.

[10] Andries E. Brouwer. Hackers hut: Exploiting the heap. http://www.win.
tue.nl/~aeb/linux/hh/hh-11.html.

[11] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, Q. Zhang, and H. Hinton. Stackguard: Automatic adaptive
detection and prevention of buffer-overflow attacks. In Proceedings of the
7th USENIX Security Symposium, volume 81, pages 346–355, 1998.

[12] Bruce Dang. Adventures in analyzing stuxnet. In 27C3, 2010.

[13] T. de Raadt. Exploit mitigation techniques, 2005.

[14] S. Esser. Exploiting the iOS kernel.

[15] fg! norr. Past and future in os x malware. Hitcon, 2012.

[16] Intel. Intel 64 and IA-32 Architectures Software Develope’s Manual Volume
2 (2A, 2B & 2C): Instruction Set Reference, A-Z, March 2012.

[17] K. Johnson and M. Miller. Exploit mitigation improvements in windows 8,
2012.

84

http://blog.chromium.org/2012/05/tale-of-two-pwnies-part-1.html
http://blog.chromium.org/2012/05/tale-of-two-pwnies-part-1.html
http://www.win.tue.nl/~aeb/linux/hh/hh-11.html
http://www.win.tue.nl/~aeb/linux/hh/hh-11.html

[18] S. Krahmer. x86-64 buffer overflow exploits and the borrowed code chunks
exploitation technique, sept. 2005. Onlin e: http://www. suse. de/˜
krahmer/no-nx. pdf.

[19] Ivan Krstic. The OS X App Sandbox. In WWDC, 2012.

[20] J. Liedtke. Improving IPC by Kernel Design. In ACM SIGOPS Operating
Systems Review, volume 27, pages 175–188. ACM, 1994.

[21] Lucy. Inside the Mac OS X kernel. In 24C3, 2007.

[22] Tarjei Mandt. Modern kernel pool exploitation: Attacks and techniques.
In Infiltrate, 2011.

[23] M. Matz, J. Hubicka, A. Jaeger, and M. Mitchell. System v application
binary interface, amd64 architecture processor supplement, 2009.

[24] K. McAllister. Attacking hardened linux systems with kernel jit
spraying. http://mainisusuallyafunction.blogspot.nl/2012/11/

attacking-hardened-linux-systems-with.html.

[25] C. Miller, D. Blazakis, D. DaiZovi, S. Esser, V. Iozzo, and R.P. Weinmann.
IOS Hacker’s Handbook. Wiley, 2012.

[26] Nemo. Abusing mach on mac os x. Uniformed vol. 4, 2006.

[27] Joshua Hill David Wang Nikias Bassen, Cyril. Jailbreak Dream Team. In
Hack in the Box Amsterdam, 2012.

[28] E. Perla and M. Oldani. A Guide to Kernel Exploitation: attacking the
core. Syngress, 2010.

[29] W. Robertson, C. Kruegel, D. Mutz, and F. Valeur. Run-time detection of
heap-based overflows. In Proceedings of the 17th Large Installation Systems
Administrators Conference, volume 10, 2003.

[30] D. Rosenberg. Smep: What is it, and how to beat
it on linux. http://vulnfactory.org/blog/2011/06/05/

smep-what-is-it-and-how-to-beat-it-on-linux/.

[31] D. Rosenberg. A heap of trouble: Breaking the linux kernel slob allocator.
2012.

[32] Dan Rosenberg and John Oberheide. Stack jacking. In Hakito Ergo Sum,
2011.

[33] A. Sotirov. Heap feng shui in javascript. Black Hat Europe, 2007.

[34] G. Taylor and G. Cox. Behind intel’s new random-number generator. IEEE
Spectr., pages 32–35, 2011.

[35] Ilja van Sprundel. Having fun with Apple’s I/O Kit. In Hack in the Box
Amsterdam, 2010.

[36] J. Viega and G. McGraw. Building secure software: how to avoid security
problems the right way. Addison-Wesley Professional, 2001.

[37] Jeff Walden. array.join(””) is gc-hazardous. https://bugzilla.mozilla.
org/show_bug.cgi?id=720079.

85

http://mainisusuallyafunction.blogspot.nl/2012/11/attacking-hardened-linux-systems-with.html
http://mainisusuallyafunction.blogspot.nl/2012/11/attacking-hardened-linux-systems-with.html
http://vulnfactory.org/blog/2011/06/05/smep-what-is-it-and-how-to-beat-it-on-linux/
http://vulnfactory.org/blog/2011/06/05/smep-what-is-it-and-how-to-beat-it-on-linux/
https://bugzilla.mozilla.org/show_bug.cgi?id=720079
https://bugzilla.mozilla.org/show_bug.cgi?id=720079

[38] R. Watson, W. Morrison, C. Vance, and B. Feldman. The trustedbsd mac
framework: Extensible kernel access control for freebsd 5.0. In Proc. 2003
USENIX Annual Technical Conference, pages 285–296, 2003.

[39] Doctor Web. Doctor web exposes 550 000 strong mac botnet. http://

news.drweb.com/show/?i=2341&lng=en&c=14.

[40] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-Hartman. Linux
security modules: General security support for the linux kernel. In Pro-
ceedings of the 11th USENIX Security Symposium, volume 5. San Francisco,
CA, 2002.

86

http://news.drweb.com/show/?i=2341&lng=en&c=14
http://news.drweb.com/show/?i=2341&lng=en&c=14

	I Introduction
	Introduction
	Introduction
	The history of XNU
	Kernel security and exploitation
	Contents
	Purpose of our research
	Research questions
	Versions and source code
	Outline

	General design
	Introduction
	The design of the XNU kernel
	General overview
	The different components

	Syscalls
	Syscalls in XNU
	BSD syscalls
	Mach Traps
	Moving data from user to kernel space

	Memory management
	Virtual memory
	Process stack
	The heap allocators

	Conclusion

	II XNU security features
	Memory protection
	Introduction
	W^X protection
	NULL pointer dereference protection
	Kernel ASLR
	Heap protection
	Stack canaries
	Conclusion

	Code signing and sandboxing
	Introduction
	Code signing
	The iOS secure boot chain
	Application code signing

	Sandboxing
	iOS jailbreaks
	Tethered versus untethered jailbreaks
	Tethered jailbreaks
	Untethered jailbreaks

	Conclusion

	III Exploitation techniques
	Security research
	Introduction
	Strategy
	OS X
	iOS

	Attack vectors
	Syscalls
	I/O Kit
	ioctl calls
	File systems

	Conclusion

	Exploitation
	Introduction
	Bypassing the mitigation techniques
	Kernel ALSR
	Stack canaries
	W^X protection
	Code signing
	Sandboxing

	Exploitation
	Attacking the zone allocator
	The post-exploitation step

	Conclusion

	IV Evaluation and comparison
	Comparison
	Introduction
	FreeBSD
	Memory protection
	Advanced mitigation techniques
	Security research

	Linux
	Memory protection
	Advanced mitigation techniques
	Research

	Windows
	Memory protection
	Advanced mitigation techniques
	Secure development practices
	Research

	Conclusion

	Conclusion and discussion
	Introduction
	Research questions
	Discussion

	Toolchain
	Introduction
	OS X
	iOS
	Extracting kernel images
	Static analysis
	Debugging the kernel

	Conclusion

