
Identifying Key Attack Surface Resources
with Dynamic Analysis

Frederic Michaud
Thales Canada

Prepared By:
Thales Canada
1405 boul. du Parc-Technologique
Quebec, QC G1P 4P5

Contractor's Document Number: 2268C.001-REP-01-DA-TA1 Rev. 02
Contract Project Manager: Steeve Cote, 418-651-0606
PWGSC Contract Number: W7714-155991
CSA: Amaya Arcelus, Defence Scientist, 613-993-3831

The scientific or technical validity of this Contract Report is entirely the responsibility of the Contractor and the contents do
not necessarily have the approval or endorsement of the Department of National Defence of Canada.

Contract Report
DRDC-RDDC-2015-C126
June 2015

© Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2015

© Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale,
2015

UNCLASSIFIED

I.T. Security R&D Specialist for the Cyber Capability

Development Centre (CCDC)

Identifying Key Attack Surface Resources with
Dynamic Analysis

Contract No.: W7714-155991

Document Control No.: 2268C.001-REP-01-DA-TA1 Rev. 02

Date: 23 March 2015

– RESTRICTIONS ON DISCLOSURE –
The information contained in this document is proprietary to the Crown. The information disclosed herein, in whole or in part, shall not be
reproduced, not shall it be used by or disclosed to others for any purpose other than explicitly defined in Contract No. W7714-155991. Due
diligence shall be exercised in ensuring that the above conditions are strictly adhered to.

UNCLASSIFIED

CCDC UNCLASSIFIED Date: 23 March 2015
Identifying Attack Surface Resources
DCN: 2268C.001-REP-01-DA-TA1 Rev. 01 Page 4

Proprietary Information.
Use or disclosure of this data is subject to the Restriction of the
title page of this document.

UNCLASSIFIED

TABLE OF CONTENTS
Page

1 ON THE CONCEPT OF ATTACK SURFACE .. 8

1.1 The Two Stages of Compromising a System .. 8
1.2 Code Quality .. 8
1.3 Damage Potential .. 9
1.3.1 Access Rights and Privileges .. 9
1.3.2 Effort .. 9
1.3.3 Dimensions of Damage Potential ..10
1.3.3.1 Method Privilege .. 10
1.3.3.2 Channel Protocol ... 10
1.3.3.3 Data Item type ... 11
1.3.3.4 Access Rights .. 11

2 IDENTIFYING ATTACK SURFACE RESOURCES.. 11

2.1 System Definition and Boundaries .. 11
2.2 Entry and Exit Points Methods .. 12
2.3 Channels.. 12
2.4 Untrusted Data Items... 12

3 DYNAMIC ANALYSIS... 13

4 PROCESS MONITOR ON WINDOWS ... 13

4.1 Identifying Channels with Process Monitor ... 14
4.1.1 Channels Related to the Network.. 14
4.1.2 Access Rights .. 15
4.2 Identifying Untrusted Data Items with Process Monitor... 16
4.2.1 Persistent File Data Items ... 16
4.2.2 Access Rights .. 17
4.2.3 Persistent Registry Data Items .. 17
4.2.4 Access Right.. 18
4.3 Identifying Entry and Exit Points with Process Monitor ... 19
4.3.1 Privilege and Access Rights .. 22
4.4 Summary ... 22

5 SYSTEMTAP ON LINUX .. 23

5.1 Installation.. 24
5.2 Running SystemTap .. 24
5.3 The Complete Script .. 25
5.4 Identifying Channels with SystemTap ... 26
5.4.1 Access Rights .. 27
5.5 Identifying Untrusted Data Items with SystemTap .. 27
5.5.1 Persistent File Data Items ... 27
5.5.2 Access Rights .. 27
5.6 Identifying Entry and Exit Points with SystemTap... 28

6 WINDOWS COMPUTER DEFINITION ... 30

6.1 Identifying Network Channels.. 30
6.2 Identifying File Data Items ... 30
6.3 Identifying Entry and Exit Point Methods... 32
6.3.1 Access Rights .. 33
6.4 Privilege ... 34
6.5 Conclusion ... 36

CCDC UNCLASSIFIED Date: 23 March 2015
Identifying Attack Surface Resources
DCN: 2268C.001-REP-01-DA-TA1 Rev. 01 Page 5

Proprietary Information.
Use or disclosure of this data is subject to the Restriction of the
title page of this document.

UNCLASSIFIED

LIST OF FIGURES

Page
Figure 1: Process Monitor on Windows 7.. 14
Figure 2: Sample Process Monitor Network Event.. 15
Figure 3: Sample Process Monitor Read File Event ... 16
Figure 4: Sample Process Monitor Write File Event.. 17
Figure 5: AcessChk on Files.. 17
Figure 6: Sample Process Monitor Read Registry Key Value Event .. 17
Figure 7: Sample Process Monitor Write Registry Key Value Event... 18
Figure 8: Unsuccessful RegQueryValue Operation .. 18
Figure 9: AccessChk on Registry Items .. 19
Figure 10: A Sample Call Stack... 20
Figure 11: Identifying an Entry Point on a ReadFile Operation ... 21
Figure 12: Entry/exit Points Method Privilege ... 22
Figure 13: AccessChk Checking File Permissions.. 22
Figure 14: A Sample SystemTap Script .. 23
Figure 15: SystemTap Installation Commands ... 24
Figure 16: Running a SystemTap Script ... 24
Figure 17: The Complete SystemTap Script ... 26
Figure 18: SystemTap Probes for Monitoring Incoming Connections... 27
Figure 19: SystemTap Probes for Monitoring Read and Write File Operations .. 27
Figure 20: SystemTap Probe for Monitoring Open File Operation.. 27
Figure 21: The ls Command to Extract File Permissions .. 28
Figure 22: Log of SystemTap Script .. 29
Figure 23: Python SimpleHTTPServer .. 30
Figure 24: Permissions for ntdll.dll .. 34

CCDC UNCLASSIFIED Date: 23 March 2015
Identifying Attack Surface Resources
DCN: 2268C.001-REP-01-DA-TA1 Rev. 01 Page 6

Proprietary Information.
Use or disclosure of this data is subject to the Restriction of the
title page of this document.

UNCLASSIFIED

LIST OF TABLES

Page
Table 1: The List of Processes and the Number of Files Data Items Accessed ... 31
Table 2: File Data Items for McAfee Service Manager.. 32
Table 3: Entry/ExitPoint Methods for McAfee Service Manager ... 33
Table 4: Windows File Data Items and Access Rights.. 34
Table 5: Access Rights for the Windows Service Control Manager .. 35

CCDC UNCLASSIFIED Date: 23 March 2015
Identifying Attack Surface Resources
DCN: 2268C.001-REP-01-DA-TA1 Rev. 01 Page 7

Proprietary Information.
Use or disclosure of this data is subject to the Restriction of the
title page of this document.

UNCLASSIFIED

LIST OF ACRONYMS AND ABBREVIATIONS

CAPEC Common Attack Pattern Enumeration and Classification

CVE Common Vulnerabilities and Exposures

ETW Event Tracing for Windows

CCDC UNCLASSIFIED Date: 23 March 2015
Identifying Attack Surface Resources
DCN: 2268C.001-REP-01-DA-TA1 Rev. 01 Page 8

Proprietary Information.
Use or disclosure of this data is subject to the Restriction of the
title page of this document.

UNCLASSIFIED

1 ON THE CONCEPT OF ATTACK SURFACE

Intuitively, the attack surface of a system is the set of elements an adversary can use to attack a system. The
bigger the attack surface, the easier it is to attack a system and do damage. But what kind of element should be
considered as being part of the attack surface? What are the relations between these elements? And the most
important question: could a surface attack metric really help estimate the security of a software system in
practice? Manadhta in (Manadhata & Wing, 2011) tries to answer these questions.

First, it is interesting to consider how far the researchers went in the formalization of their attack surface model.
Their complex automaton model is convenient to establish definitions and discuss theoretical properties.
However, the usefulness of such an elaborate model for empirical observations is questionable. Section 4 of their
article shows a much simpler approach in practice, and even some corner-cutting: for example, how exactly were
channels and untrusted data items identified is not told. Hence, it is important to use a model that is workable in
practice; otherwise it is just a waste of efforts.

1.1 The Two Stages of Compromising a System

Compromising a software system is generally done in two stages. The first stage is to establish a foothold on the
system, by exploiting a vulnerability (often remote) that gives the attacker some kind of access. The success of
that first stage is closely related to the existence of a vulnerability: without it, the attack cannot succeed.
Therefore, an attack surface metric has to take the existence of such vulnerability into account. The existence of
vulnerabilities for that first stage is closely related to code quality.

Most of the time, exploiting that first vulnerability is not enough to give the attacker the level of access he needs to
complete his mission. In a second stage, he will have to make his way into the system by gaining higher access
privilege, until he can steal the information of interest for example. The second stage is very dependent of
software design and configuration errors. For example, a vulnerable program running as root (the highest
privilege level on UNIX) would give an attacker a very easy time, since the second stage would be unnecessary,
the attacker already having all privilege.

1.2 Code Quality

The first dimension of an attack surface metric to consider is code quality. Most software vulnerabilities are
caused by programming errors and a large part of these errors are a lack of data validation. A good example of
this is the well-known buffer overflow vulnerability1: the size of the data is not validated against the size of the
buffer and it is possible to overwrite memory with code masquerading as data to take control of a process.

Evaluating code quality for a large codebase is really difficult, since the space for potential errors leading to
vulnerabilities is extremely large. Examining all possibilities where something bad could happen is simply not
calculable. To get an idea of this, consider the Common Weakness Enumeration2, which is a list of weaknesses,
or vulnerability patterns, maintained by Mitre. It contains literally hundreds of vulnerability patterns and some of
them are too complex for automated verification. A similar list for attack patterns is the Common Attack Pattern
Enumeration and Classification (CAPEC)3, which shows how vulnerabilities can be exploited to attack a system.
Again, there are hundreds of cases to consider. In other words, evaluating code quality directly, from a security
point of view, is too difficult to work in practice: anything beyond a primitive analysis is out of reach for the
moment.

1 http://en.wikipedia.org/wiki/Buffer_overflow
2 http://cwe.mitre.org
3 https://capec.mitre.org

CCDC UNCLASSIFIED Date: 23 March 2015
Identifying Attack Surface Resources
DCN: 2268C.001-REP-01-DA-TA1 Rev. 01 Page 9

Proprietary Information.
Use or disclosure of this data is subject to the Restriction of the
title page of this document.

UNCLASSIFIED

A better approach would be to indirectly measure code quality by looking at the list of known vulnerabilities for a
program. The Common Vulnerabilities and Exposures (CVE)4 is a list of all known vulnerabilities for all platforms.
One can search the CVE to identify past vulnerabilities and get an idea of how vulnerable the software of interest
has been. This should be a good estimation of how vulnerable the software still is.

The main problem with the evaluation of code quality for the presence of vulnerabilities is that it will always be
incomplete. One could obtain a relatively safe score from a code quality metric, because the software has not
been known to be vulnerable in the past and the best programming practices were followed rigorously. However,
one morning a security researcher could disclose the existence of a remotely exploitable vulnerability for that
software and the code quality metric will not mean much by then. A good example of a mature piece of software
that was considered very secure until a remotely exploitable arbitrary code execution vulnerability (the worse kind)
was disclosed is OpenSSL with the heartbleed bug5. This cryptographic library is used to encrypt
communications on the Internet and can be found in web servers, email clients, VPNs, etc. Hence, the impact of
the heartbleed bug vulnerability was very important.

An attack surface metric should take into account the code quality and the existence of past vulnerabilities, as
they are needed for the first stage of compromising a system.

1.3 Damage Potential

The damage potential, as described in Section 3.2 of (Manadhata & Wing, 2011), is strongly related to the second
stage of compromising a software system. In essence, it is the assessment of what is possible for an attacker
once he has established a foothold on a system by exploiting a first vulnerability.

1.3.1 Access Rights and Privileges

Now, it is important to understand the difference between access rights (or permissions) and privileges, including
the relation both have with users. A user will need access rights to use a resource. For example, if a user is a
member of the “dba” group, he can start a database server process. Being member of the “dba” group is having
the access privilege to use the database resource. Once the database server is started, its process will run with
all the access rights of the user who started it.

So in essence, access rights and privileges are two sides of the same coin: access rights are the permissions a
user needs to use a resource (e.g. starting a process) and privileges are the access rights a process inherits from
the user who started it.

1.3.2 Effort

Should effort really be considered when assessing damage potential? Again, it is interesting to see the intricate
formal definitions of damage potential and effort ratio in Sections 3.2 and 3.3 of (Manadhata & Wing, 2011) that
are then severely simplified in empirical calculations of Section 4.2.

The problem with estimating effort is that it is dependent of the level of sophistication of an attacker. A master
hacker will be able to execute extremely complex attacks that less gifted individuals would have thought
impossible. Besides, complex exploits created by expert hackers, when packaged as simple-to-use tools, tend to
migrate to less sophisticated “script kiddies”. These low-level hackers do not understand the inner working of the
exploit, but they are able to use the exploit packaged as a tool and then can become a dangerous threat.

4 http://cve.mitre.org
5 http://heartbleed.com

CCDC UNCLASSIFIED Date: 23 March 2015
Identifying Attack Surface Resources
DCN: 2268C.001-REP-01-DA-TA1 Rev. 01 Page 10

Proprietary Information.
Use or disclosure of this data is subject to the Restriction of the
title page of this document.

UNCLASSIFIED

A good rule of thumb in cyber security is that if a vulnerability is theoretically exploitable, it will be exploited. This
is especially true if the rewards are valuable, like a remotely exploitable arbitrary code execution.

1.3.3 Dimensions of Damage Potential

Generally, when an attacker has successfully completed the first stage of compromising a system, he will be in
control of a running process. The privilege associated with that process (i.e. the access rights of the user who
started the process) will determine what the attacker can do. Of course, there is more to it as the attacker could
also use another vulnerability to get higher privileges (privilege escalation6). Therefore, it is important to
understand that no matter what the estimation of the damage potential is, the unpredicted use of a privilege
escalation vulnerability could always completely change the picture for the worse.

Now, what are the dimensions to consider when evaluating the damage potential? Section 3.2 in (Manadhata &
Wing, 2011) proposes the following four dimensions: method privilege, channel protocol, data item type, and
access rights.

1.3.3.1 Method Privilege

This is the most important dimension, because it determines the privilege that an attacker will inherit when
compromising a process. Most of the time, the method privilege will be the same as the process privilege, but this
is not always the case.

UNIX –based systems allow a process to downgrade its privilege at runtime, generally after executing sensitive
operations when a high privilege is no longer needed. This is done to allow an ordinary user to execute necessary
sensitive operations in a controlled way, like changing a password. The programs that change their privilege at
runtime are called setuid programs and most of these programs are part of the operating system. Creating setuid
programs is strongly discouraged, as it is tricky to implement such a functionally in a secure way that cannot be
abused.

Since setuid programs will generally spend a very short time with high privilege, the possibility of taking control of
a setuid program before it downgrades its privilege is very slim. Hence, it is recommended to use the process
privilege for this measure instead. Considering privilege for methods does not provide significant added value, but
require important additional efforts.

1.3.3.2 Channel Protocol

It is true that a channel transport protocol (e.g. TCP, UDP, SSL, Sockets) imposes restrictions on the data
exchange allowed using the channel. However, these restrictions are not important enough to be considered,
since most network protocols can be used to send raw data by using clever encoding tricks7. The damage
potential of a channel is only remotely related to the transport protocol. However, the application protocol defined
over the transport protocol can have a great impact on the exploitability of a vulnerability. But this impact can only
be assessed on a case by case basis, as the assessment is complex and only a deep understanding of the code
managing network communications by an analyst can give useful insights.

It is recommended to not take the channel protocol into account for assessing damage potential, as it only has a
very small impact. Interestingly, this is exactly what is done in (Manadhata & Wing, 2011): Table 4 shows that all
channel types have the same value of 1, which means they have the same impact, or that the impact is not
important.

6 http://en.wikipedia.org/wiki/Privilege_escalation
7 https://capec.mitre.org/data/definitions/64.html

CCDC UNCLASSIFIED Date: 23 March 2015
Identifying Attack Surface Resources
DCN: 2268C.001-REP-01-DA-TA1 Rev. 01 Page 11

Proprietary Information.
Use or disclosure of this data is subject to the Restriction of the
title page of this document.

UNCLASSIFIED

1.3.3.3 Data Item type

The case for data item type (e.g. file, registry) is very similar to the protocol of a channel: it imposes slight
restrictions on the kind of data that can be stored. But again, these restrictions are almost meaningless and it is
much more important to analyze how a program uses these data items to assess the damage potential. So it is
recommended to not use the data item type as an input to calculate the damage potential.

1.3.3.4 Access Rights

Access rights are the effort side of the damage potential-effort ratio. With method privilege, these are very
important as they show what an attacker would be able to do if he had no privilege escalation vulnerability to
exploit.

2 IDENTIFYING ATTACK SURFACE RESOURCES

The following section describes a few strategies and techniques to identify resources involved in the computation
of an attack surface metric, as described in (Manadhata & Wing, 2011). The resources to identify are the
entry/exit point methods, the channels, and the untrusted data items. In addition, we have to determine the
access rights necessary to access these three sets of resources, and the privilege level that compromising these
resources would give to an attacker.

We will try to identify these three kinds of resources with automated tools as much as possible. The objective is to
identify the resources from the code or the runtime behavior of the system, and not simply from the
documentation or from the opinions of a subject matter expert. In addition to this objective, we would like to be
able to work with binary code for which source code is unavailable, as this is the norm. Finally, we are looking for
a scalable method that would not only work for an individual program, but also for a whole computer or even an
enterprise network.

2.1 System Definition and Boundaries

The articles referenced in this task (Manadhata & Wing, 2011; Manadhta & Wing, 2004; Howard, Pincus, & Wing,
2003) have an ambiguous definition of what a system is: it could be a small program made of a single module, a
more complex program made of multiple modules such as a web server, a distributed application running on
multiple computers, or a whole enterprise network. To keep things simple, we will consider a system as being a
process running inside of a computer. Since modern operating systems isolate processes from each other and
from the system fairly well, this definition allows us to work with existing system boundaries in a practical way.

Processes inside an operating system are running in their own little sandbox, so that if they malfunction, they
cannot affect the other processes too much. The key to this separation is protected memory.

In the early days of computing, every process running in an operating system had the capability to read and write
in the whole memory space, including the space used by the operating system and other processes. Of course,
this means that programming errors involving errant pointers had the potential to crash the whole computer. To
prevent this, protected memory8 was added to operating systems, and restricted processes memory access to
their own memory space only.

8 http://en.wikipedia.org/wiki/Memory_protection

CCDC UNCLASSIFIED Date: 23 March 2015
Identifying Attack Surface Resources
DCN: 2268C.001-REP-01-DA-TA1 Rev. 01 Page 12

Proprietary Information.
Use or disclosure of this data is subject to the Restriction of the
title page of this document.

UNCLASSIFIED

2.2 Entry and Exit Points Methods

The entry and exit points of a process are the methods in its codebase that can interact with the operating system
APIs to send or receive information from and to the environment. Should all methods calling APIs be considered
entry or exit points? In the case of APIs that interact with the file system, the network, or inter-process
communications, it is evident that they should be considered as being entry or exit points. But what about other
methods involving USB devices or the GPU for example? Technically, any method that receives data from the
environment could be subject to an attack and that would include almost all methods calling APIs. However, to
keep things practical, a subset of the most unsafe API calls should be considered and not all of them.

(Manadhata & Wing, 2011) identifies the entry and exit points in a target program by first defining a set of API
calls that can send or receive data from and to the environment (let’s call them in-out APIs). How exactly this is
done, outside of "identifying a set of relevant C library methods", is not explained and it seems that the choice is
at least partially arbitrary. They then compute the call graph of the target program using cflow on the source code.
This allows them to recognize the methods that call these APIs.

2.3 Channels

Channels are communication paths between a process and its environment: anything that could bring data into
the memory space of a process is a channel. (Manadhata & Wing, 2011) identifies the channels by "observing the
run time behavior of both daemons’ default installations". Again, how this was achieved exactly is very vague.
There is a clear link between the choice of in-out APIs and what is considered a channel. The process that was
followed in (Manadhata & Wing, 2011) seems to be:

(1) Identify manually, from the experience of subject matter experts, the potential channels. The target
being IMAP servers, the channels identified were all related to the network: TCP, SSL and Unix
sockets. They did not consider inter-process communications mechanisms, such as Linux message
queues, as being channels; and

(2) Identify manually the list of APIs that are related to these channels. In the case of the network,
anything related to TCP/IP would be of interest.

Choosing the channels arbitrarily has an important impact on the entry/exit points identification later. A better
method would identify channels from the code or the runtime behavior of the system.

2.4 Untrusted Data Items

Persistent data items are elements such as files, cookies, database records, registry entries, etc. Untrusted data
items are persistent data items that are directly accessible via entry/exit points methods. For example, if a method
returns the content of a specific file when a webpage is accessed, that would make that file an untrusted data
item.

(Manadhata & Wing, 2011) makes a distinction between a data item that is used directly by an entry/exit point
method, and a data item used indirectly by other methods. It is not clear why such a distinction should be made,
since these persistent data items are not local to the entry/exit point methods. Once a process is compromised, all
data items in that process are available to an attacker. Hence, it makes no sense to give more importance to
untrusted data items, as all data items can be used equally.

CCDC UNCLASSIFIED Date: 23 March 2015
Identifying Attack Surface Resources
DCN: 2268C.001-REP-01-DA-TA1 Rev. 01 Page 13

Proprietary Information.
Use or disclosure of this data is subject to the Restriction of the
title page of this document.

UNCLASSIFIED

3 DYNAMIC ANALYSIS

Dynamic analysis of software is performed by executing a program and observing its behavior. Often, the
program or its execution environment will be instrumented with probes, to allow the catching of information at a
specific time or place in the program that would not be possible without probes, in the kernel for example.

Compared to other kinds of analysis, on a large software system, dynamic analysis is often the better choice
because of its simplicity and scalability. Dynamic analysis does not need the source code, or a thorough
understanding of the code. It can even work without any knowledge about the software, being similar to black box
testing. The insertion of probes will have an impact on the execution by slowing it down, but modern dynamic
analysis tools manage this aspect well and the slowdown is generally not over a 20% penalty.

The main downside of dynamic analysis is that it only sees the parts of a program that are executed. There could
be a potential problem in the software that would not be detected because it was never executed during the
analysis. This is especially problematic for security analysis, since a single hidden vulnerability can drastically
alter the outcome.

Overall, there are two kinds of dynamic analysis tools: snapshot tools and tracing tools. Snapshot tools will take a
picture of the state of the program at regular intervals. A good example of a snapshot tool is the Task Manager in
Windows: it shows the state of processes and resource usage every five seconds or so. Snapshot tools are
relatively lightweight on the execution, but they cannot see what happens between snapshots, which is a severe
limitation. On the other hand, tracing tools are like a flight recorder and will accumulate events while the program
is running, hence seeing everything. Tracing tools have a much greater impact on the execution speed than
snapshot tools.

Tracing tools also have an important limitation, as they cannot work with elements that were created before the
recording of events began. This could lead to missing important information in some cases.

For example, let’s say we want to detect network sockets that could receive information. Now, a network socket is
first created in listening mode, waiting for connections. Once a connection is made, the transfer of data begins. If
the recording of events begins after the creation of a listening socket and if no connection occurs during the
analysis, the listening socket will not be detected. Hence, for tracing tools the data recording should begin as
soon as possible, ideally at boot time. If this is not possible, a combination of snapshot tools and tracing tools
could be used: the snapshot tool could obtain the state not available to the tracing tool, such as the list of open
listening sockets.

The proposed approach to identify attack surface resources automatically, and in a way that is scalable, is to use
dynamic analysis to observe the execution of the system and infer the existence of channels, entry/exit points,
and untrusted data items.

4 PROCESS MONITOR ON WINDOWS

Process Monitor9 is a free tool created by the famous Microsoft hacker Mark Russinovich. It is part of the
well-known Sysinternals utilities10 . Process Monitor generates a trace of system events that are related to four
classes of resources:

 Registry: all registry operations;

 File system: file system activity for all Windows file systems, local and remote;

9 https://technet.microsoft.com/en-us/library/bb896645.aspx
10 https://technet.microsoft.com/en-us/sysinternals/bb545021.aspx

CCDC UNCLASSIFIED Date: 23 March 2015
Identifying Attack Surface Resources
DCN: 2268C.001-REP-01-DA-TA1 Rev. 01 Page 14

Proprietary Information.
Use or disclosure of this data is subject to the Restriction of the
title page of this document.

UNCLASSIFIED

 Network: process monitor records TCP and UDP activity. It does not monitor listening sockets that do not
transfer data, which could be a problem; and

 Processes: it tracks all processes and threads creation and exit operations.

Every time a process executes an action that has an impact on these resources, an extensive log entry is
generated. Internally, Process Monitor uses both the Event Tracing for Windows (ETW)11 framework and hooks to
collect system events. Process Monitor can also be started at the very beginning of the Windows boot process
and start collecting information even before a user session can be opened.

Figure 1: Process Monitor on Windows 7

4.1 Identifying Channels with Process Monitor

The network resource watched by Process Monitor already corresponds to the most important channel on the
Windows platform. However, there are many inter-process communication mechanisms that have been used to
attack Windows processes in the past, such as COM objects, that are not logged by Process Monitor. A dynamic
analysis approach will always be limited by the types of event that can be logged by monitoring tools.

4.1.1 Channels Related to the Network

Process Monitor creates events for every UDP or TCP activity generated by a process. Here is a sample event
logged by Process Monitor on a Windows 7 workstation (Figure 2).

11 https://msdn.microsoft.com/en-us/library/windows/desktop/bb968803%28v=vs.85%29.aspx

CCDC UNCLASSIFIED Date: 23 March 2015
Identifying Attack Surface Resources
DCN: 2268C.001-REP-01-DA-TA1 Rev. 01 Page 15

Proprietary Information.
Use or disclosure of this data is subject to the Restriction of the
title page of this document.

UNCLASSIFIED

<event>
<ProcessIndex>946</ProcessIndex>
<Time_of_Day>4:50:19.3004462 PM</Time_of_Day>
<Process_Name>IEXPLORE.EXE</Process_Name>
<PID>9108</PID>
<Operation>TCP Send</Operation>
<Path>TH3144.THCALJ.CORP:64615 -> 10.94.134.70:8080</Path>
<Result>SUCCESS</Result>
<Detail>Length: 538, startime: 3576884, endtime: 3576885, seqnum: 0,
connid: 0</Detail>
<User>THCALJ\T0149926</User>
<Authentication_ID>00000000:000bc699</Authentication_ID>
<Session>2</Session>
<Integrity>High</Integrity>
<Parent_PID>15368</Parent_PID>
…

Figure 2: Sample Process Monitor Network Event

We can see that process id 9108 (iexplore.exe - Internet Explorer) sent TCP packets (TCP Send Operation) from
the TH3144.THCALJ.CORP IP address on port 64615 to the IP address 10.94.134.70 on port 8080.

Since we want to identify the channels that a hacker could use to attack a process, we are probably not interested
by all network communications, but only by those that can be initiated from the attacker. In other words, we are
mostly interested by communications that were started by the target process listening on a socket and waiting for
a client to connect (inbound communications).

Technically, it is not impossible to use an outbound communication from a process to attack that process.
However, that requires an a priori knowledge of the moment when that outbound communication will be initiated
and some control over the network to interfere with that communication in a man-in-the-middle style attack.
Therefore, using an outbound communication to attack a process is much harder than using an inbound
connection and it is recommended that only inbound communications should be taken into account at first.

Identifying inbound connections from a Process Monitor log can be done by looking at the Path element. Process
Monitor does an analysis of the flow for every network communication. For example, as is shown in Figure 2, we
can clearly see that this is an outbound communication originating from our target computer:
TH3144.THCALJ.CORP:64615 -> 10.94.134.70:8080.

By extracting the process id, type of session, and the local port from all receiving events to the computer of
interest, one could identify all active channels related to the network.

4.1.2 Access Rights

The access rights associated with channels are harder to identify, since we have no information about the TCP or
UDP session. If there is an authentication required to use the channel, it is application-specific and it would
require an extensive reverse-engineering of the application codebase to assess the existence of authentication
mechanisms for every network session observed. It is suggested to use the knowledge about the application to
manually specify the access rights related to network channels.

CCDC UNCLASSIFIED Date: 23 March 2015
Identifying Attack Surface Resources
DCN: 2268C.001-REP-01-DA-TA1 Rev. 01 Page 16

Proprietary Information.
Use or disclosure of this data is subject to the Restriction of the
title page of this document.

UNCLASSIFIED

4.2 Identifying Untrusted Data Items with Process Monitor

Since data items are not local to a method and could be used anywhere in a compromised process, it is
recommended that no distinction should be made between all data items of a process, untrusted or not. Process
Monitor can be used to easily identify data items related to a process, as long as these data items belong in the
file system or in the registry (which should almost always be the case anyway).

4.2.1 Persistent File Data Items

Process Monitor logs many types of operations related to files and only a small subset is of interest to identify
persistent file data items: read and write operations. These correspond to the ReadFile and WriteFile
operations in Process Monitor.

<event>
<ProcessIndex>1883</ProcessIndex>
<Time_of_Day>2:38:25.5969674 PM</Time_of_Day>
<Process_Name>postgres.exe</Process_Name>
<PID>16624</PID>
<Operation>ReadFile</Operation>
<Path>V:\PostgreSQL\data\postgresql.conf</Path>
<Result>SUCCESS</Result>
<Detail>Offset: 0, Length: 8,192, Priority: Normal</Detail>
<User>NT AUTHORITY\NETWORK SERVICE</User>
<Authentication_ID>00000000:000003e4</Authentication_ID>
<Session>0</Session>
<Integrity>System</Integrity>
<Parent_PID>8656</Parent_PID>
...

Figure 3: Sample Process Monitor Read File Event

Figure 3 shows that process id 16624, which is a PostgreSQL server (postgres.exe), does a ReadFile
operation on the file located at the path V:\PostgreSQL\data\postgresql.conf. In Figure 4 we can
see a similar operation for a file that is written to this time.

<event>
<ProcessIndex>1886</ProcessIndex>
<Time_of_Day>2:39:21.7553837 PM</Time_of_Day>
<Process_Name>postgres.exe</Process_Name>
<PID>2352</PID>
<Operation>WriteFile</Operation>
<Path>V:\PostgreSQL\data\pg_log\postgresql-2015-02-
18_143825.log</Path>
<Result>SUCCESS</Result>
<Detail>Offset: 225, Length: 60, I/O Flags: Write Through, Priority:
Normal</Detail>
<User>NT AUTHORITY\NETWORK SERVICE</User>
<Authentication_ID>00000000:000003e4</Authentication_ID>
<Session>0</Session>
<Integrity>System</Integrity>

CCDC UNCLASSIFIED Date: 23 March 2015
Identifying Attack Surface Resources
DCN: 2268C.001-REP-01-DA-TA1 Rev. 01 Page 17

Proprietary Information.
Use or disclosure of this data is subject to the Restriction of the
title page of this document.

UNCLASSIFIED

<Parent_PID>16624</Parent_PID>
...

Figure 4: Sample Process Monitor Write File Event

4.2.2 Access Rights

Access rights required to access files are not available from Process Monitor and another tool should be used to
extract effective permissions on the files identified. A tool such as AccessChk could be used, as shown in
Figure 5.

C:\Program Files Users\SysinternalsSuite>accesschk
V:\PostgreSQL\data\pg_log\postgresql-2015-02-18_143825.log

Accesschk v5.21 - Reports effective permissions for securable objects
Copyright (C) 2006-2014 Mark Russinovich
Sysinternals - www.sysinternals.com

V:\PostgreSQL\data\pg_log\postgresql-2015-02-18_143825.log
RW Everyone

Figure 5: AcessChk on Files

4.2.3 Persistent Registry Data Items

Identifying persistent registry data items with Process Monitor is very similar to file data items and again, we are
only interested in read and write operations. In Process Monitor, these correspond to RegQueryValue
(Figure 6) and RegSetValue (Figure 7).

<event>
<ProcessIndex>1895</ProcessIndex>
<Time_of_Day>2:39:19.8813729 PM</Time_of_Day>
<Process_Name>pgAdmin3.exe</Process_Name>
<PID>1908</PID>
<Operation>RegQueryValue</Operation>
<Path>HKLM\System\CurrentControlSet\services\Tcpip\Parameters\Hostname</Path>
<Result>SUCCESS</Result>
<Detail>Type: REG_SZ, Length: 14, Data: TH3144</Detail>
<User>THCALJ\T0149926</User>
<Authentication_ID>00000000:000bc699</Authentication_ID>
<Session>2</Session>
<Integrity>High</Integrity>
<Parent_PID>3908</Parent_PID>

Figure 6: Sample Process Monitor Read Registry Key Value Event

CCDC UNCLASSIFIED Date: 23 March 2015
Identifying Attack Surface Resources
DCN: 2268C.001-REP-01-DA-TA1 Rev. 01 Page 18

Proprietary Information.
Use or disclosure of this data is subject to the Restriction of the
title page of this document.

UNCLASSIFIED

<event>
<ProcessIndex>1895</ProcessIndex>
<Time_of_Day>2:39:19.8817066 PM</Time_of_Day>
<Process_Name>pgAdmin3.exe</Process_Name>
<PID>1908</PID>
<Operation>RegSetValue</Operation>
<Path>HKU\S-1-5-21-3420368142-3320074954-1903974433-
15076\Software\pgAdmin III\Servers\1\Server</Path>
<Result>SUCCESS</Result>
<Detail>Type: REG_SZ, Length: 20, Data: localhost</Detail>
<User>THCALJ\T0149926</User>
<Authentication_ID>00000000:000bc699</Authentication_ID>
<Session>2</Session>
<Integrity>High</Integrity>
<Parent_PID>3908</Parent_PID>

Figure 7: Sample Process Monitor Write Registry Key Value Event

It is important to only consider successful operations (<Result>SUCCESS</Result>), because some
programs will test the existence of a registry key by trying to read it, as shown in Figure 8.

<event>
<ProcessIndex>1895</ProcessIndex>
<Time_of_Day>2:39:16.4148959 PM</Time_of_Day>
<Process_Name>pgAdmin3.exe</Process_Name>
<PID>1908</PID>
<Operation>RegQueryValue</Operation>
<Path>HKU\S-1-5-21-3420368142-3320074954-1903974433-
15076\Software\pgAdmin III\SuppressGuruHints</Path>
<Result>NAME NOT FOUND</Result>
<Detail>Length: 144</Detail>
<User>THCALJ\T0149926</User>
<Authentication_ID>00000000:000bc699</Authentication_ID>
<Session>2</Session>
<Integrity>High</Integrity>
<Parent_PID>3908</Parent_PID>

Figure 8: Unsuccessful RegQueryValue Operation

4.2.4 Access Right

Again, AccessChk can be used to identify the access rights needed to read or write to a specific registry key
(Figure 9).

CCDC UNCLASSIFIED Date: 23 March 2015
Identifying Attack Surface Resources
DCN: 2268C.001-REP-01-DA-TA1 Rev. 01 Page 19

Proprietary Information.
Use or disclosure of this data is subject to the Restriction of the
title page of this document.

UNCLASSIFIED

accesschk.exe -k
HKLM\System\CurrentControlSet\services\Tcpip\Parameters\Hostname

Accesschk v5.21 - Reports effective permissions for securable objects
Copyright (C) 2006-2014 Mark Russinovich
Sysinternals - www.sysinternals.com

HKLM\System\CurrentControlSet\services\Tcpip\Parameters\Hostname
R BUILTIN\Users

BUILTIN\Administrators
RW NT AUTHORITY\SYSTEM
RW NT AUTHORITY\NETWORK SERVICE
R NT AUTHORITY\LOCAL SERVICE
RW BUILTIN\Network Configuration Operators
RW NT SERVICE\Dhcp

OWNER RIGHTS
RW NT SERVICE\WwanSvc

Figure 9: AccessChk on Registry Items

4.3 Identifying Entry and Exit Points with Process Monitor

Here, we have to identify the methods that call in-out APIs. The process to do so suggested in (Manadhata &
Wing, 2011) is not applicable in our context, since we are working with binary executables without source code.
We could try to replicate the same approach by using disassemblers such as IDA Pro12 to extract the assembly
code from the binaries and then compute the call graphs on assembly code. However, for larger codebases
involving many executables and dozens of shared libraries, this would not be practical and would require
significant efforts. Again, a simpler approach involving dynamic analysis is suggested.

For each logged event in a process, Process Monitor also extracts the state of the call stack13 for that process.
The call stack shows all method calls from the start of the process until the point when the event was logged. An
example of a call stack is shown in Figure 10 for a registry value reading (RegQueryValue) that happened in
PostgreSQL server.

12 https://www.hex-rays.com/products/ida
13 http://en.wikipedia.org/wiki/Call_stack

CCDC UNCLASSIFIED Date: 23 March 2015
Identifying Attack Surface Resources
DCN: 2268C.001-REP-01-DA-TA1 Rev. 01 Page 20

Proprietary Information.
Use or disclosure of this data is subject to the Restriction of the
title page of this document.

UNCLASSIFIED

0 ntoskrnl.exe MmUnmapViewInSessionSpace + 0x7a0
0xfffff80003423500 C:\Windows\system32\ntoskrnl.exe

1 ntoskrnl.exe IoRegisterFsRegistrationChangeMountAwareEx +
0x1bfa6 0xfffff800033bd236 C:\Windows\system32\ntoskrnl.exe

2 ntoskrnl.exe KeSynchronizeExecution + 0x3a23
0xfffff80003075153 C:\Windows\system32\ntoskrnl.exe

3 ntdll.dll NtQueryValueKey + 0xa 0x771b142a
C:\Windows\System32\ntdll.dll

4 kernel32.dll LocalAlloc + 0x18c 0x77053e0c
C:\Windows\System32\kernel32.dll

5 kernel32.dll RegQueryValueExW + 0xf2 0x77054012
C:\Windows\System32\kernel32.dll

6 advapi32.dll RegQueryValueExW + 0x1d 0x7fefe2bf0ed
C:\Windows\System32\advapi32.dll

7 wxbase28u_vc_custom.dll wxRegKey::QueryValue + 0x75
0x7fee7ffd8e5 C:\Program Files\PostgreSQL\9.4\bin\
wxbase28u_vc_custom.dll

Figure 10: A Sample Call Stack

Every line shows a method call, the most recent being on the top since this is a stack. Red lines are methods
executed in kernel space14, and blue lines are methods executed in user space. Many APIs called from a program
in user space will ultimately be managed by the operating system in kernel space.

The first column identifies the module in which the method call was made, and as one can see, the PostgreSQL
Server process (postgre.exe) when loaded in memory is a composite of an executable and many shared libraries,
some part of the PostgreSQL package, some being Windows system libraries.

The second column indicates the address of the next instruction to execute upon returning from the sub function
(return address). For example, when the call to MmUnmapViewInSessionSpace in ntoskrnl.exe will
be completed, the execution will return to IoRegisterFsRegistrationChangeMountAwareEx +
0x1bfa6 in ntoskrnl.exe (+ 0x1bfa6 is the offset to the specific instruction in that function).

The third column is the absolute return address in the module, a different representation of the same data found
in the second column.

The fourth and last column indicates the path in the file system where the module can be found. This path can be
used to quickly estimate the origin of the module: if the location points to C:\Windows, it is probably a Windows
system library. If however the path points to where the process of interest is installed, as is the case in line 7 of
Figure 10 (C:\Program Files\PostgreSQL\9.4\bin\ wxbase28u_vc_custom.dll), it is part of
the codebase of the monitored process.

Now, a way to identify the in-out methods in the codebase of a process would be to walk the stack from the most
recent call until one finds a module that is not a Windows system library. In the case of Figure 10, that would be
on line 7: a call to wxRegKey::QueryValue in wxbase28u_vc_custom.dll located at C:\Program
Files\PostgreSQL\9.4\bin\wxbase28u_vc_custom.dll. Hence, the method wxRegKey::QueryValue is an entry point

14 http://en.wikipedia.org/wiki/User_space

CCDC UNCLASSIFIED Date: 23 March 2015
Identifying Attack Surface Resources
DCN: 2268C.001-REP-01-DA-TA1 Rev. 01 Page 21

Proprietary Information.
Use or disclosure of this data is subject to the Restriction of the
title page of this document.

UNCLASSIFIED

in the PostgreSQL server on Windows. Figure 11 shows the call stack for a ReadFile operation this time. The
method GUC_yyfree in postgres.exe is an entry point.

0 fltmgr.sys FltAcquirePushLockShared + 0x907 0xfffff8800107c067
C:\Windows\system32\drivers\fltmgr.sys

1 fltmgr.sys FltIsCallbackDataDirty + 0x1f3d 0xfffff8800107e82d
C:\Windows\system32\drivers\fltmgr.sys

2 fltmgr.sys FltDeletePushLock + 0x1e0 0xfffff8800109c630
C:\Windows\system32\drivers\fltmgr.sys

3 ntoskrnl.exe NtReadFile + 0x419 0xfffff80003362399
C:\Windows\system32\ntoskrnl.exe

4 ntoskrnl.exe KeSynchronizeExecution + 0x3a23
0xfffff80003075153 C:\Windows\system32\ntoskrnl.exe

5 ntdll.dll NtReadFile + 0xa 0x771b131a
C:\Windows\System32\ntdll.dll

6 KernelBase.dll ReadFile + 0x7a 0x7fefd0c1a7a
C:\Windows\System32\KernelBase.dll

7 kernel32.dll ReadFile + 0x59 0x77050a19
C:\Windows\System32\kernel32.dll

8 msvcr120.dll read + 0x3eb 0x7fef5969aa7
C:\Windows\System32\msvcr120.dll

9 msvcr120.dll fread_nolock_s + 0x18e 0x7fef592f272
C:\Windows\System32\msvcr120.dll

10 msvcr120.dll fread_s + 0x7a 0x7fef592f39e
C:\Windows\System32\msvcr120.dll

11 msvcr120.dll fread + 0x18 0x7fef592f31c
C:\Windows\System32\msvcr120.dll

12 postgres.exe GUC_yyfree + 0x47e 0x14035a50e C:\Program
Files\PostgreSQL\9.4\bin\postgres.exe

13 postgres.exe GUC_yylex + 0x293 0x14035a9c3 C:\Program
Files\PostgreSQL\9.4\bin\postgres.exe

14 postgres.exe ParseConfigFp + 0x51a 0x14035005a C:\Program
Files\PostgreSQL\9.4\bin\postgres.exe

15 postgres.exe ProcessConfigFile + 0xdb 0x140350d0b
C:\Program Files\PostgreSQL\9.4\bin\postgres.exe

16 postgres.exe SelectConfigFiles + 0x184 0x1403517e4
C:\Program Files\PostgreSQL\9.4\bin\postgres.exe

17 postgres.exe PostmasterMain + 0x649 0x1401ed849
C:\Program Files\PostgreSQL\9.4\bin\postgres.exe

18 postgres.exe main + 0x2eb 0x14014232b C:\Program
Files\PostgreSQL\9.4\bin\postgres.exe

19 postgres.exe crypt + 0x2327 0x140380bf7 C:\Program
Files\PostgreSQL\9.4\bin\postgres.exe

20 kernel32.dll BaseThreadInitThunk + 0xd 0x770559ed
C:\Windows\System32\kernel32.dll

21 ntdll.dll RtlUserThreadStart + 0x21 0x7718c541
C:\Windows\System32\ntdll.dll

Figure 11: Identifying an Entry Point on a ReadFile Operation

CCDC UNCLASSIFIED Date: 23 March 2015
Identifying Attack Surface Resources
DCN: 2268C.001-REP-01-DA-TA1 Rev. 01 Page 22

Proprietary Information.
Use or disclosure of this data is subject to the Restriction of the
title page of this document.

UNCLASSIFIED

4.3.1 Privilege and Access Rights

Unlike Linux, Windows does not have a setuid() system call to lower the privilege of a running process and a
process will spend its entire lifetime under the privilege it was started with. Hence, to identify the privilege of an
entry/exit point method, we can look at the privilege of its running process. An example is shown in Figure 12 for
the PostgreSQL database server, where all the entry/exit point methods that can be identified for that process will
have the same privilege: NT AUTHORITY\NETWORK SERVICE.

<event>
<ProcessIndex>1883</ProcessIndex>
<Time_of_Day>2:38:25.6229234 PM</Time_of_Day>
<Process_Name>postgres.exe</Process_Name>
<PID>16624</PID>
<Operation>ReadFile</Operation>
<Path>C:\Program
Files\PostgreSQL\9.4\share\timezonesets\Default</Path>
<Result>SUCCESS</Result>
<Detail>Offset: 12,288, Length: 4,096</Detail>
<User>NT AUTHORITY\NETWORK SERVICE</User>
<Authentication_ID>00000000:000003e4</Authentication_ID>
<Session>0</Session>
<Integrity>System</Integrity>
<Parent_PID>8656</Parent_PID>

Figure 12: Entry/exit Points Method Privilege

As for the access rights needed to run the entry/exit point methods, they can be identified by using AccessChk to
obtain the permissions associated with the shared library file, as shown in Figure 13.

accesschk.exe "C:\Program
Files\PostgreSQL\9.4\bin\wxbase28u_vc_custom.dll"

Accesschk v5.21 - Reports effective permissions for securable objects
Copyright (C) 2006-2014 Mark Russinovich
Sysinternals - www.sysinternals.com

C:\Program Files\PostgreSQL\9.4\bin\wxbase28u_vc_custom.dll
RW NT AUTHORITY\SYSTEM
RW BUILTIN\Administrators
R BUILTIN\Users

Figure 13: AccessChk Checking File Permissions

4.4 Summary

With Process Monitor, we have established a relatively simple and scalable method to identify channels, entry/exit
point methods, and data items (untrusted or not) on the Windows platform. Process Monitor also gives us the
privilege for entry/exit point methods, and with AccessChk we can get access rights for all data items.

CCDC UNCLASSIFIED Date: 23 March 2015
Identifying Attack Surface Resources
DCN: 2268C.001-REP-01-DA-TA1 Rev. 01 Page 23

Proprietary Information.
Use or disclosure of this data is subject to the Restriction of the
title page of this document.

UNCLASSIFIED

Process Monitor is a nice and easy to use tool, but it has a limited scope: only four classes of events can be
monitored, and it is not a scriptable or automatable tool, even if it has a basic command line interface. Using the
ETW framework directly could be a less limiting approach, as it is not limited to only four classes of events and it
can be used programmatically. For scenarios where one would like to assess the attack surface of a system
automatically by installing a software agent, a custom program using the ETW framework would have to be
created.

The level of effort required to build a custom program using the ETW framework could be important. The exact
capabilities of the ETW framework would have to be assessed, since Process Monitor uses system hooks in
addition to the ETW framework to do its monitoring. One would have to make sure that no required functionality
identified in Process Monitor depends on these hooks, since they are not part of the ETW framework. If all the
functionalities required are part of the ETW framework, the development of such a tool should be relatively
straightforward and require around 4 months of work.

5 SYSTEMTAP ON LINUX

Sadly, there is no equivalent tool on Linux for Windows Process Monitor that is as easy to use and as powerful.
However, there are many lower-level tracing tools similar to Event Tracing for Windows, such as strace15 ,
ltrace16, dtrace17, LTTng18, and SystemTap19.

After reviewing the documentation of these tools, it is clear that many of them could be used to implement the
monitoring needed to identify attack surface resources. However, only SystemTap has the right mix of power
(anything can be monitored), ease of use (monitoring is done with a simple script), and versatility (the scripting
language is almost a full-scale programming language).

SystemTap allows users to write simple scripts for investigating and monitoring a wide variety of kernel functions,
system calls, and other events that occur in the kernel space. For example, the script shown in Figure 14 will print
the name of the program and its process id every time the system function open is called.

probe syscall.open
{
printf ("%s(%d) open\n", execname(), pid())

}

Figure 14: A Sample SystemTap Script

A SystemTap script is a mix of probe handlers that will be called each time the event associated with the probe
happens, and user defined functions. The user defined functions are used to do custom processing that goes
beyond what the probes can do. When called with such a script, SystemTap will do the following behind the
scenes:

(1) Analyze the script to identify where the probes should be added in the system;
(2) Translate the script into C;
(3) Compile the script into a loadable kernel module; and

15 http://en.wikipedia.org/wiki/Strace
16 http://en.wikipedia.org/wiki/Ltrace
17 http://en.wikipedia.org/wiki/DTrace
18 http://lttng.org
19 https://sourceware.org/systemtap

CCDC UNCLASSIFIED Date: 23 March 2015
Identifying Attack Surface Resources
DCN: 2268C.001-REP-01-DA-TA1 Rev. 01 Page 24

Proprietary Information.
Use or disclosure of this data is subject to the Restriction of the
title page of this document.

UNCLASSIFIED

(4) Load the module and start collecting data.

5.1 Installation

SystemTap being mostly a RedHat project, it works well and is easier to install on RedHat-based Linux
distributions such as Fedora. Using yum, one can install all the software needed, in addition to the debug symbols
necessary to identify where to install the probes (Figure 15).

$ yum install gcc systemtap systemtap-runtime systemtap-testsuite
kernel-devel
$ sudo yum --enablerepo=*-debuginfo install kernel-debuginfo kernel-
debuginfo-common

Figure 15: SystemTap Installation Commands

The documentation about SystemTap is sparse, but the project continues to be actively developed. The current
version is 2.7 and the most up to date documentation is the SystemTap Beginners Guide20. However, even this
guide is incomplete and a good source of information is the large list of examples installed with the software at
/etc/share/systemtap/testsuite/systemtap.examples/.

SystemTap supports boot-time probing with the onboot command, which would be necessary for whole-computer
analysis if one wants to make sure that no event could be missed before the logging mechanism is online.
However, even with significant efforts, the author was not able to make it work in the time allowed. The

 documentation mentions that this functionality can only work on Dracut21-based systems, but even on Fedora with
Dracut installed it didn’t work.

5.2 Running SystemTap

A SystemTap script can be launched by using the stap command (Figure 16). The user launching the command
must be the superuser, or a member of the stapdev or stapusr groups. Once a script is started, it can be stopped
by typing CRTL+C. The data collected by the script is displayed only after a script has finished its execution.

[thales@localhost systemtap]$ sudo stap -v test.stp > log.txt
Pass 1: parsed user script and 117 library script(s) using
227396virt/51180res/5732shr/46176data kb, in 130usr/40sys/305real ms.
Pass 2: analyzed script: 10 probe(s), 24 function(s), 78 embed(s), 3 global(s)
using 364724virt/186648res/3740shr/183504data kb, in 1510usr/590sys/4224real
ms.
Pass 3: using cached
/root/.systemtap/cache/f0/stap_f0b44a0519ff7727911bd35bdbb91b62_57257.c
Pass 4: using cached
/root/.systemtap/cache/f0/stap_f0b44a0519ff7727911bd35bdbb91b62_57257.ko
Pass 5: starting run.
^CPass 5: run completed in 0usr/60sys/15623real ms.

Figure 16: Running a SystemTap Script

20 https://sourceware.org/systemtap/SystemTap_Beginners_Guide
21 http://fedoraproject.org/wiki/Dracut

CCDC UNCLASSIFIED Date: 23 March 2015
Identifying Attack Surface Resources
DCN: 2268C.001-REP-01-DA-TA1 Rev. 01 Page 25

Proprietary Information.
Use or disclosure of this data is subject to the Restriction of the
title page of this document.

UNCLASSIFIED

5.3 The Complete Script

A SystemTap script to identify channels, data items, and entry/exit point methods all at once was created and is
shown in Figure 17. The script outputs data in the CSV format for convenience. It uses 3 global variables
(associative arrays22) for collecting information: filehandle is the list of opened files, fileresources is
the list of accessed file resources and networkresources is the list of incoming network connections.
Functions formatfile and formatnetwork format the output for CSV, and the multiple probes collect
information on events to identify channels, data items, and entry/exit point methods.

#!/usr/bin/stap

//---
// Script to extract attack surface resources with SystemTap
//---

global filehandles
global fileresources
global networkresources

// Returns the path of a previously opened file
function getfdpath:string(pid, fd)
{

if ([pid, fd] in filehandles)
return filehandles[pid, fd]

else
return sprintf("Unknown file descriptor: %d", fd)

}

// Formats the file resource output
function formatfile:string(fd)
{

return sprintf("file, %s, %d, %d, %d, %s, %s",
execname(), pid(), uid(), gid(), usymdata(ustack(0)),

getfdpath(pid(), fd))
}

// Formats the network resource output
function formatnetwork:string(port)
{

return sprintf("network, %s, %d, %d, %d, %s, %d",
execname(), pid(), uid(), gid(), usymdata(ustack(0)), port)

}

// Delete global variables in the end
probe end
{

foreach ([pid, fd] in fileresources)
printf("%s\n", fileresources[pid, fd])

foreach ([pid, port] in networkresources)
printf("%s\n", networkresources[pid, port])

delete filehandles
delete fileresources
delete networkresources

22 https://www.sourceware.org/systemtap/SystemTap_Beginners_Guide/associativearrays.html

CCDC UNCLASSIFIED Date: 23 March 2015
Identifying Attack Surface Resources
DCN: 2268C.001-REP-01-DA-TA1 Rev. 01 Page 26

Proprietary Information.
Use or disclosure of this data is subject to the Restriction of the
title page of this document.

UNCLASSIFIED

}

// Registers all file open operations to get the path
probe syscall.open.return
{

filename = user_string($filename)
if ($return != -1)

filehandles[pid(), $return] = filename
}

// File read, write
probe syscall.read.return, syscall.write.return {

if (!([pid(), $fd] in fileresources))
{

fileresources[pid(), $fd] = formatfile($fd)
}

}

// Network receive
probe kernel.function("tcp_accept").return?,
kernel.function("udp_accept").return?,
kernel.function("inet_csk_accept").return?
{

sock = $return
if (sock != 0)

port = inet_get_local_port(sock)
if (!([pid(), port] in networkresources))
{

networkresources[pid(), port] = formatnetwork(port)
printf("%s\n", formatnetwork(port))

}
}

Figure 17: The Complete SystemTap Script

5.4 Identifying Channels with SystemTap

Identifying network channels can be done by monitoring incoming connections. There are many ways to do so
with SystemTap, since a number of APIs are involved in network communications on Linux. For example, network
communications can be probed at the Ethernet device level (layer 2), the TCP/UDP stack level (layers 3), and the
socket level (layer 4). To determine the best location in the code to probe for network communications is not trivial
and additional experimentations would have to be done to get a definitive answer.

A good API location to probe must be a bottleneck: all network communications for all protocols would have to go
through this API. Moreover, this API would need to be at a level where concepts such as an IP address and a
listening port are available, which is not the case for lower-level APIs managing Ethernet devices.

Figure 18 shows a way to do so by probing a few kernel functions that are called when a TCP or UDP connection
is accepted. Again, it is important to note that only active channels that have transferred data will be detected by
probing APIs that accept data connections. We would need to probe for the creation of listening sockets to catch
all channels, even inactive. However, the right kernel APIs involved in socket creation has not been identified at
this time.

CCDC UNCLASSIFIED Date: 23 March 2015
Identifying Attack Surface Resources
DCN: 2268C.001-REP-01-DA-TA1 Rev. 01 Page 27

Proprietary Information.
Use or disclosure of this data is subject to the Restriction of the
title page of this document.

UNCLASSIFIED

probe kernel.function("tcp_accept").return?,
kernel.function("udp_accept").return?,
kernel.function("inet_csk_accept").return?

{…}

Figure 18: SystemTap Probes for Monitoring Incoming Connections

5.4.1 Access Rights

Again, it is suggested to use the knowledge about the application to manually specify the access rights related to
network channels. However, with a logging framework such as SystemTap, it would theoretically be possible to
identify calls to crypto libraries involved in authentication mechanisms. Hence, this would allow the automatic
discovery of authentication mechanisms and related access rights.

5.5 Identifying Untrusted Data Items with SystemTap

5.5.1 Persistent File Data Items

Logging read and write operations on files with SystemTap is very easy: we can monitor calls to the read and
write system APIs (Figure 19).

probe syscall.read.return, syscall.write.return
{…}

Figure 19: SystemTap Probes for Monitoring Read and Write File Operations

However, the path of the file being read or written to is not available from these APIs. The read and write system
calls use file descriptors to identify files, which are integer indexes on a list of open files. To get the path, one has
in addition to probe the file open operation, as shown in Figure 20.

probe syscall.open.return
{…]

Figure 20: SystemTap Probe for Monitoring Open File Operation

By using these two probes, it is possible to monitor read and write operations on files, in addition to identify which
file is involved in the operation.

5.5.2 Access Rights

File permissions could probably be available directly in SystemTap via a user-defined function, but the author has
not found such a function yet. However, it is possible to extract file permissions on Linux with the well-known ls
command (Figure 21).

CCDC UNCLASSIFIED Date: 23 March 2015
Identifying Attack Surface Resources
DCN: 2268C.001-REP-01-DA-TA1 Rev. 01 Page 28

Proprietary Information.
Use or disclosure of this data is subject to the Restriction of the
title page of this document.

UNCLASSIFIED

$ ls -la /root
total 24
drwxr-xr-x 2 root root 4096 2009-12-16 01:10 .
drwxr-xr-x 23 root root 4096 2010-02-18 10:14 ..
-rw------- 1 root root 123 2010-01-21 15:49 .bash_history
-rw-r--r-- 1 root root 2227 2007-10-20 11:51 .bashrc
-rw-r--r-- 1 root root 141 2007-10-20 11:51 .profile
-rw------- 1 root root 868 2009-12-16 00:47 .viminfo

Figure 21: The ls Command to Extract File Permissions

5.6 Identifying Entry and Exit Points with SystemTap

Figure 22 shows the output of the script, which is formatted with the following columns:

[type of resource], [executable name], [process id], [user id], [group id], [entry/exit point], …

 Type of resource: file or network;
 Executable name: the name of the executable, often the command that started the process;
 Process id: the process identifier;
 User id: the user that started the process;
 Group id: the primary group of the user running the process;
 The entry/exit point function (only an approximation for the moment, see below); and
 Additional information related to the type of the resource. For files, the full path of the file. For network

resources, the local port.

Identifying the entry/exit point function is achieved by calling usymdata(ustack(0)). First, the call to
ustack(0) returns the top function on the user stack. Now, this location is only an approximation of the real
entry/exit point and most of the time it will point to a shared library running in the userspace context of the process
(e.g. libc). As was shown with Process Monitor, we would have to walk the stack back until we identify a code
module that is part of the program of interest and not from the system. Any piece of code in /usr/* is a system
shared library. There may be a bug in SystemTap ustack() function, since only the last two elements were
available most of the time. Hence, it was impossible to walk the stack until the real entry/exit point was found. This
will have to be further investigated. The usymdata() function returns the debug information related to the
address , such as [/usr/lib64/libpthread-2.20.so+0xf400/0x21c000].

network, python, 2799, 1000, 1000, 0x3d1500f400 [/usr/lib64/libpthread-
2.20.so+0xf400/0x21c000], 8000

file, systemd-udevd, 528, 0, 0, 0x7f6226426e50 [/usr/lib64/libc-
2.20.so+0xf0e50/0x3b9000], /sys/fs/cgroup/systemd/system.slice/systemd-
udevd.service/cgroup.procs

file, systemd-journal, 480, 0, 0, 0x7f5b43afde50 [/usr/lib64/libc-
2.20.so+0xf0e50/0x3b9000], /proc/1602/cgroup

file, systemd, 1, 0, 0, 0x7f1666956e6d [/usr/lib64/libc-
2.20.so+0xf0e6d/0x3b9000], /proc/480/cgroup

file, vmtoolsd, 634, 0, 0, 0x7f82dcbe0e6d [/usr/lib64/libc-
2.20.so+0xf0e6d/0x3b9000], /proc/devices

file, vmtoolsd, 634, 0, 0, 0x7f82dcbe0e50 [/usr/lib64/libc-

CCDC UNCLASSIFIED Date: 23 March 2015
Identifying Attack Surface Resources
DCN: 2268C.001-REP-01-DA-TA1 Rev. 01 Page 29

Proprietary Information.
Use or disclosure of this data is subject to the Restriction of the
title page of this document.

UNCLASSIFIED

2.20.so+0xf0e50/0x3b9000], /etc/mtab
file, vmtoolsd, 634, 0, 0, 0x7f82dcbe0e6d [/usr/lib64/libc-

2.20.so+0xf0e6d/0x3b9000], /proc/net/if_inet6
file, sedispatch, 588, 0, 0, 0x3d154f0e50 [/usr/lib64/libc-

2.20.so+0xf0e50/0x3b9000], Unknown file descriptor: 0
file, systemd-cgroups, 2798, 0, 0, 0x7f0b56722757, /lib64/librt.so.1
file, systemd, 1, 0, 0, 0x7f1666c321cd [/usr/lib64/libpthread-

2.20.so+0xf1cd/0x218000], /dev/urandom
file, systemd, 1, 0, 0, 0x7f1666956e6d [/usr/lib64/libc-

2.20.so+0xf0e6d/0x3b9000], /sys/fs/cgroup/systemd/system.slice/avahi-
daemon.service/cgroup.procs

file, python, 2799, 1000, 1000, 0x3d154f0e50 [/usr/lib64/libc-
2.20.so+0xf0e50/0x3bd000], /usr/lib64/python2.7/site.pyc

file, python, 2799, 1000, 1000, 0x3d154f0e50 [/usr/lib64/libc-
2.20.so+0xf0e50/0x3bd000], /usr/lib64/python2.7/os.pyc

file, python, 2799, 1000, 1000, 0x3d154f0e50 [/usr/lib64/libc-
2.20.so+0xf0e50/0x3bd000], /usr/lib64/python2.7/posixpath.pyc

file, python, 2799, 1000, 1000, 0x3d154f0e50 [/usr/lib64/libc-
2.20.so+0xf0e50/0x3bd000], /usr/lib64/python2.7/stat.pyc

file, python, 2799, 1000, 1000, 0x3d154f0e50 [/usr/lib64/libc-
2.20.so+0xf0e50/0x3bd000], /usr/lib64/python2.7/linecache.pyc

file, python, 2799, 1000, 1000, 0x3d154f0e50 [/usr/lib64/libc-
2.20.so+0xf0e50/0x3bd000], /usr/lib64/python2.7/_weakrefset.pyc

file, DNS Resolver #1, 2225, 1000, 1000, 0x3d154f0e50 [/usr/lib64/libc-
2.20.so+0xf0e50/0x3b9000], /etc/hosts

file, Cache2 I/O, 2225, 1000, 1000, 0x3d1500f1cd [/usr/lib64/libpthread-
2.20.so+0xf1cd/0x218000],
/home/thales/.cache/mozilla/firefox/ncsah2hs.default/cache2/entries/884
B4EDE90824D38033103F4018788CE49EB37BE

file, crond, 1137, 0, 0, 0x7f4ca0142e50 [/usr/lib64/libc-
2.20.so+0xf0e50/0x3b9000], /etc/passwd

file, gvfsd-metadata, 2042, 1000, 1000, 0x3d1500f16d [/usr/lib64/libpthread-
2.20.so+0xf16d/0x218000], /home/thales/.local/share/gvfs-
metadata/home.NBC1UX

file, pool, 2194, 1000, 1000, 0x3d154f0e6d [/usr/lib64/libc-
2.20.so+0xf0e6d/0x3b9000], /proc/self/task/2800/attr/current

file, gnome-shell, 1755, 1000, 1000, 0x3d154f0e6d [/usr/lib64/libc-
2.20.so+0xf0e6d/0x3b9000], /proc/self/stat

network, python, 2799, 1000, 1000, 0x3d1500f400 [/usr/lib64/libpthread-
2.20.so+0xf400/0x21c000], 8000

Figure 22: Log of SystemTap Script

The output of the script in Figure 22 shows a Linux system executing for a few seconds. To get more interesting
results containing network events, a simple http server was created with Python by launching the command
shown in Figure 23. A web browser was then used to access the web server twice (first and last event of Figure
22).

CCDC UNCLASSIFIED Date: 23 March 2015
Identifying Attack Surface Resources
DCN: 2268C.001-REP-01-DA-TA1 Rev. 01 Page 30

Proprietary Information.
Use or disclosure of this data is subject to the Restriction of the
title page of this document.

UNCLASSIFIED

$ python –m SimpleHTTPServer
Serving HTTP on 0.0.0.0 port 8000 …
127.0.0.1 - - [06/Mar/2015 14 :56 :00] GET / http/1.1 200 –
127.0.0.1 - - [06/Mar/2015 14 :56 :00] GET / http/1.1 200 -

Figure 23: Python SimpleHTTPServer

6 WINDOWS COMPUTER DEFINITION

The following section presents an attempt to apply the technique previously shown to capture key attack surface
resources on a Windows 7 desktop computer. The computer used for this experiment was a workstation on the
Thales corporate network, a realistic setup. Process Monitor was set to “Enable Boot Logging” and the computer
was restarted. Then, a user session was opened, Process Monitor was started (which stopped logging) and the
event log was saved to disk.

Now, using dynamic analysis for a whole computer generates a lot of data. The raw data captured was around 2.3
GB for 4 612 592 events, and this is only for around five minutes of execution. However, Process Monitor handles
event captures of this size without any problem.

It is important to appreciate the size and complexity of such an analysis for a whole computer. The size of the
data itself requires the use of tools like databases, since it is impossible to work on such a big dataset manually
(forget about Excel). The author of this document suggests SQLite23, a small and free database. Presenting the
results is also a challenge, because there are literally thousands of resources involved in the attack surface. It is
clear that such an approach could only be practical if it is fully automated. However, automating such an approach
should be relatively easy, since it is mostly integration and database management work.

6.1 Identifying Network Channels

Process Monitor failed to capture any network event during this experiment, even after multiple attempts. It seems
that the Windows 7 workstation on the Thales corporate network had a special Cisco VPN software installed that
interfered with standard network functions. Hence, the network APIs monitored by Process Monitor were not used
anymore and were replaced by custom Cisco drivers and APIs.

This shows one limitation of dynamic analysis: if an operating system is modified by the installation of software
that makes changes in the inner workings of the system, monitored location may not be available or work as
expected anymore. This is especially true for security software such as an antivirus, that have to install
themselves deep into the operating system to monitor and protect sensitive low-level functions in the kernel.

6.2 Identifying File Data Items

There were 90 652 events of the type ReadFile or WriteFile, but these events included access to shared
libraries (.dll) and executable files (.exe). It seems that Process Monitor captures the action of reading a file to
load executable code in memory when launching a process. Should this information be included in our analysis?
Yes, because clearly it is possible to attack a system by replacing code modules that will be executed; it fits the
definition of what a data item is in (Manadhata & Wing, 2011).

23 http://www.sqlite.org

CCDC UNCLASSIFIED Date: 23 March 2015
Identifying Attack Surface Resources
DCN: 2268C.001-REP-01-DA-TA1 Rev. 01 Page 31

Proprietary Information.
Use or disclosure of this data is subject to the Restriction of the
title page of this document.

UNCLASSIFIED

Many of these files were accessed multiple times and when the data was grouped by process and path, there
were still 7825 unique events. In these 7825 events, there were 6244 unique files accessed by 105 processes
(some processes accessed the same files) and these processes were started by 5 different users.

Table 1 shows the list of processes accessing file data items: for each entry there is the process name and the
number of individual file data items that were read from or written to.

Table 1: The List of Processes and the Number of Files Data Items Accessed
System 3407
svchost.exe 838
Explorer.EXE 579
OUTLOOK.EXE 223
SearchIndexer.exe 186
csrss.exe 169
services.exe 148
smss.exe 102
vpnagent.exe 89
nvSCPAPISvr.exe 84
FrameworkService.exe 78
spoolsv.exe 77
wininit.exe 75
LogonUI.exe 74
lsass.exe 74
SearchProtocolHost.exe 70
taskhost.exe 67
Eraser.exe 65
TfsComProviderSvr.exe 54
vmware-authd.exe 54
vpnui.exe 51
cmd.exe 47
dcagenttrayicon.exe 47
dcconfig.exe 46
DllHost.exe 41
wmiprvse.exe 40
WScript.exe 36
nvvsvc.exe 34
MSOSYNC.EXE 33
easynetswitch.exe 33
runonce.exe 29
ONENOTEM.EXE 28
nvxdsync.exe 26
winlogon.exe 26
SearchFilterHost.exe 23
dcstatusutil.exe 23
explorer.exe 23
dcagentservice.exe 22
Check-Intranet-Boot.exe 21
Dwm.exe 21
VsTskMgr.exe 21
enssvc.exe 21
jusched.exe 21

RunDll32.exe 16
shstat.exe 16
vpncli.exe 16
GoogleUpdate.exe 15
igfxsrvc.exe 15
mfeann.exe 15
FMAPP.exe 14
TGitCache.exe 14
dcusb64.exe 14
dcswmeter.exe 13
dcuninstallsw.exe 12
naPrdMgr.exe 12
rundll32.exe 12
Reader_sl.exe 11
WUDFHost.exe 11
CloseVPN.exe 10
dcinventory.exe 10
dcondemand.exe 10
dcusbsummary.exe 10
vmware-usbarbitrator64.exe 10
OSPPSVC.EXE 9
gpscript.exe 9
igfxpers.exe 9
wscript.exe 8
Check-Intranet.exe 7
RAVBg64.exe 7
lsm.exe 7
mfevtps.exe 7
regedit.exe 7
taskeng.exe 7
RAVCpl64.exe 6
armsvc.exe 6
cscript.exe 6
emedtray.exe 6
sdclt.exe 6
atbroker.exe 5
gpupdate.exe 5
hkcmd.exe 5
iusb3mon.exe 5
vmnat.exe 5
GoogleCrashHandler64.exe 4
ipconfig.exe 4
userinit.exe 4

CCDC UNCLASSIFIED Date: 23 March 2015
Identifying Attack Surface Resources
DCN: 2268C.001-REP-01-DA-TA1 Rev. 01 Page 32

Proprietary Information.
Use or disclosure of this data is subject to the Restriction of the
title page of this document.

UNCLASSIFIED

McTray.exe 20
AUDIODG.EXE 18
MmReminderService.exe 18
UdaterUI.exe 18
MfeServiceMgr.exe 17
OcsService.exe 17
PrintIsolationHost.exe 17
communicator.exe 17
conhost.exe 17
AdobeARM.exe 16

vmnetdhcp.exe 4
GoogleCrashHandler.exe 3
RAServer.exe 3
Set-English.exe 3
ibmpmsvc.exe 3
whoami.exe 3
nscp.exe 2
regini.exe 2
autochk.exe 1

6.3 Identifying Entry and Exit Point Methods

There is clearly too much data to present the entry/exit point methods analysis for all data items. Hence, a single
process was chosen to continue the analysis: MfeServiceMgr.exe, which is a component of the McAfee antivirus
(McAfee Service Manager). Table 2 shows the list of file data items for the McAfee Service Manager.

Table 2: File Data Items for McAfee Service Manager
Process Operation Path User

MfeServiceMgr.exe ReadFile C:\Program Files (x86)\McAfee\Common
Framework\0409\AgentRes.Dll

NT
AUTHORITY\SYSTEM

MfeServiceMgr.exe ReadFile C:\Program Files (x86)\McAfee\Common
Framework\AppLib.dll

NT
AUTHORITY\SYSTEM

MfeServiceMgr.exe ReadFile C:\Program Files (x86)\McAfee\Common
Framework\Dispatcher.dll

NT
AUTHORITY\SYSTEM

MfeServiceMgr.exe ReadFile C:\Program Files (x86)\McAfee\Common
Framework\MfeServiceMgr.exe

NT
AUTHORITY\SYSTEM

MfeServiceMgr.exe ReadFile C:\Program Files (x86)\McAfee\Common
Framework\cryptshim.dll

NT
AUTHORITY\SYSTEM

MfeServiceMgr.exe ReadFile C:\Program Files (x86)\McAfee\Common
Framework\mfeCmnLib71.dll

NT
AUTHORITY\SYSTEM

MfeServiceMgr.exe ReadFile C:\Program Files (x86)\McAfee\Common
Framework\mfecryptc.dll

NT
AUTHORITY\SYSTEM

MfeServiceMgr.exe ReadFile C:\Program Files (x86)\McAfee\Common
Framework\mfediscovery.dll

NT
AUTHORITY\SYSTEM

MfeServiceMgr.exe ReadFile C:\Program Files (x86)\McAfee\Common
Framework\msvcp100.dll

NT
AUTHORITY\SYSTEM

MfeServiceMgr.exe ReadFile C:\Program Files (x86)\McAfee\Common
Framework\msvcr100.dll

NT
AUTHORITY\SYSTEM

MfeServiceMgr.exe ReadFile C:\Program Files (x86)\McAfee\Common
Framework\naCmnLib3_71.dll

NT
AUTHORITY\SYSTEM

MfeServiceMgr.exe ReadFile C:\Program Files (x86)\McAfee\Common
Framework\nailog3.dll

NT
AUTHORITY\SYSTEM

MfeServiceMgr.exe ReadFile C:\Program Files (x86)\McAfee\Common
Framework\naxml3_71.dll

NT
AUTHORITY\SYSTEM

MfeServiceMgr.exe ReadFile C:\ProgramData\McAfee\Common
Framework\Mesh\SvcMgr_TH3144.log

NT
AUTHORITY\SYSTEM

MfeServiceMgr.exe ReadFile C:\ProgramData\McAfee\Common
Framework\Mesh\SvcMgr_TH3144_error.log

NT
AUTHORITY\SYSTEM

MfeServiceMgr.exe ReadFile C:\ProgramData\NVIDIA
Corporation\Drs\nvdrssel.bin

NT
AUTHORITY\SYSTEM

MfeServiceMgr.exe ReadFile C:\Windows\Prefetch\MFESERVICEMGR.EXE-
9A98F1C0.pf

NT
AUTHORITY\SYSTEM

MfeServiceMgr.exe WriteFile C:\ProgramData\McAfee\Common
Framework\Mesh\SvcMgr_TH3144.log

NT
AUTHORITY\SYSTEM

MfeServiceMgr.exe WriteFile C:\ProgramData\McAfee\Common NT

CCDC UNCLASSIFIED Date: 23 March 2015
Identifying Attack Surface Resources
DCN: 2268C.001-REP-01-DA-TA1 Rev. 01 Page 33

Proprietary Information.
Use or disclosure of this data is subject to the Restriction of the
title page of this document.

UNCLASSIFIED

Framework\Mesh\SvcMgr_TH3144_error.log AUTHORITY\SYSTEM

For each data item presented in Table 2, the stack was walked back until a call in user space was found. Since
we are doing the analysis for the whole computer (we were not interested in only one specific process), system
shared libraries were included in the analysis. Table 3 shows the entry/exit point methods for MfeServiceMgr.exe:
there are only 3 entries, as the same function is used to read or write different files.

Table 3: Entry/ExitPoint Methods for McAfee Service Manager
Component Method

C:\Windows\System32\ntdll.dll RtlUserThreadStart
C:\Windows\SysWOW64\ntdll.dll LdrInitializeThunk + 0x10
C:\Program Files
(x86)\McAfee\Common
Framework\MfeServiceMgr.exe

mcafee_com::cma::servicemgr::ServiceMgr::~Serv
iceMgr + 0x664b

6.3.1 Access Rights

To be able to call these methods, a user will need the execute permission on these components. Figure 24 shows
accesschk being used to extract the permissions on ntdll.dll. It is important to call accesschk with the
–l parameter to show the execute permission, otherwise a simplified list of permissions without execute is
shown.

C:\Program Files Users\SysinternalsSuite>accesschk.exe -l
C:\Windows\System32\ntdll.dll

Accesschk v5.21 - Reports effective permissions for securable objects
Copyright (C) 2006-2014 Mark Russinovich
Sysinternals - www.sysinternals.com

C:\Windows\System32\ntdll.dll
DESCRIPTOR FLAGS:

[SE_DACL_PRESENT]
[SE_SACL_PRESENT]
[SE_DACL_PROTECTED]
[SE_SACL_PROTECTED]
[SE_RM_CONTROL_VALID]

OWNER: NT SERVICE\TrustedInstaller
[0] ACCESS_ALLOWED_ACE_TYPE: NT SERVICE\TrustedInstaller

FILE_ALL_ACCESS
[1] ACCESS_ALLOWED_ACE_TYPE: BUILTIN\Administrators

FILE_EXECUTE
FILE_READ_ATTRIBUTES
FILE_READ_DATA
FILE_READ_EA
SYNCHRONIZE
READ_CONTROL

[2] ACCESS_ALLOWED_ACE_TYPE: NT AUTHORITY\SYSTEM
FILE_EXECUTE

CCDC UNCLASSIFIED Date: 23 March 2015
Identifying Attack Surface Resources
DCN: 2268C.001-REP-01-DA-TA1 Rev. 01 Page 34

Proprietary Information.
Use or disclosure of this data is subject to the Restriction of the
title page of this document.

UNCLASSIFIED

FILE_READ_ATTRIBUTES
FILE_READ_DATA
FILE_READ_EA
SYNCHRONIZE
READ_CONTROL

[3] ACCESS_ALLOWED_ACE_TYPE: BUILTIN\Users
FILE_EXECUTE
FILE_READ_ATTRIBUTES
FILE_READ_DATA
FILE_READ_EA
SYNCHRONIZE
READ_CONTROL

Figure 24: Permissions for ntdll.dll

The permissions model on Windows uses access control lists (ACL) 24, which is different from the “owner-group-
world” permission model used on Linux. The key difference between these models is the number of entries
possible for a file permission. On Linux, a file permission can only be set for one user or group, but on Windows
there is a variable list involved that can contain more than one user or group. The ACL approach is more
versatile, but can also be much more complex if not used with moderation (i.e. large lists of users for a file
permission). Table 4 shows the access rights needed to execute the entry/exit point methods found in the
MfeServiceMgr.exe process modules.

Table 4: Windows File Data Items and Access Rights
File Data Item Access Right for Execute

Permission
C:\Windows\System32\ntdll.dll BUILTIN\Administrators
C:\Windows\System32\ntdll.dll NT AUTHORITY\SYSTEM
C:\Windows\System32\ntdll.dll BUILTIN\Users
C:\Windows\SysWOW64\ntdll.dll BUILTIN\Administrators
C:\Windows\SysWOW64\ntdll.dll NT AUTHORITY\SYSTEM
C:\Windows\SysWOW64\ntdll.dll BUILTIN\Users
C:\Program Files (x86)\McAfee\Common
Framework\MfeServiceMgr.exe

Everyone

6.4 Privilege

The MfeServiceMgr.exe process ran under the NT AUTHORITY\SYSTEM privilege and all entry/exit point
methods inherit this privilege.

Assigning Numeric Values

As shown in section 4.2 of (Manadhata & Wing, 2011), assigning numeric values to estimate the damage
potential related to a privilege cannot easily be automated. However, establishing a total order between them is
much easier and recommended as the first stage of this analysis.

24 http://en.wikipedia.org/wiki/Access_control_list

CCDC UNCLASSIFIED Date: 23 March 2015
Identifying Attack Surface Resources
DCN: 2268C.001-REP-01-DA-TA1 Rev. 01 Page 35

Proprietary Information.
Use or disclosure of this data is subject to the Restriction of the
title page of this document.

UNCLASSIFIED

On UNIX, there is only one built-in account: the superuser (root). The superuser can access everything and has
all privilege. Then, there are user accounts with varying level of privilege. These user accounts are related to
installed applications and are given the necessary privilege required for the application to function (e.g. a postgre
account to run the PostgreSQL database). Hence, this must be analyzed on a case by case basis and there is no
generic answer beyond a primitive order such as:

[superuser] > [authenticated users] > [unauthenticated users]

On Windows things are much different, since there are many built-in accounts and groups, in addition to a very
large list of access rights that goes way beyond file system security. For example, the Windows Service Control
Manager (SCM), which is the module that manages services (daemons) in Windows, has a specific list of access
rights shown in Table 5.

Table 5: Access Rights for the Windows Service Control Manager
Access Right Description

SC_MANAGER_ALL_ACCESS Includes STANDARD_RIGHTS_REQUIRED, in addition to all
access rights in this table.

SC_MANAGER_CREATE_SERVICE Required to call the CreateService function to create a
service object and add it to the database.

SC_MANAGER_CONNECT Required to connect to the service control manager.

SC_MANAGER_ENUMERATE_SERVICE

Required to call the EnumServicesStatus or
EnumServicesStatusEx function to list the services that are in
the database.
Required to call the NotifyServiceStatusChange function to
receive notification when any service is created or deleted.

SC_MANAGER_LOCK Required to call the LockServiceDatabase function to acquire
a lock on the database.

SC_MANAGER_MODIFY_BOOT_CONFIG Required to call the NotifyBootConfigStatus function.

SC_MANAGER_QUERY_LOCK_STATUS Required to call the QueryServiceLockStatus function to
retrieve the lock status information for the database.

Many built-in users and groups have default access rights for specific OS functions. Moreover, access rights can
contain other access rights, groups can contain other groups, and in the end having a clear picture of the exact
impacts on security is difficult. The UNIX security model is much simpler and easier to manage.

Without trying to assess the effect on security that each access right or group membership can have (that would
be a huge task), there are a few common users and groups that should be mentioned.

 Administrators Group: any user member of this group has full administrative rights, a close equivalent
to the superuser in UNIX.

 Users Group: a member of this group inherits standard access rights for all users.

 LocalSystem: this is a special account that has extensive privilege on the computer and is used to run
many Windows services. This is the true equivalent to the superuser in UNIX.

 NetworkService: this account is also used to run Windows services, but it has less privilege on the local
computer than LocalSystem. This account can access the network.

 LocalService: this is a third account used to run Windows services and it has the same level of privilege
on the computer as NetworkService. The difference is that it cannot access the network.

CCDC UNCLASSIFIED Date: 23 March 2015
Identifying Attack Surface Resources
DCN: 2268C.001-REP-01-DA-TA1 Rev. 01 Page 36

Proprietary Information.
Use or disclosure of this data is subject to the Restriction of the
title page of this document.

UNCLASSIFIED

Now, we can establish an order between these users and groups in term of access rights and potential damage.

(1) The LocalSystem account, having complete and unrestricted access to the computer, is the most
dangerous account;

(2) The Administrators group is a close second, but it cannot do some tasks such as closing a system
process (LocalSystem can do that);

(3) The Users group has normal access to the computer;

(4) NetworkService has limited access to the computer, but can access the network; and

(5) LocalService also has limited access to the computer, and in addition cannot access the network.

6.5 Conclusion

Discovering resources involved in the computation of an attack surface metric, as described in (Manadhata &
Wing, 2011), but for a whole computer, is challenging to say the least. This document showed that we can expect
a computer to have at least thousands of resources, of which the large majority will be data items. Because of
this, it is almost impossible to identify all these resources without the help of automation.

This document also presented a relatively easy to use technique for discovering resources using dynamic
analysis. The main advantage of this technique is that it does not need the source code of a software system to
work. The second, non-negligible aspect is the scalability of this technique: it would be entirely feasible to use it
for a whole network of computers. Dynamic analysis also has downsides, the most important being that this
analysis technique only “sees” what is executed. Attack surface resources not involved in an observed execution
would not be detected with dynamic analysis.

The security model of Windows is much more complex than the one used in Linux, or UNIX in general. The
complexity arises in part from the very large list of access rights that can be used to manage the security in
Windows. That list goes above and beyond file system security and a clear mapping of the access rights and their
associated impact on security would have to be assessed. No such list has been found yet and a complete
assessment is probably necessary.

Some characteristics of the model shown in (Manadhata & Wing, 2011) to do empirical attack surface calculations
could be simplified. First, considering privilege for methods instead of processes is not necessary. Except for
setuid programs on UNIX, all methods run using the same privilege as the process. Besides, no distinction should
be made between trusted and untrusted data items. Data items such as files are not local to a method and an
attacker could use any data items belonging to a process. Hence, that distinction is useless. In fact, considering
methods at all is not recommended and an interesting simplification would be to consider modules (executables
and shared libraries) instead. Finally, the type of a data item should not be considered at all, because the
constraints on the kind of data that could be stored in it (e.g. executable code) are trivial to bypass using encoding
tricks. Hence, a data item of a specific type (e.g. file) is not more secure than another of a different type (e.g.
registry).

In the end, the author of this document wants to make the case that the attack surface of a software system is not
strongly related to the type of software. For example, two web server programs could have very different attack
surfaces. Server A could be a simple and limited web server, such as lighttpd25,, and server B could be a fully-
featured Apache or IIS server with tons of configuration files, a remote administration console, support for
extensions and scripting, etc. Hence, these two web servers would have drastically different attack surfaces. The
attack surface really depends on the implementation and must be assessed on a case-by-case basis.

25 http://www.lighttpd.net

CCDC UNCLASSIFIED Date: 23 March 2015
Identifying Attack Surface Resources
DCN: 2268C.001-REP-01-DA-TA1 Rev. 01 Page 37

Proprietary Information.
Use or disclosure of this data is subject to the Restriction of the
title page of this document.

UNCLASSIFIED

References

Howard, M., Pincus, J., & Wing, J. (2003). Measuring relative attack surfaces. Workshop on Advanced
Developments in Software and Systems Security.

Manadhata, P. K., & Wing, J. M. (2011). An Attack Surface Metric. IEEE Transactions on Software Engineering,
vol. 37, no. 3, 371-386.

Manadhta, P. K., & Wing, J. M. (2004). Measuring a system's attack surface. CMU-CS-04-102.

